Compare commits

..

1 Commits

Author SHA1 Message Date
Yoland Yan
ef0c2b0819 Add pre-commit configuration and update README for backend development 2025-03-02 12:43:19 -08:00
212 changed files with 1360 additions and 50334 deletions

View File

@@ -63,12 +63,7 @@ except:
print("checking out master branch") # noqa: T201 print("checking out master branch") # noqa: T201
branch = repo.lookup_branch('master') branch = repo.lookup_branch('master')
if branch is None: if branch is None:
try: ref = repo.lookup_reference('refs/remotes/origin/master')
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("pulling.") # noqa: T201
pull(repo)
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref) repo.checkout(ref)
branch = repo.lookup_branch('master') branch = repo.lookup_branch('master')
if branch is None: if branch is None:

View File

@@ -1,2 +0,0 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
pause

View File

@@ -12,7 +12,7 @@ on:
description: 'CUDA version' description: 'CUDA version'
required: true required: true
type: string type: string
default: "128" default: "126"
python_minor: python_minor:
description: 'Python minor version' description: 'Python minor version'
required: true required: true
@@ -22,7 +22,7 @@ on:
description: 'Python patch version' description: 'Python patch version'
required: true required: true
type: string type: string
default: "10" default: "8"
jobs: jobs:
@@ -36,7 +36,7 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
ref: ${{ inputs.git_tag }} ref: ${{ inputs.git_tag }}
fetch-depth: 150 fetch-depth: 0
persist-credentials: false persist-credentials: false
- uses: actions/cache/restore@v4 - uses: actions/cache/restore@v4
id: cache id: cache
@@ -70,7 +70,7 @@ jobs:
cd .. cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/ cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable mv python_embeded ComfyUI_windows_portable
@@ -85,14 +85,12 @@ jobs:
cd .. cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable "C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
cd ComfyUI_windows_portable cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls ls
- name: Upload binaries to release - name: Upload binaries to release

View File

@@ -17,7 +17,7 @@ jobs:
path: "ComfyUI" path: "ComfyUI"
- uses: actions/setup-python@v4 - uses: actions/setup-python@v4
with: with:
python-version: '3.10' python-version: '3.9'
- name: Install requirements - name: Install requirements
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip

View File

@@ -1,56 +0,0 @@
name: Generate Pydantic Stubs from api.comfy.org
on:
schedule:
- cron: '0 0 * * 1'
workflow_dispatch:
jobs:
generate-models:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install 'datamodel-code-generator[http]'
npm install @redocly/cli
- name: Download OpenAPI spec
run: |
curl -o openapi.yaml https://api.comfy.org/openapi
- name: Filter OpenAPI spec with Redocly
run: |
npx @redocly/cli bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
- name: Generate API models
run: |
datamodel-codegen --use-subclass-enum --input filtered-openapi.yaml --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
- name: Check for changes
id: git-check
run: |
git diff --exit-code comfy_api_nodes/apis || echo "changes=true" >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.changes == 'true'
uses: peter-evans/create-pull-request@v5
with:
commit-message: 'chore: update API models from OpenAPI spec'
title: 'Update API models from api.comfy.org'
body: |
This PR updates the API models based on the latest api.comfy.org OpenAPI specification.
Generated automatically by the a Github workflow.
branch: update-api-stubs
delete-branch: true
base: master

View File

@@ -17,7 +17,7 @@ on:
description: 'cuda version' description: 'cuda version'
required: true required: true
type: string type: string
default: "128" default: "126"
python_minor: python_minor:
description: 'python minor version' description: 'python minor version'
@@ -29,7 +29,7 @@ on:
description: 'python patch version' description: 'python patch version'
required: true required: true
type: string type: string
default: "10" default: "8"
# push: # push:
# branches: # branches:
# - master # - master

View File

@@ -7,7 +7,7 @@ on:
description: 'cuda version' description: 'cuda version'
required: true required: true
type: string type: string
default: "128" default: "126"
python_minor: python_minor:
description: 'python minor version' description: 'python minor version'
@@ -19,7 +19,7 @@ on:
description: 'python patch version' description: 'python patch version'
required: true required: true
type: string type: string
default: "2" default: "1"
# push: # push:
# branches: # branches:
# - master # - master
@@ -34,7 +34,7 @@ jobs:
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 30 fetch-depth: 0
persist-credentials: false persist-credentials: false
- uses: actions/setup-python@v5 - uses: actions/setup-python@v5
with: with:
@@ -56,7 +56,7 @@ jobs:
cd .. cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/ cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable_nightly_pytorch mkdir ComfyUI_windows_portable_nightly_pytorch
mv python_embeded ComfyUI_windows_portable_nightly_pytorch mv python_embeded ComfyUI_windows_portable_nightly_pytorch
@@ -74,7 +74,7 @@ jobs:
pause" > ./update/update_comfyui_and_python_dependencies.bat pause" > ./update/update_comfyui_and_python_dependencies.bat
cd .. cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch "C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
cd ComfyUI_windows_portable_nightly_pytorch cd ComfyUI_windows_portable_nightly_pytorch

View File

@@ -7,7 +7,7 @@ on:
description: 'cuda version' description: 'cuda version'
required: true required: true
type: string type: string
default: "128" default: "126"
python_minor: python_minor:
description: 'python minor version' description: 'python minor version'
@@ -19,7 +19,7 @@ on:
description: 'python patch version' description: 'python patch version'
required: true required: true
type: string type: string
default: "10" default: "8"
# push: # push:
# branches: # branches:
# - master # - master
@@ -50,7 +50,7 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 150 fetch-depth: 0
persist-credentials: false persist-credentials: false
- shell: bash - shell: bash
run: | run: |
@@ -67,7 +67,7 @@ jobs:
cd .. cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/ cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable mv python_embeded ComfyUI_windows_portable
@@ -82,14 +82,12 @@ jobs:
cd .. cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable "C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
cd ComfyUI_windows_portable cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls ls
- name: Upload binaries to release - name: Upload binaries to release

3
.gitignore vendored
View File

@@ -21,6 +21,3 @@ venv/
*.log *.log
web_custom_versions/ web_custom_versions/
.DS_Store .DS_Store
openapi.yaml
filtered-openapi.yaml
uv.lock

13
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,13 @@
repos:
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: v0.0.241 # Use the desired version of Ruff
hooks:
- id: ruff
- repo: local
hooks:
- id: pytest
name: Run Pytest
entry: pytest
language: system
types: [python]

View File

@@ -5,20 +5,19 @@
# Inlined the team members for now. # Inlined the team members for now.
# Maintainers # Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne *.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne /pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
# Python web server # Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne /api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne /app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne /utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
# Node developers # Extra nodes
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne /comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne

View File

@@ -49,6 +49,7 @@ Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon,
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/) ## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/). See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
## Features ## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything. - Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Image Models - Image Models
@@ -61,7 +62,6 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/) - [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/) - [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/) - [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- Video Models - Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/) - [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/) - [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
@@ -69,11 +69,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/) - [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) - [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/) - [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- Audio Models - [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- 3D Models
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- Asynchronous Queue system - Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions. - Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram. - Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
@@ -100,22 +96,6 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/) Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
- Builds a new release using the latest stable core version
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
- Weekly frontend updates are merged into the core repository
- Features are frozen for the upcoming core release
- Development continues for the next release cycle
## Shortcuts ## Shortcuts
| Keybind | Explanation | | Keybind | Explanation |
@@ -166,6 +146,8 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
If you have trouble extracting it, right click the file -> properties -> unblock If you have trouble extracting it, right click the file -> properties -> unblock
If you have a 50 series Blackwell card like a 5090 or 5080 see [this discussion thread](https://github.com/comfyanonymous/ComfyUI/discussions/6643)
#### How do I share models between another UI and ComfyUI? #### How do I share models between another UI and ComfyUI?
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor. See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
@@ -197,11 +179,11 @@ Put your VAE in: models/vae
### AMD GPUs (Linux only) ### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version: AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3``` ```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4```
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements: This is the command to install the nightly with ROCm 6.3 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4``` ```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3```
### Intel GPUs (Windows and Linux) ### Intel GPUs (Windows and Linux)
@@ -231,11 +213,11 @@ Additional discussion and help can be found [here](https://github.com/comfyanony
Nvidia users should install stable pytorch using this command: Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128``` ```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
This is the command to install pytorch nightly instead which might have performance improvements. This is the command to install pytorch nightly instead which might have performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128``` ```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126```
#### Troubleshooting #### Troubleshooting
@@ -301,7 +283,7 @@ For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 pyt
### AMD ROCm Tips ### AMD ROCm Tips
You can enable experimental memory efficient attention on recent pytorch in ComfyUI on some AMD GPUs using this command, it should already be enabled by default on RDNA3. If this improves speed for you on latest pytorch on your GPU please report it so that I can enable it by default. You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention``` ```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
@@ -348,6 +330,25 @@ Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app w
See also: [https://www.comfy.org/](https://www.comfy.org/) See also: [https://www.comfy.org/](https://www.comfy.org/)
## ComfyUI Backend Development
### Setup Environment
Install pre-commit to run tests and linters
```
pip install pre-commit
```
```
pre-commit install
```
### Reporting Issues and Requesting Features
For any bugs, issues, or feature requests related to the backend, please use the [ComfyUI repository](https://github.com/comfyanonymous/ComfyUI). This will help us manage and address backend-specific concerns more efficiently.
## Frontend Development ## Frontend Development
As of August 15, 2024, we have transitioned to a new frontend, which is now hosted in a separate repository: [ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend). This repository now hosts the compiled JS (from TS/Vue) under the `web/` directory. As of August 15, 2024, we have transitioned to a new frontend, which is now hosted in a separate repository: [ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend). This repository now hosts the compiled JS (from TS/Vue) under the `web/` directory.

View File

@@ -9,14 +9,8 @@ class AppSettings():
self.user_manager = user_manager self.user_manager = user_manager
def get_settings(self, request): def get_settings(self, request):
try: file = self.user_manager.get_request_user_filepath(
file = self.user_manager.get_request_user_filepath( request, "comfy.settings.json")
request,
"comfy.settings.json"
)
except KeyError as e:
logging.error("User settings not found.")
raise web.HTTPUnauthorized() from e
if os.path.isfile(file): if os.path.isfile(file):
try: try:
with open(file) as f: with open(file) as f:

View File

@@ -93,20 +93,16 @@ class CustomNodeManager:
def add_routes(self, routes, webapp, loadedModules): def add_routes(self, routes, webapp, loadedModules):
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
@routes.get("/workflow_templates") @routes.get("/workflow_templates")
async def get_workflow_templates(request): async def get_workflow_templates(request):
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted.""" """Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
files = [
files = [] file
for folder in folder_paths.get_folder_paths("custom_nodes")
for folder in folder_paths.get_folder_paths("custom_nodes"): for file in glob.glob(
for folder_name in example_workflow_folder_names: os.path.join(folder, "*/example_workflows/*.json")
pattern = os.path.join(folder, f"*/{folder_name}/*.json") )
matched_files = glob.glob(pattern) ]
files.extend(matched_files)
workflow_templates_dict = ( workflow_templates_dict = (
{} {}
) # custom_nodes folder name -> example workflow names ) # custom_nodes folder name -> example workflow names
@@ -122,22 +118,15 @@ class CustomNodeManager:
# Serve workflow templates from custom nodes. # Serve workflow templates from custom nodes.
for module_name, module_dir in loadedModules: for module_name, module_dir in loadedModules:
for folder_name in example_workflow_folder_names: workflows_dir = os.path.join(module_dir, "example_workflows")
workflows_dir = os.path.join(module_dir, folder_name) if os.path.exists(workflows_dir):
webapp.add_routes(
if os.path.exists(workflows_dir): [
if folder_name != "example_workflows": web.static(
logging.debug( "/api/workflow_templates/" + module_name, workflows_dir
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'", )
folder_name, module_name) ]
)
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
@routes.get("/i18n") @routes.get("/i18n")
async def get_i18n(request): async def get_i18n(request):

View File

@@ -3,7 +3,6 @@ import argparse
import logging import logging
import os import os
import re import re
import sys
import tempfile import tempfile
import zipfile import zipfile
import importlib import importlib
@@ -11,61 +10,19 @@ from dataclasses import dataclass
from functools import cached_property from functools import cached_property
from pathlib import Path from pathlib import Path
from typing import TypedDict, Optional from typing import TypedDict, Optional
from importlib.metadata import version
import requests import requests
from typing_extensions import NotRequired from typing_extensions import NotRequired
from comfy.cli_args import DEFAULT_VERSION_STRING from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message(): try:
"""The warning message to display when the frontend version is not up to date.""" import comfyui_frontend_package
except ImportError as e:
extra = "" # TODO: Remove the check after roll out of 0.3.16
if sys.flags.no_user_site: logging.error("comfyui-frontend-package is not installed. Please install the updated requirements.txt file by running: pip install -r requirements.txt")
extra = "-s " raise e
return f"""
Please install the updated requirements.txt file by running:
{sys.executable} {extra}-m pip install -r {req_path}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
""".strip()
def check_frontend_version():
"""Check if the frontend version is up to date."""
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version = parse_version(frontend_version_str)
with open(req_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning(
f"""
________________________________________________________________________
WARNING WARNING WARNING WARNING WARNING
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
{frontend_install_warning_message()}
________________________________________________________________________
""".strip()
)
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
logging.error(f"Failed to check frontend version: {e}")
REQUEST_TIMEOUT = 10 # seconds REQUEST_TIMEOUT = 10 # seconds
@@ -162,62 +119,9 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
class FrontendManager: class FrontendManager:
DEFAULT_FRONTEND_PATH = str(importlib.resources.files(comfyui_frontend_package) / "static")
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions") CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
def default_frontend_path(cls) -> str:
try:
import comfyui_frontend_package
return str(importlib.resources.files(comfyui_frontend_package) / "static")
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-frontend-package is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
try:
import comfyui_workflow_templates
return str(
importlib.resources.files(comfyui_workflow_templates) / "templates"
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod @classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]: def parse_version_string(cls, value: str) -> tuple[str, str, str]:
""" """
@@ -238,9 +142,7 @@ comfyui-workflow-templates is not installed.
return match_result.group(1), match_result.group(2), match_result.group(3) return match_result.group(1), match_result.group(2), match_result.group(3)
@classmethod @classmethod
def init_frontend_unsafe( def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
""" """
Initializes the frontend for the specified version. Initializes the frontend for the specified version.
@@ -256,26 +158,17 @@ comfyui-workflow-templates is not installed.
main error source might be request timeout or invalid URL. main error source might be request timeout or invalid URL.
""" """
if version_string == DEFAULT_VERSION_STRING: if version_string == DEFAULT_VERSION_STRING:
check_frontend_version() return cls.DEFAULT_FRONTEND_PATH
return cls.default_frontend_path()
repo_owner, repo_name, version = cls.parse_version_string(version_string) repo_owner, repo_name, version = cls.parse_version_string(version_string)
if version.startswith("v"): if version.startswith("v"):
expected_path = str( expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
Path(cls.CUSTOM_FRONTENDS_ROOT)
/ f"{repo_owner}_{repo_name}"
/ version.lstrip("v")
)
if os.path.exists(expected_path): if os.path.exists(expected_path):
logging.info( logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
)
return expected_path return expected_path
logging.info( logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
)
provider = provider or FrontEndProvider(repo_owner, repo_name) provider = provider or FrontEndProvider(repo_owner, repo_name)
release = provider.get_release(version) release = provider.get_release(version)
@@ -318,5 +211,4 @@ comfyui-workflow-templates is not installed.
except Exception as e: except Exception as e:
logging.error("Failed to initialize frontend: %s", e) logging.error("Failed to initialize frontend: %s", e)
logging.info("Falling back to the default frontend.") logging.info("Falling back to the default frontend.")
check_frontend_version() return cls.DEFAULT_FRONTEND_PATH
return cls.default_frontend_path()

View File

@@ -82,17 +82,3 @@ def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool
logger.addHandler(stdout_handler) logger.addHandler(stdout_handler)
logger.addHandler(stream_handler) logger.addHandler(stream_handler)
STARTUP_WARNINGS = []
def log_startup_warning(msg):
logging.warning(msg)
STARTUP_WARNINGS.append(msg)
def print_startup_warnings():
for s in STARTUP_WARNINGS:
logging.warning(s)
STARTUP_WARNINGS.clear()

View File

@@ -197,112 +197,6 @@ class UserManager():
return web.json_response(results) return web.json_response(results)
@routes.get("/v2/userdata")
async def list_userdata_v2(request):
"""
List files and directories in a user's data directory.
This endpoint provides a structured listing of contents within a specified
subdirectory of the user's data storage.
Query Parameters:
- path (optional): The relative path within the user's data directory
to list. Defaults to the root ('').
Returns:
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
- 404: If the requested path does not exist.
- 403: If the user is invalid.
- 500: If there is an error reading the directory contents.
- 200: JSON response containing a list of file and directory objects.
Each object includes:
- name: The name of the file or directory.
- type: 'file' or 'directory'.
- path: The relative path from the user's data root.
- size (for files): The size in bytes.
- modified (for files): The last modified timestamp (Unix epoch).
"""
requested_rel_path = request.rel_url.query.get('path', '')
# URL-decode the path parameter
try:
requested_rel_path = parse.unquote(requested_rel_path)
except Exception as e:
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
return web.Response(status=400, text="Invalid characters in path parameter")
# Check user validity and get the absolute path for the requested directory
try:
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
if requested_rel_path:
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
else:
target_abs_path = base_user_path
except KeyError as e:
# Invalid user detected by get_request_user_id inside get_request_user_filepath
logging.warning(f"Access denied for user: {e}")
return web.Response(status=403, text="Invalid user specified in request")
if not target_abs_path:
# Path traversal or other issue detected by get_request_user_filepath
return web.Response(status=400, text="Invalid path requested")
# Handle cases where the user directory or target path doesn't exist
if not os.path.exists(target_abs_path):
# Check if it's the base user directory that's missing (new user case)
if target_abs_path == base_user_path:
# It's okay if the base user directory doesn't exist yet, return empty list
return web.json_response([])
else:
# A specific subdirectory was requested but doesn't exist
return web.Response(status=404, text="Requested path not found")
if not os.path.isdir(target_abs_path):
return web.Response(status=400, text="Requested path is not a directory")
results = []
try:
for root, dirs, files in os.walk(target_abs_path, topdown=True):
# Process directories
for dir_name in dirs:
dir_path = os.path.join(root, dir_name)
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
results.append({
"name": dir_name,
"path": rel_path,
"type": "directory"
})
# Process files
for file_name in files:
file_path = os.path.join(root, file_name)
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
entry_info = {
"name": file_name,
"path": rel_path,
"type": "file"
}
try:
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
entry_info["size"] = stats.st_size
entry_info["modified"] = stats.st_mtime
except OSError as stat_error:
logging.warning(f"Could not stat file {file_path}: {stat_error}")
pass # Include file with available info
results.append(entry_info)
except OSError as e:
logging.error(f"Error listing directory {target_abs_path}: {e}")
return web.Response(status=500, text="Error reading directory contents")
# Sort results alphabetically, directories first then files
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
return web.json_response(results)
def get_user_data_path(request, check_exists = False, param = "file"): def get_user_data_path(request, check_exists = False, param = "file"):
file = request.match_info.get(param, None) file = request.match_info.get(param, None)
if not file: if not file:

View File

@@ -1,6 +1,7 @@
import argparse import argparse
import enum import enum
import os import os
from typing import Optional
import comfy.options import comfy.options
@@ -49,7 +50,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.") parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.") parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.") parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.") parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
cm_group = parser.add_mutually_exclusive_group() cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).") cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.") cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
@@ -66,7 +67,6 @@ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diff
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16") fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.") fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.") fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
fpvae_group = parser.add_mutually_exclusive_group() fpvae_group = parser.add_mutually_exclusive_group()
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.") fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
@@ -80,7 +80,6 @@ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Stor
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).") fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.") fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.") fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.") parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
@@ -88,7 +87,6 @@ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE"
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.") parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.") parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
class LatentPreviewMethod(enum.Enum): class LatentPreviewMethod(enum.Enum):
NoPreviews = "none" NoPreviews = "none"
@@ -103,14 +101,12 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group() cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.") cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.") cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group() attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.") attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.") attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.") attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.") parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
@@ -129,7 +125,6 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.") parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.") parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
@@ -139,11 +134,8 @@ parser.add_argument("--deterministic", action="store_true", help="Make pytorch u
class PerformanceFeature(enum.Enum): class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation" Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult" Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops") parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.") parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.") parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
@@ -151,7 +143,6 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.") parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.") parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.") parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
@@ -175,14 +166,13 @@ parser.add_argument(
""", """,
) )
def is_valid_directory(path: str) -> str: def is_valid_directory(path: Optional[str]) -> Optional[str]:
"""Validate if the given path is a directory, and check permissions.""" """Validate if the given path is a directory."""
if not os.path.exists(path): if path is None:
raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.") return None
if not os.path.isdir(path): if not os.path.isdir(path):
raise argparse.ArgumentTypeError(f"'{path}' is not a directory.") raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
if not os.access(path, os.R_OK):
raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
return path return path
parser.add_argument( parser.add_argument(
@@ -196,13 +186,6 @@ parser.add_argument("--user-directory", type=is_valid_directory, default=None, h
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.") parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
parser.add_argument(
"--comfy-api-base",
type=str,
default="https://api.comfy.org",
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
)
if comfy.options.args_parsing: if comfy.options.args_parsing:
args = parser.parse_args() args = parser.parse_args()
else: else:

View File

@@ -97,12 +97,8 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32): def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
if embeds is not None: x = self.embeddings(input_tokens, dtype=dtype)
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:
x = self.embeddings(input_tokens, dtype=dtype)
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
@@ -120,10 +116,7 @@ class CLIPTextModel_(torch.nn.Module):
if i is not None and final_layer_norm_intermediate: if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i) i = self.final_layer_norm(i)
if num_tokens is not None: pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
else:
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
return x, i, pooled_output return x, i, pooled_output
class CLIPTextModel(torch.nn.Module): class CLIPTextModel(torch.nn.Module):
@@ -211,15 +204,6 @@ class CLIPVision(torch.nn.Module):
pooled_output = self.post_layernorm(x[:, 0, :]) pooled_output = self.post_layernorm(x[:, 0, :])
return x, i, pooled_output return x, i, pooled_output
class LlavaProjector(torch.nn.Module):
def __init__(self, in_dim, out_dim, dtype, device, operations):
super().__init__()
self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
def forward(self, x):
return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
class CLIPVisionModelProjection(torch.nn.Module): class CLIPVisionModelProjection(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations): def __init__(self, config_dict, dtype, device, operations):
super().__init__() super().__init__()
@@ -229,16 +213,7 @@ class CLIPVisionModelProjection(torch.nn.Module):
else: else:
self.visual_projection = lambda a: a self.visual_projection = lambda a: a
if "llava3" == config_dict.get("projector_type", None):
self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
else:
self.multi_modal_projector = None
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
x = self.vision_model(*args, **kwargs) x = self.vision_model(*args, **kwargs)
out = self.visual_projection(x[2]) out = self.visual_projection(x[2])
projected = None return (x[0], x[1], out)
if self.multi_modal_projector is not None:
projected = self.multi_modal_projector(x[1])
return (x[0], x[1], out, projected)

View File

@@ -9,7 +9,6 @@ import comfy.model_patcher
import comfy.model_management import comfy.model_management
import comfy.utils import comfy.utils
import comfy.clip_model import comfy.clip_model
import comfy.image_encoders.dino2
class Output: class Output:
def __getitem__(self, key): def __getitem__(self, key):
@@ -18,7 +17,6 @@ class Output:
setattr(self, key, item) setattr(self, key, item)
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype) mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype) std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1) image = image.movedim(-1, 1)
@@ -36,12 +34,6 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
image = torch.clip((255. * image), 0, 255).round() / 255.0 image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1]) return (image - mean.view([3,1,1])) / std.view([3,1,1])
IMAGE_ENCODERS = {
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
}
class ClipVisionModel(): class ClipVisionModel():
def __init__(self, json_config): def __init__(self, json_config):
with open(json_config) as f: with open(json_config) as f:
@@ -50,11 +42,10 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224) self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073]) self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711]) self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
self.load_device = comfy.model_management.text_encoder_device() self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device() offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device) self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast) self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model.eval() self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
@@ -74,7 +65,6 @@ class ClipVisionModel():
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device()) outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs return outputs
def convert_to_transformers(sd, prefix): def convert_to_transformers(sd, prefix):
@@ -111,21 +101,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152: if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
if embed_shape == 729: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json") elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
elif embed_shape == 1024: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else: else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
else: else:
return None return None

View File

@@ -1,19 +0,0 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"image_size": 336,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-5,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"projector_type": "llava3",
"torch_dtype": "float32"
}

View File

@@ -1,13 +0,0 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 512,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -1,6 +1,6 @@
import torch import torch
from typing import Callable, Protocol, TypedDict, Optional, List from typing import Callable, Protocol, TypedDict, Optional, List
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin, FileLocator from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
class UnetApplyFunction(Protocol): class UnetApplyFunction(Protocol):
@@ -42,5 +42,4 @@ __all__ = [
InputTypeDict.__name__, InputTypeDict.__name__,
ComfyNodeABC.__name__, ComfyNodeABC.__name__,
CheckLazyMixin.__name__, CheckLazyMixin.__name__,
FileLocator.__name__,
] ]

View File

@@ -1,8 +1,7 @@
"""Comfy-specific type hinting""" """Comfy-specific type hinting"""
from __future__ import annotations from __future__ import annotations
from typing import Literal, TypedDict, Optional from typing import Literal, TypedDict
from typing_extensions import NotRequired
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum from enum import Enum
@@ -27,7 +26,6 @@ class IO(StrEnum):
BOOLEAN = "BOOLEAN" BOOLEAN = "BOOLEAN"
INT = "INT" INT = "INT"
FLOAT = "FLOAT" FLOAT = "FLOAT"
COMBO = "COMBO"
CONDITIONING = "CONDITIONING" CONDITIONING = "CONDITIONING"
SAMPLER = "SAMPLER" SAMPLER = "SAMPLER"
SIGMAS = "SIGMAS" SIGMAS = "SIGMAS"
@@ -48,7 +46,6 @@ class IO(StrEnum):
FACE_ANALYSIS = "FACE_ANALYSIS" FACE_ANALYSIS = "FACE_ANALYSIS"
BBOX = "BBOX" BBOX = "BBOX"
SEGS = "SEGS" SEGS = "SEGS"
VIDEO = "VIDEO"
ANY = "*" ANY = "*"
"""Always matches any type, but at a price. """Always matches any type, but at a price.
@@ -69,7 +66,6 @@ class IO(StrEnum):
b = frozenset(value.split(",")) b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b)) return not (b.issubset(a) or a.issubset(b))
class RemoteInputOptions(TypedDict): class RemoteInputOptions(TypedDict):
route: str route: str
"""The route to the remote source.""" """The route to the remote source."""
@@ -84,14 +80,6 @@ class RemoteInputOptions(TypedDict):
refresh: int refresh: int
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed.""" """The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
class MultiSelectOptions(TypedDict):
placeholder: NotRequired[str]
"""The placeholder text to display in the multi-select widget when no items are selected."""
chip: NotRequired[bool]
"""Specifies whether to use chips instead of comma separated values for the multi-select widget."""
class InputTypeOptions(TypedDict): class InputTypeOptions(TypedDict):
"""Provides type hinting for the return type of the INPUT_TYPES node function. """Provides type hinting for the return type of the INPUT_TYPES node function.
@@ -100,94 +88,66 @@ class InputTypeOptions(TypedDict):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
""" """
default: NotRequired[bool | str | float | int | list | tuple] default: bool | str | float | int | list | tuple
"""The default value of the widget""" """The default value of the widget"""
defaultInput: NotRequired[bool] defaultInput: bool
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist. """Defaults to an input slot rather than a widget"""
- defaultInput on required inputs should be dropped. forceInput: bool
- defaultInput on optional inputs should be replaced with forceInput. """`defaultInput` and also don't allow converting to a widget"""
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364 lazy: bool
"""
forceInput: NotRequired[bool]
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
lazy: NotRequired[bool]
"""Declares that this input uses lazy evaluation""" """Declares that this input uses lazy evaluation"""
rawLink: NotRequired[bool] rawLink: bool
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion.""" """When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
tooltip: NotRequired[str] tooltip: str
"""Tooltip for the input (or widget), shown on pointer hover""" """Tooltip for the input (or widget), shown on pointer hover"""
socketless: NotRequired[bool]
"""All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
Available from frontend v1.17.5
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
"""
widgetType: NotRequired[str]
"""Specifies a type to be used for widget initialization if different from the input type.
Available from frontend v1.18.0
https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
# class InputTypeNumber(InputTypeOptions): # class InputTypeNumber(InputTypeOptions):
# default: float | int # default: float | int
min: NotRequired[float] min: float
"""The minimum value of a number (``FLOAT`` | ``INT``)""" """The minimum value of a number (``FLOAT`` | ``INT``)"""
max: NotRequired[float] max: float
"""The maximum value of a number (``FLOAT`` | ``INT``)""" """The maximum value of a number (``FLOAT`` | ``INT``)"""
step: NotRequired[float] step: float
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)""" """The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
round: NotRequired[float] round: float
"""Floats are rounded by this value (``FLOAT``)""" """Floats are rounded by this value (``FLOAT``)"""
# class InputTypeBoolean(InputTypeOptions): # class InputTypeBoolean(InputTypeOptions):
# default: bool # default: bool
label_on: NotRequired[str] label_on: str
"""The label to use in the UI when the bool is True (``BOOLEAN``)""" """The label to use in the UI when the bool is True (``BOOLEAN``)"""
label_off: NotRequired[str] label_on: str
"""The label to use in the UI when the bool is False (``BOOLEAN``)""" """The label to use in the UI when the bool is False (``BOOLEAN``)"""
# class InputTypeString(InputTypeOptions): # class InputTypeString(InputTypeOptions):
# default: str # default: str
multiline: NotRequired[bool] multiline: bool
"""Use a multiline text box (``STRING``)""" """Use a multiline text box (``STRING``)"""
placeholder: NotRequired[str] placeholder: str
"""Placeholder text to display in the UI when empty (``STRING``)""" """Placeholder text to display in the UI when empty (``STRING``)"""
# Deprecated: # Deprecated:
# defaultVal: str # defaultVal: str
dynamicPrompts: NotRequired[bool] dynamicPrompts: bool
"""Causes the front-end to evaluate dynamic prompts (``STRING``)""" """Causes the front-end to evaluate dynamic prompts (``STRING``)"""
# class InputTypeCombo(InputTypeOptions): # class InputTypeCombo(InputTypeOptions):
image_upload: NotRequired[bool] image_upload: bool
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`.""" """Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
image_folder: NotRequired[Literal["input", "output", "temp"]] image_folder: Literal["input", "output", "temp"]
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag. """Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
""" """
remote: NotRequired[RemoteInputOptions] remote: RemoteInputOptions
"""Specifies the configuration for a remote input. """Specifies the configuration for a remote input."""
Available after ComfyUI frontend v1.9.7
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
control_after_generate: NotRequired[bool]
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
options: NotRequired[list[str | int | float]]
"""COMBO type only. Specifies the selectable options for the combo widget.
Prefer:
["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
Over:
[["Option 1", "Option 2", "Option 3"]]
"""
multi_select: NotRequired[MultiSelectOptions]
"""COMBO type only. Specifies the configuration for a multi-select widget.
Available after ComfyUI frontend v1.13.4
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
class HiddenInputTypeDict(TypedDict): class HiddenInputTypeDict(TypedDict):
"""Provides type hinting for the hidden entry of node INPUT_TYPES.""" """Provides type hinting for the hidden entry of node INPUT_TYPES."""
node_id: NotRequired[Literal["UNIQUE_ID"]] node_id: Literal["UNIQUE_ID"]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages).""" """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
unique_id: NotRequired[Literal["UNIQUE_ID"]] unique_id: Literal["UNIQUE_ID"]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages).""" """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt: NotRequired[Literal["PROMPT"]] prompt: Literal["PROMPT"]
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description.""" """PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]] extra_pnginfo: Literal["EXTRA_PNGINFO"]
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node).""" """EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt: NotRequired[Literal["DYNPROMPT"]] dynprompt: Literal["DYNPROMPT"]
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion.""" """DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
@@ -197,11 +157,11 @@ class InputTypeDict(TypedDict):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
""" """
required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]] required: dict[str, tuple[IO, InputTypeOptions]]
"""Describes all inputs that must be connected for the node to execute.""" """Describes all inputs that must be connected for the node to execute."""
optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]] optional: dict[str, tuple[IO, InputTypeOptions]]
"""Describes inputs which do not need to be connected.""" """Describes inputs which do not need to be connected."""
hidden: NotRequired[HiddenInputTypeDict] hidden: HiddenInputTypeDict
"""Offers advanced functionality and server-client communication. """Offers advanced functionality and server-client communication.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
@@ -234,8 +194,6 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected.""" """Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node.""" """Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
@classmethod @classmethod
@abstractmethod @abstractmethod
@@ -274,7 +232,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
""" """
OUTPUT_IS_LIST: tuple[bool, ...] OUTPUT_IS_LIST: tuple[bool]
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items. """A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list. Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
@@ -293,7 +251,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
""" """
RETURN_TYPES: tuple[IO, ...] RETURN_TYPES: tuple[IO]
"""A tuple representing the outputs of this node. """A tuple representing the outputs of this node.
Usage:: Usage::
@@ -302,12 +260,12 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
""" """
RETURN_NAMES: tuple[str, ...] RETURN_NAMES: tuple[str]
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")`` """The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
""" """
OUTPUT_TOOLTIPS: tuple[str, ...] OUTPUT_TOOLTIPS: tuple[str]
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`.""" """A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
FUNCTION: str FUNCTION: str
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"` """The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
@@ -335,14 +293,3 @@ class CheckLazyMixin:
need = [name for name in kwargs if kwargs[name] is None] need = [name for name in kwargs if kwargs[name] is None]
return need return need
class FileLocator(TypedDict):
"""Provides type hinting for the file location"""
filename: str
"""The filename of the file."""
subfolder: str
"""The subfolder of the file."""
type: Literal["input", "output", "temp"]
"""The root folder of the file."""

