Commit Graph

43 Commits

Author SHA1 Message Date
Kornel
ed667d4bfd Merge remote-tracking branch 'libjpeg-turbo/3.0.x' into mozjpeg
* libjpeg-turbo/3.0.x: (135 commits)
  Ensure methods called by global funcs are init'd
  Build: Generate 32-bit supplementary ppc64 .deb
  Build: Fix float test errors with Xcode 14.2/Arm
  AltiVec: Disable/Fix some strict compiler warnings
  Neon: Disable some strict compiler warnings
  Build: Make Mac packaging architecture-agnostic
  Exclude more code if !(C|D)_LOSSLESS_SUPPORTED
  Fix OSS-Fuzz decompress_yuv fuzzer MSan failure
  TJ doc: Density params require YCbCr or grayscale
  Allow disabling prog/opt/lossless if prev. enabled
  GitHub: Use macos-13 runner image w/ Xcode 14.2
  LICENSE.md: Update copyright year
  ChangeLog: Document accidental fix from 9983840e
  tj3Set(): Allow TJPARAM_LOSSLESSPT vals from 0..15
  Build: Support LLVM/Windows
  tj3Transform: Don't calc dst subsamp unless needed
  Fuzz: Calc. xformed buf size based on dst. subsamp
  TJ: Calc. xformed buf sizes based on dst. subsamp
  Minor TurboJPEG doc tweaks
  turbojpeg.c: Fix -Wsign-compare compiler warning
  ...
2025-01-03 09:57:35 +00:00
Kornel
c6d33b6d69 Merge commit '15274b901acb75d6d2433e8578f3cfbc6f4f5fd9' into mozjpeg
* commit '15274b901acb75d6d2433e8578f3cfbc6f4f5fd9': (98 commits)
  AppVeyor: Use SignPath release cert/only sign tags
  xform fuzz: Use only xform opts to set entropy alg
  jchuff.c: Test for out-of-range coefficients
  turbojpeg.h: Make customFilter() proto match doc
  ChangeLog.md: Fix typo
  djpeg: Fix -map option with 12-bit data precision
  Disallow color quantization with lossless decomp
  tj3Transform: Calc dst buf size from xformed dims
  README.md: Include link to project home page
  AppVeyor: Only add installers to zip file
  AppVeyor: Integrate with SignPath.io
  Fix build warnings/errs w/ -DNO_GETENV/-DNO_PUTENV
  GitHub: Fix x32 build
  Bump version to 3.0.0
  tjexample.c: Prevent integer overflow
  Disallow merged upsampling with lossless decomp
  SECURITY.md: Wordsmithing and clarifications
  GitHub: Add security policy
  ChangeLog.md: List CVE ID fixed by 9f756bc6
  jpeg_crop_scanline: Fix calc w/sclg + 2x4,4x2 samp
  ...
2024-12-23 01:25:43 +00:00
DRC
e81cb16e0f Ensure methods called by global funcs are init'd
If a hypothetical calling application does something really stupid and
changes cinfo->data_precision after calling jpeg_start_*compress(), then
the precision-specific methods called by jpeg_write_scanlines(),
jpeg_write_raw_data(), jpeg_finish_compress(), jpeg_read_scanlines(),
jpeg_read_raw_data(), or jpeg_start_output() may not be initialized.

Ensure that the first precision-specific method (which will always be
cinfo->main->process_data*(), cinfo->coef->compress_data*(), or
cinfo->coef->decompress_data()) called by any global function that may
be called after jpeg_start_*compress() is initialized and non-NULL.
This increases the likelihood (but does not guarantee) that a
hypothetical stupid calling application will fail gracefully rather than
segfault if it changes cinfo->data_precision after calling
jpeg_start_*compress().  A hypothetical stupid calling application can
still bork itself by changing cinfo->data_precision after initializing
the source manager but before calling jpeg_start_compress(), or after
initializing the destination manager but before calling
jpeg_start_decompress().
2024-12-18 16:37:02 -05:00
DRC
9b3a8f3641 jcapimin.c: Revert changes made in fc01f467
Those changes worked around an innocuous UBSan warning that was
exposed by the new TurboJPEG 3 transform fuzz target, due to the fact
that tj3Transform() no longer rejects images with unknown subsampling
configurations.  That UBSan warning was a false positive, and attempting
to fix it introduced a buffer overrun triggered by a malformed input
image that causes jpeg_write_marker() to be called with datalen == 0.  I
suspect that the UBSan false positive was only reproducible on my local
machine, but I guess we'll see.

Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55413
2023-01-27 13:52:26 -06:00
DRC
fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00
DRC
2241434eb9 16-bit lossless JPEG support 2022-12-16 13:57:03 -06:00
DRC
97772cba65 Merge branch 'ijg.lossless' into dev
Refer to #402
2022-11-14 15:36:25 -06:00
DRC
217d1a75f5 Clean up the lossless JPEG feature
- Rename jpeg_simple_lossless() to jpeg_enable_lossless() and modify the
  function so that it stores the lossless parameters directly in the Ss
  and Al fields of jpeg_compress_struct rather than using a scan script.

- Move the cjpeg -lossless switch into "Switches for advanced users".

- Document the libjpeg API and run-time features that are unavailable in
  lossless mode, and ensure that all parameters, functions, and switches
  related to unavailable features are ignored or generate errors in
  lossless mode.

- Defer any action that depends on whether lossless mode is enabled
  until jpeg_start_compress()/jpeg_start_decompress() is called.

- Document the purpose of the point transform value.

- "Codec" stands for coder/decoder, so it is a bit awkward to say
  "lossless compression codec" and "lossless decompression codec".
  Use "lossless compressor" and "lossless decompressor" instead.

- Restore backward API/ABI compatibility with libjpeg v6b:

  * Move the new 'lossless' field from the exposed jpeg_compress_struct
    and jpeg_decompress_struct structures into the opaque
    jpeg_comp_master and jpeg_decomp_master structures, and allocate the
    master structures in the body of jpeg_create_compress() and
    jpeg_create_decompress().

  * Remove the new 'process' field from jpeg_compress_struct and
    jpeg_decompress_struct and replace it with the old
    'progressive_mode' field and the new 'lossless' field.

  * Remove the new 'data_unit' field from jpeg_compress_struct and
    jpeg_decompress_struct and replace it with a locally-computed
    data unit variable.

  * Restore the names of macros and fields that refer to DCT blocks, and
    document that they have a different meaning in lossless mode.  (Most
    of them aren't very meaningful in lossless mode anyhow.)

  * Remove the new alloc_darray() method from jpeg_memory_mgr and
    replace it with an internal macro that wraps the alloc_sarray()
    method.

  * Move the JDIFF* data types from jpeglib.h and jmorecfg.h into
    jpegint.h.

  * Remove the new 'codec' field from jpeg_compress_struct and
    jpeg_decompress_struct and instead reuse the existing internal
    coefficient control, forward/inverse DCT, and entropy
    encoding/decoding structures for lossless compression/decompression.

  * Repurpose existing error codes rather than introducing new ones.
    (The new JERR_BAD_RESTART and JWRN_MUST_DOWNSCALE codes remain,
    although JWRN_MUST_DOWNSCALE will probably be removed in
    libjpeg-turbo, since we have a different way of handling multiple
    data precisions.)

- Automatically enable lossless mode when a scan script with parameters
  that are only valid for lossless mode is detected, and document the
  use of scan scripts to generate lossless JPEG images.

- Move the sequential and shared Huffman routines back into jchuff.c and
  jdhuff.c, and document that those routines are shared with jclhuff.c
  and jdlhuff.c as well as with jcphuff.c and jdphuff.c.

- Move MAX_DIFF_BITS from jchuff.h into jclhuff.c, the only place where
  it is used.

- Move the predictor and scaler code into jclossls.c and jdlossls.c.

- Streamline register usage in the [un]differencers (inspired by similar
  optimizations in the color [de]converters.)

- Restructure the logic in a few places to reduce duplicated code.

- Ensure that all lossless-specific code is guarded by
  C_LOSSLESS_SUPPORTED or D_LOSSLESS_SUPPORTED and that the library can
  be built successfully if either or both of those macros is undefined.

