Markdown versions of README, LICENSE, BUILDING

This commit is contained in:
DRC
2015-10-10 10:34:55 -05:00
parent 7e3acc0e0a
commit 17de518357
3 changed files with 692 additions and 701 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,25 +1,27 @@
libjpeg-turbo Licenses
----------------------
======================
libjpeg-turbo is covered by three compatible BSD-style open source licenses:
-- The IJG (Independent JPEG Group) License, which is listed in README
- The IJG (Independent JPEG Group) License, which is listed in
[README.ijg](README.ijg)
This license applies to the libjpeg API library and associated programs
(any code inherited from libjpeg, and any modifications to that code.)
This license applies to the libjpeg API library and associated programs
(any code inherited from libjpeg, and any modifications to that code.)
-- The Modified (3-clause) BSD License, which is listed in turbojpeg.c
- The Modified (3-clause) BSD License, which is listed in
[turbojpeg.c](turbojpeg.c)
This license covers the TurboJPEG API library and associated programs.
This license covers the TurboJPEG API library and associated programs.
-- The zlib License, which is listed in simd/jsimdext.inc
- The zlib License, which is listed in [simd/jsimdext.inc](simd/jsimdext.inc)
This license is a subset of the other two, and it covers the libjpeg-turbo
SIMD extensions.
This license is a subset of the other two, and it covers the libjpeg-turbo
SIMD extensions.
Complying with the libjpeg-turbo Licenses
-----------------------------------------
=========================================
This section provides a roll-up of the libjpeg-turbo licensing terms, to the
best of our understanding.
@@ -27,53 +29,60 @@ best of our understanding.
1. If you are distributing a modified version of the libjpeg-turbo source,
then:
a. You cannot alter or remove any existing copyright or license notices
1. You cannot alter or remove any existing copyright or license notices
from the source.
Origin: Clause 1 of the IJG License
Clause 1 of the Modified BSD License
Clauses 1 and 3 of the zlib License
**Origin**
- Clause 1 of the IJG License
- Clause 1 of the Modified BSD License
- Clauses 1 and 3 of the zlib License
b. You must add your own copyright notice to the header of each source
2. You must add your own copyright notice to the header of each source
file you modified, so others can tell that you modified that file (if
there is not an existing copyright header in that file, then you can
simply add a notice stating that you modified the file.)
Origin: Clause 1 of the IJG License
Clause 2 of the zlib License
**Origin**
- Clause 1 of the IJG License
- Clause 2 of the zlib License
c. You must include the IJG README file, and you must not alter any of the
3. You must include the IJG README file, and you must not alter any of the
copyright or license text in that file.
Origin: Clause 1 of the IJG License
**Origin**
- Clause 1 of the IJG License
2. If you are distributing only libjpeg-turbo binaries without the source, or
if you are distributing an application that statically links with
libjpeg-turbo, then:
a. Your product documentation must include a message stating:
1. Your product documentation must include a message stating:
This software is based in part on the work of the Independent JPEG
Group.
Origin: Clause 2 of the IJG license
**Origin**
- Clause 2 of the IJG license
b. If your binary distribution includes or uses the TurboJPEG API, then
2. If your binary distribution includes or uses the TurboJPEG API, then
your product documentation must include the text of the Modified BSD
License.
Origin: Clause 2 of the Modified BSD License
**Origin**
- Clause 2 of the Modified BSD License
3. You cannot use the name of the IJG or The libjpeg-turbo Project or the
contributors thereof in advertising, publicity, etc.
Origin: IJG License
Clause 3 of the Modified BSD License
**Origin**
- IJG License
- Clause 3 of the Modified BSD License
4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be
free of defects, nor do we accept any liability for undesirable
consequences resulting from your use of the software.
Origin: IJG License
Modified BSD License
zlib License
**Origin**
- IJG License
- Modified BSD License
- zlib License

317
README.md
View File

@@ -1,6 +1,5 @@
*******************************************************************************
** Background
*******************************************************************************
Background
==========
libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2,
NEON, AltiVec) to accelerate baseline JPEG compression and decompression on
@@ -24,59 +23,58 @@ of making high-speed JPEG compression/decompression technology available to a
broader range of users and developers.