View File

@@ -24,10 +24,6 @@ class CONDRegular:
conds.append(x.cond) conds.append(x.cond)
return torch.cat(conds) return torch.cat(conds)
def size(self):
return list(self.cond.size())
class CONDNoiseShape(CONDRegular): class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs): def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond data = self.cond
@@ -68,7 +64,6 @@ class CONDCrossAttn(CONDRegular):
out.append(c) out.append(c)
return torch.cat(out) return torch.cat(out)
class CONDConstant(CONDRegular): class CONDConstant(CONDRegular):
def __init__(self, cond): def __init__(self, cond):
self.cond = cond self.cond = cond
@@ -83,48 +78,3 @@ class CONDConstant(CONDRegular):
def concat(self, others): def concat(self, others):
return self.cond return self.cond
def size(self):
return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]

View File

@@ -15,14 +15,13 @@
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. along with this program. If not, see <https://www.gnu.org/licenses/>.
""" """
from __future__ import annotations
import torch import torch
from enum import Enum from enum import Enum
import math import math
import os import os
import logging import logging
import copy
import comfy.utils import comfy.utils
import comfy.model_management import comfy.model_management
import comfy.model_detection import comfy.model_detection
@@ -37,7 +36,7 @@ import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING, Union from typing import TYPE_CHECKING
if TYPE_CHECKING: if TYPE_CHECKING:
from comfy.hooks import HookGroup from comfy.hooks import HookGroup
@@ -64,18 +63,6 @@ class StrengthType(Enum):
CONSTANT = 1 CONSTANT = 1
LINEAR_UP = 2 LINEAR_UP = 2
class ControlIsolation:
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
def __init__(self, control: ControlBase):
self.control = control
self.orig_previous_controlnet = control.previous_controlnet
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
class ControlBase: class ControlBase:
def __init__(self): def __init__(self):
self.cond_hint_original = None self.cond_hint_original = None
@@ -89,7 +76,7 @@ class ControlBase:
self.compression_ratio = 8 self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact' self.upscale_algorithm = 'nearest-exact'
self.extra_args = {} self.extra_args = {}
self.previous_controlnet: Union[ControlBase, None] = None self.previous_controlnet = None
self.extra_conds = [] self.extra_conds = []
self.strength_type = StrengthType.CONSTANT self.strength_type = StrengthType.CONSTANT
self.concat_mask = False self.concat_mask = False
@@ -97,7 +84,6 @@ class ControlBase:
self.extra_concat = None self.extra_concat = None
self.extra_hooks: HookGroup = None self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a self.preprocess_image = lambda a: a
self.multigpu_clones: dict[torch.device, ControlBase] = {}
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]): def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint self.cond_hint_original = cond_hint
@@ -124,38 +110,17 @@ class ControlBase:
def cleanup(self): def cleanup(self):
if self.previous_controlnet is not None: if self.previous_controlnet is not None:
self.previous_controlnet.cleanup() self.previous_controlnet.cleanup()
for device_cnet in self.multigpu_clones.values():
with ControlIsolation(device_cnet):
device_cnet.cleanup()
self.cond_hint = None self.cond_hint = None
self.extra_concat = None self.extra_concat = None
self.timestep_range = None self.timestep_range = None
def get_models(self): def get_models(self):
out = [] out = []
for device_cnet in self.multigpu_clones.values():
out += device_cnet.get_models_only_self()
if self.previous_controlnet is not None: if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models() out += self.previous_controlnet.get_models()
return out return out
def get_models_only_self(self):
'Calls get_models, but temporarily sets previous_controlnet to None.'
with ControlIsolation(self):
return self.get_models()
def get_instance_for_device(self, device):
'Returns instance of this Control object intended for selected device.'
return self.multigpu_clones.get(device, self)
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
def get_extra_hooks(self): def get_extra_hooks(self):
out = [] out = []
if self.extra_hooks is not None: if self.extra_hooks is not None:
@@ -164,7 +129,7 @@ class ControlBase:
out += self.previous_controlnet.get_extra_hooks() out += self.previous_controlnet.get_extra_hooks()
return out return out
def copy_to(self, c: ControlBase): def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original c.cond_hint_original = self.cond_hint_original
c.strength = self.strength c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range c.timestep_percent_range = self.timestep_percent_range
@@ -315,14 +280,6 @@ class ControlNet(ControlBase):
self.copy_to(c) self.copy_to(c)
return c return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.control_model = copy.deepcopy(c.control_model)
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
if autoregister:
self.multigpu_clones[load_device] = c
return c
def get_models(self): def get_models(self):
out = super().get_models() out = super().get_models()
out.append(self.control_model_wrapped) out.append(self.control_model_wrapped)
@@ -779,7 +736,6 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
return control return control
def load_controlnet(ckpt_path, model=None, model_options={}): def load_controlnet(ckpt_path, model=None, model_options={}):
model_options = model_options.copy()
if "global_average_pooling" not in model_options: if "global_average_pooling" not in model_options:
filename = os.path.splitext(ckpt_path)[0] filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
@@ -848,14 +804,6 @@ class T2IAdapter(ControlBase):
self.copy_to(c) self.copy_to(c)
return c return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)
c.device = load_device
if autoregister:
self.multigpu_clones[load_device] = c
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8 compression_ratio = 8
upscale_algorithm = 'nearest-exact' upscale_algorithm = 'nearest-exact'

View File

@@ -1,141 +0,0 @@
import torch
from comfy.text_encoders.bert import BertAttention
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention_for_device
class Dino2AttentionOutput(torch.nn.Module):
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
super().__init__()
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
def forward(self, x):
return self.dense(x)
class Dino2AttentionBlock(torch.nn.Module):
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = BertAttention(embed_dim, heads, dtype, device, operations)
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
def forward(self, x, mask, optimized_attention):
return self.output(self.attention(x, mask, optimized_attention))
class LayerScale(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
in_features = out_features = dim
hidden_features = int(dim * 4)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype)
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype)
def forward(self, x):
x = self.weights_in(x)
x1, x2 = x.chunk(2, dim=-1)
x = torch.nn.functional.silu(x1) * x2
return self.weights_out(x)
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, x, optimized_attention):
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention))
x = x + self.layer_scale2(self.mlp(self.norm2(x)))
return x
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class Dino2PatchEmbeddings(torch.nn.Module):
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None):
super().__init__()
self.projection = operations.Conv2d(
in_channels=num_channels,
out_channels=dim,
kernel_size=patch_size,
stride=patch_size,
bias=True,
dtype=dtype,
device=device
)
def forward(self, pixel_values):
return self.projection(pixel_values).flatten(2).transpose(1, 2)
class Dino2Embeddings(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
patch_size = 14
image_size = 518
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations)
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device))
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device))
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device))
def forward(self, pixel_values):
x = self.patch_embeddings(pixel_values)
# TODO: mask_token?
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
return x
class Dinov2Model(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
num_layers = config_dict["num_hidden_layers"]
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
x = self.embeddings(pixel_values)
x, i = self.encoder(x, intermediate_output=intermediate_output)
x = self.layernorm(x)
pooled_output = x[:, 0, :]
return x, i, pooled_output, None

View File

@@ -1,21 +0,0 @@
{
"attention_probs_dropout_prob": 0.0,
"drop_path_rate": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"hidden_size": 1536,
"image_size": 518,
"initializer_range": 0.02,
"layer_norm_eps": 1e-06,
"layerscale_value": 1.0,
"mlp_ratio": 4,
"model_type": "dinov2",
"num_attention_heads": 24,
"num_channels": 3,
"num_hidden_layers": 40,
"patch_size": 14,
"qkv_bias": true,
"use_swiglu_ffn": true,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@@ -688,10 +688,10 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
seed = extra_args.get("seed", None) seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp() sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg() t_fn = lambda sigma: sigma.log().neg()
@@ -762,10 +762,10 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
if solver_type not in {'heun', 'midpoint'}: if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'') raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None) seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
old_denoised = None old_denoised = None
@@ -808,10 +808,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None) seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
denoised_1, denoised_2 = None, None denoised_1, denoised_2 = None, None
@@ -858,7 +858,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler) return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@@ -867,7 +867,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type) return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@@ -876,7 +876,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
@@ -1277,7 +1277,6 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
phi1_fn = lambda t: torch.expm1(t) / t phi1_fn = lambda t: torch.expm1(t) / t
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
old_sigma_down = None
old_denoised = None old_denoised = None
uncond_denoised = None uncond_denoised = None
def post_cfg_function(args): def post_cfg_function(args):
@@ -1305,9 +1304,9 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
x = x + d * dt x = x + d * dt
else: else:
# Second order multistep method in https://arxiv.org/pdf/2308.02157 # Second order multistep method in https://arxiv.org/pdf/2308.02157
t, t_old, t_next, t_prev = t_fn(sigmas[i]), t_fn(old_sigma_down), t_fn(sigma_down), t_fn(sigmas[i - 1]) t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigma_down), t_fn(sigmas[i - 1])
h = t_next - t h = t_next - t
c2 = (t_prev - t_old) / h c2 = (t_prev - t) / h
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h) phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0) b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
@@ -1327,7 +1326,6 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
old_denoised = uncond_denoised old_denoised = uncond_denoised
else: else:
old_denoised = denoised old_denoised = denoised
old_sigma_down = sigma_down
return x return x
@torch.no_grad() @torch.no_grad()
@@ -1347,202 +1345,24 @@ def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, cal
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True) return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
@torch.no_grad() @torch.no_grad()
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False): def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK""" """Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
old_d = None old_d = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
if cfg_pp:
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)
if cfg_pp: d = to_d(x, sigmas[i], denoised)
d = to_d(x, sigmas[i], uncond_denoised)
else:
d = to_d(x, sigmas[i], denoised)
if callback is not None: if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
dt = sigmas[i + 1] - sigmas[i] dt = sigmas[i + 1] - sigmas[i]
if i == 0: if i == 0:
# Euler method # Euler method
if cfg_pp: x = x + d * dt
x = denoised + d * sigmas[i + 1]
else:
x = x + d * dt
else: else:
# Gradient estimation # Gradient estimation
if cfg_pp: d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
d_bar = (ge_gamma - 1) * (d - old_d) x = x + d_bar * dt
x = denoised + d * sigmas[i + 1] + d_bar * dt
else:
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
x = x + d_bar * dt
old_d = d old_d = d
return x return x
@torch.no_grad()
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
@torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
"""
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
def default_noise_scaler(sigma):
return sigma * ((sigma ** 0.3).exp() + 10.0)
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
num_integration_points = 200.0
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
old_denoised = None
old_denoised_d = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
stage_used = min(max_stage, i + 1)
if sigmas[i + 1] == 0:
x = denoised
elif stage_used == 1:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
else:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
dt = sigmas[i + 1] - sigmas[i]
sigma_step_size = -dt / num_integration_points
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
scaled_pos = noise_scaler(sigma_pos)
# Stage 2
s = torch.sum(1 / scaled_pos) * sigma_step_size
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
if stage_used >= 3:
# Stage 3
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
old_denoised_d = denoised_d
if s_noise != 0 and sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
'''
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s = t + r * h
fac = 1 / (2 * r)
sigma_s = s.neg().exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
'''
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
s_1 = t + r_1 * h
s_2 = t + r_2 * h
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x

View File

@@ -456,17 +456,3 @@ class Wan21(LatentFormat):
latents_mean = self.latents_mean.to(latent.device, latent.dtype) latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype) latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean return latent * latents_std / self.scale_factor + latents_mean
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 1.0188137142395404
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2

View File

@@ -1,761 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union, Optional
import torch
import torch.nn.functional as F
from torch import nn
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
kv_heads: Optional[int] = None,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
processor=None,
out_dim: int = None,
out_context_dim: int = None,
context_pre_only=None,
pre_only=False,
elementwise_affine: bool = True,
is_causal: bool = False,
dtype=None, device=None, operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
self.query_dim = query_dim
self.use_bias = bias
self.is_cross_attention = cross_attention_dim is not None
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
self.is_causal = is_causal
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
self.group_norm = None
self.spatial_norm = None
self.norm_q = None
self.norm_k = None
self.norm_cross = None
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
else:
self.to_k = None
self.to_v = None
self.added_proj_bias = added_proj_bias
if self.added_kv_proj_dim is not None:
self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
if self.context_pre_only is not None:
self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
else:
self.add_q_proj = None
self.add_k_proj = None
self.add_v_proj = None
if not self.pre_only:
self.to_out = nn.ModuleList([])
self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
self.to_out.append(nn.Dropout(dropout))
else:
self.to_out = None
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
else:
self.to_add_out = None
self.norm_added_q = None
self.norm_added_k = None
self.processor = processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
class CustomLiteLAProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""
def __init__(self):
self.kernel_func = nn.ReLU(inplace=False)
self.eps = 1e-15
self.pad_val = 1.0
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
hidden_states_len = hidden_states.shape[1]
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if encoder_hidden_states is not None:
context_input_ndim = encoder_hidden_states.ndim
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size = hidden_states.shape[0]
# `sample` projections.
dtype = hidden_states.dtype
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# `context` projections.
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
# attention
if not attn.is_cross_attention:
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
else:
query = hidden_states
key = encoder_hidden_states
value = encoder_hidden_states
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
# RoPE需要 [B, H, S, D] 输入
# 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S])
# Apply query and key normalization if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
# 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
query = query.permute(0, 1, 3, 2) # [B, H, D, S]
if attention_mask is not None:
# attention_mask: [B, S] -> [B, 1, S, 1]
attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1]
query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1]
if not attn.is_cross_attention:
key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S]那么需调整mask以匹配S维度
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1]
# 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1]
value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc]
query = self.kernel_func(query)
key = self.kernel_func(key)
query, key, value = query.float(), key.float(), value.float()
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)
vk = torch.matmul(value, key)
hidden_states = torch.matmul(vk, query)
if hidden_states.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.float()
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)
hidden_states = hidden_states.to(dtype)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(dtype)
# Split the attention outputs.
if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
hidden_states, encoder_hidden_states = (
hidden_states[:, : hidden_states_len],
hidden_states[:, hidden_states_len:],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if encoder_hidden_states is not None and context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if torch.get_autocast_gpu_dtype() == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CustomerAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
# attention_mask: N x S1
# encoder_attention_mask: N x S2
# cross attention 整合attention_mask和encoder_attention_mask
combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)
elif not attn.is_cross_attention and attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
).to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
if isinstance(x, (list, tuple)):
return list(x)
return [x for _ in range(repeat_time)]
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
"""Return tuple with min_len by repeating element at idx_repeat."""
# convert to list first
x = val2list(x)
# repeat elements if necessary
if len(x) > 0:
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
return tuple(x)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
if isinstance(kernel_size, tuple):
return tuple([get_same_padding(ks) for ks in kernel_size])
else:
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
return kernel_size // 2
class ConvLayer(nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
padding: Union[int, None] = None,
use_bias=False,
norm=None,
act=None,
dtype=None, device=None, operations=None
):
super().__init__()
if padding is None:
padding = get_same_padding(kernel_size)
padding *= dilation
self.in_dim = in_dim
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.groups = groups
self.padding = padding
self.use_bias = use_bias
self.conv = operations.Conv1d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=use_bias,
device=device,
dtype=dtype
)
if norm is not None:
self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
else:
self.norm = None
if act is not None:
self.act = nn.SiLU(inplace=True)
else:
self.act = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
out_feature=None,
kernel_size=3,
stride=1,
padding: Union[int, None] = None,
use_bias=False,
norm=(None, None, None),
act=("silu", "silu", None),
dilation=1,
dtype=None, device=None, operations=None
):
out_feature = out_feature or in_features
super().__init__()
use_bias = val2tuple(use_bias, 3)
norm = val2tuple(norm, 3)
act = val2tuple(act, 3)
self.glu_act = nn.SiLU(inplace=False)
self.inverted_conv = ConvLayer(
in_features,
hidden_features * 2,
1,
use_bias=use_bias[0],
norm=norm[0],
act=act[0],
dtype=dtype,
device=device,
operations=operations,
)
self.depth_conv = ConvLayer(
hidden_features * 2,
hidden_features * 2,
kernel_size,
stride=stride,
groups=hidden_features * 2,
padding=padding,
use_bias=use_bias[1],
norm=norm[1],
act=None,
dilation=dilation,
dtype=dtype,
device=device,
operations=operations,
)
self.point_conv = ConvLayer(
hidden_features,
out_feature,
1,
use_bias=use_bias[2],
norm=norm[2],
act=act[2],
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
x = self.inverted_conv(x)
x = self.depth_conv(x)
x, gate = torch.chunk(x, 2, dim=1)
gate = self.glu_act(gate)
x = x * gate
x = self.point_conv(x)
x = x.transpose(1, 2)
return x
class LinearTransformerBlock(nn.Module):
"""
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
use_adaln_single=True,
cross_attention_dim=None,
added_kv_proj_dim=None,
context_pre_only=False,
mlp_ratio=4.0,
add_cross_attention=False,
add_cross_attention_dim=None,
qk_norm=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
added_kv_proj_dim=added_kv_proj_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
qk_norm=qk_norm,
processor=CustomLiteLAProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.add_cross_attention = add_cross_attention
self.context_pre_only = context_pre_only
if add_cross_attention and add_cross_attention_dim is not None:
self.cross_attn = Attention(
query_dim=dim,
cross_attention_dim=add_cross_attention_dim,
added_kv_proj_dim=add_cross_attention_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
qk_norm=qk_norm,
processor=CustomerAttnProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)
self.ff = GLUMBConv(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=("silu", "silu", None),
dtype=dtype,
device=device,
operations=operations,
)
self.use_adaln_single = use_adaln_single
if use_adaln_single:
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
):
N = hidden_states.shape[0]
# step 1: AdaLN single
if self.use_adaln_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
# step 2: attention
if not self.add_cross_attention:
attn_output, encoder_hidden_states = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
else:
attn_output, _ = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
)
if self.use_adaln_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if self.add_cross_attention:
attn_output = self.cross_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
hidden_states = attn_output + hidden_states
# step 3: add norm
norm_hidden_states = self.norm2(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
# step 4: feed forward
ff_output = self.ff(norm_hidden_states)
if self.use_adaln_single:
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
return hidden_states

File diff suppressed because it is too large Load Diff

View File

@@ -1,385 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union
import torch
from torch import nn
import comfy.model_management
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
from .lyric_encoder import ConformerEncoder as LyricEncoder
def cross_norm(hidden_states, controlnet_input):
# input N x T x c
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
return controlnet_input
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class T2IFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
self.out_channels = out_channels
self.patch_size = patch_size
def unpatchfy(
self,
hidden_states: torch.Tensor,
width: int,
):
# 4 unpatchify
new_height, new_width = 1, hidden_states.size(1)
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
).contiguous()
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
).contiguous()
if width > new_width:
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
elif width < new_width:
output = output[:, :, :, :width]
return output
def forward(self, x, t, output_length):
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
# unpatchify
output = self.unpatchfy(x, output_length)
return output
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=16,
width=4096,
patch_size=(16, 1),
in_channels=8,
embed_dim=1152,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
patch_size_h, patch_size_w = patch_size
self.early_conv_layers = nn.Sequential(
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
)
self.patch_size = patch_size
self.height, self.width = height // patch_size_h, width // patch_size_w
self.base_size = self.width
def forward(self, latent):
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
latent = self.early_conv_layers(latent)
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
return latent
class ACEStepTransformer2DModel(nn.Module):
# _supports_gradient_checkpointing = True
def __init__(
self,
in_channels: Optional[int] = 8,
num_layers: int = 28,
inner_dim: int = 1536,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
mlp_ratio: float = 4.0,
out_channels: int = 8,
max_position: int = 32768,
rope_theta: float = 1000000.0,
speaker_embedding_dim: int = 512,
text_embedding_dim: int = 768,
ssl_encoder_depths: List[int] = [9, 9],
ssl_names: List[str] = ["mert", "m-hubert"],
ssl_latent_dims: List[int] = [1024, 768],
lyric_encoder_vocab_size: int = 6681,
lyric_hidden_size: int = 1024,
patch_size: List[int] = [16, 1],
max_height: int = 16,
max_width: int = 4096,
audio_model=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.dtype = dtype
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.out_channels = out_channels
self.max_position = max_position
self.patch_size = patch_size
self.rope_theta = rope_theta
self.rotary_emb = Qwen2RotaryEmbedding(
dim=self.attention_head_dim,
max_position_embeddings=self.max_position,
base=self.rope_theta,
dtype=dtype,
device=device,
)
# 2. Define input layers
self.in_channels = in_channels
self.num_layers = num_layers
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
LinearTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
add_cross_attention=True,
add_cross_attention_dim=self.inner_dim,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(self.num_layers)
]
)
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))
# speaker
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# genre
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# lyric
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)
projector_dim = 2 * self.inner_dim
self.projectors = nn.ModuleList([
nn.Sequential(
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
) for ssl_dim in ssl_latent_dims
])
self.proj_in = PatchEmbed(
height=max_height,
width=max_width,
patch_size=patch_size,
embed_dim=self.inner_dim,
bias=True,
dtype=dtype,
device=device,
operations=operations,
)
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)
def forward_lyric_encoder(
self,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
out_dtype=None,
):
# N x T x D
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
return prompt_prenet_out
def encode(
self,
encoder_text_hidden_states: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
lyrics_strength=1.0,
):
bs = encoder_text_hidden_states.shape[0]
device = encoder_text_hidden_states.device
# speaker embedding
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
# genre embedding
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)
# lyric
encoder_lyric_hidden_states = self.forward_lyric_encoder(
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
out_dtype=encoder_text_hidden_states.dtype,
)
encoder_lyric_hidden_states *= lyrics_strength
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
encoder_hidden_mask = None
if text_attention_mask is not None:
speaker_mask = torch.ones(bs, 1, device=device)
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
return encoder_hidden_states, encoder_hidden_mask
def decode(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_mask: torch.Tensor,
timestep: Optional[torch.Tensor],
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
hidden_states = self.proj_in(hidden_states)
# controlnet logic
if block_controlnet_hidden_states is not None:
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
hidden_states = hidden_states + control_condi * controlnet_scale
# inner_hidden_states = []
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_hidden_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(
self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
hidden_states = x
encoder_text_hidden_states = context
encoder_hidden_states, encoder_hidden_mask = self.encode(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embeds,
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
lyrics_strength=lyrics_strength,
)
output_length = hidden_states.shape[-1]
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
timestep=timestep,
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
)
return output

View File

@@ -1,644 +0,0 @@
# Rewritten from diffusers
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Union
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
class RMSNorm(ops.RMSNorm):
def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False):
super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine)
if elementwise_affine:
self.bias = nn.Parameter(torch.empty(dim)) if bias else None
def forward(self, x):
x = super().forward(x)
if self.elementwise_affine:
if self.bias is not None:
x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device)
return x
def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5):
if norm_type == "batch_norm":
return nn.BatchNorm2d(num_features)
elif norm_type == "group_norm":
return ops.GroupNorm(num_groups, num_features)
elif norm_type == "layer_norm":
return ops.LayerNorm(num_features)
elif norm_type == "rms_norm":
return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True)
else:
raise ValueError(f"Unknown normalization type: {norm_type}")
def get_activation(activation_type):
if activation_type == "relu":
return nn.ReLU()
elif activation_type == "relu6":
return nn.ReLU6()
elif activation_type == "silu":
return nn.SiLU()
elif activation_type == "leaky_relu":
return nn.LeakyReLU(0.2)
else:
raise ValueError(f"Unknown activation type: {activation_type}")
class ResBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm_type: str = "batch_norm",
act_fn: str = "relu6",
) -> None:
super().__init__()
self.norm_type = norm_type
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
self.norm = get_normalization(norm_type, out_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm(hidden_states)
return hidden_states + residual
class SanaMultiscaleAttentionProjection(nn.Module):
def __init__(
self,
in_channels: int,
num_attention_heads: int,
kernel_size: int,
) -> None:
super().__init__()
channels = 3 * in_channels
self.proj_in = ops.Conv2d(
channels,
channels,
kernel_size,
padding=kernel_size // 2,
groups=channels,
bias=False,
)
self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.proj_in(hidden_states)
hidden_states = self.proj_out(hidden_states)
return hidden_states
class SanaMultiscaleLinearAttention(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_attention_heads: int = None,
attention_head_dim: int = 8,
mult: float = 1.0,
norm_type: str = "batch_norm",
kernel_sizes: tuple = (5,),
eps: float = 1e-15,
residual_connection: bool = False,
):
super().__init__()
self.eps = eps
self.attention_head_dim = attention_head_dim
self.norm_type = norm_type
self.residual_connection = residual_connection
num_attention_heads = (
int(in_channels // attention_head_dim * mult)
if num_attention_heads is None
else num_attention_heads
)
inner_dim = num_attention_heads * attention_head_dim
self.to_q = ops.Linear(in_channels, inner_dim, bias=False)
self.to_k = ops.Linear(in_channels, inner_dim, bias=False)
self.to_v = ops.Linear(in_channels, inner_dim, bias=False)
self.to_qkv_multiscale = nn.ModuleList()
for kernel_size in kernel_sizes:
self.to_qkv_multiscale.append(
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
)
self.nonlinearity = nn.ReLU()
self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
self.norm_out = get_normalization(norm_type, out_channels)
def apply_linear_attention(self, query, key, value):
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1)
scores = torch.matmul(value, key.transpose(-1, -2))
hidden_states = torch.matmul(scores, query)
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
return hidden_states
def apply_quadratic_attention(self, query, key, value):
scores = torch.matmul(key.transpose(-1, -2), query)
scores = scores.to(dtype=torch.float32)
scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps)
hidden_states = torch.matmul(value, scores.to(value.dtype))
return hidden_states
def forward(self, hidden_states):
height, width = hidden_states.shape[-2:]
if height * width > self.attention_head_dim:
use_linear_attention = True
else:
use_linear_attention = False
residual = hidden_states
batch_size, _, height, width = list(hidden_states.size())
original_dtype = hidden_states.dtype
hidden_states = hidden_states.movedim(1, -1)
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
hidden_states = torch.cat([query, key, value], dim=3)
hidden_states = hidden_states.movedim(-1, 1)
multi_scale_qkv = [hidden_states]
for block in self.to_qkv_multiscale:
multi_scale_qkv.append(block(hidden_states))
hidden_states = torch.cat(multi_scale_qkv, dim=1)
if use_linear_attention:
# for linear attention upcast hidden_states to float32
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width)
query, key, value = hidden_states.chunk(3, dim=2)
query = self.nonlinearity(query)
key = self.nonlinearity(key)
if use_linear_attention:
hidden_states = self.apply_linear_attention(query, key, value)
hidden_states = hidden_states.to(dtype=original_dtype)
else:
hidden_states = self.apply_quadratic_attention(query, key, value)
hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width))
hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.norm_type == "rms_norm":
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm_out(hidden_states)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
class EfficientViTBlock(nn.Module):
def __init__(
self,
in_channels: int,
mult: float = 1.0,
attention_head_dim: int = 32,
qkv_multiscales: tuple = (5,),
norm_type: str = "batch_norm",
) -> None:
super().__init__()
self.attn = SanaMultiscaleLinearAttention(
in_channels=in_channels,
out_channels=in_channels,
mult=mult,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
kernel_sizes=qkv_multiscales,
residual_connection=True,
)
self.conv_out = GLUMBConv(
in_channels=in_channels,
out_channels=in_channels,
norm_type="rms_norm",
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.attn(x)
x = self.conv_out(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
expand_ratio: float = 4,
norm_type: str = None,
residual_connection: bool = True,
) -> None:
super().__init__()
hidden_channels = int(expand_ratio * in_channels)
self.norm_type = norm_type
self.residual_connection = residual_connection
self.nonlinearity = nn.SiLU()
self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
self.norm = None
if norm_type == "rms_norm":
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.residual_connection:
residual = hidden_states
hidden_states = self.conv_inverted(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_depth(hidden_states)
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
hidden_states = hidden_states * self.nonlinearity(gate)
hidden_states = self.conv_point(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
def get_block(
block_type: str,
in_channels: int,
out_channels: int,
attention_head_dim: int,
norm_type: str,
act_fn: str,
qkv_mutliscales: tuple = (),
):
if block_type == "ResBlock":
block = ResBlock(in_channels, out_channels, norm_type, act_fn)
elif block_type == "EfficientViTBlock":
block = EfficientViTBlock(
in_channels,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
qkv_multiscales=qkv_mutliscales
)
else:
raise ValueError(f"Block with {block_type=} is not supported.")
return block
class DCDownBlock2d(nn.Module):
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
super().__init__()
self.downsample = downsample
self.factor = 2
self.stride = 1 if downsample else 2
self.group_size = in_channels * self.factor**2 // out_channels
self.shortcut = shortcut
out_ratio = self.factor**2
if downsample:
assert out_channels % out_ratio == 0
out_channels = out_channels // out_ratio
self.conv = ops.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=self.stride,
padding=1,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self.conv(hidden_states)
if self.downsample:
x = F.pixel_unshuffle(x, self.factor)
if self.shortcut:
y = F.pixel_unshuffle(hidden_states, self.factor)
y = y.unflatten(1, (-1, self.group_size))
y = y.mean(dim=2)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class DCUpBlock2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
interpolate: bool = False,
shortcut: bool = True,
interpolation_mode: str = "nearest",
) -> None:
super().__init__()
self.interpolate = interpolate
self.interpolation_mode = interpolation_mode
self.shortcut = shortcut
self.factor = 2
self.repeats = out_channels * self.factor**2 // in_channels
out_ratio = self.factor**2
if not interpolate:
out_channels = out_channels * out_ratio
self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.interpolate:
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
x = self.conv(x)
else:
x = self.conv(hidden_states)
x = F.pixel_shuffle(x, self.factor)
if self.shortcut:
y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats)
y = F.pixel_shuffle(y, self.factor)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
downsample_block_type: str = "pixel_unshuffle",
out_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if layers_per_block[0] > 0:
self.conv_in = ops.Conv2d(
in_channels,
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
kernel_size=3,
stride=1,
padding=1,
)
else:
self.conv_in = DCDownBlock2d(
in_channels=in_channels,
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=False,
)
down_blocks = []
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
down_block_list = []
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type="rms_norm",
act_fn="silu",
qkv_mutliscales=qkv_multiscales[i],
)
down_block_list.append(block)
if i < num_blocks - 1 and num_layers > 0:
downsample_block = DCDownBlock2d(
in_channels=out_channel,
out_channels=block_out_channels[i + 1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=True,
)
down_block_list.append(downsample_block)
down_blocks.append(nn.Sequential(*down_block_list))
self.down_blocks = nn.ModuleList(down_blocks)
self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
self.out_shortcut = out_shortcut
if out_shortcut:
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
if self.out_shortcut:
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
x = x.mean(dim=2)
hidden_states = self.conv_out(hidden_states) + x
else:
hidden_states = self.conv_out(hidden_states)
return hidden_states
class Decoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
norm_type: str or tuple = "rms_norm",
act_fn: str or tuple = "silu",
upsample_block_type: str = "pixel_shuffle",
in_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if isinstance(norm_type, str):
norm_type = (norm_type,) * num_blocks
if isinstance(act_fn, str):
act_fn = (act_fn,) * num_blocks
self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
self.in_shortcut = in_shortcut
if in_shortcut:
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
up_blocks = []
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
up_block_list = []
if i < num_blocks - 1 and num_layers > 0:
upsample_block = DCUpBlock2d(
block_out_channels[i + 1],
out_channel,
interpolate=upsample_block_type == "interpolate",
shortcut=True,
)
up_block_list.append(upsample_block)
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type=norm_type[i],
act_fn=act_fn[i],
qkv_mutliscales=qkv_multiscales[i],
)
up_block_list.append(block)
up_blocks.insert(0, nn.Sequential(*up_block_list))
self.up_blocks = nn.ModuleList(up_blocks)
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
self.conv_act = nn.ReLU()
self.conv_out = None
if layers_per_block[0] > 0:
self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1)
else:
self.conv_out = DCUpBlock2d(
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.in_shortcut:
x = hidden_states.repeat_interleave(
self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats
)
hidden_states = self.conv_in(hidden_states) + x
else:
hidden_states = self.conv_in(hidden_states)
for up_block in reversed(self.up_blocks):
hidden_states = up_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderDC(nn.Module):
def __init__(
self,
in_channels: int = 2,
latent_channels: int = 8,
attention_head_dim: int = 32,
encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3),
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3),
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
upsample_block_type: str = "interpolate",
downsample_block_type: str = "Conv",
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
decoder_act_fns: Union[str, Tuple[str]] = "silu",
scaling_factor: float = 0.41407,
) -> None:
super().__init__()
self.encoder = Encoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=encoder_block_types,
block_out_channels=encoder_block_out_channels,
layers_per_block=encoder_layers_per_block,
qkv_multiscales=encoder_qkv_multiscales,
downsample_block_type=downsample_block_type,
)
self.decoder = Decoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=decoder_block_types,
block_out_channels=decoder_block_out_channels,
layers_per_block=decoder_layers_per_block,
qkv_multiscales=decoder_qkv_multiscales,
norm_type=decoder_norm_types,
act_fn=decoder_act_fns,
upsample_block_type=upsample_block_type,
)
self.scaling_factor = scaling_factor
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Internal encoding function."""
encoded = self.encoder(x)
return encoded * self.scaling_factor
def decode(self, z: torch.Tensor) -> torch.Tensor:
# Scale the latents back
z = z / self.scaling_factor
decoded = self.decoder(z)
return decoded
def forward(self, x: torch.Tensor) -> torch.Tensor:
z = self.encode(x)
return self.decode(z)