- Remove all short forms of external names introduced by the lossless
  JPEG patch.  (These will not be needed by libjpeg-turbo, so there is
  no use cleaning them up.)

- Various wordsmithing, formatting, and punctuation tweaks

- Eliminate various compiler warnings.
2022-11-14 14:55:04 -06:00
DRC
b5a9ef64ea Don't allow 12-bit JPEG support to be disabled
In libjpeg-turbo 2.1.x and prior, the WITH_12BIT CMake variable was used
to enable 12-bit JPEG support at compile time, because the libjpeg API
library could not handle multiple JPEG data precisions at run time.  The
initial approach to handling multiple JPEG data precisions at run time
(7fec5074f9) created a whole new API,
library, and applications for 12-bit data precision, so it made sense to
repurpose WITH_12BIT to allow 12-bit data precision to be disabled.
e8b40f3c2b made it so that the libjpeg API
library can handle multiple JPEG data precisions at run time via a
handful of straightforward API extensions.  Referring to
6c2bc901e2, it hasn't been possible to
build libjpeg-turbo with both forward and backward libjpeg API/ABI
compatibility since libjpeg-turbo 1.4.x.  Thus, whereas we retain full
backward API/ABI compatibility with libjpeg v6b-v8, forward libjpeg
API/ABI compatibility ceased being realistic years ago, so it no longer
makes sense to provide compile-time options that give a false sense of
forward API/ABI compatibility by allowing some (but not all) of our
libjpeg API extensions to be disabled.  Such options are difficult to
maintain and clutter the code with #ifdefs.
2022-11-13 13:38:48 -06:00
DRC
e8b40f3c2b Vastly improve 12-bit JPEG integration
The Gordian knot that 7fec5074f9 attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API.  If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application.  (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)

Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation.  Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.

In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:

  - The colormap and sample_range_limit fields in jpeg_decompress_struct
  - The alloc_sarray() and access_virt_sarray() methods in
    jpeg_memory_mgr
  - jpeg_write_scanlines() and jpeg_write_raw_data()
  - jpeg_read_scanlines() and jpeg_read_raw_data()
  - jpeg_skip_scanlines() and jpeg_crop_scanline()
    (This is subtle, but both of those functions use JSAMPLE-dependent
    opaque structures behind the scenes.)

It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples.  Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:

  - Compile only the precision-dependent libjpeg modules (the
    coefficient buffer controllers, the colorspace converters, the
    DCT/IDCT managers, the main buffer controllers, the preprocessing
    and postprocessing controller, the downsampler and upsamplers, the
    quantizers, the integer DCT methods, and the IDCT methods) for
    multiple data precisions.
  - Introduce 12-bit-specific methods into the various internal
    structures defined in jpegint.h.
  - Create precision-independent data type, macro, method, field, and
    function names that are prefixed by an underscore, and use an
    internal header to convert those into precision-dependent data
    type, macro, method, field, and function names, based on the value
    of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
    modules.
  - Expose precision-dependent jinit*() functions for each of the
    precision-dependent libjpeg modules.
  - Abstract the precision-dependent libjpeg modules by calling the
    appropriate precision-dependent jinit*() function, based on the
    value of cinfo->data_precision, from top-level libjpeg API
    functions.
2022-11-04 12:30:33 -05:00
DRC
ec6e451d05 Lossless JPEG support: Add copyright attributions
Referring to
https://github.com/libjpeg-turbo/libjpeg-turbo/issues/402#issuecomment-768348440
and
https://github.com/libjpeg-turbo/libjpeg-turbo/issues/402#issuecomment-770221584

Ken Murchison clarified that it was his intent to release the lossless
JPEG patch under the IJG License and that adding his name to the
copyright headers would be sufficient to acknowledge that any
derivatives are based on his work.
2022-10-21 16:53:53 -05:00
Ken Murchison
2e8360e061 IJG's JPEG software v6b with lossless JPEG support
Patch obtained from:
https://sourceforge.net/projects/jpeg/files/ftp.oceana.com