*******************************************************************************
** License
*******************************************************************************
License
=======
libjpeg-turbo is covered by three compatible BSD-style open source licenses.
Refer to LICENSE.txt for a roll-up of license terms.
Refer to [LICENSE.md](LICENSE.md) for a roll-up of license terms.
*******************************************************************************
** Using libjpeg-turbo
*******************************************************************************
Using libjpeg-turbo
===================
libjpeg-turbo includes two APIs that can be used to compress and decompress
JPEG images:
TurboJPEG API: This API provides an easy-to-use interface for compressing
and decompressing JPEG images in memory. It also provides some functionality
that would not be straightforward to achieve using the underlying libjpeg
API, such as generating planar YUV images and performing multiple
simultaneous lossless transforms on an image. The Java interface for
libjpeg-turbo is written on top of the TurboJPEG API.
- **TurboJPEG API**
This API provides an easy-to-use interface for compressing and decompressing
JPEG images in memory. It also provides some functionality that would not be
straightforward to achieve using the underlying libjpeg API, such as
generating planar YUV images and performing multiple simultaneous lossless
transforms on an image. The Java interface for libjpeg-turbo is written on
top of the TurboJPEG API.
libjpeg API: This is the de facto industry-standard API for compressing and
decompressing JPEG images. It is more difficult to use than the TurboJPEG
API but also more powerful. The libjpeg API implementation in libjpeg-turbo
is both API/ABI-compatible and mathematically compatible with libjpeg v6b.
It can also optionally be configured to be API/ABI-compatible with libjpeg v7
and v8 (see below.)
- **libjpeg API**
This is the de facto industry-standard API for compressing and decompressing
JPEG images. It is more difficult to use than the TurboJPEG API but also
more powerful. The libjpeg API implementation in libjpeg-turbo is both
API/ABI-compatible and mathematically compatible with libjpeg v6b. It can
also optionally be configured to be API/ABI-compatible with libjpeg v7 and v8
(see below.)
There is no significant performance advantage to either API when both are used
to perform similar operations.
=====================
Colorspace Extensions
=====================
---------------------
libjpeg-turbo includes extensions that allow JPEG images to be compressed
directly from (and decompressed directly to) buffers that use BGR, BGRX,
RGBX, XBGR, and XRGB pixel ordering. This is implemented with ten new
colorspace constants:
JCS_EXT_RGB /* red/green/blue */
JCS_EXT_RGBX /* red/green/blue/x */
JCS_EXT_BGR /* blue/green/red */
JCS_EXT_BGRX /* blue/green/red/x */
JCS_EXT_XBGR /* x/blue/green/red */
JCS_EXT_XRGB /* x/red/green/blue */
JCS_EXT_RGBA /* red/green/blue/alpha */
JCS_EXT_BGRA /* blue/green/red/alpha */
JCS_EXT_ABGR /* alpha/blue/green/red */
JCS_EXT_ARGB /* alpha/red/green/blue */
JCS_EXT_RGB /* red/green/blue */
JCS_EXT_RGBX /* red/green/blue/x */
JCS_EXT_BGR /* blue/green/red */
JCS_EXT_BGRX /* blue/green/red/x */
JCS_EXT_XBGR /* x/blue/green/red */
JCS_EXT_XRGB /* x/red/green/blue */
JCS_EXT_RGBA /* red/green/blue/alpha */
JCS_EXT_BGRA /* blue/green/red/alpha */
JCS_EXT_ABGR /* alpha/blue/green/red */
JCS_EXT_ARGB /* alpha/red/green/blue */
Setting cinfo.in_color_space (compression) or cinfo.out_color_space
Setting `cinfo.in_color_space` (compression) or `cinfo.out_color_space`
(decompression) to one of these values will cause libjpeg-turbo to read the
red, green, and blue values from (or write them to) the appropriate position in
the pixel when compressing from/decompressing to an RGB buffer.