View File

@@ -1,109 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_dcae_pipeline.py
import torch
from .autoencoder_dc import AutoencoderDC
import logging
try:
import torchaudio
except:
logging.warning("torchaudio missing, ACE model will be broken")
import torchvision.transforms as transforms
from .music_vocoder import ADaMoSHiFiGANV1
class MusicDCAE(torch.nn.Module):
def __init__(self, source_sample_rate=None, dcae_config={}, vocoder_config={}):
super(MusicDCAE, self).__init__()
self.dcae = AutoencoderDC(**dcae_config)
self.vocoder = ADaMoSHiFiGANV1(**vocoder_config)
if source_sample_rate is None:
self.source_sample_rate = 48000
else:
self.source_sample_rate = source_sample_rate
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
self.transform = transforms.Compose([
transforms.Normalize(0.5, 0.5),
])
self.min_mel_value = -11.0
self.max_mel_value = 3.0
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000)))
self.mel_chunk_size = 1024
self.time_dimention_multiple = 8
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple
self.scale_factor = 0.1786
self.shift_factor = -1.9091
def load_audio(self, audio_path):
audio, sr = torchaudio.load(audio_path)
return audio, sr
def forward_mel(self, audios):
mels = []
for i in range(len(audios)):
image = self.vocoder.mel_transform(audios[i])
mels.append(image)
mels = torch.stack(mels)
return mels
@torch.no_grad()
def encode(self, audios, audio_lengths=None, sr=None):
if audio_lengths is None:
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0])
audio_lengths = audio_lengths.to(audios.device)
if sr is None:
sr = self.source_sample_rate
if sr != 44100:
audios = torchaudio.functional.resample(audios, sr, 44100)
max_audio_len = audios.shape[-1]
if max_audio_len % (8 * 512) != 0:
audios = torch.nn.functional.pad(audios, (0, 8 * 512 - max_audio_len % (8 * 512)))
mels = self.forward_mel(audios)
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value)
mels = self.transform(mels)
latents = []
for mel in mels:
latent = self.dcae.encoder(mel.unsqueeze(0))
latents.append(latent)
latents = torch.cat(latents, dim=0)
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
latents = (latents - self.shift_factor) * self.scale_factor
return latents
# return latents, latent_lengths
@torch.no_grad()
def decode(self, latents, audio_lengths=None, sr=None):
latents = latents / self.scale_factor + self.shift_factor
pred_wavs = []
for latent in latents:
mels = self.dcae.decoder(latent.unsqueeze(0))
mels = mels * 0.5 + 0.5
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value
wav = self.vocoder.decode(mels[0]).squeeze(1)
if sr is not None:
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
wav = torchaudio.functional.resample(wav, 44100, sr)
# wav = resampler(wav)
else:
sr = 44100
pred_wavs.append(wav)
if audio_lengths is not None:
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
return torch.stack(pred_wavs)
# return sr, pred_wavs
def forward(self, audios, audio_lengths=None, sr=None):
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr)
return sr, pred_wavs, latents, latent_lengths

View File

@@ -1,113 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_log_mel.py
import torch
import torch.nn as nn
from torch import Tensor
import logging
try:
from torchaudio.transforms import MelScale
except:
logging.warning("torchaudio missing, ACE model will be broken")
import comfy.model_management
class LinearSpectrogram(nn.Module):
def __init__(
self,
n_fft=2048,
win_length=2048,
hop_length=512,
center=False,
mode="pow2_sqrt",
):
super().__init__()
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.mode = mode
self.register_buffer("window", torch.hann_window(win_length))
def forward(self, y: Tensor) -> Tensor:
if y.ndim == 3:
y = y.squeeze(1)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(
(self.win_length - self.hop_length) // 2,
(self.win_length - self.hop_length + 1) // 2,
),
mode="reflect",
).squeeze(1)
dtype = y.dtype
spec = torch.stft(
y.float(),
self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=comfy.model_management.cast_to(self.window, dtype=torch.float32, device=y.device),
center=self.center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
if self.mode == "pow2_sqrt":
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = spec.to(dtype)
return spec
class LogMelSpectrogram(nn.Module):
def __init__(
self,
sample_rate=44100,
n_fft=2048,
win_length=2048,
hop_length=512,
n_mels=128,
center=False,
f_min=0.0,
f_max=None,
):
super().__init__()
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.n_mels = n_mels
self.f_min = f_min
self.f_max = f_max or sample_rate // 2
self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)
self.mel_scale = MelScale(
self.n_mels,
self.sample_rate,
self.f_min,
self.f_max,
self.n_fft // 2 + 1,
"slaney",
"slaney",
)
def compress(self, x: Tensor) -> Tensor:
return torch.log(torch.clamp(x, min=1e-5))
def decompress(self, x: Tensor) -> Tensor:
return torch.exp(x)
def forward(self, x: Tensor, return_linear: bool = False) -> Tensor:
linear = self.spectrogram(x)
x = self.mel_scale(linear)
x = self.compress(x)
# print(x.shape)
if return_linear:
return x, self.compress(linear)
return x

View File

@@ -1,538 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_vocoder.py
import torch
from torch import nn
from functools import partial
from math import prod
from typing import Callable, Tuple, List
import numpy as np
import torch.nn.functional as F
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
from .music_log_mel import LogMelSpectrogram
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
""" # noqa: E501
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"
class LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
""" # noqa: E501
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, comfy.model_management.cast_to(self.weight, dtype=x.dtype, device=x.device), comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device), self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = comfy.model_management.cast_to(self.weight[:, None], dtype=x.dtype, device=x.device) * x + comfy.model_management.cast_to(self.bias[:, None], dtype=x.dtype, device=x.device)
return x
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
kernel_size (int): Kernel size for depthwise conv. Default: 7.
dilation (int): Dilation for depthwise conv. Default: 1.
""" # noqa: E501
def __init__(
self,
dim: int,
drop_path: float = 0.0,
layer_scale_init_value: float = 1e-6,
mlp_ratio: float = 4.0,
kernel_size: int = 7,
dilation: int = 1,
):
super().__init__()
self.dwconv = ops.Conv1d(
dim,
dim,
kernel_size=kernel_size,
padding=int(dilation * (kernel_size - 1) / 2),
groups=dim,
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = ops.Linear(
dim, int(mlp_ratio * dim)
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = ops.Linear(int(mlp_ratio * dim), dim)
self.gamma = (
nn.Parameter(torch.empty((dim)), requires_grad=False)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x, apply_residual: bool = True):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) * x
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
x = self.drop_path(x)
if apply_residual:
x = input + x
return x
class ParallelConvNeXtBlock(nn.Module):
def __init__(self, kernel_sizes: List[int], *args, **kwargs):
super().__init__()
self.blocks = nn.ModuleList(
[
ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs)
for kernel_size in kernel_sizes
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.stack(
[block(x, apply_residual=False) for block in self.blocks] + [x],
dim=1,
).sum(dim=1)
class ConvNeXtEncoder(nn.Module):
def __init__(
self,
input_channels=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.0,
layer_scale_init_value=1e-6,
kernel_sizes: Tuple[int] = (7,),
):
super().__init__()
assert len(depths) == len(dims)
self.channel_layers = nn.ModuleList()
stem = nn.Sequential(
ops.Conv1d(
input_channels,
dims[0],
kernel_size=7,
padding=3,
padding_mode="replicate",
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.channel_layers.append(stem)
for i in range(len(depths) - 1):
mid_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
ops.Conv1d(dims[i], dims[i + 1], kernel_size=1),
)
self.channel_layers.append(mid_layer)
block_fn = (
partial(ConvNeXtBlock, kernel_size=kernel_sizes[0])
if len(kernel_sizes) == 1
else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes)
)
self.stages = nn.ModuleList()
drop_path_rates = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
cur = 0
for i in range(len(depths)):
stage = nn.Sequential(
*[
block_fn(
dim=dims[i],
drop_path=drop_path_rates[cur + j],
layer_scale_init_value=layer_scale_init_value,
)
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
for channel_layer, stage in zip(self.channel_layers, self.stages):
x = channel_layer(x)
x = stage(x)
return self.norm(x)
def get_padding(kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList(
[
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.silu(x)
xt = c1(xt)
xt = F.silu(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for conv in self.convs1:
remove_weight_norm(conv)
for conv in self.convs2:
remove_weight_norm(conv)
class HiFiGANGenerator(nn.Module):
def __init__(
self,
*,
hop_length: int = 512,
upsample_rates: Tuple[int] = (8, 8, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 128,
upsample_initial_channel: int = 512,
use_template: bool = True,
pre_conv_kernel_size: int = 7,
post_conv_kernel_size: int = 7,
post_activation: Callable = partial(nn.SiLU, inplace=True),
):
super().__init__()
assert (
prod(upsample_rates) == hop_length
), f"hop_length must be {prod(upsample_rates)}"
self.conv_pre = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
num_mels,
upsample_initial_channel,
pre_conv_kernel_size,
1,
padding=get_padding(pre_conv_kernel_size),
)
)
self.num_upsamples = len(upsample_rates)
self.num_kernels = len(resblock_kernel_sizes)
self.noise_convs = nn.ModuleList()
self.use_template = use_template
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append(
torch.nn.utils.parametrizations.weight_norm(
ops.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
if not use_template:
continue
if i + 1 < len(upsample_rates):
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(
ops.Conv1d(
1,
c_cur,
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=stride_f0 // 2,
)
)
else:
self.noise_convs.append(ops.Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
self.resblocks.append(ResBlock1(ch, k, d))
self.activation_post = post_activation()
self.conv_post = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
ch,
1,
post_conv_kernel_size,
1,
padding=get_padding(post_conv_kernel_size),
)
)
def forward(self, x, template=None):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.silu(x, inplace=True)
x = self.ups[i](x)
if self.use_template:
x = x + self.noise_convs[i](template)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
for up in self.ups:
remove_weight_norm(up)
for block in self.resblocks:
block.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class ADaMoSHiFiGANV1(nn.Module):
def __init__(
self,
input_channels: int = 128,
depths: List[int] = [3, 3, 9, 3],
dims: List[int] = [128, 256, 384, 512],
drop_path_rate: float = 0.0,
kernel_sizes: Tuple[int] = (7,),
upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 512,
upsample_initial_channel: int = 1024,
use_template: bool = False,
pre_conv_kernel_size: int = 13,
post_conv_kernel_size: int = 13,
sampling_rate: int = 44100,
n_fft: int = 2048,
win_length: int = 2048,
hop_length: int = 512,
f_min: int = 40,
f_max: int = 16000,
n_mels: int = 128,
):
super().__init__()
self.backbone = ConvNeXtEncoder(
input_channels=input_channels,
depths=depths,
dims=dims,
drop_path_rate=drop_path_rate,
kernel_sizes=kernel_sizes,
)
self.head = HiFiGANGenerator(
hop_length=hop_length,
upsample_rates=upsample_rates,
upsample_kernel_sizes=upsample_kernel_sizes,
resblock_kernel_sizes=resblock_kernel_sizes,
resblock_dilation_sizes=resblock_dilation_sizes,
num_mels=num_mels,
upsample_initial_channel=upsample_initial_channel,
use_template=use_template,
pre_conv_kernel_size=pre_conv_kernel_size,
post_conv_kernel_size=post_conv_kernel_size,
)
self.sampling_rate = sampling_rate
self.mel_transform = LogMelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
)
self.eval()
@torch.no_grad()
def decode(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y
@torch.no_grad()
def encode(self, x):
return self.mel_transform(x)
def forward(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y

View File

@@ -75,10 +75,16 @@ class SnakeBeta(nn.Module):
return x return x
def WNConv1d(*args, **kwargs): def WNConv1d(*args, **kwargs):
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs)) try:
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
def WNConvTranspose1d(*args, **kwargs): def WNConvTranspose1d(*args, **kwargs):
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) try:
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module: def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
if activation == "elu": if activation == "elu":

View File

@@ -19,10 +19,6 @@
import torch import torch
from torch import nn from torch import nn
from torch.autograd import Function from torch.autograd import Function
import comfy.ops
ops = comfy.ops.disable_weight_init
class vector_quantize(Function): class vector_quantize(Function):
@staticmethod @staticmethod
@@ -125,15 +121,15 @@ class ResBlock(nn.Module):
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential( self.depthwise = nn.Sequential(
nn.ReplicationPad2d(1), nn.ReplicationPad2d(1),
ops.Conv2d(c, c, kernel_size=3, groups=c) nn.Conv2d(c, c, kernel_size=3, groups=c)
) )
# channelwise # channelwise
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential( self.channelwise = nn.Sequential(
ops.Linear(c, c_hidden), nn.Linear(c, c_hidden),
nn.GELU(), nn.GELU(),
ops.Linear(c_hidden, c), nn.Linear(c_hidden, c),
) )
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
@@ -175,16 +171,16 @@ class StageA(nn.Module):
# Encoder blocks # Encoder blocks
self.in_block = nn.Sequential( self.in_block = nn.Sequential(
nn.PixelUnshuffle(2), nn.PixelUnshuffle(2),
ops.Conv2d(3 * 4, c_levels[0], kernel_size=1) nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
) )
down_blocks = [] down_blocks = []
for i in range(levels): for i in range(levels):
if i > 0: if i > 0:
down_blocks.append(ops.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = ResBlock(c_levels[i], c_levels[i] * 4) block = ResBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block) down_blocks.append(block)
down_blocks.append(nn.Sequential( down_blocks.append(nn.Sequential(
ops.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False), nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
)) ))
self.down_blocks = nn.Sequential(*down_blocks) self.down_blocks = nn.Sequential(*down_blocks)
@@ -195,7 +191,7 @@ class StageA(nn.Module):
# Decoder blocks # Decoder blocks
up_blocks = [nn.Sequential( up_blocks = [nn.Sequential(
ops.Conv2d(c_latent, c_levels[-1], kernel_size=1) nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
)] )]
for i in range(levels): for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1): for j in range(bottleneck_blocks if i == 0 else 1):
@@ -203,11 +199,11 @@ class StageA(nn.Module):
up_blocks.append(block) up_blocks.append(block)
if i < levels - 1: if i < levels - 1:
up_blocks.append( up_blocks.append(
ops.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
padding=1)) padding=1))
self.up_blocks = nn.Sequential(*up_blocks) self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential( self.out_block = nn.Sequential(
ops.Conv2d(c_levels[0], 3 * 4, kernel_size=1), nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.PixelShuffle(2), nn.PixelShuffle(2),
) )
@@ -236,17 +232,17 @@ class Discriminator(nn.Module):
super().__init__() super().__init__()
d = max(depth - 3, 3) d = max(depth - 3, 3)
layers = [ layers = [
nn.utils.spectral_norm(ops.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)), nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2),
] ]
for i in range(depth - 1): for i in range(depth - 1):
c_in = c_hidden // (2 ** max((d - i), 0)) c_in = c_hidden // (2 ** max((d - i), 0))
c_out = c_hidden // (2 ** max((d - 1 - i), 0)) c_out = c_hidden // (2 ** max((d - 1 - i), 0))
layers.append(nn.utils.spectral_norm(ops.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
layers.append(nn.InstanceNorm2d(c_out)) layers.append(nn.InstanceNorm2d(c_out))
layers.append(nn.LeakyReLU(0.2)) layers.append(nn.LeakyReLU(0.2))
self.encoder = nn.Sequential(*layers) self.encoder = nn.Sequential(*layers)
self.shuffle = ops.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1) self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
self.logits = nn.Sigmoid() self.logits = nn.Sigmoid()
def forward(self, x, cond=None): def forward(self, x, cond=None):

View File

@@ -19,9 +19,6 @@ import torch
import torchvision import torchvision
from torch import nn from torch import nn
import comfy.ops
ops = comfy.ops.disable_weight_init
# EfficientNet # EfficientNet
class EfficientNetEncoder(nn.Module): class EfficientNetEncoder(nn.Module):
@@ -29,7 +26,7 @@ class EfficientNetEncoder(nn.Module):
super().__init__() super().__init__()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval() self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
self.mapper = nn.Sequential( self.mapper = nn.Sequential(
ops.Conv2d(1280, c_latent, kernel_size=1, bias=False), nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1 nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
) )
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406])) self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
@@ -37,7 +34,7 @@ class EfficientNetEncoder(nn.Module):
def forward(self, x): def forward(self, x):
x = x * 0.5 + 0.5 x = x * 0.5 + 0.5
x = (x - self.mean.view([3,1,1]).to(device=x.device, dtype=x.dtype)) / self.std.view([3,1,1]).to(device=x.device, dtype=x.dtype) x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
o = self.mapper(self.backbone(x)) o = self.mapper(self.backbone(x))
return o return o
@@ -47,39 +44,39 @@ class Previewer(nn.Module):
def __init__(self, c_in=16, c_hidden=512, c_out=3): def __init__(self, c_in=16, c_hidden=512, c_out=3):
super().__init__() super().__init__()
self.blocks = nn.Sequential( self.blocks = nn.Sequential(
ops.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden), nn.BatchNorm2d(c_hidden),
ops.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1), nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden), nn.BatchNorm2d(c_hidden),
ops.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32 nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 2), nn.BatchNorm2d(c_hidden // 2),
ops.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1), nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 2), nn.BatchNorm2d(c_hidden // 2),
ops.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64 nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
ops.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128 nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(), nn.GELU(),
nn.BatchNorm2d(c_hidden // 4), nn.BatchNorm2d(c_hidden // 4),
ops.Conv2d(c_hidden // 4, c_out, kernel_size=1), nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
) )
def forward(self, x): def forward(self, x):

View File

@@ -1,181 +0,0 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
class ChromaModulationOut(ModulationOut):
@classmethod
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
return cls(
shift=tensor[:, offset : offset + 1, :],
scale=tensor[:, offset + 1 : offset + 2, :],
gate=tensor[:, offset + 2 : offset + 3, :],
)
class Approximator(nn.Module):
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(self, x: Tensor) -> Tensor:
x = self.in_proj(x)
for layer, norms in zip(self.layers, self.norms):
x = x + layer(norms(x))
x = self.out_proj(x)
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = vec
shift = shift.squeeze(1)
scale = scale.squeeze(1)
x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
x = self.linear(x)
return x

View File

@@ -1,271 +0,0 @@
#Original code can be found on: https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@dataclass
class ChromaParams:
in_channels: int
out_channels: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
patch_size: int
qkv_bias: bool
in_dim: int
out_dim: int
hidden_dim: int
n_layers: int
class Chroma(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
params = ChromaParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.in_dim = params.in_dim
self.out_dim = params.out_dim
self.hidden_dim = params.hidden_dim
self.n_layers = params.n_layers
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
# set as nn identity for now, will overwrite it later.
self.distilled_guidance_layer = Approximator(
in_dim=self.in_dim,
hidden_dim=self.hidden_dim,
out_dim=self.out_dim,
n_layers=self.n_layers,
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
self.skip_mmdit = []
self.skip_dit = []
self.lite = False
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
# This function slices up the modulations tensor which has the following layout:
# single : num_single_blocks * 3 elements
# double_img : num_double_blocks * 6 elements
# double_txt : num_double_blocks * 6 elements
# final : 2 elements
if block_type == "final":
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
single_block_count = self.params.depth_single_blocks
double_block_count = self.params.depth
offset = 3 * idx
if block_type == "single":
return ChromaModulationOut.from_offset(tensor, offset)
# Double block modulations are 6 elements so we double 3 * idx.
offset *= 2
if block_type in {"double_img", "double_txt"}:
# Advance past the single block modulations.
offset += 3 * single_block_count
if block_type == "double_txt":
# Advance past the double block img modulations.
offset += 6 * double_block_count
return (
ChromaModulationOut.from_offset(tensor, offset),
ChromaModulationOut.from_offset(tensor, offset + 3),
)
raise ValueError("Bad block_type")
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
guidance: Tensor = None,
control = None,
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
# distilled vector guidance
mod_index_length = 344
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
# guidance = guidance *
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
# get all modulation index
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
# and we need to broadcast timestep and guidance along too
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
# then and only then we could concatenate it together
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
mod_vectors = self.distilled_guidance_layer(input_vec)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
self.get_modulations(mod_vectors, "double_txt", idx=i),
)
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
patch_size = 2
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]

View File

@@ -1,6 +1,5 @@
import torch import torch
import comfy.rmsnorm import comfy.ops
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"): def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()): if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
@@ -12,5 +11,20 @@ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
return torch.nn.functional.pad(img, pad, mode=padding_mode) return torch.nn.functional.pad(img, pad, mode=padding_mode)
try:
rms_norm_torch = torch.nn.functional.rms_norm
except:
rms_norm_torch = None
rms_norm = comfy.rmsnorm.rms_norm def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)

View File

@@ -23,6 +23,7 @@ from einops import rearrange, repeat
from einops.layers.torch import Rearrange from einops.layers.torch import Rearrange
from torch import nn from torch import nn
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from comfy.ldm.modules.attention import optimized_attention from comfy.ldm.modules.attention import optimized_attention
@@ -36,11 +37,11 @@ def apply_rotary_pos_emb(
return t_out return t_out
def get_normalization(name: str, channels: int, weight_args={}, operations=None): def get_normalization(name: str, channels: int, weight_args={}):
if name == "I": if name == "I":
return nn.Identity() return nn.Identity()
elif name == "R": elif name == "R":
return operations.RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args) return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
else: else:
raise ValueError(f"Normalization {name} not found") raise ValueError(f"Normalization {name} not found")
@@ -119,15 +120,15 @@ class Attention(nn.Module):
self.to_q = nn.Sequential( self.to_q = nn.Sequential(
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args), operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[0], norm_dim, weight_args=weight_args, operations=operations), get_normalization(qkv_norm[0], norm_dim),
) )
self.to_k = nn.Sequential( self.to_k = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args), operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[1], norm_dim, weight_args=weight_args, operations=operations), get_normalization(qkv_norm[1], norm_dim),
) )
self.to_v = nn.Sequential( self.to_v = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args), operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[2], norm_dim, weight_args=weight_args, operations=operations), get_normalization(qkv_norm[2], norm_dim),
) )
self.to_out = nn.Sequential( self.to_out = nn.Sequential(

View File

@@ -27,6 +27,8 @@ from torchvision import transforms
from enum import Enum from enum import Enum
import logging import logging
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from .blocks import ( from .blocks import (
FinalLayer, FinalLayer,
GeneralDITTransformerBlock, GeneralDITTransformerBlock,
@@ -193,7 +195,7 @@ class GeneralDIT(nn.Module):
if self.affline_emb_norm: if self.affline_emb_norm:
logging.debug("Building affine embedding normalization layer") logging.debug("Building affine embedding normalization layer")
self.affline_norm = operations.RMSNorm(model_channels, elementwise_affine=True, eps=1e-6, device=device, dtype=dtype) self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
else: else:
self.affline_norm = nn.Identity() self.affline_norm = nn.Identity()

View File

@@ -105,9 +105,7 @@ class Modulation(nn.Module):
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple: def forward(self, vec: Tensor) -> tuple:
if vec.ndim == 2: out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
vec = vec[:, None, :]
out = self.lin(nn.functional.silu(vec)).chunk(self.multiplier, dim=-1)
return ( return (
ModulationOut(*out[:3]), ModulationOut(*out[:3]),
@@ -115,20 +113,6 @@ class Modulation(nn.Module):
) )
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return tensor * m_mult + m_add
else:
return tensor * m_mult
else:
for d in modulation_dims:
tensor[:, d[0]:d[1]] *= m_mult[:, d[2]]
if m_add is not None:
tensor[:, d[0]:d[1]] += m_add[:, d[2]]
return tensor
class DoubleStreamBlock(nn.Module): class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None): def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__() super().__init__()
@@ -159,20 +143,20 @@ class DoubleStreamBlock(nn.Module):
) )
self.flipped_img_txt = flipped_img_txt self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None): def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
img_mod1, img_mod2 = self.img_mod(vec) img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention # prepare image for attention
img_modulated = self.img_norm1(img) img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated) img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention # prepare txt for attention
txt_modulated = self.txt_norm1(txt) txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated) txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
@@ -195,12 +179,12 @@ class DoubleStreamBlock(nn.Module):
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks # calculate the img bloks
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img) img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img) img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks # calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt) txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt) txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
if txt.dtype == torch.float16: if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
@@ -244,9 +228,9 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh") self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor: def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor:
mod, _ = self.modulation(vec) mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) qkv, mlp = torch.split(self.linear1((1 + mod.scale) * self.pre_norm(x) + mod.shift), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v) q, k = self.norm(q, k, v)
@@ -255,7 +239,7 @@ class SingleStreamBlock(nn.Module):
attn = attention(q, k, v, pe=pe, mask=attn_mask) attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer # compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += apply_mod(output, mod.gate, None, modulation_dims) x += mod.gate * output
if x.dtype == torch.float16: if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x return x
@@ -268,11 +252,8 @@ class LastLayer(nn.Module):
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor: def forward(self, x: Tensor, vec: Tensor) -> Tensor:
if vec.ndim == 2: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
vec = vec[:, None, :] x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=-1)
x = apply_mod(self.norm_final(x), (1 + scale), shift, modulation_dims)
x = self.linear(x) x = self.linear(x)
return x return x

View File

@@ -10,11 +10,10 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
q_shape = q.shape q_shape = q.shape
k_shape = k.shape k_shape = k.shape
if pe is not None: q = q.float().reshape(*q.shape[:-1], -1, 1, 2)
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2) k = k.float().reshape(*k.shape[:-1], -1, 1, 2)
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2) q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v) k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
heads = q.shape[1] heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask) x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
@@ -37,8 +36,8 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2) xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -115,11 +115,8 @@ class Flux(nn.Module):
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim]) vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
txt = self.txt_in(txt) txt = self.txt_in(txt)
if img_ids is not None: ids = torch.cat((txt_ids, img_ids), dim=1)
ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids)
pe = self.pe_embedder(ids)
else:
pe = None
blocks_replace = patches_replace.get("dit", {}) blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks): for i, block in enumerate(self.double_blocks):