Author date taken from original announcement and timestamp of patch
tarball:
https://groups.google.com/g/comp.protocols.dicom/c/rrkP8BxoMRk/m/Ij4dfprggp8J
2022-10-21 13:42:59 -05:00
Kornel
5c6a0f0971 Update to libjpeg-turbo 2.1.3 2022-05-23 16:06:07 +01:00
Kornel
5e797fa699 Merge tag '2.1.3' into master-moz
* tag '2.1.3': (56 commits)
  Neon/AArch64: Explicitly unroll quant loop w/Clang
  Neon/AArch64: Fix/suppress UBSan warnings
  Neon/AArch64: Accelerate Huffman encoding
  AppVeyor: Test strict MSVC compiler warnings
  Eliminate incompatible pointer type warnings
  MSVC: Eliminate int conversion warnings (C4244)
  MSVC: Eliminate C4996 warnings in API libs
  BUILDING.md: Clarify that Ninja works with Windows
  BUILDING.md: Remove NASM RPM rebuild instructions
  BUILDING.md: Document NASM/Yasm path variables
  "YASM" = "Yasm"
  Build: Fix Neon capability detection w/ MSVC
  Ensure that strncpy() dest strings are terminated
  Eliminate unnecessary JFREAD()/JFWRITE() macros
  Build: Embed version/API/(C) info in MSVC DLLs
  Fix segv w/ h2v2 merged upsamp, jpeg_crop_scanline
  TJBench: Remove innocuous always-true condition
  GitHub Actions: Specify Catalina for macOS build
  Fix -Wpedantic compiler warnings
  Eliminate non-ANSI C compatibility macros
  ...
2022-05-23 16:04:06 +01:00
DRC
7fec5074f9 Support 8-bit & 12-bit JPEGs using the same build
Partially implements #199

This commit also implements a request from #178 (the ability to compile
the libjpeg example as a standalone program.)
2022-03-10 22:56:17 -06:00
DRC
172972394a Eliminate non-ANSI C compatibility macros
libjpeg-turbo has never supported non-ANSI C compilers.  Per the spec,
ANSI C compilers must have locale.h, stddef.h, stdlib.h, memset(),
memcpy(), unsigned char, and unsigned short.  They must also handle
undefined structures.
2022-01-06 11:50:26 -06:00
Kornel
8217fd5478 Merge tag '2.0.0'
* tag '2.0.0': (160 commits)
  Clarify Android Windows build instructions
  Bump revision to 2.0.0
  Build: Don't use @rpath with OS X 10.4 builds
  Fix JPEG spec references per ISO/ITU-T suggestions
  Fix int overflow when decompr. corrupt prog. JPEG
  cjpeg: Fix OOB read caused by malformed 8-bit BMP
  Build: Preserve CMake exe suffix from cmd line
  Honor CMake exe suffix when inst. static builds
  README.ijg: Clarification regarding JPEG 2000/XR
  BUILDING.md: Correct iOS/Android examples
  Build: Detect whether compiler supports DSPr2
  Fix jpeg_skip_scanlines() segfault w/merged upsamp
  Fix infinite loop in partial image decompression
  tjLoadImage(): Fix FPE triggered by malformed BMP
  TurboJPEG: Handle JERR_BMP*,JERR_PPM* error codes
  Fix CVE-2018-11813
  Travis: Use SKS keyserver pool
  Additional code formatting tweaks
  Java: Further style refinements
  Java: Reformat code per checkstyle recommendations
  ...
2018-11-11 16:13:59 +00:00
DRC
19c791cdac Improve code formatting consistency
With rare exceptions ...
- Always separate line continuation characters by one space from
  preceding code.
- Always use two-space indentation.  Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
  function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
  with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
  function name.
- Always precede pointer symbols ('*' and '**') by a space in type
  casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
  API libraries (using min() from tjutil.h is still necessary for
  TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
  line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.

The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions.  This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree.  The
new convention is more consistent with the formatting of other OSS code
bases.

This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.