@@ -84,7 +82,7 @@ the pixel when compressing from/decompressing to an RGB buffer.
Your application can check for the existence of these extensions at compile
time with:
#ifdef JCS_EXTENSIONS
#ifdef JCS_EXTENSIONS
At run time, attempting to use these extensions with a libjpeg implementation
that does not support them will result in a "Bogus input colorspace" error.
@@ -94,21 +92,21 @@ available for the colorspace extensions.
When using the RGBX, BGRX, XBGR, and XRGB colorspaces during decompression, the
X byte is undefined, and in order to ensure the best performance, libjpeg-turbo
can set that byte to whatever value it wishes. If an application expects the X
byte to be used as an alpha channel, then it should specify JCS_EXT_RGBA,
JCS_EXT_BGRA, JCS_EXT_ABGR, or JCS_EXT_ARGB. When these colorspace constants
are used, the X byte is guaranteed to be 0xFF, which is interpreted as opaque.
byte to be used as an alpha channel, then it should specify `JCS_EXT_RGBA`,
`JCS_EXT_BGRA`, `JCS_EXT_ABGR`, or `JCS_EXT_ARGB`. When these colorspace
constants are used, the X byte is guaranteed to be 0xFF, which is interpreted
as opaque.
Your application can check for the existence of the alpha channel colorspace
extensions at compile time with:
#ifdef JCS_ALPHA_EXTENSIONS
#ifdef JCS_ALPHA_EXTENSIONS
jcstest.c, located in the libjpeg-turbo source tree, demonstrates how to check
for the existence of the colorspace extensions at compile time and run time.
===================================
libjpeg v7 and v8 API/ABI Emulation
===================================
-----------------------------------
With libjpeg v7 and v8, new features were added that necessitated extending the
compression and decompression structures. Unfortunately, due to the exposed
@@ -125,49 +123,48 @@ without recompiling. libjpeg-turbo does not claim to support all of the
libjpeg v7+ features, nor to produce identical output to libjpeg v7+ in all
cases (see below.)
By passing an argument of --with-jpeg7 or --with-jpeg8 to configure, or an
argument of -DWITH_JPEG7=1 or -DWITH_JPEG8=1 to cmake, you can build a version
of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so that programs
that are built against libjpeg v7 or v8 can be run with libjpeg-turbo. The
following section describes which libjpeg v7+ features are supported and which
aren't.
By passing an argument of `--with-jpeg7` or `--with-jpeg8` to `configure`, or
an argument of `-DWITH_JPEG7=1` or `-DWITH_JPEG8=1` to `cmake`, you can build a
version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so that
programs that are built against libjpeg v7 or v8 can be run with libjpeg-turbo.
The following section describes which libjpeg v7+ features are supported and
which aren't.
Support for libjpeg v7 and v8 Features:
---------------------------------------
### Support for libjpeg v7 and v8 Features
Fully supported:
#### Fully supported
-- libjpeg: IDCT scaling extensions in decompressor
libjpeg-turbo supports IDCT scaling with scaling factors of 1/8, 1/4, 3/8,
1/2, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2/1 (only 1/4
and 1/2 are SIMD-accelerated.)
- **libjpeg: IDCT scaling extensions in decompressor**
libjpeg-turbo supports IDCT scaling with scaling factors of 1/8, 1/4, 3/8,
1/2, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2/1 (only 1/4
and 1/2 are SIMD-accelerated.)
-- libjpeg: arithmetic coding
- **libjpeg: Arithmetic coding**
-- libjpeg: In-memory source and destination managers
See notes below.
- **libjpeg: In-memory source and destination managers**
See notes below.
-- cjpeg: Separate quality settings for luminance and chrominance
Note that the libpjeg v7+ API was extended to accommodate this feature only
for convenience purposes. It has always been possible to implement this
feature with libjpeg v6b (see rdswitch.c for an example.)
- **cjpeg: Separate quality settings for luminance and chrominance**
Note that the libpjeg v7+ API was extended to accommodate this feature only
for convenience purposes. It has always been possible to implement this
feature with libjpeg v6b (see rdswitch.c for an example.)