View File

@@ -13,6 +13,7 @@ from comfy.ldm.modules.attention import optimized_attention
from .layers import ( from .layers import (
FeedForward, FeedForward,
PatchEmbed, PatchEmbed,
RMSNorm,
TimestepEmbedder, TimestepEmbedder,
) )
@@ -89,10 +90,10 @@ class AsymmetricAttention(nn.Module):
# Query and key normalization for stability. # Query and key normalization for stability.
assert qk_norm assert qk_norm
self.q_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype) self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype) self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.q_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype) self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype) self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
# Output layers. y features go back down from dim_x -> dim_y. # Output layers. y features go back down from dim_x -> dim_y.
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype) self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)

View File

@@ -151,3 +151,14 @@ class PatchEmbed(nn.Module):
x = self.norm(x) x = self.norm(x)
return x return x
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
self.register_parameter("bias", None)
def forward(self, x):
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)

View File

@@ -1,802 +0,0 @@
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import einops
from einops import repeat
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
import torch.nn.functional as F
from comfy.ldm.flux.math import apply_rope, rope
from comfy.ldm.flux.layers import LastLayer
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import comfy.ldm.common_dit
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
class EmbedND(nn.Module):
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(2)
class PatchEmbed(nn.Module):
def __init__(
self,
patch_size=2,
in_channels=4,
out_channels=1024,
dtype=None, device=None, operations=None
):
super().__init__()
self.patch_size = patch_size
self.out_channels = out_channels
self.proj = operations.Linear(in_channels * patch_size * patch_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, latent):
latent = self.proj(latent)
return latent
class PooledEmbed(nn.Module):
def __init__(self, text_emb_dim, hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
def forward(self, pooled_embed):
return self.pooled_embedder(pooled_embed)
class TimestepEmbed(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
def forward(self, timesteps, wdtype):
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
t_emb = self.timestep_embedder(t_emb)
return t_emb
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
class HiDreamAttnProcessor_flashattn:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __call__(
self,
attn,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
*args,
**kwargs,
) -> torch.FloatTensor:
dtype = image_tokens.dtype
batch_size = image_tokens.shape[0]
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
value_i = attn.to_v(image_tokens)
inner_dim = key_i.shape[-1]
head_dim = inner_dim // attn.heads
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
if image_tokens_masks is not None:
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
if not attn.single:
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
value_t = attn.to_v_t(text_tokens)
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
num_image_tokens = query_i.shape[1]
num_text_tokens = query_t.shape[1]
query = torch.cat([query_i, query_t], dim=1)
key = torch.cat([key_i, key_t], dim=1)
value = torch.cat([value_i, value_t], dim=1)
else:
query = query_i
key = key_i
value = value_i
if query.shape[-1] == rope.shape[-3] * 2:
query, key = apply_rope(query, key, rope)
else:
query_1, query_2 = query.chunk(2, dim=-1)
key_1, key_2 = key.chunk(2, dim=-1)
query_1, key_1 = apply_rope(query_1, key_1, rope)
query = torch.cat([query_1, query_2], dim=-1)
key = torch.cat([key_1, key_2], dim=-1)
hidden_states = attention(query, key, value)
if not attn.single:
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
hidden_states_i = attn.to_out(hidden_states_i)
hidden_states_t = attn.to_out_t(hidden_states_t)
return hidden_states_i, hidden_states_t
else:
hidden_states = attn.to_out(hidden_states)
return hidden_states
class HiDreamAttention(nn.Module):
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
upcast_attention: bool = False,
upcast_softmax: bool = False,
scale_qk: bool = True,
eps: float = 1e-5,
processor = None,
out_dim: int = None,
single: bool = False,
dtype=None, device=None, operations=None
):
# super(Attention, self).__init__()
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.out_dim = out_dim if out_dim is not None else query_dim
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
self.sliceable_head_dim = heads
self.single = single
linear_cls = operations.Linear
self.linear_cls = linear_cls
self.to_q = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
self.to_k = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_v = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_out = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
self.q_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.k_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
if not single:
self.to_q_t = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_out_t = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
self.q_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.k_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.processor = processor
def forward(
self,
norm_image_tokens: torch.FloatTensor,
image_tokens_masks: torch.FloatTensor = None,
norm_text_tokens: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
) -> torch.Tensor:
return self.processor(
self,
image_tokens = norm_image_tokens,
image_tokens_masks = image_tokens_masks,
text_tokens = norm_text_tokens,
rope = rope,
)
class FeedForwardSwiGLU(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
dtype=None, device=None, operations=None
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * (
(hidden_dim + multiple_of - 1) // multiple_of
)
self.w1 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
self.w2 = operations.Linear(hidden_dim, dim, bias=False, dtype=dtype, device=device)
self.w3 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
def forward(self, x):
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01, dtype=None, device=None, operations=None):
super().__init__()
self.top_k = num_activated_experts
self.n_routed_experts = num_routed_experts
self.scoring_func = 'softmax'
self.alpha = aux_loss_alpha
self.seq_aux = False
# topk selection algorithm
self.norm_topk_prob = False
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), dtype=dtype, device=device))
self.reset_parameters()
def reset_parameters(self) -> None:
pass
# import torch.nn.init as init
# init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
### select top-k experts
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
aux_loss = None
return topk_idx, topk_weight, aux_loss
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
class MOEFeedForwardSwiGLU(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
num_routed_experts: int,
num_activated_experts: int,
dtype=None, device=None, operations=None
):
super().__init__()
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2, dtype=dtype, device=device, operations=operations)
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim, dtype=dtype, device=device, operations=operations) for i in range(num_routed_experts)])
self.gate = MoEGate(
embed_dim = dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
self.num_activated_experts = num_activated_experts
def forward(self, x):
wtype = x.dtype
identity = x
orig_shape = x.shape
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if True: # self.training: # TODO: check which branch performs faster
x = x.repeat_interleave(self.num_activated_experts, dim=0)
y = torch.empty_like(x, dtype=wtype)
for i, expert in enumerate(self.experts):
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape).to(dtype=wtype)
#y = AddAuxiliaryLoss.apply(y, aux_loss)
else:
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.num_activated_experts
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# for fp16 and other dtype
expert_cache = expert_cache.to(expert_out.dtype)
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
return expert_cache
class TextProjection(nn.Module):
def __init__(self, in_features, hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.linear = operations.Linear(in_features=in_features, out_features=hidden_size, bias=False, dtype=dtype, device=device)
def forward(self, caption):
hidden_states = self.linear(caption)
return hidden_states
class BlockType:
TransformerBlock = 1
SingleTransformerBlock = 2
class HiDreamImageSingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
dtype=None, device=None, operations=None
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device)
)
# 1. Attention
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.attn1 = HiDreamAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
processor = HiDreamAttnProcessor_flashattn(),
single = True,
dtype=dtype, device=device, operations=operations
)
# 3. Feed-forward
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
if num_routed_experts > 0:
self.ff_i = MOEFeedForwardSwiGLU(
dim = dim,
hidden_dim = 4 * dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
else:
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
# 1. MM-Attention
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
attn_output_i = self.attn1(
norm_image_tokens,
image_tokens_masks,
rope = rope,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
# 2. Feed-forward
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
image_tokens = ff_output_i + image_tokens
return image_tokens
class HiDreamImageTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
dtype=None, device=None, operations=None
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 12 * dim, bias=True, dtype=dtype, device=device)
)
# nn.init.zeros_(self.adaLN_modulation[1].weight)
# nn.init.zeros_(self.adaLN_modulation[1].bias)
# 1. Attention
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.norm1_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.attn1 = HiDreamAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
processor = HiDreamAttnProcessor_flashattn(),
single = False,
dtype=dtype, device=device, operations=operations
)
# 3. Feed-forward
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
if num_routed_experts > 0:
self.ff_i = MOEFeedForwardSwiGLU(
dim = dim,
hidden_dim = 4 * dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
else:
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
self.norm3_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
# 1. MM-Attention
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
attn_output_i, attn_output_t = self.attn1(
norm_image_tokens,
image_tokens_masks,
norm_text_tokens,
rope = rope,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
text_tokens = gate_msa_t * attn_output_t + text_tokens
# 2. Feed-forward
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
image_tokens = ff_output_i + image_tokens
text_tokens = ff_output_t + text_tokens
return image_tokens, text_tokens
class HiDreamImageBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
block_type: BlockType = BlockType.TransformerBlock,
dtype=None, device=None, operations=None
):
super().__init__()
block_classes = {
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
}
self.block = block_classes[block_type](
dim,
num_attention_heads,
attention_head_dim,
num_routed_experts,
num_activated_experts,
dtype=dtype, device=device, operations=operations
)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
return self.block(
image_tokens,
image_tokens_masks,
text_tokens,
adaln_input,
rope,
)
class HiDreamImageTransformer2DModel(nn.Module):
def __init__(
self,
patch_size: Optional[int] = None,
in_channels: int = 64,
out_channels: Optional[int] = None,
num_layers: int = 16,
num_single_layers: int = 32,
attention_head_dim: int = 128,
num_attention_heads: int = 20,
caption_channels: List[int] = None,
text_emb_dim: int = 2048,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
axes_dims_rope: Tuple[int, int] = (32, 32),
max_resolution: Tuple[int, int] = (128, 128),
llama_layers: List[int] = None,
image_model=None,
dtype=None, device=None, operations=None
):
self.patch_size = patch_size
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.num_layers = num_layers
self.num_single_layers = num_single_layers
self.gradient_checkpointing = False
super().__init__()
self.dtype = dtype
self.out_channels = out_channels or in_channels
self.inner_dim = self.num_attention_heads * self.attention_head_dim
self.llama_layers = llama_layers
self.t_embedder = TimestepEmbed(self.inner_dim, dtype=dtype, device=device, operations=operations)
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.x_embedder = PatchEmbed(
patch_size = patch_size,
in_channels = in_channels,
out_channels = self.inner_dim,
dtype=dtype, device=device, operations=operations
)
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
self.double_stream_blocks = nn.ModuleList(
[
HiDreamImageBlock(
dim = self.inner_dim,
num_attention_heads = self.num_attention_heads,
attention_head_dim = self.attention_head_dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
block_type = BlockType.TransformerBlock,
dtype=dtype, device=device, operations=operations
)
for i in range(self.num_layers)
]
)
self.single_stream_blocks = nn.ModuleList(
[
HiDreamImageBlock(
dim = self.inner_dim,
num_attention_heads = self.num_attention_heads,
attention_head_dim = self.attention_head_dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
block_type = BlockType.SingleTransformerBlock,
dtype=dtype, device=device, operations=operations
)
for i in range(self.num_single_layers)
]
)
self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
caption_projection = []
for caption_channel in caption_channels:
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations))
self.caption_projection = nn.ModuleList(caption_projection)
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
def expand_timesteps(self, timesteps, batch_size, device):
if not torch.is_tensor(timesteps):
is_mps = device.type == "mps"
if isinstance(timesteps, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(batch_size)
return timesteps
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]]) -> List[torch.Tensor]:
x_arr = []
for i, img_size in enumerate(img_sizes):
pH, pW = img_size
x_arr.append(
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
p1=self.patch_size, p2=self.patch_size)
)
x = torch.cat(x_arr, dim=0)
return x
def patchify(self, x, max_seq, img_sizes=None):
pz2 = self.patch_size * self.patch_size
if isinstance(x, torch.Tensor):
B = x.shape[0]
device = x.device
dtype = x.dtype
else:
B = len(x)
device = x[0].device
dtype = x[0].dtype
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
if img_sizes is not None:
for i, img_size in enumerate(img_sizes):
x_masks[i, 0:img_size[0] * img_size[1]] = 1
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
elif isinstance(x, torch.Tensor):
pH, pW = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.patch_size, p2=self.patch_size)
img_sizes = [[pH, pW]] * B
x_masks = None
else:
raise NotImplementedError
return x, x_masks, img_sizes
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
encoder_hidden_states_llama3=None,
image_cond=None,
control = None,
transformer_options = {},
) -> torch.Tensor:
bs, c, h, w = x.shape
if image_cond is not None:
x = torch.cat([x, image_cond], dim=-1)
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
timesteps = t
pooled_embeds = y
T5_encoder_hidden_states = context
img_sizes = None
# spatial forward
batch_size = hidden_states.shape[0]
hidden_states_type = hidden_states.dtype
# 0. time
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
timesteps = self.t_embedder(timesteps, hidden_states_type)
p_embedder = self.p_embedder(pooled_embeds)
adaln_input = timesteps + p_embedder
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
if image_tokens_masks is None:
pH, pW = img_sizes[0]
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
hidden_states = self.x_embedder(hidden_states)
# T5_encoder_hidden_states = encoder_hidden_states[0]
encoder_hidden_states = encoder_hidden_states_llama3.movedim(1, 0)
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
if self.caption_projection is not None:
new_encoder_hidden_states = []
for i, enc_hidden_state in enumerate(encoder_hidden_states):
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
new_encoder_hidden_states.append(enc_hidden_state)
encoder_hidden_states = new_encoder_hidden_states
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states.append(T5_encoder_hidden_states)
txt_ids = torch.zeros(
batch_size,
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
3,
device=img_ids.device, dtype=img_ids.dtype
)
ids = torch.cat((img_ids, txt_ids), dim=1)
rope = self.pe_embedder(ids)
# 2. Blocks
block_id = 0
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
for bid, block in enumerate(self.double_stream_blocks):
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
hidden_states, initial_encoder_hidden_states = block(
image_tokens = hidden_states,
image_tokens_masks = image_tokens_masks,
text_tokens = cur_encoder_hidden_states,
adaln_input = adaln_input,
rope = rope,
)
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
block_id += 1
image_tokens_seq_len = hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
hidden_states_seq_len = hidden_states.shape[1]
if image_tokens_masks is not None:
encoder_attention_mask_ones = torch.ones(
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
)
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
for bid, block in enumerate(self.single_stream_blocks):
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
hidden_states = block(
image_tokens=hidden_states,
image_tokens_masks=image_tokens_masks,
text_tokens=None,
adaln_input=adaln_input,
rope=rope,
)
hidden_states = hidden_states[:, :hidden_states_seq_len]
block_id += 1
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
output = self.final_layer(hidden_states, adaln_input)
output = self.unpatchify(output, img_sizes)
return -output[:, :, :h, :w]

View File

@@ -1,135 +0,0 @@
import torch
from torch import nn
from comfy.ldm.flux.layers import (
DoubleStreamBlock,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
class Hunyuan3Dv2(nn.Module):
def __init__(
self,
in_channels=64,
context_in_dim=1536,
hidden_size=1024,
mlp_ratio=4.0,
num_heads=16,
depth=16,
depth_single_blocks=32,
qkv_bias=True,
guidance_embed=False,
image_model=None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.dtype = dtype
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
self.max_period = 1000 # While reimplementing the model I noticed that they messed up. This 1000 value was meant to be the time_factor but they set the max_period instead
self.latent_in = operations.Linear(in_channels, hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) if guidance_embed else None
)
self.cond_in = operations.Linear(context_in_dim, hidden_size, dtype=dtype, device=device)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
dtype=dtype, device=device, operations=operations
)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations)
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
x = x.movedim(-1, -2)
timestep = 1.0 - timestep
txt = context
img = self.latent_in(x)
vec = self.time_in(timestep_embedding(timestep, 256, self.max_period).to(dtype=img.dtype))
if self.guidance_in is not None:
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256, self.max_period).to(img.dtype))
txt = self.cond_in(txt)
pe = None
attn_mask = None
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = img[:, txt.shape[1]:, ...]
img = self.final_layer(img, vec)
return img.movedim(-2, -1) * (-1.0)

View File

@@ -1,587 +0,0 @@
# Original: https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/models/autoencoders/model.py
# Since the header on their VAE source file was a bit confusing we asked for permission to use this code from tencent under the GPL license used in ComfyUI.
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, Tuple, List, Callable, Optional
import numpy as np
from einops import repeat, rearrange
from tqdm import tqdm
import logging
import comfy.ops
ops = comfy.ops.disable_weight_init
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length
class VanillaVolumeDecoder:
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
return grid_logits
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
[
sin(x[..., i]),
sin(f_1*x[..., i]),
sin(f_2*x[..., i]),
...
sin(f_N * x[..., i]),
cos(x[..., i]),
cos(f_1*x[..., i]),
cos(f_2*x[..., i]),
...
cos(f_N * x[..., i]),
x[..., i] # only present if include_input is True.
], here f_i is the frequency.
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
Args:
num_freqs (int): the number of frequencies, default is 6;
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
input_dim (int): the input dimension, default is 3;
include_input (bool): include the input tensor or not, default is True.
Attributes:
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
otherwise, it is input_dim * num_freqs * 2.
"""
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
"""The initialization"""
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Forward process.
Args:
x: tensor of shape [..., dim]
Returns:
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
where temp is 1 if include_input is True and 0 otherwise.
"""
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies.to(device=x.device, dtype=x.dtype)).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = F.scaled_dot_product_attention(q, k, v)
return out
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if self.drop_prob == 0. or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and self.scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
def extra_repr(self):
return f'drop_prob={round(self.drop_prob, 3):0.3f}'
class MLP(nn.Module):
def __init__(
self, *,
width: int,
expand_ratio: int = 4,
output_width: int = None,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.c_fc = ops.Linear(width, width * expand_ratio)
self.c_proj = ops.Linear(width * expand_ratio, output_width if output_width is not None else width)
self.gelu = nn.GELU()
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool = True,
data_width: Optional[int] = None,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
kv_cache: bool = False,
):
super().__init__()
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = ops.Linear(width, width, bias=qkv_bias)
self.c_kv = ops.Linear(self.data_width, width * 2, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadCrossAttention(
heads=heads,
width=width,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.kv_cache = kv_cache
self.data = None
def forward(self, x, data):
x = self.c_q(x)
if self.kv_cache:
if self.data is None:
self.data = self.c_kv(data)
logging.info('Save kv cache,this should be called only once for one mesh')
data = self.data
else:
data = self.c_kv(data)
x = self.attention(x, data)
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
mlp_expand_ratio: int = 4,
data_width: Optional[int] = None,
qkv_bias: bool = True,
norm_layer=ops.LayerNorm,
qk_norm: bool = False
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
width=width,
heads=heads,
data_width=data_width,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6)
self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.mlp = MLP(width=width, expand_ratio=mlp_expand_ratio)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x
class QKVMultiheadAttention(nn.Module):
def __init__(
self,
*,
heads: int,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadAttention(
heads=heads,
width=width,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
x = self.c_qkv(x)
x = self.attention(x)
x = self.drop_path(self.c_proj(x))
return x
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool = True,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0,
):
super().__init__()
self.attn = MultiheadAttention(
width=width,
heads=heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.mlp = MLP(width=width, drop_path_rate=drop_path_rate)
self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6)
def forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self,
*,
width: int,
layers: int,
heads: int,
qkv_bias: bool = True,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
width=width,
heads=heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x
class CrossAttentionDecoder(nn.Module):
def __init__(
self,
*,
out_channels: int,
fourier_embedder: FourierEmbedder,
width: int,
heads: int,
mlp_expand_ratio: int = 4,
downsample_ratio: int = 1,
enable_ln_post: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary"
):
super().__init__()
self.enable_ln_post = enable_ln_post
self.fourier_embedder = fourier_embedder
self.downsample_ratio = downsample_ratio
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = ops.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
width=width,
mlp_expand_ratio=mlp_expand_ratio,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm
)
if self.enable_ln_post:
self.ln_post = ops.LayerNorm(width)
self.output_proj = ops.Linear(width, out_channels)
self.label_type = label_type
self.count = 0
def forward(self, queries=None, query_embeddings=None, latents=None):
if query_embeddings is None:
query_embeddings = self.query_proj(self.fourier_embedder(queries).to(latents.dtype))
self.count += query_embeddings.shape[1]
if self.downsample_ratio != 1:
latents = self.latents_proj(latents)
x = self.cross_attn_decoder(query_embeddings, latents)
if self.enable_ln_post:
x = self.ln_post(x)
occ = self.output_proj(x)
return occ
class ShapeVAE(nn.Module):
def __init__(
self,
*,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.post_kl = ops.Linear(embed_dim, width)
self.transformer = Transformer(
width=width,
layers=num_decoder_layers,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
self.geo_decoder = CrossAttentionDecoder(
fourier_embedder=self.fourier_embedder,
out_channels=1,
mlp_expand_ratio=geo_decoder_mlp_expand_ratio,
downsample_ratio=geo_decoder_downsample_ratio,
enable_ln_post=self.geo_decoder_ln_post,
width=width // geo_decoder_downsample_ratio,
heads=heads // geo_decoder_downsample_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
label_type=label_type,
)
self.volume_decoder = VanillaVolumeDecoder()
self.scale_factor = scale_factor
def decode(self, latents, **kwargs):
latents = self.post_kl(latents.movedim(-2, -1))
latents = self.transformer(latents)
bounds = kwargs.get("bounds", 1.01)
num_chunks = kwargs.get("num_chunks", 8000)
octree_resolution = kwargs.get("octree_resolution", 256)
enable_pbar = kwargs.get("enable_pbar", True)
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
return grid_logits.movedim(-2, -1)
def encode(self, x):
return None

View File

@@ -227,8 +227,6 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor, timesteps: Tensor,
y: Tensor, y: Tensor,
guidance: Tensor = None, guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
control=None, control=None,
transformer_options={}, transformer_options={},
) -> Tensor: ) -> Tensor:
@@ -239,25 +237,7 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img) img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype)) vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if ref_latent is not None: vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)
img = torch.cat([ref_latent, img], dim=-2)
ref_latent_ids[..., 0] = -1
ref_latent_ids[..., 2] += (initial_shape[-1] // self.patch_size[-1])
img_ids = torch.cat([ref_latent_ids, img_ids], dim=-2)
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
modulation_dims_txt = [(0, None, 1)]
else:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
modulation_dims = None
modulation_dims_txt = None
if self.params.guidance_embed: if self.params.guidance_embed:
if guidance is not None: if guidance is not None:
@@ -284,14 +264,14 @@ class HunyuanVideo(nn.Module):
if ("double_block", i) in blocks_replace: if ("double_block", i) in blocks_replace:
def block_wrap(args): def block_wrap(args):
out = {} out = {}
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"]) out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
return out return out
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap}) out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
txt = out["txt"] txt = out["txt"]
img = out["img"] img = out["img"]
else: else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt) img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet if control is not None: # Controlnet
control_i = control.get("input") control_i = control.get("input")
@@ -306,13 +286,13 @@ class HunyuanVideo(nn.Module):
if ("single_block", i) in blocks_replace: if ("single_block", i) in blocks_replace:
def block_wrap(args): def block_wrap(args):
out = {} out = {}
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"]) out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
return out return out
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap}) out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
img = out["img"] img = out["img"]
else: else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims) img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet if control is not None: # Controlnet
control_o = control.get("output") control_o = control.get("output")
@@ -322,10 +302,8 @@ class HunyuanVideo(nn.Module):
img[:, : img_len] += add img[:, : img_len] += add
img = img[:, : img_len] img = img[:, : img_len]
if ref_latent is not None:
img = img[:, ref_latent.shape[1]:]
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels) img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
shape = initial_shape[-3:] shape = initial_shape[-3:]
for i in range(len(shape)): for i in range(len(shape)):
@@ -335,7 +313,7 @@ class HunyuanVideo(nn.Module):
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4]) img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
return img return img
def img_ids(self, x): def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape bs, c, t, h, w = x.shape
patch_size = self.patch_size patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
@@ -345,11 +323,7 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1) img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1) img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1) img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs) img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options) out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
return out return out

View File

@@ -3,7 +3,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import comfy.ops import comfy.ops
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from torch.utils import checkpoint from torch.utils import checkpoint
@@ -51,7 +51,7 @@ class HunYuanDiTBlock(nn.Module):
if norm_type == "layer": if norm_type == "layer":
norm_layer = operations.LayerNorm norm_layer = operations.LayerNorm
elif norm_type == "rms": elif norm_type == "rms":
norm_layer = operations.RMSNorm norm_layer = RMSNorm
else: else:
raise ValueError(f"Unknown norm_type: {norm_type}") raise ValueError(f"Unknown norm_type: {norm_type}")

View File

@@ -1,12 +1,13 @@
import torch import torch
from torch import nn from torch import nn
import comfy.ldm.modules.attention import comfy.ldm.modules.attention
from comfy.ldm.genmo.joint_model.layers import RMSNorm
import comfy.ldm.common_dit import comfy.ldm.common_dit
from einops import rearrange from einops import rearrange
import math import math
from typing import Dict, Optional, Tuple from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords from .symmetric_patchifier import SymmetricPatchifier
def get_timestep_embedding( def get_timestep_embedding(
@@ -261,8 +262,8 @@ class CrossAttention(nn.Module):
self.heads = heads self.heads = heads
self.dim_head = dim_head self.dim_head = dim_head
self.q_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device) self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.k_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device) self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
@@ -376,16 +377,12 @@ class LTXVModel(torch.nn.Module):
positional_embedding_theta=10000.0, positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048], positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
dtype=None, device=None, operations=None, **kwargs): dtype=None, device=None, operations=None, **kwargs):
super().__init__() super().__init__()
self.generator = None self.generator = None
self.vae_scale_factors = vae_scale_factors
self.dtype = dtype self.dtype = dtype
self.out_channels = in_channels self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device) self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
@@ -419,23 +416,42 @@ class LTXVModel(torch.nn.Module):
self.patchifier = SymmetricPatchifier(1) self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs): def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latent_noise_scale=0, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {}) patches_replace = transformer_options.get("patches_replace", {})
indices_grid = self.patchifier.get_grid(
orig_num_frames=x.shape[2],
orig_height=x.shape[3],
orig_width=x.shape[4],
batch_size=x.shape[0],
scale_grid=((1 / frame_rate) * 8, 32, 32),
device=x.device,
)
if guiding_latent is not None:
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
ts *= input_ts
ts[:, :, 0] = guiding_latent_noise_scale * (input_ts[:, :, 0] ** 2)
timestep = self.patchifier.patchify(ts)
input_x = x.clone()
x[:, :, 0] = guiding_latent[:, :, 0]
if guiding_latent_noise_scale > 0:
if self.generator is None:
self.generator = torch.Generator(device=x.device).manual_seed(42)
elif self.generator.device != x.device:
self.generator = torch.Generator(device=x.device).set_state(self.generator.get_state())
noise_shape = [guiding_latent.shape[0], guiding_latent.shape[1], 1, guiding_latent.shape[3], guiding_latent.shape[4]]
scale = guiding_latent_noise_scale * (input_ts ** 2)
guiding_noise = scale * torch.randn(size=noise_shape, device=x.device, generator=self.generator)
x[:, :, 0] = guiding_noise[:, :, 0] + x[:, :, 0] * (1.0 - scale[:, :, 0])
orig_shape = list(x.shape) orig_shape = list(x.shape)
x, latent_coords = self.patchifier.patchify(x) x = self.patchifier.patchify(x)
pixel_coords = latent_to_pixel_coords(
latent_coords=latent_coords,
scale_factors=self.vae_scale_factors,
causal_fix=self.causal_temporal_positioning,
)
if keyframe_idxs is not None:
pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
x = self.patchify_proj(x) x = self.patchify_proj(x)
timestep = timestep * 1000.0 timestep = timestep * 1000.0
@@ -443,7 +459,7 @@ class LTXVModel(torch.nn.Module):
if attention_mask is not None and not torch.is_floating_point(attention_mask): if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype) pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0] batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single( timestep, embedded_timestep = self.adaln_single(
@@ -503,4 +519,8 @@ class LTXVModel(torch.nn.Module):
out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size), out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
) )
if guiding_latent is not None:
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]
# print("res", x)
return x return x

View File

@@ -6,29 +6,16 @@ from einops import rearrange
from torch import Tensor from torch import Tensor
def latent_to_pixel_coords( def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
latent_coords: Tensor, scale_factors: Tuple[int, int, int], causal_fix: bool = False """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
) -> Tensor: dims_to_append = target_dims - x.ndim
""" if dims_to_append < 0:
Converts latent coordinates to pixel coordinates by scaling them according to the VAE's raise ValueError(
configuration. f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
Args: )
latent_coords (Tensor): A tensor of shape [batch_size, 3, num_latents] elif dims_to_append == 0:
containing the latent corner coordinates of each token. return x
scale_factors (Tuple[int, int, int]): The scale factors of the VAE's latent space. return x[(...,) + (None,) * dims_to_append]
causal_fix (bool): Whether to take into account the different temporal scale
of the first frame. Default = False for backwards compatibility.
Returns:
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
"""
pixel_coords = (
latent_coords
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
)
if causal_fix:
# Fix temporal scale for first frame to 1 due to causality
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
return pixel_coords
class Patchifier(ABC): class Patchifier(ABC):
@@ -57,26 +44,29 @@ class Patchifier(ABC):
def patch_size(self): def patch_size(self):
return self._patch_size return self._patch_size
def get_latent_coords( def get_grid(
self, latent_num_frames, latent_height, latent_width, batch_size, device self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device
): ):
""" f = orig_num_frames // self._patch_size[0]
Return a tensor of shape [batch_size, 3, num_patches] containing the h = orig_height // self._patch_size[1]
top-left corner latent coordinates of each latent patch. w = orig_width // self._patch_size[2]
The tensor is repeated for each batch element. grid_h = torch.arange(h, dtype=torch.float32, device=device)
""" grid_w = torch.arange(w, dtype=torch.float32, device=device)
latent_sample_coords = torch.meshgrid( grid_f = torch.arange(f, dtype=torch.float32, device=device)
torch.arange(0, latent_num_frames, self._patch_size[0], device=device), grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing='ij')
torch.arange(0, latent_height, self._patch_size[1], device=device), grid = torch.stack(grid, dim=0)
torch.arange(0, latent_width, self._patch_size[2], device=device), grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
indexing="ij",
) if scale_grid is not None:
latent_sample_coords = torch.stack(latent_sample_coords, dim=0) for i in range(3):
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) if isinstance(scale_grid[i], Tensor):
latent_coords = rearrange( scale = append_dims(scale_grid[i], grid.ndim - 1)
latent_coords, "b c f h w -> b c (f h w)", b=batch_size else:
) scale = scale_grid[i]
return latent_coords grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i]
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size)
return grid
class SymmetricPatchifier(Patchifier): class SymmetricPatchifier(Patchifier):
@@ -84,8 +74,6 @@ class SymmetricPatchifier(Patchifier):
self, self,
latents: Tensor, latents: Tensor,
) -> Tuple[Tensor, Tensor]: ) -> Tuple[Tensor, Tensor]:
b, _, f, h, w = latents.shape
latent_coords = self.get_latent_coords(f, h, w, b, latents.device)
latents = rearrange( latents = rearrange(
latents, latents,
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
@@ -93,7 +81,7 @@ class SymmetricPatchifier(Patchifier):
p2=self._patch_size[1], p2=self._patch_size[1],
p3=self._patch_size[2], p3=self._patch_size[2],
) )
return latents, latent_coords return latents
def unpatchify( def unpatchify(
self, self,