NOTES:
- Although it is no longer necessary for the function name in function
  declarations to begin in Column 1 (this was historically necessary
  because of the ansi2knr utility, which allowed libjpeg to be built
  with non-ANSI compilers), we retain that formatting for the libjpeg
  code because it improves readability when using libjpeg's function
  attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
  Uncrustify, although neither was completely up to the task, and thus
  a great deal of manual tweaking was required.  Note to developers of
  code formatting utilities:  the libjpeg-turbo code base is an
  excellent test bed, because AFAICT, it breaks every single one of the
  utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
  formatted to match the SSE2 code (refer to
  ff5685d5344273df321eb63a005eaae19d2496e3.)  I hadn't intended to
  bother with this, but the Loongson MMI implementation demonstrated
  that there is still academic value to the MMX implementation, as an
  algorithmic model for other 64-bit vector implementations.  Thus, it
  is desirable to improve its readability in the same manner as that of
  the SSE2 implementation.
2018-03-16 02:14:34 -05:00
Kornel Lesiński
ec333d5bbd Merge remote-tracking branch 'libjpeg-turbo/master' into libjpeg-turbo
* libjpeg-turbo/master: (140 commits)
  Increase severity of tjDecompressToYUV2() bug desc
  Catch libjpeg errors in tjDecompressToYUV2()
  BUILDING.md: Fix "... OR ..." indentation again
  BUILDING.md: Fix confusing Windows build reqs
  ChangeLog.md: Improve readability of plain text
  change.log: Refer users to ChangeLog.md
  Markdown version of ChangeLog.txt
  Rename ChangeLog.txt
  README.md: Link to BUILDING.md
  BUILDING.md and README.md: Cosmetic tweaks
  ChangeLog: "1.5 beta1" --> "1.4.90 (1.5 beta1)"
  Java: Fix parallel make with autotools
  Win/x64: Fix improper callee save of xmm8-xmm11
  Bump TurboJPEG C API revision to 1.5
  ChangeLog: Mention jpeg_crop_scanline() function
  1.5 beta1
  Fix v7/v8-compatible build
  libjpeg API: Partial scanline decompression
  Build: Make the NASM autoconf variable persistent
  Use consistent/modern code formatting for dbl ptrs
  ...
2016-04-28 01:08:01 +01:00
DRC
bd49803f92 Use consistent/modern code formatting for pointers
The convention used by libjpeg:

    type * variable;

is not very common anymore, because it looks too much like
multiplication.  Some (particularly C++ programmers) prefer to tuck the
pointer symbol against the type:

    type* variable;

to emphasize that a pointer to a type is effectively a new type.
However, this can also be confusing, since defining multiple variables
on the same line would not work properly:

    type* variable1, variable2;  /* Only variable1 is actually a
                                    pointer. */

This commit reformats the entirety of the libjpeg-turbo code base so
that it uses the same code formatting convention for pointers that the
TurboJPEG API code uses:

    type *variable1, *variable2;

This seems to be the most common convention among C programmers, and
it is the convention used by other codec libraries, such as libpng and
libtiff.
2016-02-19 09:10:07 -06:00
DRC
7e3acc0e0a Rename README, LICENSE, BUILDING text files
The IJG README file has been renamed to README.ijg, in order to avoid
confusion (many people were assuming that that was our project's README
file and weren't reading README-turbo.txt) and to lay the groundwork for
markdown versions of the libjpeg-turbo README and build instructions.
2015-10-10 10:31:33 -05:00
Thomas G. Lane
5ead57a34a The Independent JPEG Group's JPEG software v6b 2015-07-27 13:43:00 -05:00
Thomas G. Lane
489583f516 The Independent JPEG Group's JPEG software v6a 2015-07-29 15:32:35 -05:00
Thomas G. Lane
bc79e0680a The Independent JPEG Group's JPEG software v6 2015-07-29 15:31:30 -05:00
DRC
f645002fb6 Fix double free of cinfo->master caused by the extension framework modifications
There was an oversight in the extension framework.  jpeg_start_compress() can
be called multiple times between the time that a compress structure is created
and the time it is destroyed.  If this happened, then the following sequence
would occur:

-- heap alloc of master struct within jpeg_create_compress()
-- heap free of master struct within jinit_c_master_control()
-- static alloc of extended master struct (JPOOL_IMAGE) within
   jinit_c_master_control()
-- free extended master struct in jpeg_finish_compress()
-- jinit_c_master_control() now sees that cinfo->master is set and tries to
   free it, even though it has already been freed.  Chaos ensues.