-- cjpeg: 32-bit BMP support
- **cjpeg: 32-bit BMP support**
-- cjpeg: -rgb option
- **cjpeg: `-rgb` option**
-- jpegtran: lossless cropping
- **jpegtran: Lossless cropping**
-- jpegtran: -perfect option
- **jpegtran: `-perfect` option**
-- jpegtran: forcing width/height when performing lossless crop
- **jpegtran: Forcing width/height when performing lossless crop**
-- rdjpgcom: -raw option
- **rdjpgcom: `-raw` option**
-- rdjpgcom: locale awareness
- **rdjpgcom: Locale awareness**
Not supported:
#### Not supported
NOTE: As of this writing, extensive research has been conducted into the
usefulness of DCT scaling as a means of data reduction and SmartScale as a
@@ -176,74 +173,73 @@ http://www.libjpeg-turbo.org/About/SmartScale and draw his/her own conclusions,
but it is the general belief of our project that these features have not
demonstrated sufficient usefulness to justify inclusion in libjpeg-turbo.
-- libjpeg: DCT scaling in compressor
cinfo.scale_num and cinfo.scale_denom are silently ignored.
There is no technical reason why DCT scaling could not be supported when
emulating the libjpeg v7+ API/ABI, but without the SmartScale extension (see
below), only scaling factors of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and
8/9 would be available, which is of limited usefulness.
- **libjpeg: DCT scaling in compressor**
`cinfo.scale_num` and `cinfo.scale_denom` are silently ignored.
There is no technical reason why DCT scaling could not be supported when
emulating the libjpeg v7+ API/ABI, but without the SmartScale extension (see
below), only scaling factors of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and
8/9 would be available, which is of limited usefulness.
-- libjpeg: SmartScale
cinfo.block_size is silently ignored.
SmartScale is an extension to the JPEG format that allows for DCT block
sizes other than 8x8. Providing support for this new format would be
feasible (particularly without full acceleration.) However, until/unless
the format becomes either an official industry standard or, at minimum, an
accepted solution in the community, we are hesitant to implement it, as
there is no sense of whether or how it might change in the future. It is
our belief that SmartScale has not demonstrated sufficient usefulness as a
lossless format nor as a means of quality enhancement, and thus, our primary
interest in providing this feature would be as a means of supporting
additional DCT scaling factors.
- **libjpeg: SmartScale**
`cinfo.block_size` is silently ignored.
SmartScale is an extension to the JPEG format that allows for DCT block
sizes other than 8x8. Providing support for this new format would be
feasible (particularly without full acceleration.) However, until/unless
the format becomes either an official industry standard or, at minimum, an
accepted solution in the community, we are hesitant to implement it, as
there is no sense of whether or how it might change in the future. It is
our belief that SmartScale has not demonstrated sufficient usefulness as a
lossless format nor as a means of quality enhancement, and thus our primary
interest in providing this feature would be as a means of supporting
additional DCT scaling factors.
-- libjpeg: Fancy downsampling in compressor
cinfo.do_fancy_downsampling is silently ignored.
This requires the DCT scaling feature, which is not supported.
- **libjpeg: Fancy downsampling in compressor**
`cinfo.do_fancy_downsampling` is silently ignored.
This requires the DCT scaling feature, which is not supported.
-- jpegtran: Scaling
This requires both the DCT scaling and SmartScale features, which are not
supported.
- **jpegtran: Scaling**
This requires both the DCT scaling and SmartScale features, which are not
supported.
-- Lossless RGB JPEG files
This requires the SmartScale feature, which is not supported.
- **Lossless RGB JPEG files**
This requires the SmartScale feature, which is not supported.
What About libjpeg v9?
----------------------
### What About libjpeg v9?
libjpeg v9 introduced yet another field to the JPEG compression structure
(color_transform), thus making the ABI backward incompatible with that of
(`color_transform`), thus making the ABI backward incompatible with that of
libjpeg v8. This new field was introduced solely for the purpose of supporting
lossless SmartScale encoding. Further, there was actually no reason to extend
the API in this manner, as the color transform could have just as easily been
activated by way of a new JPEG colorspace constant, thus preserving backward
ABI compatibility.
lossless SmartScale encoding. Furthermore, there was actually no reason to
extend the API in this manner, as the color transform could have just as easily
been activated by way of a new JPEG colorspace constant, thus preserving
backward ABI compatibility.