View File

@@ -15,7 +15,6 @@ class CausalConv3d(nn.Module):
stride: Union[int, Tuple[int]] = 1, stride: Union[int, Tuple[int]] = 1,
dilation: int = 1, dilation: int = 1,
groups: int = 1, groups: int = 1,
spatial_padding_mode: str = "zeros",
**kwargs, **kwargs,
): ):
super().__init__() super().__init__()
@@ -39,7 +38,7 @@ class CausalConv3d(nn.Module):
stride=stride, stride=stride,
dilation=dilation, dilation=dilation,
padding=padding, padding=padding,
padding_mode=spatial_padding_mode, padding_mode="zeros",
groups=groups, groups=groups,
) )

View File

@@ -1,15 +1,13 @@
from __future__ import annotations
import torch import torch
from torch import nn from torch import nn
from functools import partial from functools import partial
import math import math
from einops import rearrange from einops import rearrange
from typing import List, Optional, Tuple, Union from typing import Optional, Tuple, Union
from .conv_nd_factory import make_conv_nd, make_linear_nd from .conv_nd_factory import make_conv_nd, make_linear_nd
from .pixel_norm import PixelNorm from .pixel_norm import PixelNorm
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
import comfy.ops import comfy.ops
ops = comfy.ops.disable_weight_init ops = comfy.ops.disable_weight_init
class Encoder(nn.Module): class Encoder(nn.Module):
@@ -34,7 +32,7 @@ class Encoder(nn.Module):
norm_layer (`str`, *optional*, defaults to `group_norm`): norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`. The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
latent_log_var (`str`, *optional*, defaults to `per_channel`): latent_log_var (`str`, *optional*, defaults to `per_channel`):
The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`. The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
""" """
def __init__( def __init__(
@@ -42,13 +40,12 @@ class Encoder(nn.Module):
dims: Union[int, Tuple[int, int]] = 3, dims: Union[int, Tuple[int, int]] = 3,
in_channels: int = 3, in_channels: int = 3,
out_channels: int = 3, out_channels: int = 3,
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)], blocks=[("res_x", 1)],
base_channels: int = 128, base_channels: int = 128,
norm_num_groups: int = 32, norm_num_groups: int = 32,
patch_size: Union[int, Tuple[int]] = 1, patch_size: Union[int, Tuple[int]] = 1,
norm_layer: str = "group_norm", # group_norm, pixel_norm norm_layer: str = "group_norm", # group_norm, pixel_norm
latent_log_var: str = "per_channel", latent_log_var: str = "per_channel",
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
self.patch_size = patch_size self.patch_size = patch_size
@@ -68,7 +65,6 @@ class Encoder(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.down_blocks = nn.ModuleList([]) self.down_blocks = nn.ModuleList([])
@@ -86,7 +82,6 @@ class Encoder(nn.Module):
resnet_eps=1e-6, resnet_eps=1e-6,
resnet_groups=norm_num_groups, resnet_groups=norm_num_groups,
norm_layer=norm_layer, norm_layer=norm_layer,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "res_x_y": elif block_name == "res_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel output_channel = block_params.get("multiplier", 2) * output_channel
@@ -97,7 +92,6 @@ class Encoder(nn.Module):
eps=1e-6, eps=1e-6,
groups=norm_num_groups, groups=norm_num_groups,
norm_layer=norm_layer, norm_layer=norm_layer,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_time": elif block_name == "compress_time":
block = make_conv_nd( block = make_conv_nd(
@@ -107,7 +101,6 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(2, 1, 1), stride=(2, 1, 1),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_space": elif block_name == "compress_space":
block = make_conv_nd( block = make_conv_nd(
@@ -117,7 +110,6 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(1, 2, 2), stride=(1, 2, 2),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_all": elif block_name == "compress_all":
block = make_conv_nd( block = make_conv_nd(
@@ -127,7 +119,6 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(2, 2, 2), stride=(2, 2, 2),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_all_x_y": elif block_name == "compress_all_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel output_channel = block_params.get("multiplier", 2) * output_channel
@@ -138,34 +129,6 @@ class Encoder(nn.Module):
kernel_size=3, kernel_size=3,
stride=(2, 2, 2), stride=(2, 2, 2),
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_all_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(2, 2, 2),
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_space_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(1, 2, 2),
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_time_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(2, 1, 1),
spatial_padding_mode=spatial_padding_mode,
) )
else: else:
raise ValueError(f"unknown block: {block_name}") raise ValueError(f"unknown block: {block_name}")
@@ -189,18 +152,10 @@ class Encoder(nn.Module):
conv_out_channels *= 2 conv_out_channels *= 2
elif latent_log_var == "uniform": elif latent_log_var == "uniform":
conv_out_channels += 1 conv_out_channels += 1
elif latent_log_var == "constant":
conv_out_channels += 1
elif latent_log_var != "none": elif latent_log_var != "none":
raise ValueError(f"Invalid latent_log_var: {latent_log_var}") raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
self.conv_out = make_conv_nd( self.conv_out = make_conv_nd(
dims, dims, output_channel, conv_out_channels, 3, padding=1, causal=True
output_channel,
conv_out_channels,
3,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.gradient_checkpointing = False self.gradient_checkpointing = False
@@ -242,15 +197,6 @@ class Encoder(nn.Module):
sample = torch.cat([sample, repeated_last_channel], dim=1) sample = torch.cat([sample, repeated_last_channel], dim=1)
else: else:
raise ValueError(f"Invalid input shape: {sample.shape}") raise ValueError(f"Invalid input shape: {sample.shape}")
elif self.latent_log_var == "constant":
sample = sample[:, :-1, ...]
approx_ln_0 = (
-30
) # this is the minimal clamp value in DiagonalGaussianDistribution objects
sample = torch.cat(
[sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
dim=1,
)
return sample return sample
@@ -285,7 +231,7 @@ class Decoder(nn.Module):
dims, dims,
in_channels: int = 3, in_channels: int = 3,
out_channels: int = 3, out_channels: int = 3,
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)], blocks=[("res_x", 1)],
base_channels: int = 128, base_channels: int = 128,
layers_per_block: int = 2, layers_per_block: int = 2,
norm_num_groups: int = 32, norm_num_groups: int = 32,
@@ -293,7 +239,6 @@ class Decoder(nn.Module):
norm_layer: str = "group_norm", norm_layer: str = "group_norm",
causal: bool = True, causal: bool = True,
timestep_conditioning: bool = False, timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
self.patch_size = patch_size self.patch_size = patch_size
@@ -319,7 +264,6 @@ class Decoder(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.up_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([])
@@ -339,7 +283,6 @@ class Decoder(nn.Module):
norm_layer=norm_layer, norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False), inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning, timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "attn_res_x": elif block_name == "attn_res_x":
block = UNetMidBlock3D( block = UNetMidBlock3D(
@@ -351,7 +294,6 @@ class Decoder(nn.Module):
inject_noise=block_params.get("inject_noise", False), inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning, timestep_conditioning=timestep_conditioning,
attention_head_dim=block_params["attention_head_dim"], attention_head_dim=block_params["attention_head_dim"],
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "res_x_y": elif block_name == "res_x_y":
output_channel = output_channel // block_params.get("multiplier", 2) output_channel = output_channel // block_params.get("multiplier", 2)
@@ -364,21 +306,14 @@ class Decoder(nn.Module):
norm_layer=norm_layer, norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False), inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=False, timestep_conditioning=False,
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_time": elif block_name == "compress_time":
block = DepthToSpaceUpsample( block = DepthToSpaceUpsample(
dims=dims, dims=dims, in_channels=input_channel, stride=(2, 1, 1)
in_channels=input_channel,
stride=(2, 1, 1),
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_space": elif block_name == "compress_space":
block = DepthToSpaceUpsample( block = DepthToSpaceUpsample(
dims=dims, dims=dims, in_channels=input_channel, stride=(1, 2, 2)
in_channels=input_channel,
stride=(1, 2, 2),
spatial_padding_mode=spatial_padding_mode,
) )
elif block_name == "compress_all": elif block_name == "compress_all":
output_channel = output_channel // block_params.get("multiplier", 1) output_channel = output_channel // block_params.get("multiplier", 1)
@@ -388,7 +323,6 @@ class Decoder(nn.Module):
stride=(2, 2, 2), stride=(2, 2, 2),
residual=block_params.get("residual", False), residual=block_params.get("residual", False),
out_channels_reduction_factor=block_params.get("multiplier", 1), out_channels_reduction_factor=block_params.get("multiplier", 1),
spatial_padding_mode=spatial_padding_mode,
) )
else: else:
raise ValueError(f"unknown layer: {block_name}") raise ValueError(f"unknown layer: {block_name}")
@@ -406,13 +340,7 @@ class Decoder(nn.Module):
self.conv_act = nn.SiLU() self.conv_act = nn.SiLU()
self.conv_out = make_conv_nd( self.conv_out = make_conv_nd(
dims, dims, output_channel, out_channels, 3, padding=1, causal=True
output_channel,
out_channels,
3,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.gradient_checkpointing = False self.gradient_checkpointing = False
@@ -505,12 +433,6 @@ class UNetMidBlock3D(nn.Module):
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
resnet_groups (`int`, *optional*, defaults to 32): resnet_groups (`int`, *optional*, defaults to 32):
The number of groups to use in the group normalization layers of the resnet blocks. The number of groups to use in the group normalization layers of the resnet blocks.
norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
inject_noise (`bool`, *optional*, defaults to `False`):
Whether to inject noise into the hidden states.
timestep_conditioning (`bool`, *optional*, defaults to `False`):
Whether to condition the hidden states on the timestep.
Returns: Returns:
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
@@ -529,7 +451,6 @@ class UNetMidBlock3D(nn.Module):
norm_layer: str = "group_norm", norm_layer: str = "group_norm",
inject_noise: bool = False, inject_noise: bool = False,
timestep_conditioning: bool = False, timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
resnet_groups = ( resnet_groups = (
@@ -555,17 +476,13 @@ class UNetMidBlock3D(nn.Module):
norm_layer=norm_layer, norm_layer=norm_layer,
inject_noise=inject_noise, inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning, timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
) )
for _ in range(num_layers) for _ in range(num_layers)
] ]
) )
def forward( def forward(
self, self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None
hidden_states: torch.FloatTensor,
causal: bool = True,
timestep: Optional[torch.Tensor] = None,
) -> torch.FloatTensor: ) -> torch.FloatTensor:
timestep_embed = None timestep_embed = None
if self.timestep_conditioning: if self.timestep_conditioning:
@@ -590,62 +507,9 @@ class UNetMidBlock3D(nn.Module):
return hidden_states return hidden_states
class SpaceToDepthDownsample(nn.Module):
def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
super().__init__()
self.stride = stride
self.group_size = in_channels * math.prod(stride) // out_channels
self.conv = make_conv_nd(
dims=dims,
in_channels=in_channels,
out_channels=out_channels // math.prod(stride),
kernel_size=3,
stride=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
def forward(self, x, causal: bool = True):
if self.stride[0] == 2:
x = torch.cat(
[x[:, :, :1, :, :], x], dim=2
) # duplicate first frames for padding
# skip connection
x_in = rearrange(
x,
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
x_in = x_in.mean(dim=2)
# conv
x = self.conv(x, causal=causal)
x = rearrange(
x,
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x = x + x_in
return x
class DepthToSpaceUpsample(nn.Module): class DepthToSpaceUpsample(nn.Module):
def __init__( def __init__(
self, self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1
dims,
in_channels,
stride,
residual=False,
out_channels_reduction_factor=1,
spatial_padding_mode="zeros",
): ):
super().__init__() super().__init__()
self.stride = stride self.stride = stride
@@ -659,7 +523,6 @@ class DepthToSpaceUpsample(nn.Module):
kernel_size=3, kernel_size=3,
stride=1, stride=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
self.residual = residual self.residual = residual
self.out_channels_reduction_factor = out_channels_reduction_factor self.out_channels_reduction_factor = out_channels_reduction_factor
@@ -695,7 +558,7 @@ class DepthToSpaceUpsample(nn.Module):
class LayerNorm(nn.Module): class LayerNorm(nn.Module):
def __init__(self, dim, eps, elementwise_affine=True) -> None: def __init__(self, dim, eps, elementwise_affine=True) -> None:
super().__init__() super().__init__()
self.norm = ops.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(self, x): def forward(self, x):
x = rearrange(x, "b c d h w -> b d h w c") x = rearrange(x, "b c d h w -> b d h w c")
@@ -728,7 +591,6 @@ class ResnetBlock3D(nn.Module):
norm_layer: str = "group_norm", norm_layer: str = "group_norm",
inject_noise: bool = False, inject_noise: bool = False,
timestep_conditioning: bool = False, timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
): ):
super().__init__() super().__init__()
self.in_channels = in_channels self.in_channels = in_channels
@@ -755,7 +617,6 @@ class ResnetBlock3D(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
if inject_noise: if inject_noise:
@@ -780,7 +641,6 @@ class ResnetBlock3D(nn.Module):
stride=1, stride=1,
padding=1, padding=1,
causal=True, causal=True,
spatial_padding_mode=spatial_padding_mode,
) )
if inject_noise: if inject_noise:
@@ -941,44 +801,9 @@ class processor(nn.Module):
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x) return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
class VideoVAE(nn.Module): class VideoVAE(nn.Module):
def __init__(self, version=0, config=None): def __init__(self, version=0):
super().__init__() super().__init__()
if config is None:
config = self.guess_config(version)
self.timestep_conditioning = config.get("timestep_conditioning", False)
double_z = config.get("double_z", True)
latent_log_var = config.get(
"latent_log_var", "per_channel" if double_z else "none"
)
self.encoder = Encoder(
dims=config["dims"],
in_channels=config.get("in_channels", 3),
out_channels=config["latent_channels"],
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
latent_log_var=latent_log_var,
norm_layer=config.get("norm_layer", "group_norm"),
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
)
self.decoder = Decoder(
dims=config["dims"],
in_channels=config["latent_channels"],
out_channels=config.get("out_channels", 3),
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
norm_layer=config.get("norm_layer", "group_norm"),
causal=config.get("causal_decoder", False),
timestep_conditioning=self.timestep_conditioning,
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
)
self.per_channel_statistics = processor()
def guess_config(self, version):
if version == 0: if version == 0:
config = { config = {
"_class_name": "CausalVideoAutoencoder", "_class_name": "CausalVideoAutoencoder",
@@ -1005,7 +830,7 @@ class VideoVAE(nn.Module):
"use_quant_conv": False, "use_quant_conv": False,
"causal_decoder": False, "causal_decoder": False,
} }
elif version == 1: else:
config = { config = {
"_class_name": "CausalVideoAutoencoder", "_class_name": "CausalVideoAutoencoder",
"dims": 3, "dims": 3,
@@ -1041,47 +866,37 @@ class VideoVAE(nn.Module):
"causal_decoder": False, "causal_decoder": False,
"timestep_conditioning": True, "timestep_conditioning": True,
} }
else:
config = { double_z = config.get("double_z", True)
"_class_name": "CausalVideoAutoencoder", latent_log_var = config.get(
"dims": 3, "latent_log_var", "per_channel" if double_z else "none"
"in_channels": 3, )
"out_channels": 3,
"latent_channels": 128, self.encoder = Encoder(
"encoder_blocks": [ dims=config["dims"],
["res_x", {"num_layers": 4}], in_channels=config.get("in_channels", 3),
["compress_space_res", {"multiplier": 2}], out_channels=config["latent_channels"],
["res_x", {"num_layers": 6}], blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
["compress_time_res", {"multiplier": 2}], patch_size=config.get("patch_size", 1),
["res_x", {"num_layers": 6}], latent_log_var=latent_log_var,
["compress_all_res", {"multiplier": 2}], norm_layer=config.get("norm_layer", "group_norm"),
["res_x", {"num_layers": 2}], )
["compress_all_res", {"multiplier": 2}],
["res_x", {"num_layers": 2}] self.decoder = Decoder(
], dims=config["dims"],
"decoder_blocks": [ in_channels=config["latent_channels"],
["res_x", {"num_layers": 5, "inject_noise": False}], out_channels=config.get("out_channels", 3),
["compress_all", {"residual": True, "multiplier": 2}], blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
["res_x", {"num_layers": 5, "inject_noise": False}], patch_size=config.get("patch_size", 1),
["compress_all", {"residual": True, "multiplier": 2}], norm_layer=config.get("norm_layer", "group_norm"),
["res_x", {"num_layers": 5, "inject_noise": False}], causal=config.get("causal_decoder", False),
["compress_all", {"residual": True, "multiplier": 2}], timestep_conditioning=config.get("timestep_conditioning", False),
["res_x", {"num_layers": 5, "inject_noise": False}] )
],
"scaling_factor": 1.0, self.timestep_conditioning = config.get("timestep_conditioning", False)
"norm_layer": "pixel_norm", self.per_channel_statistics = processor()
"patch_size": 4,
"latent_log_var": "uniform",
"use_quant_conv": False,
"causal_decoder": False,
"timestep_conditioning": True
}
return config
def encode(self, x): def encode(self, x):
frames_count = x.shape[2]
if ((frames_count - 1) % 8) != 0:
raise ValueError("Invalid number of frames: Encode input must have 1 + 8 * x frames (e.g., 1, 9, 17, ...). Please check your input.")
means, logvar = torch.chunk(self.encoder(x), 2, dim=1) means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
return self.per_channel_statistics.normalize(means) return self.per_channel_statistics.normalize(means)

View File

@@ -17,11 +17,7 @@ def make_conv_nd(
groups=1, groups=1,
bias=True, bias=True,
causal=False, causal=False,
spatial_padding_mode="zeros",
temporal_padding_mode="zeros",
): ):
if not (spatial_padding_mode == temporal_padding_mode or causal):
raise NotImplementedError("spatial and temporal padding modes must be equal")
if dims == 2: if dims == 2:
return ops.Conv2d( return ops.Conv2d(
in_channels=in_channels, in_channels=in_channels,
@@ -32,7 +28,6 @@ def make_conv_nd(
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias, bias=bias,
padding_mode=spatial_padding_mode,
) )
elif dims == 3: elif dims == 3:
if causal: if causal:
@@ -45,7 +40,6 @@ def make_conv_nd(
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias, bias=bias,
spatial_padding_mode=spatial_padding_mode,
) )
return ops.Conv3d( return ops.Conv3d(
in_channels=in_channels, in_channels=in_channels,
@@ -56,7 +50,6 @@ def make_conv_nd(
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias, bias=bias,
padding_mode=spatial_padding_mode,
) )
elif dims == (2, 1): elif dims == (2, 1):
return DualConv3d( return DualConv3d(
@@ -66,7 +59,6 @@ def make_conv_nd(
stride=stride, stride=stride,
padding=padding, padding=padding,
bias=bias, bias=bias,
padding_mode=spatial_padding_mode,
) )
else: else:
raise ValueError(f"unsupported dimensions: {dims}") raise ValueError(f"unsupported dimensions: {dims}")

View File

@@ -18,13 +18,11 @@ class DualConv3d(nn.Module):
dilation: Union[int, Tuple[int, int, int]] = 1, dilation: Union[int, Tuple[int, int, int]] = 1,
groups=1, groups=1,
bias=True, bias=True,
padding_mode="zeros",
): ):
super(DualConv3d, self).__init__() super(DualConv3d, self).__init__()
self.in_channels = in_channels self.in_channels = in_channels
self.out_channels = out_channels self.out_channels = out_channels
self.padding_mode = padding_mode
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3 # Ensure kernel_size, stride, padding, and dilation are tuples of length 3
if isinstance(kernel_size, int): if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size, kernel_size) kernel_size = (kernel_size, kernel_size, kernel_size)
@@ -110,7 +108,6 @@ class DualConv3d(nn.Module):
self.padding1, self.padding1,
self.dilation1, self.dilation1,
self.groups, self.groups,
padding_mode=self.padding_mode,
) )
if skip_time_conv: if skip_time_conv:
@@ -125,7 +122,6 @@ class DualConv3d(nn.Module):
self.padding2, self.padding2,
self.dilation2, self.dilation2,
self.groups, self.groups,
padding_mode=self.padding_mode,
) )
return x return x
@@ -141,16 +137,7 @@ class DualConv3d(nn.Module):
stride1 = (self.stride1[1], self.stride1[2]) stride1 = (self.stride1[1], self.stride1[2])
padding1 = (self.padding1[1], self.padding1[2]) padding1 = (self.padding1[1], self.padding1[2])
dilation1 = (self.dilation1[1], self.dilation1[2]) dilation1 = (self.dilation1[1], self.dilation1[2])
x = F.conv2d( x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
x,
weight1,
self.bias1,
stride1,
padding1,
dilation1,
self.groups,
padding_mode=self.padding_mode,
)
_, _, h, w = x.shape _, _, h, w = x.shape
@@ -167,16 +154,7 @@ class DualConv3d(nn.Module):
stride2 = self.stride2[0] stride2 = self.stride2[0]
padding2 = self.padding2[0] padding2 = self.padding2[0]
dilation2 = self.dilation2[0] dilation2 = self.dilation2[0]
x = F.conv1d( x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
x,
weight2,
self.bias2,
stride2,
padding2,
dilation2,
self.groups,
padding_mode=self.padding_mode,
)
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w) x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
return x return x

View File

@@ -8,7 +8,7 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import comfy.ldm.common_dit import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.attention import optimized_attention_masked from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND from comfy.ldm.flux.layers import EmbedND
@@ -64,8 +64,8 @@ class JointAttention(nn.Module):
) )
if qk_norm: if qk_norm:
self.q_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.k_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
else: else:
self.q_norm = self.k_norm = nn.Identity() self.q_norm = self.k_norm = nn.Identity()
@@ -242,11 +242,11 @@ class JointTransformerBlock(nn.Module):
operation_settings=operation_settings, operation_settings=operation_settings,
) )
self.layer_id = layer_id self.layer_id = layer_id
self.attention_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.modulation = modulation self.modulation = modulation
if modulation: if modulation:
@@ -431,7 +431,7 @@ class NextDiT(nn.Module):
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings) self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.cap_embedder = nn.Sequential( self.cap_embedder = nn.Sequential(
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
operation_settings.get("operations").Linear( operation_settings.get("operations").Linear(
cap_feat_dim, cap_feat_dim,
dim, dim,
@@ -457,7 +457,7 @@ class NextDiT(nn.Module):
for layer_id in range(n_layers) for layer_id in range(n_layers)
] ]
) )
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings) self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
assert (dim // n_heads) == sum(axes_dims) assert (dim // n_heads) == sum(axes_dims)

View File

@@ -20,18 +20,8 @@ if model_management.xformers_enabled():
if model_management.sage_attention_enabled(): if model_management.sage_attention_enabled():
try: try:
from sageattention import sageattn from sageattention import sageattn
except ModuleNotFoundError as e:
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():
try:
from flash_attn import flash_attn_func
except ModuleNotFoundError: except ModuleNotFoundError:
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn") logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
exit(-1) exit(-1)
from comfy.cli_args import args from comfy.cli_args import args
@@ -474,7 +464,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False): def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape: if skip_reshape:
b, _, _, dim_head = q.shape b, _, _, dim_head = q.shape
tensor_layout = "HND" tensor_layout="HND"
else: else:
b, _, dim_head = q.shape b, _, dim_head = q.shape
dim_head //= heads dim_head //= heads
@@ -482,7 +472,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.view(b, -1, heads, dim_head), lambda t: t.view(b, -1, heads, dim_head),
(q, k, v), (q, k, v),
) )
tensor_layout = "NHD" tensor_layout="NHD"
if mask is not None: if mask is not None:
# add a batch dimension if there isn't already one # add a batch dimension if there isn't already one
@@ -492,17 +482,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
if mask.ndim == 3: if mask.ndim == 3:
mask = mask.unsqueeze(1) mask = mask.unsqueeze(1)
try: out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
except Exception as e:
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
if tensor_layout == "NHD":
q, k, v = map(
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
if tensor_layout == "HND": if tensor_layout == "HND":
if not skip_output_reshape: if not skip_output_reshape:
out = ( out = (
@@ -516,63 +496,6 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
return out return out
try:
@torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
return flash_attn_func(q, k, v, dropout_p=dropout_p, causal=causal)
@flash_attn_wrapper.register_fake
def flash_attn_fake(q, k, v, dropout_p=0.0, causal=False):
# Output shape is the same as q
return q.new_empty(q.shape)
except AttributeError as error:
FLASH_ATTN_ERROR = error
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
if mask is not None:
# add a batch dimension if there isn't already one
if mask.ndim == 2:
mask = mask.unsqueeze(0)
# add a heads dimension if there isn't already one
if mask.ndim == 3:
mask = mask.unsqueeze(1)
try:
assert mask is None
out = flash_attn_wrapper(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
dropout_p=0.0,
causal=False,
).transpose(1, 2)
except Exception as e:
logging.warning(f"Flash Attention failed, using default SDPA: {e}")
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
return out
optimized_attention = attention_basic optimized_attention = attention_basic
if model_management.sage_attention_enabled(): if model_management.sage_attention_enabled():
@@ -581,9 +504,6 @@ if model_management.sage_attention_enabled():
elif model_management.xformers_enabled(): elif model_management.xformers_enabled():
logging.info("Using xformers attention") logging.info("Using xformers attention")
optimized_attention = attention_xformers optimized_attention = attention_xformers
elif model_management.flash_attention_enabled():
logging.info("Using Flash Attention")
optimized_attention = attention_flash
elif model_management.pytorch_attention_enabled(): elif model_management.pytorch_attention_enabled():
logging.info("Using pytorch attention") logging.info("Using pytorch attention")
optimized_attention = attention_pytorch optimized_attention = attention_pytorch
@@ -850,7 +770,6 @@ class SpatialTransformer(nn.Module):
if not isinstance(context, list): if not isinstance(context, list):
context = [context] * len(self.transformer_blocks) context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape b, c, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x x_in = x
x = self.norm(x) x = self.norm(x)
if not self.use_linear: if not self.use_linear:
@@ -966,7 +885,6 @@ class SpatialVideoTransformer(SpatialTransformer):
transformer_options={} transformer_options={}
) -> torch.Tensor: ) -> torch.Tensor:
_, _, h, w = x.shape _, _, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x x_in = x
spatial_context = None spatial_context = None
if exists(context): if exists(context):