The fix involved breaking out the extended master struct into a header so that
jpeg_create_compress() can go ahead and allocate it to the correct size, thus
eliminating the need to free and reallocate it in jinit_c_master_control().
Further, the master struct is now created in the permanent pool, so it will
survive until the compression struct is destroyed.  Further,
jinit_c_master_control() now resets all fields in the master struct that
are not related to the extension parameters.
2014-12-14 03:59:44 -06:00
DRC
3e2cf6909c Convert JBOOLEAN_USE_MOZ_DEFAULTS into an integer "compression profile" parameter
This eliminates JBOOLEAN_USE_MOZ_DEFAULTS and replaces it with
JINT_COMPRESS_PROFILE, a more flexible and descriptive parameter.  Currently,
this new parameter works in much the same way as the old-- it changes the
behavior of jpeg_set_defaults().  It currently supports only two values
(max. compression, i.e. mozjpeg defaults, and fastest, i.e. libjpeg-turbo
defaults), but it can be extended in the future with additional profiles that
balance compression ratio with performance.
2014-12-14 01:56:26 -06:00
DRC
9cb270a216 Use mozjpeg defaults by default
Since mozjpeg is now backward ABI-compatible with libjpeg[-turbo], it is now
possible to temporarily load mozjpeg into a binary application and cause that
application to generate uber-compressed JPEGs (at the expense of an extreme
performance loss, of course.)  For instance, someone could do

LD_LIBRARY_PATH=/opt/mozjpeg/lib convert blah_blah_blah

to make ImageMagick use mozjpeg instead of the system's pre-installed JPEG
library (libjpeg-turbo, in most cases.)  However, this only makes sense if
mozjpeg is actually producing different behavior by default than libjpeg-turbo.
Currently it isn't.  Currently it requires the application to set
JBOOLEAN_USE_MOZ_DEFAULTS to TRUE in order to enable the mozjpeg-specific
behavior, but of course applications that were built to use libjpeg[-turbo]
won't do that.  Thus, this patch sets use_moz_defaults to TRUE by default,
requiring an application to explicitly set it to FALSE in order to revert to
the libjpeg[-turbo] behavior (makes sense, since the only applications that
would need to revert to the libjpeg[-turbo] behavior would be mozjpeg-aware
applications.)