Our research (see link above) has shown that lossless SmartScale does not
generally accomplish anything that can't already be accomplished better with
existing, standard lossless formats. Thus, at this time, it is our belief that
there is not sufficient technical justification for software to upgrade from
libjpeg v8 to libjpeg v9, and therefore, not sufficient technical justification
for us to emulate the libjpeg v9 ABI.
existing, standard lossless formats. Therefore, at this time it is our belief
that there is not sufficient technical justification for software projects to
upgrade from libjpeg v8 to libjpeg v9, and thus there is not sufficient
echnical justification for us to emulate the libjpeg v9 ABI.
=====================================
In-Memory Source/Destination Managers
=====================================
-------------------------------------
By default, libjpeg-turbo 1.3 and later includes the jpeg_mem_src() and
jpeg_mem_dest() functions, even when not emulating the libjpeg v8 API/ABI.
By default, libjpeg-turbo 1.3 and later includes the `jpeg_mem_src()` and
`jpeg_mem_dest()` functions, even when not emulating the libjpeg v8 API/ABI.
Previously, it was necessary to build libjpeg-turbo from source with libjpeg v8
API/ABI emulation in order to use the in-memory source/destination managers,
but several projects requested that those functions be included when emulating
the libjpeg v6b API/ABI as well. This allows the use of those functions by
programs that need them without breaking ABI compatibility for programs that
programs that need them, without breaking ABI compatibility for programs that
don't, and it allows those functions to be provided in the "official"
libjpeg-turbo binaries.
Those who are concerned about maintaining strict conformance with the libjpeg
v6b or v7 API can pass an argument of --without-mem-srcdst to configure or
an argument of -DWITH_MEM_SRCDST=0 to CMake prior to building libjpeg-turbo.
This will restore the pre-1.3 behavior, in which jpeg_mem_src() and
jpeg_mem_dest() are only included when emulating the libjpeg v8 API/ABI.
v6b or v7 API can pass an argument of `--without-mem-srcdst` to `configure` or
an argument of `-DWITH_MEM_SRCDST=0` to `cmake` prior to building
libjpeg-turbo. This will restore the pre-1.3 behavior, in which
`jpeg_mem_src()` and `jpeg_mem_dest()` are only included when emulating the
libjpeg v8 API/ABI.
On Un*x systems, including the in-memory source/destination managers changes
the dynamic library version from 62.0.0 to 62.1.0 if using libjpeg v6b API/ABI
@@ -251,72 +247,72 @@ emulation and from 7.0.0 to 7.1.0 if using libjpeg v7 API/ABI emulation.
Note that, on most Un*x systems, the dynamic linker will not look for a
function in a library until that function is actually used. Thus, if a program
is built against libjpeg-turbo 1.3+ and uses jpeg_mem_src() or jpeg_mem_dest(),
that program will not fail if run against an older version of libjpeg-turbo or
against libjpeg v7- until the program actually tries to call jpeg_mem_src() or
jpeg_mem_dest(). Such is not the case on Windows. If a program is built
against the libjpeg-turbo 1.3+ DLL and uses jpeg_mem_src() or jpeg_mem_dest(),
then it must use the libjpeg-turbo 1.3+ DLL at run time.
is built against libjpeg-turbo 1.3+ and uses `jpeg_mem_src()` or
`jpeg_mem_dest()`, that program will not fail if run against an older version
of libjpeg-turbo or against libjpeg v7- until the program actually tries to
call `jpeg_mem_src()` or `jpeg_mem_dest()`. Such is not the case on Windows.
If a program is built against the libjpeg-turbo 1.3+ DLL and uses
`jpeg_mem_src()` or `jpeg_mem_dest()`, then it must use the libjpeg-turbo 1.3+
DLL at run time.