View File

@@ -9,6 +9,7 @@ from einops import repeat
from comfy.ldm.modules.attention import optimized_attention from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope from comfy.ldm.flux.math import apply_rope
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
import comfy.ldm.common_dit import comfy.ldm.common_dit
import comfy.model_management import comfy.model_management
@@ -48,8 +49,8 @@ class WanSelfAttention(nn.Module):
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs): def forward(self, x, freqs):
r""" r"""
@@ -82,7 +83,7 @@ class WanSelfAttention(nn.Module):
class WanT2VCrossAttention(WanSelfAttention): class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, **kwargs): def forward(self, x, context):
r""" r"""
Args: Args:
x(Tensor): Shape [B, L1, C] x(Tensor): Shape [B, L1, C]
@@ -113,16 +114,16 @@ class WanI2VCrossAttention(WanSelfAttention):
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# self.alpha = nn.Parameter(torch.zeros((1, ))) # self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context, context_img_len): def forward(self, x, context):
r""" r"""
Args: Args:
x(Tensor): Shape [B, L1, C] x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C] context(Tensor): Shape [B, L2, C]
""" """
context_img = context[:, :context_img_len] context_img = context[:, :257]
context = context[:, context_img_len:] context = context[:, 257:]
# compute query, key, value # compute query, key, value
q = self.norm_q(self.q(x)) q = self.norm_q(self.q(x))
@@ -192,7 +193,6 @@ class WanAttentionBlock(nn.Module):
e, e,
freqs, freqs,
context, context,
context_img_len=257,
): ):
r""" r"""
Args: Args:
@@ -213,94 +213,12 @@ class WanAttentionBlock(nn.Module):
x = x + y * e[2] x = x + y * e[2]
# cross-attention & ffn # cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len) x = x + self.cross_attn(self.norm3(x), context)
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3]) y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
x = x + y * e[5] x = x + y * e[5]
return x return x
class VaceWanAttentionBlock(WanAttentionBlock):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=0,
operation_settings={}
):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
self.block_id = block_id
if block_id == 0:
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
return c_skip, c
class WanCamAdapter(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}):
super(WanCamAdapter, self).__init__()
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
# Convolution: reduce spatial dimensions by a factor
# of 2 (without overlap)
self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# Residual blocks for feature extraction
self.residual_blocks = nn.Sequential(
*[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)]
)
def forward(self, x):
# Reshape to merge the frame dimension into batch
bs, c, f, h, w = x.size()
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
# Pixel Unshuffle operation
x_unshuffled = self.pixel_unshuffle(x)
# Convolution operation
x_conv = self.conv(x_unshuffled)
# Feature extraction with residual blocks
out = self.residual_blocks(x_conv)
# Reshape to restore original bf dimension
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
out = out.permute(0, 2, 1, 3, 4)
return out
class WanCamResidualBlock(nn.Module):
def __init__(self, dim, operation_settings={}):
super(WanCamResidualBlock, self).__init__()
self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.relu = nn.ReLU(inplace=True)
self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out += residual
return out
class Head(nn.Module): class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}): def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
@@ -332,7 +250,7 @@ class Head(nn.Module):
class MLPProj(torch.nn.Module): class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}): def __init__(self, in_dim, out_dim, operation_settings={}):
super().__init__() super().__init__()
self.proj = torch.nn.Sequential( self.proj = torch.nn.Sequential(
@@ -340,15 +258,7 @@ class MLPProj(torch.nn.Module):
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
if flf_pos_embed_token_number is not None:
self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
else:
self.emb_pos = None
def forward(self, image_embeds): def forward(self, image_embeds):
if self.emb_pos is not None:
image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device)
clip_extra_context_tokens = self.proj(image_embeds) clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens return clip_extra_context_tokens
@@ -374,7 +284,6 @@ class WanModel(torch.nn.Module):
qk_norm=True, qk_norm=True,
cross_attn_norm=True, cross_attn_norm=True,
eps=1e-6, eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None, image_model=None,
device=None, device=None,
dtype=None, dtype=None,
@@ -464,7 +373,7 @@ class WanModel(torch.nn.Module):
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)]) self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
if model_type == 'i2v': if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings) self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
else: else:
self.img_emb = None self.img_emb = None
@@ -475,8 +384,6 @@ class WanModel(torch.nn.Module):
context, context,
clip_fea=None, clip_fea=None,
freqs=None, freqs=None,
transformer_options={},
**kwargs,
): ):
r""" r"""
Forward pass through the diffusion model Forward pass through the diffusion model
@@ -512,25 +419,18 @@ class WanModel(torch.nn.Module):
# context # context
context = self.text_embedding(context) context = self.text_embedding(context)
context_img_len = None if clip_fea is not None and self.img_emb is not None:
if clip_fea is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim
if self.img_emb is not None: context = torch.concat([context_clip, context], dim=1)
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {}) # arguments
blocks_replace = patches_replace.get("dit", {}) kwargs = dict(
for i, block in enumerate(self.blocks): e=e0,
if ("double_block", i) in blocks_replace: freqs=freqs,
def block_wrap(args): context=context)
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) for block in self.blocks:
return out x = block(x, **kwargs)
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
# head # head
x = self.head(x, e) x = self.head(x, e)
@@ -539,20 +439,13 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes) x = self.unpatchify(x, grid_sizes)
return x return x
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs): def forward(self, x, timestep, context, clip_fea=None, **kwargs):
bs, c, t, h, w = x.shape bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if time_dim_concat is not None:
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype) img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1) img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1) img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
@@ -560,7 +453,7 @@ class WanModel(torch.nn.Module):
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs) img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2) freqs = self.rope_embedder(img_ids).movedim(1, 2)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w] return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes): def unpatchify(self, x, grid_sizes):
r""" r"""
@@ -585,209 +478,3 @@ class WanModel(torch.nn.Module):
u = torch.einsum('bfhwpqrc->bcfphqwr', u) u = torch.einsum('bfhwpqrc->bcfphqwr', u)
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
return u return u
class VaceWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='vace',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
vace_layers=None,
vace_in_dim=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
# Vace
if vace_layers is not None:
self.vace_layers = vace_layers
self.vace_in_dim = vace_in_dim
# vace blocks
self.vace_blocks = nn.ModuleList([
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings)
for i in range(self.vace_layers)
])
self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))}
# vace patch embeddings
self.vace_patch_embedding = operations.Conv3d(
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32
)
def forward_orig(
self,
x,
t,
context,
vace_context,
vace_strength,
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
# arguments
x_orig = x
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class CameraWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='camera',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
in_dim_control_adapter=24,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
freqs=None,
camera_conditions = None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
if self.control_adapter is not None and camera_conditions is not None:
x_camera = self.control_adapter(camera_conditions).to(x.dtype)
x = x + x_camera
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@@ -20,7 +20,6 @@ from __future__ import annotations
import comfy.utils import comfy.utils
import comfy.model_management import comfy.model_management
import comfy.model_base import comfy.model_base
import comfy.weight_adapter as weight_adapter
import logging import logging
import torch import torch
@@ -50,12 +49,139 @@ def load_lora(lora, to_load, log_missing=True):
dora_scale = lora[dora_scale_name] dora_scale = lora[dora_scale_name]
loaded_keys.add(dora_scale_name) loaded_keys.add(dora_scale_name)
for adapter_cls in weight_adapter.adapters: reshape_name = "{}.reshape_weight".format(x)
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys) reshape = None
if adapter is not None: if reshape_name in lora.keys():
patch_dict[to_load[x]] = adapter try:
loaded_keys.update(adapter.loaded_keys) reshape = lora[reshape_name].tolist()
continue loaded_keys.add(reshape_name)
except:
pass
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x)
diffusers3_lora = "{}.lora.up.weight".format(x)
mochi_lora = "{}.lora_B".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif diffusers2_lora in lora.keys():
A_name = diffusers2_lora
B_name = "{}.lora_A.weight".format(x)
mid_name = None
elif diffusers3_lora in lora.keys():
A_name = diffusers3_lora
B_name = "{}.lora.down.weight".format(x)
mid_name = None
elif mochi_lora in lora.keys():
A_name = mochi_lora
B_name = "{}.lora_A".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
#glora
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
w_norm_name = "{}.w_norm".format(x) w_norm_name = "{}.w_norm".format(x)
b_norm_name = "{}.b_norm".format(x) b_norm_name = "{}.b_norm".format(x)
@@ -279,23 +405,29 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(key_lora)] = k key_map["transformer.{}".format(key_lora)] = k
key_map["diffusion_model.{}".format(key_lora)] = k # Old loras key_map["diffusion_model.{}".format(key_lora)] = k # Old loras
if isinstance(model, comfy.model_base.HiDream):
for k in sdk:
if k.startswith("diffusion_model."):
if k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
key_map["transformer.{}".format(key_lora)] = k #SimpleTuner regular format
if isinstance(model, comfy.model_base.ACEStep):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
return key_map return key_map
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * (weight_calc)
else:
weight[:] = weight_calc
return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor: def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
""" """
Pad a tensor to a new shape with zeros. Pad a tensor to a new shape with zeros.
@@ -350,16 +482,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
if isinstance(v, list): if isinstance(v, list):
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), ) v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
if isinstance(v, weight_adapter.WeightAdapterBase):
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
if output is None:
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
else:
weight = output
if old_weight is not None:
weight = old_weight
continue
if len(v) == 1: if len(v) == 1:
patch_type = "diff" patch_type = "diff"
elif len(v) == 2: elif len(v) == 2:
@@ -386,6 +508,157 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \ diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype) comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype)) weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
elif patch_type == "lora": #lora/locon
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
dora_scale = v[4]
reshape = v[5]
if reshape is not None:
weight = pad_tensor_to_shape(weight, reshape)
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "glora":
dora_scale = v[5]
old_glora = False
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
rank = v[0].shape[0]
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
if v[4] is not None:
alpha = v[4] / rank
else:
alpha = 1.0
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
else: else:
logging.warning("patch type not recognized {} {}".format(patch_type, key)) logging.warning("patch type not recognized {} {}".format(patch_type, key))

View File

@@ -1,5 +1,4 @@
import torch import torch
import comfy.utils
def convert_lora_bfl_control(sd): #BFL loras for Flux def convert_lora_bfl_control(sd): #BFL loras for Flux
@@ -12,13 +11,7 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
return sd_out return sd_out
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_lora(sd): def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd: if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd) return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
return sd return sd

View File

@@ -36,10 +36,6 @@ import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model import comfy.ldm.cosmos.model
import comfy.ldm.lumina.model import comfy.ldm.lumina.model
import comfy.ldm.wan.model import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.ace.model
import comfy.model_management import comfy.model_management
import comfy.patcher_extension import comfy.patcher_extension
@@ -62,7 +58,6 @@ class ModelType(Enum):
FLOW = 6 FLOW = 6
V_PREDICTION_CONTINUOUS = 7 V_PREDICTION_CONTINUOUS = 7
FLUX = 8 FLUX = 8
IMG_TO_IMG = 9
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
@@ -93,8 +88,6 @@ def model_sampling(model_config, model_type):
elif model_type == ModelType.FLUX: elif model_type == ModelType.FLUX:
c = comfy.model_sampling.CONST c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingFlux s = comfy.model_sampling.ModelSamplingFlux
elif model_type == ModelType.IMG_TO_IMG:
c = comfy.model_sampling.IMG_TO_IMG
class ModelSampling(s, c): class ModelSampling(s, c):
pass pass
@@ -115,7 +108,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False): if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None: if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False) fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8) operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
else: else:
operations = model_config.custom_operations operations = model_config.custom_operations
@@ -135,7 +128,6 @@ class BaseModel(torch.nn.Module):
logging.info("model_type {}".format(model_type.name)) logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels)) logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor( return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@@ -147,7 +139,6 @@ class BaseModel(torch.nn.Module):
def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t sigma = t
xc = self.model_sampling.calculate_input(sigma, x) xc = self.model_sampling.calculate_input(sigma, x)
if c_concat is not None: if c_concat is not None:
xc = torch.cat([xc] + [c_concat], dim=1) xc = torch.cat([xc] + [c_concat], dim=1)
@@ -168,20 +159,11 @@ class BaseModel(torch.nn.Module):
if hasattr(extra, "dtype"): if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long: if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype) extra = extra.to(dtype)
if isinstance(extra, list):
ex = []
for ext in extra:
ex.append(ext.to(dtype))
extra = ex
extra_conds[o] = extra extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x) return self.model_sampling.calculate_denoised(sigma, model_output, x)
def process_timestep(self, timestep, **kwargs):
return timestep
def get_dtype(self): def get_dtype(self):
return self.diffusion_model.dtype return self.diffusion_model.dtype
@@ -203,11 +185,6 @@ class BaseModel(torch.nn.Module):
if concat_latent_image.shape[1:] != noise.shape[1:]: if concat_latent_image.shape[1:] != noise.shape[1:]:
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
if noise.ndim == 5:
if concat_latent_image.shape[-3] < noise.shape[-3]:
concat_latent_image = torch.nn.functional.pad(concat_latent_image, (0, 0, 0, 0, 0, noise.shape[-3] - concat_latent_image.shape[-3]), "constant", 0)
else:
concat_latent_image = concat_latent_image[:, :, :noise.shape[-3]]
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
@@ -236,11 +213,6 @@ class BaseModel(torch.nn.Module):
cond_concat.append(self.blank_inpaint_image_like(noise)) cond_concat.append(self.blank_inpaint_image_like(noise))
elif ck == "mask_inverted": elif ck == "mask_inverted":
cond_concat.append(torch.zeros_like(noise)[:, :1]) cond_concat.append(torch.zeros_like(noise)[:, :1])
if ck == "concat_image":
if concat_latent_image is not None:
cond_concat.append(concat_latent_image.to(device))
else:
cond_concat.append(torch.zeros_like(noise))
data = torch.cat(cond_concat, dim=1) data = torch.cat(cond_concat, dim=1)
return data return data
return None return None
@@ -331,28 +303,19 @@ class BaseModel(torch.nn.Module):
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image) return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image)
def memory_required(self, input_shape, cond_shapes={}): def memory_required(self, input_shape):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype() dtype = self.get_dtype()
if self.manual_cast_dtype is not None: if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked #TODO: this needs to be tweaked
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes)) area = input_shape[0] * math.prod(input_shape[2:])
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024) return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
else: else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes)) area = input_shape[0] * math.prod(input_shape[2:])
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024) return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
def extra_conds_shapes(self, **kwargs):
return {}
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
adm_inputs = [] adm_inputs = []
@@ -623,19 +586,6 @@ class SDXL_instructpix2pix(IP2P, SDXL):
else: else:
self.process_ip2p_image_in = lambda image: image #diffusers ip2p self.process_ip2p_image_in = lambda image: image #diffusers ip2p
class Lotus(BaseModel):
def extra_conds(self, **kwargs):
out = {}
cross_attn = kwargs.get("cross_attn", None)
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
device = kwargs["device"]
task_emb = torch.tensor([1, 0]).float().to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)]).unsqueeze(0)
out['y'] = comfy.conds.CONDRegular(task_emb)
return out
def __init__(self, model_config, model_type=ModelType.IMG_TO_IMG, device=None):
super().__init__(model_config, model_type, device=device)
class StableCascade_C(BaseModel): class StableCascade_C(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
@@ -803,8 +753,8 @@ class PixArt(BaseModel):
return out return out
class Flux(BaseModel): class Flux(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux): def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=unet_model) super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
def concat_cond(self, **kwargs): def concat_cond(self, **kwargs):
try: try:
@@ -895,26 +845,17 @@ class LTXV(BaseModel):
if cross_attn is not None: if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guiding_latent = kwargs.get("guiding_latent", None)
if guiding_latent is not None:
out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent)
guiding_latent_noise_scale = kwargs.get("guiding_latent_noise_scale", None)
if guiding_latent_noise_scale is not None:
out["guiding_latent_noise_scale"] = comfy.conds.CONDConstant(guiding_latent_noise_scale)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
keyframe_idxs = kwargs.get("keyframe_idxs", None)
if keyframe_idxs is not None:
out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs)
return out return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
return self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0]
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class HunyuanVideo(BaseModel): class HunyuanVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo) super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
@@ -931,39 +872,20 @@ class HunyuanVideo(BaseModel):
if cross_attn is not None: if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if image is not None:
padding_shape = (noise.shape[0], 16, noise.shape[2] - 1, noise.shape[3], noise.shape[4])
latent_padding = torch.zeros(padding_shape, device=noise.device, dtype=noise.dtype)
image_latents = torch.cat([image.to(noise), latent_padding], dim=2)
out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_latents))
guidance = kwargs.get("guidance", 6.0) guidance = kwargs.get("guidance", 6.0)
if guidance is not None: if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance])) out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
guiding_frame_index = kwargs.get("guiding_frame_index", None)
if guiding_frame_index is not None:
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
ref_latent = kwargs.get("ref_latent", None)
if ref_latent is not None:
out['ref_latent'] = comfy.conds.CONDRegular(self.process_latent_in(ref_latent))
return out return out
def scale_latent_inpaint(self, latent_image, **kwargs):
return latent_image
class HunyuanVideoI2V(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("concat_image", "mask_inverted")
def scale_latent_inpaint(self, latent_image, **kwargs):
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("concat_image",)
def scale_latent_inpaint(self, latent_image, **kwargs):
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
class CosmosVideo(BaseModel): class CosmosVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None): def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT) super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT)
@@ -1013,42 +935,29 @@ class WAN21(BaseModel):
self.image_to_video = image_to_video self.image_to_video = image_to_video
def concat_cond(self, **kwargs): def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None) if not self.image_to_video:
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
if extra_channels == 0:
return None return None
image = kwargs.get("concat_latent_image", None) image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"] device = kwargs["device"]
if image is None: if image is None:
shape_image = list(noise.shape) image = torch.zeros_like(noise)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video or extra_channels == image.shape[1]: image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
return image image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if image.shape[1] > (extra_channels - 4):
image = image[:, :(extra_channels - 4)]
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None: if mask is None:
mask = torch.zeros_like(noise)[:, :4] mask = torch.zeros_like(noise)[:, :4]
else: else:
if mask.shape[1] != 4: mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
mask = torch.mean(mask, dim=1, keepdim=True)
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]: if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
if mask.shape[1] == 1: mask = mask.repeat(1, 4, 1, 1, 1)
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0]) mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((mask, image), dim=1) return torch.cat((mask, image), dim=1)
@@ -1062,122 +971,4 @@ class WAN21(BaseModel):
clip_vision_output = kwargs.get("clip_vision_output", None) clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None: if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states) out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
time_dim_concat = kwargs.get("time_dim_concat", None)
if time_dim_concat is not None:
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
return out
class WAN21_Vace(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.VaceWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
noise_shape = list(noise.shape)
vace_frames = kwargs.get("vace_frames", None)
if vace_frames is None:
noise_shape[1] = 32
vace_frames = [torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)]
mask = kwargs.get("vace_mask", None)
if mask is None:
noise_shape[1] = 64
mask = [torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)] * len(vace_frames)
vace_frames_out = []
for j in range(len(vace_frames)):
vf = vace_frames[j].clone()
for i in range(0, vf.shape[1], 16):
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
vf = torch.cat([vf, mask[j]], dim=1)
vace_frames_out.append(vf)
vace_frames = torch.stack(vace_frames_out, dim=1)
out['vace_context'] = comfy.conds.CONDRegular(vace_frames)
vace_strength = kwargs.get("vace_strength", [1.0] * len(vace_frames_out))
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
return out
class WAN21_Camera(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.CameraWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
camera_conditions = kwargs.get("camera_conditions", None)
if camera_conditions is not None:
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class Hunyuan3Dv2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3d.model.Hunyuan3Dv2)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guidance = kwargs.get("guidance", 5.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
if conditioning_llama3 is not None:
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
image_cond = kwargs.get("concat_latent_image", None)
if image_cond is not None:
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
return out
class Chroma(Flux):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
guidance = kwargs.get("guidance", 0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class ACEStep(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
if cross_attn is not None:
out['lyric_token_idx'] = comfy.conds.CONDRegular(conditioning_lyrics)
out['speaker_embeds'] = comfy.conds.CONDRegular(torch.zeros(noise.shape[0], 512, device=noise.device, dtype=noise.dtype))
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out return out

View File

@@ -1,4 +1,3 @@
import json
import comfy.supported_models import comfy.supported_models
import comfy.supported_models_base import comfy.supported_models_base
import comfy.utils import comfy.utils
@@ -34,7 +33,7 @@ def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
return None return None
def detect_unet_config(state_dict, key_prefix, metadata=None): def detect_unet_config(state_dict, key_prefix):
state_dict_keys = list(state_dict.keys()) state_dict_keys = list(state_dict.keys())
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
@@ -154,7 +153,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = len(guidance_keys) > 0 dit_config["guidance_embed"] = len(guidance_keys) > 0
return dit_config return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
dit_config = {} dit_config = {}
dit_config["image_model"] = "flux" dit_config["image_model"] = "flux"
dit_config["in_channels"] = 16 dit_config["in_channels"] = 16
@@ -164,9 +163,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if in_key in state_dict_keys: if in_key in state_dict_keys:
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size) dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
dit_config["out_channels"] = 16 dit_config["out_channels"] = 16
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix) dit_config["vec_in_dim"] = 768
if vec_in_key in state_dict_keys:
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
dit_config["context_in_dim"] = 4096 dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072 dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0 dit_config["mlp_ratio"] = 4.0
@@ -176,16 +173,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["axes_dim"] = [16, 56, 56] dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000 dit_config["theta"] = 10000
dit_config["qkv_bias"] = True dit_config["qkv_bias"] = True
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
dit_config["out_channels"] = 64
dit_config["in_dim"] = 64
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config return dit_config
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
@@ -222,37 +210,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {} dit_config = {}
dit_config["image_model"] = "ltxv" dit_config["image_model"] = "ltxv"
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape
dit_config["attention_head_dim"] = shape[0] // 32
dit_config["cross_attention_dim"] = shape[1]
if metadata is not None and "config" in metadata:
dit_config.update(json.loads(metadata["config"]).get("transformer", {}))
return dit_config
if '{}genre_embedder.weight'.format(key_prefix) in state_dict_keys: #ACE-Step model
dit_config = {}
dit_config["audio_model"] = "ace"
dit_config["attention_head_dim"] = 128
dit_config["in_channels"] = 8
dit_config["inner_dim"] = 2560
dit_config["max_height"] = 16
dit_config["max_position"] = 32768
dit_config["max_width"] = 32768
dit_config["mlp_ratio"] = 2.5
dit_config["num_attention_heads"] = 20
dit_config["num_layers"] = 24
dit_config["out_channels"] = 8
dit_config["patch_size"] = [16, 1]
dit_config["rope_theta"] = 1000000.0
dit_config["speaker_embedding_dim"] = 512
dit_config["text_embedding_dim"] = 768
dit_config["ssl_encoder_depths"] = [8, 8]
dit_config["ssl_latent_dims"] = [1024, 768]
dit_config["ssl_names"] = ["mert", "m-hubert"]
dit_config["lyric_encoder_vocab_size"] = 6693
dit_config["lyric_hidden_size"] = 1024
return dit_config return dit_config
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
@@ -357,54 +314,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["cross_attn_norm"] = True dit_config["cross_attn_norm"] = True
dit_config["eps"] = 1e-6 dit_config["eps"] = 1e-6
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1] dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
if '{}vace_patch_embedding.weight'.format(key_prefix) in state_dict_keys: if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "vace" dit_config["model_type"] = "i2v"
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
else: else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys: dit_config["model_type"] = "t2v"
dit_config["model_type"] = "i2v"
else:
dit_config["model_type"] = "t2v"
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
if flf_weight is not None:
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
return dit_config
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
in_shape = state_dict['{}latent_in.weight'.format(key_prefix)].shape
dit_config = {}
dit_config["image_model"] = "hunyuan3d2"
dit_config["in_channels"] = in_shape[1]
dit_config["context_in_dim"] = state_dict['{}cond_in.weight'.format(key_prefix)].shape[1]
dit_config["hidden_size"] = in_shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 16
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["qkv_bias"] = True
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"
dit_config["attention_head_dim"] = 128
dit_config["axes_dims_rope"] = [64, 32, 32]
dit_config["caption_channels"] = [4096, 4096]
dit_config["max_resolution"] = [128, 128]
dit_config["in_channels"] = 16
dit_config["llama_layers"] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
dit_config["num_attention_heads"] = 20
dit_config["num_routed_experts"] = 4
dit_config["num_activated_experts"] = 2
dit_config["num_layers"] = 16
dit_config["num_single_layers"] = 32
dit_config["out_channels"] = 16
dit_config["patch_size"] = 2
dit_config["text_emb_dim"] = 2048
return dit_config return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
@@ -541,8 +454,8 @@ def model_config_from_unet_config(unet_config, state_dict=None):
logging.error("no match {}".format(unet_config)) logging.error("no match {}".format(unet_config))
return None return None
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False, metadata=None): def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
unet_config = detect_unet_config(state_dict, unet_key_prefix, metadata=metadata) unet_config = detect_unet_config(state_dict, unet_key_prefix)
if unet_config is None: if unet_config is None:
return None return None
model_config = model_config_from_unet_config(unet_config, state_dict) model_config = model_config_from_unet_config(unet_config, state_dict)
@@ -555,10 +468,6 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
model_config.scaled_fp8 = scaled_fp8_weight.dtype model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32: if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn model_config.scaled_fp8 = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
model_config.optimizations["fp8"] = False
else:
model_config.optimizations["fp8"] = True
return model_config return model_config
@@ -620,9 +529,6 @@ def convert_config(unet_config):
def unet_config_from_diffusers_unet(state_dict, dtype=None): def unet_config_from_diffusers_unet(state_dict, dtype=None):
if "conv_in.weight" not in state_dict:
return None
match = {} match = {}
transformer_depth = [] transformer_depth = []
@@ -754,13 +660,8 @@ def unet_config_from_diffusers_unet(state_dict, dtype=None):
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
'use_temporal_attention': False, 'use_temporal_resblock': False} 'use_temporal_attention': False, 'use_temporal_resblock': False}
LotusD = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': 4,
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_heads': 8,
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
'use_temporal_attention': False, 'use_temporal_resblock': False}
supported_models = [LotusD, SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint] supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
for unet_config in supported_models: for unet_config in supported_models:
matches = True matches = True

View File

@@ -15,7 +15,6 @@
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. along with this program. If not, see <https://www.gnu.org/licenses/>.
""" """
from __future__ import annotations
import psutil import psutil
import logging import logging
@@ -27,10 +26,6 @@ import platform
import weakref import weakref
import gc import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
class VRAMState(Enum): class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram NO_VRAM = 1 #Very low vram: enable all the options to save vram
@@ -51,32 +46,6 @@ cpu_state = CPUState.GPU
total_vram = 0 total_vram = 0
def get_supported_float8_types():
float8_types = []
try:
float8_types.append(torch.float8_e4m3fn)
except:
pass
try:
float8_types.append(torch.float8_e4m3fnuz)
except:
pass
try:
float8_types.append(torch.float8_e5m2)
except:
pass
try:
float8_types.append(torch.float8_e5m2fnuz)
except:
pass
try:
float8_types.append(torch.float8_e8m0fnu)
except:
pass
return float8_types
FLOAT8_TYPES = get_supported_float8_types()
xpu_available = False xpu_available = False
torch_version = "" torch_version = ""
try: try:
@@ -176,25 +145,6 @@ def get_torch_device():
else: else:
return torch.device(torch.cuda.current_device()) return torch.device(torch.cuda.current_device())
def get_all_torch_devices(exclude_current=False):
global cpu_state
devices = []
if cpu_state == CPUState.GPU:
if is_nvidia():
for i in range(torch.cuda.device_count()):
devices.append(torch.device(i))
elif is_intel_xpu():
for i in range(torch.xpu.device_count()):
devices.append(torch.device(i))
elif is_ascend_npu():
for i in range(torch.npu.device_count()):
devices.append(torch.device(i))
else:
devices.append(get_torch_device())
if exclude_current:
devices.remove(get_torch_device())
return devices
def get_total_memory(dev=None, torch_total_too=False): def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled global directml_enabled
if dev is None: if dev is None:
@@ -236,21 +186,12 @@ def get_total_memory(dev=None, torch_total_too=False):
else: else:
return mem_total return mem_total
def mac_version():
try:
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
except:
return None
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024) total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
try: try:
logging.info("pytorch version: {}".format(torch_version)) logging.info("pytorch version: {}".format(torch_version))
mac_ver = mac_version()
if mac_ver is not None:
logging.info("Mac Version {}".format(mac_ver))
except: except:
pass pass
@@ -321,16 +262,11 @@ except:
try: try:
if is_amd(): if is_amd():
try:
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
except:
rocm_version = (6, -1)
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
logging.info("AMD arch: {}".format(arch)) logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches
ENABLE_PYTORCH_ATTENTION = True ENABLE_PYTORCH_ATTENTION = True
except: except:
pass pass
@@ -411,13 +347,9 @@ try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except: except:
logging.warning("Could not pick default device.") logging.warning("Could not pick default device.")
try:
for device in get_all_torch_devices(exclude_current=True):
logging.info("Device: {}".format(get_torch_device_name(device)))
except:
pass
current_loaded_models: list[LoadedModel] = []
current_loaded_models = []
def module_size(module): def module_size(module):
module_mem = 0 module_mem = 0
@@ -428,7 +360,7 @@ def module_size(module):
return module_mem return module_mem
class LoadedModel: class LoadedModel:
def __init__(self, model: ModelPatcher): def __init__(self, model):
self._set_model(model) self._set_model(model)
self.device = model.load_device self.device = model.load_device
self.real_model = None self.real_model = None
@@ -436,7 +368,7 @@ class LoadedModel:
self.model_finalizer = None self.model_finalizer = None
self._patcher_finalizer = None self._patcher_finalizer = None
def _set_model(self, model: ModelPatcher): def _set_model(self, model):
self._model = weakref.ref(model) self._model = weakref.ref(model)
if model.parent is not None: if model.parent is not None:
self._parent_model = weakref.ref(model.parent) self._parent_model = weakref.ref(model.parent)
@@ -649,7 +581,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
loaded_memory = loaded_model.model_loaded_memory() loaded_memory = loaded_model.model_loaded_memory()
current_free_mem = get_free_memory(torch_dev) + loaded_memory current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory) lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
if vram_set_state == VRAMState.NO_VRAM: if vram_set_state == VRAMState.NO_VRAM:
@@ -728,7 +660,7 @@ def unet_inital_load_device(parameters, dtype):
return torch_dev return torch_dev
cpu_dev = torch.device("cpu") cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY or vram_state == VRAMState.NO_VRAM: if DISABLE_SMART_MEMORY:
return cpu_dev return cpu_dev
model_size = dtype_size(dtype) * parameters model_size = dtype_size(dtype) * parameters
@@ -758,12 +690,13 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
return torch.float8_e4m3fn return torch.float8_e4m3fn
if args.fp8_e5m2_unet: if args.fp8_e5m2_unet:
return torch.float8_e5m2 return torch.float8_e5m2
if args.fp8_e8m0fnu_unet:
return torch.float8_e8m0fnu
fp8_dtype = None fp8_dtype = None
if weight_dtype in FLOAT8_TYPES: try:
fp8_dtype = weight_dtype if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
fp8_dtype = weight_dtype
except:
pass
if fp8_dtype is not None: if fp8_dtype is not None:
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
@@ -858,8 +791,6 @@ def text_encoder_dtype(device=None):
return torch.float8_e5m2 return torch.float8_e5m2
elif args.fp16_text_enc: elif args.fp16_text_enc:
return torch.float16 return torch.float16
elif args.bf16_text_enc:
return torch.bfloat16
elif args.fp32_text_enc: elif args.fp32_text_enc:
return torch.float32 return torch.float32
@@ -972,61 +903,15 @@ def force_channels_last():
#TODO #TODO
return False return False
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
STREAMS = {}
NUM_STREAMS = 1
if args.async_offload:
NUM_STREAMS = 2
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS <= 1:
return None
if device in STREAMS:
ss = STREAMS[device]
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
if is_device_cuda(device):
ss[stream_counter].wait_stream(torch.cuda.current_stream())
stream_counters[device] = stream_counter
return s
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.cuda.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
return None
def sync_stream(device, stream):
if stream is None:
return
if is_device_cuda(device):
torch.cuda.current_stream().wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
if device is None or weight.device == device: if device is None or weight.device == device:
if not copy: if not copy:
if dtype is None or weight.dtype == dtype: if dtype is None or weight.dtype == dtype:
return weight return weight
if stream is not None:
with stream:
return weight.to(dtype=dtype, copy=copy)
return weight.to(dtype=dtype, copy=copy) return weight.to(dtype=dtype, copy=copy)
if stream is not None: r = torch.empty_like(weight, dtype=dtype, device=device)
with stream: r.copy_(weight, non_blocking=non_blocking)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r return r
def cast_to_device(tensor, device, dtype, copy=False): def cast_to_device(tensor, device, dtype, copy=False):
@@ -1036,9 +921,6 @@ def cast_to_device(tensor, device, dtype, copy=False):
def sage_attention_enabled(): def sage_attention_enabled():
return args.use_sage_attention return args.use_sage_attention
def flash_attention_enabled():
return args.use_flash_attention
def xformers_enabled(): def xformers_enabled():
global directml_enabled global directml_enabled
global cpu_state global cpu_state
@@ -1087,6 +969,12 @@ def pytorch_attention_flash_attention():
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
return False return False
def mac_version():
try:
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
except:
return None
def force_upcast_attention_dtype(): def force_upcast_attention_dtype():
upcast = args.force_upcast_attention upcast = args.force_upcast_attention
@@ -1290,9 +1178,6 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False return False
def supports_fp8_compute(device=None): def supports_fp8_compute(device=None):
if args.supports_fp8_compute:
return True
if not is_nvidia(): if not is_nvidia():
return False return False
@@ -1321,41 +1206,13 @@ def soft_empty_cache(force=False):
torch.xpu.empty_cache() torch.xpu.empty_cache()
elif is_ascend_npu(): elif is_ascend_npu():
torch.npu.empty_cache() torch.npu.empty_cache()
elif is_mlu():
torch.mlu.empty_cache()
elif torch.cuda.is_available(): elif torch.cuda.is_available():
torch.cuda.empty_cache() torch.cuda.empty_cache()
torch.cuda.ipc_collect() torch.cuda.ipc_collect()
def unload_all_models(): def unload_all_models():
for device in get_all_torch_devices(): free_memory(1e30, get_torch_device())
free_memory(1e30, device)
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
'Unload only model and its clones - primarily for multigpu cloning purposes.'
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
additional_models = []
if unload_additional_models:
additional_models = model.get_nested_additional_models()
keep_loaded = []
for loaded_model in initial_keep_loaded:
if loaded_model.model is not None:
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
continue
# check additional models if they are a match
skip = False
for add_model in additional_models:
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
skip = True
break
if skip:
continue
keep_loaded.append(loaded_model)
if not all_devices:
free_memory(1e30, get_torch_device(), keep_loaded)
else:
for device in get_all_torch_devices():
free_memory(1e30, device, keep_loaded)
#TODO: might be cleaner to put this somewhere else #TODO: might be cleaner to put this somewhere else
import threading import threading

