Port the more accurate (and slightly faster) floating point IDCT implementation from jpeg-8a and later. New research revealed that the SSE/SSE2 floating point IDCT implementation was actually more accurate than the jpeg-6b implementation, not less, which is why its mathematical results have always differed from those of the jpeg-6b implementation. This patch brings the accuracy of the C code in line with that of the SSE/SSE2 code.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1288 632fc199-4ca6-4c93-a231-07263d6284db
This commit is contained in:
@@ -300,7 +300,7 @@ set(MD5_JPEG_3x2_FLOAT_PROG 343e3f8caf8af5986ebaf0bdc13b5c71)
|
||||
set(MD5_PPM_3x2_FLOAT 1a75f36e5904d6fc3a85a43da9ad89bb)
|
||||
else()
|
||||
set(MD5_JPEG_3x2_FLOAT_PROG 9bca803d2042bd1eb03819e2bf92b3e5)
|
||||
set(MD5_PPM_3x2_FLOAT ef6a420e369440edd6b918a0cf54ba3f)
|
||||
set(MD5_PPM_3x2_FLOAT f6bfab038438ed8f5522fbd33595dcdc)
|
||||
endif()
|
||||
set(MD5_JPEG_420_ISLOW_ARI e986fb0a637a8d833d96e8a6d6d84ea1)
|
||||
set(MD5_JPEG_444_ISLOW_PROGARI 0a8f1c8f66e113c3cf635df0a475a617)
|
||||
|
||||
@@ -54,6 +54,14 @@ if compiler optimization was enabled when libjpeg-turbo was built. This caused
|
||||
the regression tests to fail when doing a release build under Visual C++ 2010
|
||||
and later.
|
||||
|
||||
[7] Improved the accuracy and performance of the non-SIMD implementation of the
|
||||
floating point inverse DCT (using code borrowed from libjpeg v8a and later.)
|
||||
The accuracy of this implementation now matches the accuracy of the SSE/SSE2
|
||||
implementation. Note, however, that the floating point DCT/IDCT algorithms are
|
||||
mainly a legacy feature. They generally do not produce significantly better
|
||||
accuracy than the slow integer DCT/IDCT algorithms, and they are quite a bit
|
||||
slower.
|
||||
|
||||
|
||||
1.3.1
|
||||
=====
|
||||
|
||||
@@ -175,15 +175,13 @@ MD5_JPEG_GRAY_ISLOW = 72b51f894b8f4a10b3ee3066770aa38d
|
||||
MD5_PPM_GRAY_ISLOW = 8d3596c56eace32f205deccc229aa5ed
|
||||
MD5_PPM_GRAY_RGB_ISLOW = 116424ac07b79e5e801f00508eab48ec
|
||||
MD5_JPEG_420S_IFAST_OPT = 388708217ac46273ca33086b22827ed8
|
||||
# The SSE/SSE2 DCT/IDCT implementation has always produced a slight round-off
|
||||
# error relative to the C code, so in this case, we just test for regression
|
||||
# rather than verifying that the output matches libjpeg.
|
||||
# See README-turbo.txt for more details on why this next bit is necessary.
|
||||
if WITH_SSE_FLOAT_DCT
|
||||
MD5_JPEG_3x2_FLOAT_PROG = 343e3f8caf8af5986ebaf0bdc13b5c71
|
||||
MD5_PPM_3x2_FLOAT = 1a75f36e5904d6fc3a85a43da9ad89bb
|
||||
else
|
||||
MD5_JPEG_3x2_FLOAT_PROG = 9bca803d2042bd1eb03819e2bf92b3e5
|
||||
MD5_PPM_3x2_FLOAT = ef6a420e369440edd6b918a0cf54ba3f
|
||||
MD5_PPM_3x2_FLOAT = f6bfab038438ed8f5522fbd33595dcdc
|
||||
endif
|
||||
MD5_JPEG_420_ISLOW_ARI = e986fb0a637a8d833d96e8a6d6d84ea1
|
||||
MD5_JPEG_444_ISLOW_PROGARI = 0a8f1c8f66e113c3cf635df0a475a617
|
||||
|
||||
@@ -301,10 +301,19 @@ following reasons:
|
||||
slightly more accurate than the implementation in libjpeg v6b, but not by
|
||||
any amount perceptible to human vision (generally in the range of 0.01 to
|
||||
0.08 dB gain in PNSR.)
|
||||
-- When not using the SIMD extensions, libjpeg-turbo uses the more accurate
|
||||
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
|
||||
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
|
||||
however, that this algorithm basically brings the accuracy of the floating
|
||||
point IDCT in line with the accuracy of the slow integer IDCT. The floating
|
||||
point DCT/IDCT algorithms are mainly a legacy feature, and they do not
|
||||
produce significantly more accuracy than the slow integer algorithms (to put
|
||||
numbers on this, the typical difference in PNSR between the two algorithms
|
||||
is less than 0.10 dB, whereas changing the quality level by 1 in the upper
|
||||
range of the quality scale is typically more like a 1.0 dB difference.)
|
||||
-- When not using the SIMD extensions, then the accuracy of the floating point
|
||||
DCT/IDCT can depend on the compiler and compiler settings.
|
||||
|
||||
|
||||
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood, it is
|
||||
still using the same algorithms as libjpeg v6b, so there are several specific
|
||||
cases in which libjpeg-turbo cannot be expected to produce the same output as
|
||||
@@ -320,10 +329,6 @@ libjpeg v8:
|
||||
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
|
||||
reason.
|
||||
|
||||
-- When using the floating point IDCT, for the reasons stated above and also
|
||||
because the floating point IDCT algorithm was modified in libjpeg v8a to
|
||||
improve accuracy.
|
||||
|
||||
-- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
|
||||
"non-smooth") chrominance upsampling, because libjpeg v8 does not support
|
||||
merged upsampling with scaling factors > 1.
|
||||
|
||||
79
jidctflt.c
79
jidctflt.c
@@ -1,9 +1,12 @@
|
||||
/*
|
||||
* jidctflt.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
* Modified 2010 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2014, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
@@ -76,10 +79,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
FLOAT_MULT_TYPE * quantptr;
|
||||
FAST_FLOAT * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||||
int ctr;
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
#define _0_125 ((FLOAT_MULT_TYPE)0.125)
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
@@ -101,7 +104,8 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
|
||||
quantptr[DCTSIZE*0] * _0_125);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
@@ -120,10 +124,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
@@ -138,10 +142,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
@@ -152,12 +156,12 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
||||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
tmp4 = tmp10 - tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||
@@ -165,8 +169,8 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
||||
wsptr[DCTSIZE*3] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE*4] = tmp3 - tmp4;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
@@ -174,7 +178,6 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
@@ -187,8 +190,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = wsptr[0] + wsptr[4];
|
||||
tmp11 = wsptr[0] - wsptr[4];
|
||||
/* Apply signed->unsigned and prepare float->int conversion */
|
||||
z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
|
||||
tmp10 = z5 + wsptr[4];
|
||||
tmp11 = z5 - wsptr[4];
|
||||
|
||||
tmp13 = wsptr[2] + wsptr[6];
|
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
||||
@@ -209,31 +214,23 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
||||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7;
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
tmp4 = tmp10 - tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
/* Final output stage: float->int conversion and range-limit */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
|
||||
outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
|
||||
outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
|
||||
outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
|
||||
outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
|
||||
outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
|
||||
outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
|
||||
outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user