Both cjpeg and djpeg have been extended to allow testing the in-memory
source/destination manager functions. See their respective man pages for more
details.
*******************************************************************************
** Mathematical Compatibility
*******************************************************************************
Mathematical Compatibility
==========================
For the most part, libjpeg-turbo should produce identical output to libjpeg
v6b. The one exception to this is when using the floating point DCT/IDCT, in
which case the outputs of libjpeg v6b and libjpeg-turbo can differ for the
following reasons:
-- The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so
slightly more accurate than the implementation in libjpeg v6b, but not by
any amount perceptible to human vision (generally in the range of 0.01 to
0.08 dB gain in PNSR.)
-- When not using the SIMD extensions, libjpeg-turbo uses the more accurate
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
however, that this algorithm basically brings the accuracy of the floating
point IDCT in line with the accuracy of the slow integer IDCT. The floating
point DCT/IDCT algorithms are mainly a legacy feature, and they do not
produce significantly more accuracy than the slow integer algorithms (to put
numbers on this, the typical difference in PNSR between the two algorithms
is less than 0.10 dB, whereas changing the quality level by 1 in the upper
range of the quality scale is typically more like a 1.0 dB difference.)
-- If the floating point algorithms in libjpeg-turbo are not implemented using
SIMD instructions on a particular platform, then the accuracy of the
floating point DCT/IDCT can depend on the compiler settings.
- The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so
slightly more accurate than the implementation in libjpeg v6b, but not by
any amount perceptible to human vision (generally in the range of 0.01 to
0.08 dB gain in PNSR.)
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood, it is
- When not using the SIMD extensions, libjpeg-turbo uses the more accurate
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
however, that this algorithm basically brings the accuracy of the floating
point IDCT in line with the accuracy of the slow integer IDCT. The floating
point DCT/IDCT algorithms are mainly a legacy feature, and they do not
produce significantly more accuracy than the slow integer algorithms (to put
numbers on this, the typical difference in PNSR between the two algorithms
is less than 0.10 dB, whereas changing the quality level by 1 in the upper
range of the quality scale is typically more like a 1.0 dB difference.)
- If the floating point algorithms in libjpeg-turbo are not implemented using
SIMD instructions on a particular platform, then the accuracy of the
floating point DCT/IDCT can depend on the compiler settings.
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood it is
still using the same algorithms as libjpeg v6b, so there are several specific
cases in which libjpeg-turbo cannot be expected to produce the same output as
libjpeg v8:
-- When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8
implements those scaling algorithms differently than libjpeg v6b does, and
libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior.
- When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8
implements those scaling algorithms differently than libjpeg v6b does, and
libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior.
-- When using chrominance subsampling, because libjpeg v8 implements this
with its DCT/IDCT scaling algorithms rather than with a separate
downsampling/upsampling algorithm. In our testing, the subsampled/upsampled
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
reason.
- When using chrominance subsampling, because libjpeg v8 implements this
with its DCT/IDCT scaling algorithms rather than with a separate
downsampling/upsampling algorithm. In our testing, the subsampled/upsampled
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
reason.
-- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
"non-smooth") chrominance upsampling, because libjpeg v8 does not support
merged upsampling with scaling factors > 1.
- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
"non-smooth") chrominance upsampling, because libjpeg v8 does not support
merged upsampling with scaling factors > 1.
*******************************************************************************
** Performance Pitfalls
*******************************************************************************
Performance Pitfalls
====================
===============
Restart Markers
===============
---------------
The optimized Huffman decoder in libjpeg-turbo does not handle restart markers
in a way that makes the rest of the libjpeg infrastructure happy, so it is
@@ -327,9 +323,8 @@ libjpeg. Many consumer packages, such as PhotoShop, use restart markers when
generating JPEG images, so images generated by those programs will experience
this issue.
===============================================
Fast Integer Forward DCT at High Quality Levels
===============================================
-----------------------------------------------
The algorithm used by the SIMD-accelerated quantization function cannot produce
correct results whenever the fast integer forward DCT is used along with a JPEG