View File

@@ -84,15 +84,12 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
def create_model_options_clone(orig_model_options: dict): def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options) return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches, copy_tuples=False): def create_hook_patches_clone(orig_hook_patches):
new_hook_patches = {} new_hook_patches = {}
for hook_ref in orig_hook_patches: for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {} new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]: for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:] new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
if copy_tuples:
for i in range(len(new_hook_patches[hook_ref][k])):
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
return new_hook_patches return new_hook_patches
def wipe_lowvram_weight(m): def wipe_lowvram_weight(m):
@@ -243,9 +240,6 @@ class ModelPatcher:
self.is_clip = False self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'): if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0 self.model.model_loaded_weight_memory = 0
@@ -324,92 +318,18 @@ class ModelPatcher:
n.is_clip = self.is_clip n.is_clip = self.is_clip
n.hook_mode = self.hook_mode n.hook_mode = self.hook_mode
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE): for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n) callback(self, n)
return n return n
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
comfy.model_management.unload_model_and_clones(self)
n = self.clone()
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled
if models_cache is None:
models_cache = {}
for key, model_list in n.additional_models.items():
for i in range(len(model_list)):
add_model = n.additional_models[key][i]
if add_model.clone_base_uuid not in models_cache:
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
callback(self, n)
return n
def match_multigpu_clones(self):
multigpu_models = self.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
new_multigpu_models = []
for mm in multigpu_models:
# clone main model, but bring over relevant props from existing multigpu clone
n = self.clone()
n.load_device = mm.load_device
n.backup = mm.backup
n.object_patches_backup = mm.object_patches_backup
n.hook_backup = mm.hook_backup
n.model = mm.model
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
n.remove_additional_models("multigpu")
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
# figure out which additional models are not present in multigpu clone
models_cache = {}
for mm_add_model in mm.get_additional_models():
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
remove_models_uuids = set(list(models_cache.keys()))
for key, model_list in orig_additional_models.items():
for orig_add_model in model_list:
if orig_add_model.clone_base_uuid not in models_cache:
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
existing_list = n.get_additional_models_with_key(key)
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
n.set_additional_models(key, existing_list)
if orig_add_model.clone_base_uuid in remove_models_uuids:
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
# remove duplicate additional models
for key, model_list in n.additional_models.items():
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
n.set_additional_models(key, new_model_list)
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
callback(self, n)
new_multigpu_models.append(n)
self.set_additional_models("multigpu", new_multigpu_models)
def is_clone(self, other): def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model: if hasattr(other, 'model') and self.model is other.model:
return True return True
return False return False
def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False): def clone_has_same_weights(self, clone: 'ModelPatcher'):
if allow_multigpu: if not self.is_clone(clone):
if self.clone_base_uuid != clone.clone_base_uuid: return False
return False
else:
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks: if self.current_hooks != clone.current_hooks:
return False return False
@@ -827,7 +747,6 @@ class ModelPatcher:
def partially_unload(self, device_to, memory_to_free=0): def partially_unload(self, device_to, memory_to_free=0):
with self.use_ejected(): with self.use_ejected():
hooks_unpatched = False
memory_freed = 0 memory_freed = 0
patch_counter = 0 patch_counter = 0
unload_list = self._load_list() unload_list = self._load_list()
@@ -851,10 +770,6 @@ class ModelPatcher:
move_weight = False move_weight = False
break break
if not hooks_unpatched:
self.unpatch_hooks()
hooks_unpatched = True
if bk.inplace_update: if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight) comfy.utils.copy_to_param(self.model, key, bk.weight)
else: else:
@@ -1009,7 +924,7 @@ class ModelPatcher:
return self.additional_models.get(key, []) return self.additional_models.get(key, [])
def get_additional_models(self): def get_additional_models(self):
all_models: list[ModelPatcher] = [] all_models = []
for models in self.additional_models.values(): for models in self.additional_models.values():
all_models.extend(models) all_models.extend(models)
return all_models return all_models
@@ -1063,13 +978,9 @@ class ModelPatcher:
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN): for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self) callback(self)
def prepare_state(self, timestep, model_options, ignore_multigpu=False): def prepare_state(self, timestep):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE): for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep, model_options, ignore_multigpu) callback(self, timestep)
if not ignore_multigpu and "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p.prepare_state(timestep, model_options, ignore_multigpu=True)
def restore_hook_patches(self): def restore_hook_patches(self):
if self.hook_patches_backup is not None: if self.hook_patches_backup is not None:
@@ -1082,18 +993,12 @@ class ModelPatcher:
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]): def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0] curr_t = t[0]
reset_current_hooks = False reset_current_hooks = False
multigpu_kf_changed_cache = None
transformer_options = model_options.get("transformer_options", {}) transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks: for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options) changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref; # if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling # this will cause the weights to be recalculated when sampling
if changed: if changed:
# cache changed for multigpu usage
if "multigpu_clones" in model_options:
if multigpu_kf_changed_cache is None:
multigpu_kf_changed_cache = []
multigpu_kf_changed_cache.append(hook)
# reset current_hooks if contains hook that changed # reset current_hooks if contains hook that changed
if self.current_hooks is not None: if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks: for current_hook in self.current_hooks.hooks:
@@ -1105,28 +1010,6 @@ class ModelPatcher:
self.cached_hook_patches.pop(cached_group) self.cached_hook_patches.pop(cached_group)
if reset_current_hooks: if reset_current_hooks:
self.patch_hooks(None) self.patch_hooks(None)
if "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
if kf_changed_cache is None:
return
reset_current_hooks = False
# reset current_hooks if contains hook that changed
for hook in kf_changed_cache:
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None, def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
registered: comfy.hooks.HookGroup = None): registered: comfy.hooks.HookGroup = None):
@@ -1206,6 +1089,7 @@ class ModelPatcher:
def patch_hooks(self, hooks: comfy.hooks.HookGroup): def patch_hooks(self, hooks: comfy.hooks.HookGroup):
with self.use_ejected(): with self.use_ejected():
self.unpatch_hooks()
if hooks is not None: if hooks is not None:
model_sd_keys = list(self.model_state_dict().keys()) model_sd_keys = list(self.model_state_dict().keys())
memory_counter = None memory_counter = None
@@ -1216,16 +1100,12 @@ class ModelPatcher:
# if have cached weights for hooks, use it # if have cached weights for hooks, use it
cached_weights = self.cached_hook_patches.get(hooks, None) cached_weights = self.cached_hook_patches.get(hooks, None)
if cached_weights is not None: if cached_weights is not None:
model_sd_keys_set = set(model_sd_keys)
for key in cached_weights: for key in cached_weights:
if key not in model_sd_keys: if key not in model_sd_keys:
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}") logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
continue continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter) self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
model_sd_keys_set.remove(key)
self.unpatch_hooks(model_sd_keys_set)
else: else:
self.unpatch_hooks()
relevant_patches = self.get_combined_hook_patches(hooks=hooks) relevant_patches = self.get_combined_hook_patches(hooks=hooks)
original_weights = None original_weights = None
if len(relevant_patches) > 0: if len(relevant_patches) > 0:
@@ -1236,8 +1116,6 @@ class ModelPatcher:
continue continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights, self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
memory_counter=memory_counter) memory_counter=memory_counter)
else:
self.unpatch_hooks()
self.current_hooks = hooks self.current_hooks = hooks
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter): def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
@@ -1294,23 +1172,17 @@ class ModelPatcher:
del out_weight del out_weight
del weight del weight
def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None: def unpatch_hooks(self) -> None:
with self.use_ejected(): with self.use_ejected():
if len(self.hook_backup) == 0: if len(self.hook_backup) == 0:
self.current_hooks = None self.current_hooks = None
return return
keys = list(self.hook_backup.keys()) keys = list(self.hook_backup.keys())
if whitelist_keys_set: for k in keys:
for k in keys: comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
if k in whitelist_keys_set:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.pop(k)
else:
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.clear() self.hook_backup.clear()
self.current_hooks = None self.current_hooks = None
def clean_hooks(self): def clean_hooks(self):
self.unpatch_hooks() self.unpatch_hooks()

View File

@@ -69,15 +69,6 @@ class CONST:
sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1)) sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1))
return latent / (1.0 - sigma) return latent / (1.0 - sigma)
class X0(EPS):
def calculate_denoised(self, sigma, model_output, model_input):
return model_output
class IMG_TO_IMG(X0):
def calculate_input(self, sigma, noise):
return noise
class ModelSamplingDiscrete(torch.nn.Module): class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None, zsnr=None): def __init__(self, model_config=None, zsnr=None):
super().__init__() super().__init__()
@@ -111,14 +102,13 @@ class ModelSamplingDiscrete(torch.nn.Module):
self.num_timesteps = int(timesteps) self.num_timesteps = int(timesteps)
self.linear_start = linear_start self.linear_start = linear_start
self.linear_end = linear_end self.linear_end = linear_end
self.zsnr = zsnr
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
if self.zsnr: if zsnr:
sigmas = rescale_zero_terminal_snr_sigmas(sigmas) sigmas = rescale_zero_terminal_snr_sigmas(sigmas)
self.set_sigmas(sigmas) self.set_sigmas(sigmas)

View File

@@ -1,167 +0,0 @@
from __future__ import annotations
import torch
import logging
from collections import namedtuple
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.utils
import comfy.patcher_extension
import comfy.model_management
class GPUOptions:
def __init__(self, device_index: int, relative_speed: float):
self.device_index = device_index
self.relative_speed = relative_speed
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
}
class GPUOptionsGroup:
def __init__(self):
self.options: dict[int, GPUOptions] = {}
def add(self, info: GPUOptions):
self.options[info.device_index] = info
def clone(self):
c = GPUOptionsGroup()
for opt in self.options.values():
c.add(opt)
return c
def register(self, model: ModelPatcher):
opts_dict = {}
# get devices that are valid for this model
devices: list[torch.device] = [model.load_device]
for extra_model in model.get_additional_models_with_key("multigpu"):
extra_model: ModelPatcher
devices.append(extra_model.load_device)
# create dictionary with actual device mapped to its GPUOptions
device_opts_list: list[GPUOptions] = []
for device in devices:
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
opts_dict[device] = device_opts.create_dict()
device_opts_list.append(device_opts)
# make relative_speed relative to 1.0
min_speed = min([x.relative_speed for x in device_opts_list])
for value in opts_dict.values():
value['relative_speed'] /= min_speed
model.model_options['multigpu_options'] = opts_dict
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
model = model.clone()
# check if multigpu is already prepared - get the load devices from them if possible to exclude
skip_devices = set()
multigpu_models = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
for mm in multigpu_models:
skip_devices.add(mm.load_device)
skip_devices = list(skip_devices)
full_extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
limit_extra_devices = full_extra_devices[:max_gpus-1]
extra_devices = limit_extra_devices.copy()
# exclude skipped devices
for skip in skip_devices:
if skip in extra_devices:
extra_devices.remove(skip)
# create new deepclones
if len(extra_devices) > 0:
for device in extra_devices:
device_patcher = None
if reuse_loaded:
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
for lm in loaded_models:
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
multigpu_models.append(device_patcher)
model.set_additional_models("multigpu", multigpu_models)
model.match_multigpu_clones()
if gpu_options is None:
gpu_options = GPUOptionsGroup()
gpu_options.register(model)
else:
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
# TODO: only keep model clones that don't go 'past' the intended max_gpu count
# multigpu_models = model.get_additional_models_with_key("multigpu")
# new_multigpu_models = []
# for m in multigpu_models:
# if m.load_device in limit_extra_devices:
# new_multigpu_models.append(m)
# model.set_additional_models("multigpu", new_multigpu_models)
# persist skip_devices for use in sampling code
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
# model.model_options["multigpu_skip_devices"] = skip_devices
return model
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
opts_dict = model_options['multigpu_options']
devices = list(model_options['multigpu_clones'].keys())
speed_per_device = []
work_per_device = []
# get sum of each device's relative_speed
total_speed = 0.0
for opts in opts_dict.values():
total_speed += opts['relative_speed']
# get relative work for each device;
# obtained by w = (W*r)/R
for device in devices:
relative_speed = opts_dict[device]['relative_speed']
relative_work = (total_work*relative_speed) / total_speed
speed_per_device.append(relative_speed)
work_per_device.append(relative_work)
# relative work must be expressed in whole numbers, but likely is a decimal;
# perform rounding while maintaining total sum equal to total work (sum of relative works)
work_per_device = round_preserved(work_per_device)
dict_work_per_device = {}
for device, relative_work in zip(devices, work_per_device):
dict_work_per_device[device] = relative_work
if not return_idle_time:
return LoadBalance(dict_work_per_device, None)
# divide relative work by relative speed to get estimated completion time of said work by each device;
# time here is relative and does not correspond to real-world units
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
# calculate relative time spent by the devices waiting on each other after their work is completed
idle_time = abs(min(completion_time) - max(completion_time))
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):
'Round all values in a list, preserving the combined sum of values.'
# get floor of values; casting to int does it too
floored = [int(x) for x in values]
total_floored = sum(floored)
# get remainder to distribute
remainder = round(sum(values)) - total_floored
# pair values with fractional portions
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
# sort by fractional part in descending order
fractional.sort(key=lambda x: x[1], reverse=True)
# distribute the remainder
for i in range(remainder):
index = fractional[i][0]
floored[index] += 1
return floored

View File

@@ -17,12 +17,9 @@
""" """
import torch import torch
import logging
import comfy.model_management import comfy.model_management
from comfy.cli_args import args, PerformanceFeature from comfy.cli_args import args, PerformanceFeature
import comfy.float import comfy.float
import comfy.rmsnorm
import contextlib
cast_to = comfy.model_management.cast_to #TODO: remove once no more references cast_to = comfy.model_management.cast_to #TODO: remove once no more references
@@ -38,31 +35,20 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if device is None: if device is None:
device = input.device device = input.device
offload_stream = comfy.model_management.get_offload_stream(device)
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
bias = None bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device) non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None: if s.bias is not None:
has_function = len(s.bias_function) > 0 has_function = len(s.bias_function) > 0
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream) bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function: if has_function:
with wf_context: for f in s.bias_function:
for f in s.bias_function: bias = f(bias)
bias = f(bias)
has_function = len(s.weight_function) > 0 has_function = len(s.weight_function) > 0
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream) weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function: if has_function:
with wf_context: for f in s.weight_function:
for f in s.weight_function: weight = f(weight)
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
return weight, bias return weight, bias
class CastWeightBiasOp: class CastWeightBiasOp:
@@ -159,25 +145,6 @@ class disable_weight_init:
else: else:
return super().forward(*args, **kwargs) return super().forward(*args, **kwargs)
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
def reset_parameters(self):
self.bias = None
return None
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
else:
weight = None
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
def reset_parameters(self): def reset_parameters(self):
return None return None
@@ -275,9 +242,6 @@ class manual_cast(disable_weight_init):
class ConvTranspose1d(disable_weight_init.ConvTranspose1d): class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
comfy_cast_weights = True comfy_cast_weights = True
class RMSNorm(disable_weight_init.RMSNorm):
comfy_cast_weights = True
class Embedding(disable_weight_init.Embedding): class Embedding(disable_weight_init.Embedding):
comfy_cast_weights = True comfy_cast_weights = True
@@ -308,10 +272,10 @@ def fp8_linear(self, input):
if scale_input is None: if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32) scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input) input = torch.clamp(input, min=-448, max=448, out=input)
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous() input = input.reshape(-1, input_shape[2]).to(dtype)
else: else:
scale_input = scale_input.to(input.device) scale_input = scale_input.to(input.device)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous() input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype)
if bias is not None: if bias is not None:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight) o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
@@ -344,7 +308,6 @@ class fp8_ops(manual_cast):
return torch.nn.functional.linear(input, weight, bias) return torch.nn.functional.linear(input, weight, bias)
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast): class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear): class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
@@ -392,29 +355,10 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
return scaled_fp8_op return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
CUBLAS_IS_AVAILABLE = True
except ImportError:
pass
if CUBLAS_IS_AVAILABLE:
class cublas_ops(disable_weight_init):
class Linear(CublasLinear, disable_weight_init.Linear):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
return super().forward(input)
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None): def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None: if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8) return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
if ( if (
fp8_compute and fp8_compute and
@@ -423,15 +367,6 @@ def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_
): ):
return fp8_ops return fp8_ops
if (
PerformanceFeature.CublasOps in args.fast and
CUBLAS_IS_AVAILABLE and
weight_dtype == torch.float16 and
(compute_dtype == torch.float16 or compute_dtype is None)
):
logging.info("Using cublas ops")
return cublas_ops
if compute_dtype is None or weight_dtype == compute_dtype: if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init return disable_weight_init

View File

@@ -3,8 +3,6 @@ from typing import Callable
class CallbacksMP: class CallbacksMP:
ON_CLONE = "on_clone" ON_CLONE = "on_clone"
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
ON_LOAD = "on_load_after" ON_LOAD = "on_load_after"
ON_DETACH = "on_detach_after" ON_DETACH = "on_detach_after"
ON_CLEANUP = "on_cleanup" ON_CLEANUP = "on_cleanup"
@@ -50,7 +48,6 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
class WrappersMP: class WrappersMP:
OUTER_SAMPLE = "outer_sample" OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample" SAMPLER_SAMPLE = "sampler_sample"
CALC_COND_BATCH = "calc_cond_batch" CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model" APPLY_MODEL = "apply_model"

View File

@@ -1,55 +0,0 @@
import torch
import comfy.model_management
import numbers
RMSNorm = None
try:
rms_norm_torch = torch.nn.functional.rms_norm
RMSNorm = torch.nn.RMSNorm
except:
rms_norm_torch = None
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device)
if RMSNorm is None:
class RMSNorm(torch.nn.Module):
def __init__(
self,
normalized_shape,
eps=1e-6,
elementwise_affine=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = torch.nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.bias = None
def forward(self, x):
return rms_norm(x, self.weight, self.eps)

View File

@@ -1,11 +1,7 @@
from __future__ import annotations from __future__ import annotations
import torch
import uuid import uuid
import math
import collections
import comfy.model_management import comfy.model_management
import comfy.conds import comfy.conds
import comfy.model_patcher
import comfy.utils import comfy.utils
import comfy.hooks import comfy.hooks
import comfy.patcher_extension import comfy.patcher_extension
@@ -108,78 +104,15 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'): if hasattr(m, 'cleanup'):
m.cleanup() m.cleanup()
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) == 0:
return
extra_devices = [x.load_device for x in multigpu_models]
# handle controlnets
controlnets: set[ControlBase] = set()
for k in conds:
for kk in conds[k]:
if 'control' in kk:
controlnets.add(kk['control'])
if len(controlnets) > 0:
# first, unload all controlnet clones
for cnet in list(controlnets):
cnet_models = cnet.get_models()
for cm in cnet_models:
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
# next, make sure each controlnet has a deepclone for all relevant devices
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
for device in extra_devices:
if device not in curr_cnet.multigpu_clones:
curr_cnet.deepclone_multigpu(device, autoregister=True)
curr_cnet = curr_cnet.previous_controlnet
# since all device clones are now present, recreate the linked list for cloned cnets per device
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
prev_cnet = curr_cnet.previous_controlnet
for device in extra_devices:
device_cnet = curr_cnet.get_instance_for_device(device)
prev_device_cnet = None
if prev_cnet is not None:
prev_device_cnet = prev_cnet.get_instance_for_device(device)
device_cnet.set_previous_controlnet(prev_device_cnet)
curr_cnet = prev_cnet
# potentially handle gligen - since not widely used, ignored for now
def estimate_memory(model, noise_shape, conds):
cond_shapes = collections.defaultdict(list)
cond_shapes_min = {}
for _, cs in conds.items():
for cond in cs:
for k, v in model.model.extra_conds_shapes(**cond).items():
cond_shapes[k].append(v)
if cond_shapes_min.get(k, None) is None:
cond_shapes_min[k] = [v]
elif math.prod(v) > math.prod(cond_shapes_min[k][0]):
cond_shapes_min[k] = [v]
memory_required = model.model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:]), cond_shapes=cond_shapes)
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor( real_model: BaseModel = None
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
model.match_multigpu_clones()
preprocess_multigpu_conds(conds, model, model_options)
models, inference_memory = get_additional_models(conds, model.model_dtype()) models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options) models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update? models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds) memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory) minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model = model.model real_model = model.model
return real_model, conds, models return real_model, conds, models
@@ -193,7 +126,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup)) cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict): def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
''' '''
Registers hooks from conds. Registers hooks from conds.
''' '''
@@ -226,18 +159,3 @@ def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name], comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False) copy_dict1=False)
return to_load_options return to_load_options
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
'''
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
'''
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
if len(multigpu_patchers) > 0:
multigpu_dict: dict[torch.device, ModelPatcher] = {}
multigpu_dict[model_patcher.load_device] = model_patcher
for x in multigpu_patchers:
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
multigpu_dict[x.load_device] = x
model_options["multigpu_clones"] = multigpu_dict
return multigpu_patchers

View File

@@ -1,6 +1,4 @@
from __future__ import annotations from __future__ import annotations
import comfy.model_management
from .k_diffusion import sampling as k_diffusion_sampling from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc from .extra_samplers import uni_pc
from typing import TYPE_CHECKING, Callable, NamedTuple from typing import TYPE_CHECKING, Callable, NamedTuple
@@ -20,13 +18,6 @@ import comfy.patcher_extension
import comfy.hooks import comfy.hooks
import scipy.stats import scipy.stats
import numpy import numpy
import threading
def add_area_dims(area, num_dims):
while (len(area) // 2) < num_dims:
area = [2147483648] + area[:len(area) // 2] + [0] + area[len(area) // 2:]
return area
def get_area_and_mult(conds, x_in, timestep_in): def get_area_and_mult(conds, x_in, timestep_in):
dims = tuple(x_in.shape[2:]) dims = tuple(x_in.shape[2:])
@@ -43,9 +34,8 @@ def get_area_and_mult(conds, x_in, timestep_in):
return None return None
if 'area' in conds: if 'area' in conds:
area = list(conds['area']) area = list(conds['area'])
area = add_area_dims(area, len(dims)) while (len(area) // 2) < len(dims):
if (len(area) // 2) > len(dims): area = [2147483648] + area[:len(area) // 2] + [0] + area[len(area) // 2:]
area = area[:len(dims)] + area[len(area) // 2:(len(area) // 2) + len(dims)]
if 'strength' in conds: if 'strength' in conds:
strength = conds['strength'] strength = conds['strength']
@@ -63,7 +53,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
if "mask_strength" in conds: if "mask_strength" in conds:
mask_strength = conds["mask_strength"] mask_strength = conds["mask_strength"]
mask = conds['mask'] mask = conds['mask']
assert (mask.shape[1:] == x_in.shape[2:]) assert(mask.shape[1:] == x_in.shape[2:])
mask = mask[:input_x.shape[0]] mask = mask[:input_x.shape[0]]
if area is not None: if area is not None:
@@ -77,17 +67,16 @@ def get_area_and_mult(conds, x_in, timestep_in):
mult = mask * strength mult = mask * strength
if 'mask' not in conds and area is not None: if 'mask' not in conds and area is not None:
fuzz = 8 rr = 8
for i in range(len(dims)): for i in range(len(dims)):
rr = min(fuzz, mult.shape[2 + i] // 4)
if area[len(dims) + i] != 0: if area[len(dims) + i] != 0:
for t in range(rr): for t in range(rr):
m = mult.narrow(i + 2, t, 1) m = mult.narrow(i + 2, t, 1)
m *= ((1.0 / rr) * (t + 1)) m *= ((1.0/rr) * (t + 1))
if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]: if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
for t in range(rr): for t in range(rr):
m = mult.narrow(i + 2, area[i] - 1 - t, 1) m = mult.narrow(i + 2, area[i] - 1 - t, 1)
m *= ((1.0 / rr) * (t + 1)) m *= ((1.0/rr) * (t + 1))
conditioning = {} conditioning = {}
model_conds = conds["model_conds"] model_conds = conds["model_conds"]
@@ -143,7 +132,7 @@ def can_concat_cond(c1, c2):
return cond_equal_size(c1.conditioning, c2.conditioning) return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list, device=None): def cond_cat(c_list):
temp = {} temp = {}
for x in c_list: for x in c_list:
for k in x: for k in x:
@@ -155,8 +144,6 @@ def cond_cat(c_list, device=None):
for k in temp: for k in temp:
conds = temp[k] conds = temp[k]
out[k] = conds[0].concat(conds[1:]) out[k] = conds[0].concat(conds[1:])
if device is not None and hasattr(out[k], 'to'):
out[k] = out[k].to(device)
return out return out
@@ -210,9 +197,7 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
) )
return executor.execute(model, conds, x_in, timestep, model_options) return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]): def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
if 'multigpu_clones' in model_options:
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
out_conds = [] out_conds = []
out_counts = [] out_counts = []
# separate conds by matching hooks # separate conds by matching hooks
@@ -244,7 +229,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if has_default_conds: if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options) finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options) model.current_patcher.prepare_state(timestep)
# run every hooked_to_run separately # run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items(): for hooks, to_run in hooked_to_run.items():
@@ -263,13 +248,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
for i in range(1, len(to_batch_temp) + 1): for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i] batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
cond_shapes = collections.defaultdict(list) if model.memory_required(input_shape) * 1.5 < free_memory:
for tt in batch_amount:
cond = {k: v.size() for k, v in to_run[tt][0].conditioning.items()}
for k, v in to_run[tt][0].conditioning.items():
cond_shapes[k].append(v.size())
if model.memory_required(input_shape, cond_shapes=cond_shapes) * 1.5 < free_memory:
to_batch = batch_amount to_batch = batch_amount
break break
@@ -352,190 +331,6 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
return out_conds return out_conds
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
out_conds = []
out_counts = []
# separate conds by matching hooks
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
default_conds = []
has_default_conds = False
output_device = x_in.device
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
default_c = []
if cond is not None:
for x in cond:
if 'default' in x:
default_c.append(x)
has_default_conds = True
continue
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c)
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
index_device = 0
current_device = devices[index_device]
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
while len(to_run) > 0:
current_device = devices[index_device % len(devices)]
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
# keep track of conds currently scheduled onto this device
batched_to_run_length = 0
for btr in batched_to_run:
batched_to_run_length += len(btr[1])
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
# make sure not over conds_per_device limit when creating temp batch
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
conds_to_batch = []
for x in to_batch:
conds_to_batch.append(to_run.pop(x))
batched_to_run_length += len(conds_to_batch)
batched_to_run.append((hooks, conds_to_batch))
if batched_to_run_length >= conds_per_device:
index_device += 1
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
model_current: BaseModel = model_options["multigpu_clones"][device].model
# run every hooked_to_run separately
with torch.no_grad():
for hooks, to_batch in batch_tuple:
input_x = []
mult = []
c = []
cond_or_uncond = []
uuids = []
area = []
control: ControlBase = None
patches = None
for x in to_batch:
o = x
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
uuids.append(p.uuid)
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x).to(device)
c = cond_cat(c, device=device)
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
if 'transformer_options' in model_options:
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
model_options['transformer_options'],
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device
cast_transformer_options(transformer_options, device=device)
c['transformer_options'] = transformer_options
if control is not None:
device_control = control.get_instance_for_device(device)
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
else:
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
results: list[thread_result] = []
threads: list[threading.Thread] = []
for device, batch_tuple in device_batched_hooked_to_run.items():
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()
for output, mult, area, batch_chunks, cond_or_uncond in results:
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]
return out_conds
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.") logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options)) return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
@@ -756,37 +551,25 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.") logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device) return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)
def create_cond_with_same_area_if_none(conds, c): def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
if 'area' not in c: if 'area' not in c:
return return
def area_inside(a, area_cmp):
a = add_area_dims(a, len(area_cmp) // 2)
area_cmp = add_area_dims(area_cmp, len(a) // 2)
a_l = len(a) // 2
area_cmp_l = len(area_cmp) // 2
for i in range(min(a_l, area_cmp_l)):
if a[a_l + i] < area_cmp[area_cmp_l + i]:
return False
for i in range(min(a_l, area_cmp_l)):
if (a[i] + a[a_l + i]) > (area_cmp[i] + area_cmp[area_cmp_l + i]):
return False
return True
c_area = c['area'] c_area = c['area']
smallest = None smallest = None
for x in conds: for x in conds:
if 'area' in x: if 'area' in x:
a = x['area'] a = x['area']
if area_inside(c_area, a): if c_area[2] >= a[2] and c_area[3] >= a[3]:
if smallest is None: if a[0] + a[2] >= c_area[0] + c_area[2]:
smallest = x if a[1] + a[3] >= c_area[1] + c_area[3]:
elif 'area' not in smallest: if smallest is None:
smallest = x smallest = x
else: elif 'area' not in smallest:
if math.prod(smallest['area'][:len(smallest['area']) // 2]) > math.prod(a[:len(a) // 2]): smallest = x
smallest = x else:
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
smallest = x
else: else:
if smallest is None: if smallest is None:
smallest = x smallest = x
@@ -833,8 +616,6 @@ def pre_run_control(model, conds):
percent_to_timestep_function = lambda a: s.percent_to_sigma(a) percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
if 'control' in x: if 'control' in x:
x['control'].pre_run(model, percent_to_timestep_function) x['control'].pre_run(model, percent_to_timestep_function)
for device_cnet in x['control'].multigpu_clones.values():
device_cnet.pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = [] cond_cnets = []
@@ -909,7 +690,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp", "ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"] "gradient_estimation"]
class KSAMPLER(Sampler): class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}): def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
@@ -1077,9 +858,7 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
to_load_options = model_options.get("to_load_options", None) to_load_options = model_options.get("to_load_options", None)
if to_load_options is None: if to_load_options is None:
return return
cast_transformer_options(to_load_options, device, dtype)
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
casts = [] casts = []
if device is not None: if device is not None:
casts.append(device) casts.append(device)
@@ -1088,17 +867,18 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# if nothing to apply, do nothing # if nothing to apply, do nothing
if len(casts) == 0: if len(casts) == 0:
return return
# try to call .to on patches # try to call .to on patches
if "patches" in transformer_options: if "patches" in to_load_options:
patches = transformer_options["patches"] patches = to_load_options["patches"]
for name in patches: for name in patches:
patch_list = patches[name] patch_list = patches[name]
for i in range(len(patch_list)): for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"): if hasattr(patch_list[i], "to"):
for cast in casts: for cast in casts:
patch_list[i] = patch_list[i].to(cast) patch_list[i] = patch_list[i].to(cast)
if "patches_replace" in transformer_options: if "patches_replace" in to_load_options:
patches = transformer_options["patches_replace"] patches = to_load_options["patches_replace"]
for name in patches: for name in patches:
patch_list = patches[name] patch_list = patches[name]
for k in patch_list: for k in patch_list:
@@ -1108,8 +888,8 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# try to call .to on any wrappers/callbacks # try to call .to on any wrappers/callbacks
wrappers_and_callbacks = ["wrappers", "callbacks"] wrappers_and_callbacks = ["wrappers", "callbacks"]
for wc_name in wrappers_and_callbacks: for wc_name in wrappers_and_callbacks:
if wc_name in transformer_options: if wc_name in to_load_options:
wc: dict[str, list] = transformer_options[wc_name] wc: dict[str, list] = to_load_options[wc_name]
for wc_dict in wc.values(): for wc_dict in wc.values():
for wc_list in wc_dict.values(): for wc_list in wc_dict.values():
for i in range(len(wc_list)): for i in range(len(wc_list)):
@@ -1117,6 +897,7 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
for cast in casts: for cast in casts:
wc_list[i] = wc_list[i].to(cast) wc_list[i] = wc_list[i].to(cast)
class CFGGuider: class CFGGuider:
def __init__(self, model_patcher: ModelPatcher): def __init__(self, model_patcher: ModelPatcher):
self.model_patcher = model_patcher self.model_patcher = model_patcher
@@ -1162,8 +943,6 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options) self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device device = self.model_patcher.load_device
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
if denoise_mask is not None: if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
@@ -1174,13 +953,9 @@ class CFGGuider:
try: try:
self.model_patcher.pre_run() self.model_patcher.pre_run()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
finally: finally:
self.model_patcher.cleanup() self.model_patcher.cleanup()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model del self.inner_model