Note that we discussed the possibility of adding a function
(jpeg_revert_defaults()), which would act the same as jpeg_set_defaults() does
in libjpeg[-turbo].  This is a good solution for implementing the -revert
switch in cjpeg, but unfortunately it doesn't work for jpegtran.  The reason
is that jpeg_set_defaults() is called within the body of
jpeg_copy_critical_parameters(), which is part of the API.  So yet again,
if mozjpeg were loaded into a non-mozjpeg-aware application at run time, it
would be desirable for jpeg_copy_critical_parameters() to set the parameters
to mozjpeg defaults.  That means that, in order to implement the -revert
switch in jpegtran, it would be necessary to introduce a new function
(jpeg_revert_critical_parameters(), perhaps).  It seems cleaner to just keep
using the JBOOLEAN_USE_MOZ_DEFAULTS parameter to control the behavior of
jpeg_set_defaults(), even though this represents a minor abuse of the libjpeg
API (jpeg_set_defaults() is technically supposed to set all of the parameters
to defaults, irrespective of any previous state.  However, as long as we
document that JBOOLEAN_USE_MOZ_DEFAULTS works differently, then it should be
OK.)
2014-11-19 23:31:20 -06:00
DRC
db2986c96f Restore backward ABI compatibility with libjpeg/libjpeg-turbo by moving the mozjpeg-specific parameters into the opaque jpeg_comp_master struct and implementing generic accessor functions for getting/setting those parameters. These functions can be used upstream, if the need for them arises in libjpeg-turbo, and they can also be easily extended to cover future extensions to the decompressor. Note that, in order to use jpeg_comp_master as a repository for extension parameters, cinfo->master is now allocated within the body of jpeg_CreateCompress(). It is later re-allocated in jinit_c_master_control(), because that function (and others in jcmaster.c) use an extended form of jpeg_comp_master, but the existing extension parameters are copied into the new master instance. Similar modifications would need to be made to the decompressor to support the same type of extension framework. 2014-11-04 01:58:52 -06:00
DRC
46611eb0ee libjpeg-turbo has never supported non-ANSI compilers, so get rid of the crufty SIZEOF() macro. It was not being used consistently anyhow, so it would not have been possible to build prior releases of libjpeg-turbo using the broken compilers for which that macro was designed. 2014-05-18 19:04:03 +00:00
DRC
5de454b291 libjpeg-turbo has never supported non-ANSI compilers, so get rid of the crufty SIZEOF() macro. It was not being used consistently anyhow, so it would not have been possible to build prior releases of libjpeg-turbo using the broken compilers for which that macro was designed.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1313 632fc199-4ca6-4c93-a231-07263d6284db
2014-05-18 19:04:03 +00:00
DRC
144e7b79e4 Remove MS-DOS code and information, and adjust copyright headers to reflect the removal of features in r1307 and r1308. libjpeg-turbo has never supported MS-DOS, nor is it even possible for us to do so. 2014-05-18 18:33:44 +00:00
DRC
5033f3e19a Remove MS-DOS code and information, and adjust copyright headers to reflect the removal of features in r1307 and r1308. libjpeg-turbo has never supported MS-DOS, nor is it even possible for us to do so.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1312 632fc199-4ca6-4c93-a231-07263d6284db
2014-05-18 18:33:44 +00:00
DRC
f8301c92dd Get rid of the HAVE_PROTOTYPES configuration option, as well as the related JMETHOD and JPP macros. libjpeg-turbo has never supported compilers that don't handle prototypes. Doing so requires ansi2knr, which isn't even supported in the IJG code anymore. 2014-05-16 10:43:44 +00:00
DRC
bc56b754e1 Get rid of the HAVE_PROTOTYPES configuration option, as well as the related JMETHOD and JPP macros. libjpeg-turbo has never supported compilers that don't handle prototypes. Doing so requires ansi2knr, which isn't even supported in the IJG code anymore.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1308 632fc199-4ca6-4c93-a231-07263d6284db
2014-05-16 10:43:44 +00:00
DRC
e45363d7c2 Convert tabs to spaces in the libjpeg code and the SIMD code (TurboJPEG retains the use of tabs for historical reasons. They were annoying in the libjpeg code primarily because they were not consistently used and because they were used to format as well as indent the code. In the case of TurboJPEG, tabs are used just to indent the code, so even if the editor assumes a different tab width, the code will still be readable.) 2014-05-09 18:00:32 +00:00
DRC
e5eaf37440 Convert tabs to spaces in the libjpeg code and the SIMD code (TurboJPEG retains the use of tabs for historical reasons. They were annoying in the libjpeg code primarily because they were not consistently used and because they were used to format as well as indent the code. In the case of TurboJPEG, tabs are used just to indent the code, so even if the editor assumes a different tab width, the code will still be readable.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1278 632fc199-4ca6-4c93-a231-07263d6284db
2014-05-09 18:00:32 +00:00
DRC
36a6eec932 Added optional emulation of the jpeg-7 or jpeg-8b API/ABI's
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@236 632fc199-4ca6-4c93-a231-07263d6284db
2010-10-08 08:05:44 +00:00
Guido Vollbeding
f18f81b7e2 The Independent JPEG Group's JPEG software v8a 2015-07-27 13:46:36 -05:00
Guido Vollbeding
5996a25e2f The Independent JPEG Group's JPEG software v7 2015-07-27 13:44:25 -05:00
DRC
d0d0f09d40 Added optional emulation of the jpeg-7 or jpeg-8b API/ABI's 2010-10-08 08:05:44 +00:00
Thomas G. Lane
41f55c093a The Independent JPEG Group's JPEG software v6b 2014-09-07 20:00:00 +01:00
Thomas G. Lane
16c97143f3 The Independent JPEG Group's JPEG software v6a 2014-09-07 20:00:00 +01:00
Thomas G. Lane
0baf670330 The Independent JPEG Group's JPEG software v6 2014-09-07 20:00:00 +01:00