View File

@@ -1,5 +1,4 @@
from __future__ import annotations from __future__ import annotations
import json
import torch import torch
from enum import Enum from enum import Enum
import logging import logging
@@ -14,8 +13,6 @@ import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae import comfy.ldm.wan.vae
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import yaml import yaml
import math import math
@@ -42,8 +39,6 @@ import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2 import comfy.text_encoders.lumina2
import comfy.text_encoders.wan import comfy.text_encoders.wan
import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.model_patcher import comfy.model_patcher
import comfy.lora import comfy.lora
@@ -122,7 +117,6 @@ class CLIP:
self.layer_idx = None self.layer_idx = None
self.use_clip_schedule = False self.use_clip_schedule = False
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype)) logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
self.tokenizer_options = {}
def clone(self): def clone(self):
n = CLIP(no_init=True) n = CLIP(no_init=True)
@@ -130,7 +124,6 @@ class CLIP:
n.cond_stage_model = self.cond_stage_model n.cond_stage_model = self.cond_stage_model
n.tokenizer = self.tokenizer n.tokenizer = self.tokenizer
n.layer_idx = self.layer_idx n.layer_idx = self.layer_idx
n.tokenizer_options = self.tokenizer_options.copy()
n.use_clip_schedule = self.use_clip_schedule n.use_clip_schedule = self.use_clip_schedule
n.apply_hooks_to_conds = self.apply_hooks_to_conds n.apply_hooks_to_conds = self.apply_hooks_to_conds
return n return n
@@ -138,19 +131,11 @@ class CLIP:
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model) return self.patcher.add_patches(patches, strength_patch, strength_model)
def set_tokenizer_option(self, option_name, value):
self.tokenizer_options[option_name] = value
def clip_layer(self, layer_idx): def clip_layer(self, layer_idx):
self.layer_idx = layer_idx self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False, **kwargs): def tokenize(self, text, return_word_ids=False):
tokenizer_options = kwargs.get("tokenizer_options", {}) return self.tokenizer.tokenize_with_weights(text, return_word_ids)
if len(self.tokenizer_options) > 0:
tokenizer_options = {**self.tokenizer_options, **tokenizer_options}
if len(tokenizer_options) > 0:
kwargs["tokenizer_options"] = tokenizer_options
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
def add_hooks_to_dict(self, pooled_dict: dict[str]): def add_hooks_to_dict(self, pooled_dict: dict[str]):
if self.apply_hooks_to_conds: if self.apply_hooks_to_conds:
@@ -264,7 +249,7 @@ class CLIP:
return self.patcher.get_key_patches() return self.patcher.get_key_patches()
class VAE: class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None, metadata=None): def __init__(self, sd=None, device=None, config=None, dtype=None):
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd) sd = diffusers_convert.convert_vae_state_dict(sd)
@@ -278,11 +263,9 @@ class VAE:
self.process_input = lambda image: image * 2.0 - 1.0 self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0) self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32] self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.downscale_index_formula = None self.downscale_index_formula = None
self.upscale_index_formula = None self.upscale_index_formula = None
self.extra_1d_channel = None
if config is None: if config is None:
if "decoder.mid.block_1.mix_factor" in sd: if "decoder.mid.block_1.mix_factor" in sd:
@@ -352,7 +335,6 @@ class VAE:
self.process_output = lambda audio: audio self.process_output = lambda audio: audio
self.process_input = lambda audio: audio self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.disable_offload = True
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd: if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."}) sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
@@ -375,12 +357,7 @@ class VAE:
version = 0 version = 0
elif tensor_conv1.shape[0] == 1024: elif tensor_conv1.shape[0] == 1024:
version = 1 version = 1
if "encoder.down_blocks.1.conv.conv.bias" in sd: self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version)
version = 2
vae_config = None
if metadata is not None and "config" in metadata:
vae_config = json.loads(metadata["config"]).get("vae", None)
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config)
self.latent_channels = 128 self.latent_channels = 128
self.latent_dim = 3 self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
@@ -429,31 +406,6 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype) self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
ln_post = "geo_decoder.ln_post.weight" in sd
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
self.latent_channels = 8
self.output_channels = 2
self.upscale_ratio = 4096
self.downscale_ratio = 4096
self.latent_dim = 2
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
else: else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.") logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None self.first_stage_model = None
@@ -482,10 +434,6 @@ class VAE:
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype)) logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
def throw_exception_if_invalid(self):
if self.first_stage_model is None:
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
def vae_encode_crop_pixels(self, pixels): def vae_encode_crop_pixels(self, pixels):
downscale_ratio = self.spacial_compression_encode() downscale_ratio = self.spacial_compression_encode()
@@ -512,13 +460,7 @@ class VAE:
return output return output
def decode_tiled_1d(self, samples, tile_x=128, overlap=32): def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
if samples.ndim == 3: decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
else:
og_shape = samples.shape
samples = samples.reshape((og_shape[0], og_shape[1] * og_shape[2], -1))
decode_fn = lambda a: self.first_stage_model.decode(a.reshape((-1, og_shape[1], og_shape[2], a.shape[-1])).to(self.vae_dtype).to(self.device)).float()
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device)) return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)): def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
@@ -538,49 +480,33 @@ class VAE:
samples /= 3.0 samples /= 3.0
return samples return samples
def encode_tiled_1d(self, samples, tile_x=256 * 2048, overlap=64 * 2048): def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
if self.latent_dim == 1: encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float() return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
out_channels = self.latent_channels
upscale_amount = 1 / self.downscale_ratio
else:
extra_channel_size = self.extra_1d_channel
out_channels = self.latent_channels * extra_channel_size
tile_x = tile_x // extra_channel_size
overlap = overlap // extra_channel_size
upscale_amount = 1 / self.downscale_ratio
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).reshape(1, out_channels, -1).float()
out = comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=self.output_device)
if self.latent_dim == 1:
return out
else:
return out.reshape(samples.shape[0], self.latent_channels, extra_channel_size, -1)
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)): def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float() encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device) return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
def decode(self, samples_in, vae_options={}): def decode(self, samples_in):
self.throw_exception_if_invalid()
pixel_samples = None pixel_samples = None
try: try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device) free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used) batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number) batch_number = max(1, batch_number)
for x in range(0, samples_in.shape[0], batch_number): for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
out = self.process_output(self.first_stage_model.decode(samples, **vae_options).to(self.output_device).float()) out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
if pixel_samples is None: if pixel_samples is None:
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device) pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
pixel_samples[x:x+batch_number] = out pixel_samples[x:x+batch_number] = out
except model_management.OOM_EXCEPTION: except model_management.OOM_EXCEPTION:
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
dims = samples_in.ndim - 2 dims = samples_in.ndim - 2
if dims == 1 or self.extra_1d_channel is not None: if dims == 1:
pixel_samples = self.decode_tiled_1d(samples_in) pixel_samples = self.decode_tiled_1d(samples_in)
elif dims == 2: elif dims == 2:
pixel_samples = self.decode_tiled_(samples_in) pixel_samples = self.decode_tiled_(samples_in)
@@ -593,9 +519,8 @@ class VAE:
return pixel_samples return pixel_samples
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None): def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) model_management.load_models_gpu([self.patcher], memory_required=memory_used)
dims = samples.ndim - 2 dims = samples.ndim - 2
args = {} args = {}
if tile_x is not None: if tile_x is not None:
@@ -622,14 +547,13 @@ class VAE:
return output.movedim(1, -1) return output.movedim(1, -1)
def encode(self, pixel_samples): def encode(self, pixel_samples):
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples) pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1) pixel_samples = pixel_samples.movedim(-1, 1)
if self.latent_dim == 3 and pixel_samples.ndim < 5: if self.latent_dim == 3 and pixel_samples.ndim < 5:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0) pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
try: try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device) free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used)) batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number) batch_number = max(1, batch_number)
@@ -647,7 +571,7 @@ class VAE:
tile = 256 tile = 256
overlap = tile // 4 overlap = tile // 4
samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap)) samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
elif self.latent_dim == 1 or self.extra_1d_channel is not None: elif self.latent_dim == 1:
samples = self.encode_tiled_1d(pixel_samples) samples = self.encode_tiled_1d(pixel_samples)
else: else:
samples = self.encode_tiled_(pixel_samples) samples = self.encode_tiled_(pixel_samples)
@@ -655,7 +579,6 @@ class VAE:
return samples return samples
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None): def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples) pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
dims = self.latent_dim dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1) pixel_samples = pixel_samples.movedim(-1, 1)
@@ -663,7 +586,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0) pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) model_management.load_models_gpu([self.patcher], memory_required=memory_used)
args = {} args = {}
if tile_x is not None: if tile_x is not None:
@@ -751,9 +674,6 @@ class CLIPType(Enum):
COSMOS = 11 COSMOS = 11
LUMINA2 = 12 LUMINA2 = 12
WAN = 13 WAN = 13
HIDREAM = 14
CHROMA = 15
ACE = 16
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@@ -842,9 +762,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.SD3: elif clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False) clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -858,17 +775,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.LTXV: elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA: elif clip_type == CLIPType.PIXART:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN: elif clip_type == CLIPType.WAN:
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
@@ -879,29 +792,16 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
elif te_model == TEModel.T5_BASE: elif te_model == TEModel.T5_BASE:
if clip_type == CLIPType.ACE or "spiece_model" in clip_data[0]: clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.clip = comfy.text_encoders.ace.AceT5Model clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
clip_target.tokenizer = comfy.text_encoders.ace.AceT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else:
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
elif te_model == TEModel.GEMMA_2_2B: elif te_model == TEModel.GEMMA_2_2B:
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data)) clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: else:
# clip_l
if clip_type == CLIPType.SD3: if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False) clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: else:
clip_target.clip = sd1_clip.SD1ClipModel clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer clip_target.tokenizer = sd1_clip.SD1Tokenizer
@@ -919,33 +819,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.HUNYUAN_VIDEO: elif clip_type == CLIPType.HUNYUAN_VIDEO:
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data)) clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
elif clip_type == CLIPType.HIDREAM:
# Detect
hidream_dualclip_classes = []
for hidream_te in clip_data:
te_model = detect_te_model(hidream_te)
hidream_dualclip_classes.append(te_model)
clip_l = TEModel.CLIP_L in hidream_dualclip_classes
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
t5 = TEModel.T5_XXL in hidream_dualclip_classes
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
# Initialize t5xxl_detect and llama_detect kwargs if needed
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
llama_kwargs = llama_detect(clip_data) if llama else {}
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: else:
clip_target.clip = sdxl_clip.SDXLClipModel clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3: elif len(clip_data) == 3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif len(clip_data) == 4:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
parameters = 0 parameters = 0
for c in clip_data: for c in clip_data:
@@ -994,13 +873,13 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (model, clip, vae) return (model, clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}): def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True) sd = comfy.utils.load_torch_file(ckpt_path)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata) out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
if out is None: if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
return out return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None): def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
clip = None clip = None
clipvision = None clipvision = None
vae = None vae = None
@@ -1012,14 +891,9 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device() load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata) model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
if model_config is None: if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.") return None
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
if diffusion_model is None:
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes) unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None: if model_config.scaled_fp8 is not None:
@@ -1046,7 +920,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_vae: if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd) vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd, metadata=metadata) vae = VAE(sd=vae_sd)
if output_clip: if output_clip:
clip_target = model_config.clip_target(state_dict=sd) clip_target = model_config.clip_target(state_dict=sd)

View File

@@ -82,8 +82,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
LAYERS = [ LAYERS = [
"last", "last",
"pooled", "pooled",
"hidden", "hidden"
"all"
] ]
def __init__(self, device="cpu", max_length=77, def __init__(self, device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel, freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
@@ -94,8 +93,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if textmodel_json_config is None: if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
if "model_name" not in model_options:
model_options = {**model_options, "model_name": "clip_l"}
if isinstance(textmodel_json_config, dict): if isinstance(textmodel_json_config, dict):
config = textmodel_json_config config = textmodel_json_config
@@ -103,10 +100,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
with open(textmodel_json_config) as f: with open(textmodel_json_config) as f:
config = json.load(f) config = json.load(f)
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
for k, v in te_model_options.items():
config[k] = v
operations = model_options.get("custom_operations", None) operations = model_options.get("custom_operations", None)
scaled_fp8 = None scaled_fp8 = None
@@ -154,9 +147,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options): def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx) layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if self.layer == "all": if layer_idx is None or abs(layer_idx) > self.num_layers:
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last" self.layer = "last"
else: else:
self.layer = "hidden" self.layer = "hidden"
@@ -167,98 +158,71 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer_idx = self.options_default[1] self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2] self.return_projected_pooled = self.options_default[2]
def process_tokens(self, tokens, device): def set_up_textual_embeddings(self, tokens, current_embeds):
end_token = self.special_tokens.get("end", None) out_tokens = []
if end_token is None: next_new_token = token_dict_size = current_embeds.weight.shape[0]
cmp_token = self.special_tokens.get("pad", -1) embedding_weights = []
else:
cmp_token = end_token
embeds_out = []
attention_masks = []
num_tokens = []
for x in tokens: for x in tokens:
attention_mask = []
tokens_temp = [] tokens_temp = []
other_embeds = []
eos = False
index = 0
for y in x: for y in x:
if isinstance(y, numbers.Integral): if isinstance(y, numbers.Integral):
if eos: tokens_temp += [int(y)]
attention_mask.append(0) else:
if y.shape[0] == current_embeds.weight.shape[1]:
embedding_weights += [y]
tokens_temp += [next_new_token]
next_new_token += 1
else: else:
attention_mask.append(1) logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
token = int(y) while len(tokens_temp) < len(x):
tokens_temp += [token] tokens_temp += [self.special_tokens["pad"]]
if not eos and token == cmp_token: out_tokens += [tokens_temp]
if end_token is None:
attention_mask[-1] = 0
eos = True
else:
other_embeds.append((index, y))
index += 1
tokens_embed = torch.tensor([tokens_temp], device=device, dtype=torch.long) n = token_dict_size
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32) if len(embedding_weights) > 0:
index = 0 new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
pad_extra = 0 new_embedding.weight[:token_dict_size] = current_embeds.weight
for o in other_embeds: for x in embedding_weights:
emb = o[1] new_embedding.weight[n] = x
if torch.is_tensor(emb): n += 1
emb = {"type": "embedding", "data": emb} self.transformer.set_input_embeddings(new_embedding)
emb_type = emb.get("type", None) processed_tokens = []
if emb_type == "embedding": for x in out_tokens:
emb = emb.get("data", None) processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
if emb is None: return processed_tokens
index += -1
continue
ind = index + o[0]
emb = emb.view(1, -1, emb.shape[-1]).to(device=device, dtype=torch.float32)
emb_shape = emb.shape[1]
if emb.shape[-1] == tokens_embed.shape[-1]:
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
else:
index += -1
pad_extra += emb_shape
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(emb.shape[-1], tokens_embed.shape[-1]))
if pad_extra > 0:
padd_embed = self.transformer.get_input_embeddings()(torch.tensor([[self.special_tokens["pad"]] * pad_extra], device=device, dtype=torch.long), out_dtype=torch.float32)
tokens_embed = torch.cat([tokens_embed, padd_embed], dim=1)
attention_mask = attention_mask + [0] * pad_extra
embeds_out.append(tokens_embed)
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
def forward(self, tokens): def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device backup_embeds = self.transformer.get_input_embeddings()
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device) device = backup_embeds.weight.device
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
attention_mask = None
if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
attention_mask = torch.zeros_like(tokens)
end_token = self.special_tokens.get("end", None)
if end_token is None:
cmp_token = self.special_tokens.get("pad", -1)
else:
cmp_token = end_token
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == cmp_token:
if end_token is None:
attention_mask[x, y] = 0
break
attention_mask_model = None attention_mask_model = None
if self.enable_attention_masks: if self.enable_attention_masks:
attention_mask_model = attention_mask attention_mask_model = attention_mask
if self.layer == "all": outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
intermediate_output = "all" self.transformer.set_input_embeddings(backup_embeds)
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
if self.layer == "last": if self.layer == "last":
z = outputs[0].float() z = outputs[0].float()
@@ -457,14 +421,13 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out return embed_out
class SDTokenizer: class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}): def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None: if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args) self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length) self.max_length = max_length
self.min_length = min_length self.min_length = min_length
self.end_token = None self.end_token = None
self.min_padding = min_padding
empty = self.tokenizer('')["input_ids"] empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token self.tokenizer_adds_end_token = has_end_token
@@ -519,15 +482,13 @@ class SDTokenizer:
return (embed, leftover) return (embed, leftover)
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False):
''' '''
Takes a prompt and converts it to a list of (token, weight, word id) elements. Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors. Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP Returned list has the dimensions NxM where M is the input size of CLIP
''' '''
min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length)
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text) text = escape_important(text)
parsed_weights = token_weights(text, 1.0) parsed_weights = token_weights(text, 1.0)
@@ -606,12 +567,10 @@ class SDTokenizer:
#fill last batch #fill last batch
if self.end_token is not None: if self.end_token is not None:
batch.append((self.end_token, 1.0, 0)) batch.append((self.end_token, 1.0, 0))
if min_padding is not None: if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch))) batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if min_length is not None and len(batch) < min_length: if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch))) batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if not return_word_ids: if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
@@ -637,9 +596,9 @@ class SD1Tokenizer:
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer) tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)) setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {} out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids, **kwargs) out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
return out return out
def untokenize(self, token_weight_pair): def untokenize(self, token_weight_pair):
@@ -664,7 +623,6 @@ class SD1ClipModel(torch.nn.Module):
self.clip = "clip_{}".format(self.clip_name) self.clip = "clip_{}".format(self.clip_name)
clip_model = model_options.get("{}_class".format(self.clip), clip_model) clip_model = model_options.get("{}_class".format(self.clip), clip_model)
model_options = {**model_options, "model_name": self.clip}
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs)) setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
self.dtypes = set() self.dtypes = set()

View File

@@ -9,7 +9,6 @@ class SDXLClipG(sd1_clip.SDClipModel):
layer_idx=-2 layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options) special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
@@ -18,18 +17,19 @@ class SDXLClipG(sd1_clip.SDClipModel):
class SDXLClipGTokenizer(sd1_clip.SDTokenizer): class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}): def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
class SDXLTokenizer: class SDXLTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {} out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs) out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
return out return out
def untokenize(self, token_weight_pair): def untokenize(self, token_weight_pair):
@@ -41,7 +41,8 @@ class SDXLTokenizer:
class SDXLClipModel(torch.nn.Module): class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}): def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__() super().__init__()
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options) self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set([dtype]) self.dtypes = set([dtype])
@@ -74,7 +75,7 @@ class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer): class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}): def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer): class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -83,7 +84,6 @@ class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
class StableCascadeClipG(sd1_clip.SDClipModel): class StableCascadeClipG(sd1_clip.SDClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}): def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options) special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)

View File

@@ -17,7 +17,6 @@ import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2 import comfy.text_encoders.lumina2
import comfy.text_encoders.wan import comfy.text_encoders.wan
import comfy.text_encoders.ace
from . import supported_models_base from . import supported_models_base
from . import latent_formats from . import latent_formats
@@ -507,22 +506,6 @@ class SDXL_instructpix2pix(SDXL):
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device) return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
class LotusD(SD20):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"use_temporal_attention": False,
"adm_in_channels": 4,
"in_channels": 4,
}
unet_extra_config = {
"num_classes": 'sequential'
}
def get_model(self, state_dict, prefix="", device=None):
return model_base.Lotus(self, device=device)
class SD3(supported_models_base.BASE): class SD3(supported_models_base.BASE):
unet_config = { unet_config = {
"in_channels": 16, "in_channels": 16,
@@ -779,17 +762,13 @@ class LTXV(supported_models_base.BASE):
unet_extra_config = {} unet_extra_config = {}
latent_format = latent_formats.LTXV latent_format = latent_formats.LTXV
memory_usage_factor = 5.5 # TODO: img2vid is about 2x vs txt2vid memory_usage_factor = 2.7
supported_inference_dtypes = [torch.bfloat16, torch.float32] supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."] vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."] text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("cross_attention_dim", 2048) / 2048) * 5.5
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXV(self, device=device) out = model_base.LTXV(self, device=device)
return out return out
@@ -847,26 +826,6 @@ class HunyuanVideo(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref)) hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect))
class HunyuanVideoI2V(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"in_channels": 33,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideoI2V(self, device=device)
return out
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"in_channels": 32,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideoSkyreelsI2V(self, device=device)
return out
class CosmosT2V(supported_models_base.BASE): class CosmosT2V(supported_models_base.BASE):
unet_config = { unet_config = {
"image_model": "cosmos", "image_model": "cosmos",
@@ -952,7 +911,7 @@ class WAN21_T2V(supported_models_base.BASE):
memory_usage_factor = 1.0 memory_usage_factor = 1.0
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."] vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."] text_encoder_key_prefix = ["text_encoders."]
@@ -974,171 +933,12 @@ class WAN21_I2V(WAN21_T2V):
unet_config = { unet_config = {
"image_model": "wan2.1", "image_model": "wan2.1",
"model_type": "i2v", "model_type": "i2v",
"in_dim": 36,
} }
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=True, device=device) out = model_base.WAN21(self, image_to_video=True, device=device)
return out return out
class WAN21_FunControl2V(WAN21_T2V): models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 48,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=False, device=device)
return out
class WAN21_Camera(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "camera",
"in_dim": 32,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
return out
class WAN21_Vace(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "vace",
}
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 1.2 * self.memory_usage_factor
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
}
unet_extra_config = {}
sampling_settings = {
"multiplier": 1.0,
"shift": 1.0,
}
memory_usage_factor = 3.5
clip_vision_prefix = "conditioner.main_image_encoder.model."
vae_key_prefix = ["vae."]
latent_format = latent_formats.Hunyuan3Dv2
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model."}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Hunyuan3Dv2(self, device=device)
return out
def clip_target(self, state_dict={}):
return None
class Hunyuan3Dv2mini(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2",
"depth": 8,
}
latent_format = latent_formats.Hunyuan3Dv2mini
class HiDream(supported_models_base.BASE):
unet_config = {
"image_model": "hidream",
}
sampling_settings = {
"shift": 3.0,
}
sampling_settings = {
}
# memory_usage_factor = 1.2 # TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HiDream(self, device=device)
return out
def clip_target(self, state_dict={}):
return None # TODO
class Chroma(supported_models_base.BASE):
unet_config = {
"image_model": "chroma",
}
unet_extra_config = {
}
sampling_settings = {
"multiplier": 1.0,
}
latent_format = comfy.latent_formats.Flux
memory_usage_factor = 3.2
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Chroma(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
class ACEStep(supported_models_base.BASE):
unet_config = {
"audio_model": "ace",
}
unet_extra_config = {
}
sampling_settings = {
"shift": 3.0,
}
latent_format = comfy.latent_formats.ACEAudio
memory_usage_factor = 0.5
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.ACEStep(self, device=device)
return out
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.ace.AceT5Tokenizer, comfy.text_encoders.ace.AceT5Model)
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep]
models += [SVD_img2vid] models += [SVD_img2vid]

View File

@@ -1,153 +0,0 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.t5
import os
import re
import torch
import logging
from tokenizers import Tokenizer
from .ace_text_cleaners import multilingual_cleaners, japanese_to_romaji
SUPPORT_LANGUAGES = {
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
"ko": 6152, "hi": 6680
}
structure_pattern = re.compile(r"\[.*?\]")
DEFAULT_VOCAB_FILE = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
class VoiceBpeTokenizer:
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE):
self.tokenizer = None
if vocab_file is not None:
self.tokenizer = Tokenizer.from_file(vocab_file)
def preprocess_text(self, txt, lang):
txt = multilingual_cleaners(txt, lang)
return txt
def encode(self, txt, lang='en'):
# lang = lang.split("-")[0] # remove the region
# self.check_input_length(txt, lang)
txt = self.preprocess_text(txt, lang)
lang = "zh-cn" if lang == "zh" else lang
txt = f"[{lang}]{txt}"
txt = txt.replace(" ", "[SPACE]")
return self.tokenizer.encode(txt).ids
def get_lang(self, line):
if line.startswith("[") and line[3:4] == ']':
lang = line[1:3].lower()
if lang in SUPPORT_LANGUAGES:
return lang, line[4:]
return "en", line
def __call__(self, string):
lines = string.split("\n")
lyric_token_idx = [261]
for line in lines:
line = line.strip()
if not line:
lyric_token_idx += [2]
continue
lang, line = self.get_lang(line)
if lang not in SUPPORT_LANGUAGES:
lang = "en"
if "zh" in lang:
lang = "zh"
if "spa" in lang:
lang = "es"
try:
line_out = japanese_to_romaji(line)
if line_out != line:
lang = "ja"
line = line_out
except:
pass
try:
if structure_pattern.match(line):
token_idx = self.encode(line, "en")
else:
token_idx = self.encode(line, lang)
lyric_token_idx = lyric_token_idx + token_idx + [2]
except Exception as e:
logging.warning("tokenize error {} for line {} major_language {}".format(e, line, lang))
return {"input_ids": lyric_token_idx}
@staticmethod
def from_pretrained(path, **kwargs):
return VoiceBpeTokenizer(path, **kwargs)
def get_vocab(self):
return {}
class UMT5BaseModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_base.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=False, model_options=model_options)
class UMT5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=768, embedding_key='umt5base', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class LyricsTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='lyrics', tokenizer_class=VoiceBpeTokenizer, has_start_token=True, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=2, has_end_token=False, tokenizer_data=tokenizer_data)
class AceT5Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.voicebpe = LyricsTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.umt5base = UMT5BaseTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["lyrics"] = self.voicebpe.tokenize_with_weights(kwargs.get("lyrics", ""), return_word_ids, **kwargs)
out["umt5base"] = self.umt5base.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.umt5base.untokenize(token_weight_pair)
def state_dict(self):
return self.umt5base.state_dict()
class AceT5Model(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__()
self.umt5base = UMT5BaseModel(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set()
if dtype is not None:
self.dtypes.add(dtype)
def set_clip_options(self, options):
self.umt5base.set_clip_options(options)
def reset_clip_options(self):
self.umt5base.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_umt5base = token_weight_pairs["umt5base"]
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
t5_out, t5_pooled = self.umt5base.encode_token_weights(token_weight_pairs_umt5base)
lyrics_embeds = torch.tensor(list(map(lambda a: a[0], token_weight_pairs_lyrics[0]))).unsqueeze(0)
return t5_out, None, {"conditioning_lyrics": lyrics_embeds}
def load_sd(self, sd):
return self.umt5base.load_sd(sd)

File diff suppressed because it is too large Load Diff

View File

@@ -1,395 +0,0 @@
# basic text cleaners for the ACE step model
# I didn't copy the ones from the reference code because I didn't want to deal with the dependencies
# TODO: more languages than english?
import re
def japanese_to_romaji(japanese_text):
"""
Convert Japanese hiragana and katakana to romaji (Latin alphabet representation).
Args:
japanese_text (str): Text containing hiragana and/or katakana characters
Returns:
str: The romaji (Latin alphabet) equivalent
"""
# Dictionary mapping kana characters to their romaji equivalents
kana_map = {
# Katakana characters
'': 'a', '': 'i', '': 'u', '': 'e', '': 'o',
'': 'ka', '': 'ki', '': 'ku', '': 'ke', '': 'ko',
'': 'sa', '': 'shi', '': 'su', '': 'se', '': 'so',
'': 'ta', '': 'chi', '': 'tsu', '': 'te', '': 'to',
'': 'na', '': 'ni', '': 'nu', '': 'ne', '': 'no',
'': 'ha', '': 'hi', '': 'fu', '': 'he', '': 'ho',
'': 'ma', '': 'mi', '': 'mu', '': 'me', '': 'mo',
'': 'ya', '': 'yu', '': 'yo',
'': 'ra', '': 'ri', '': 'ru', '': 're', '': 'ro',
'': 'wa', '': 'wo', '': 'n',
# Katakana voiced consonants
'': 'ga', '': 'gi', '': 'gu', '': 'ge', '': 'go',
'': 'za', '': 'ji', '': 'zu', '': 'ze', '': 'zo',
'': 'da', '': 'ji', '': 'zu', '': 'de', '': 'do',
'': 'ba', '': 'bi', '': 'bu', '': 'be', '': 'bo',
'': 'pa', '': 'pi', '': 'pu', '': 'pe', '': 'po',
# Katakana combinations
'キャ': 'kya', 'キュ': 'kyu', 'キョ': 'kyo',
'シャ': 'sha', 'シュ': 'shu', 'ショ': 'sho',
'チャ': 'cha', 'チュ': 'chu', 'チョ': 'cho',
'ニャ': 'nya', 'ニュ': 'nyu', 'ニョ': 'nyo',
'ヒャ': 'hya', 'ヒュ': 'hyu', 'ヒョ': 'hyo',
'ミャ': 'mya', 'ミュ': 'myu', 'ミョ': 'myo',
'リャ': 'rya', 'リュ': 'ryu', 'リョ': 'ryo',
'ギャ': 'gya', 'ギュ': 'gyu', 'ギョ': 'gyo',
'ジャ': 'ja', 'ジュ': 'ju', 'ジョ': 'jo',
'ビャ': 'bya', 'ビュ': 'byu', 'ビョ': 'byo',
'ピャ': 'pya', 'ピュ': 'pyu', 'ピョ': 'pyo',
# Katakana small characters and special cases
'': '', # Small tsu (doubles the following consonant)
'': 'ya', '': 'yu', '': 'yo',
# Katakana extras
'': 'vu', 'ファ': 'fa', 'フィ': 'fi', 'フェ': 'fe', 'フォ': 'fo',
'ウィ': 'wi', 'ウェ': 'we', 'ウォ': 'wo',
# Hiragana characters
'': 'a', '': 'i', '': 'u', '': 'e', '': 'o',
'': 'ka', '': 'ki', '': 'ku', '': 'ke', '': 'ko',
'': 'sa', '': 'shi', '': 'su', '': 'se', '': 'so',
'': 'ta', '': 'chi', '': 'tsu', '': 'te', '': 'to',
'': 'na', '': 'ni', '': 'nu', '': 'ne', '': 'no',
'': 'ha', '': 'hi', '': 'fu', '': 'he', '': 'ho',
'': 'ma', '': 'mi', '': 'mu', '': 'me', '': 'mo',
'': 'ya', '': 'yu', '': 'yo',
'': 'ra', '': 'ri', '': 'ru', '': 're', '': 'ro',
'': 'wa', '': 'wo', '': 'n',
# Hiragana voiced consonants
'': 'ga', '': 'gi', '': 'gu', '': 'ge', '': 'go',
'': 'za', '': 'ji', '': 'zu', '': 'ze', '': 'zo',
'': 'da', '': 'ji', '': 'zu', '': 'de', '': 'do',
'': 'ba', '': 'bi', '': 'bu', '': 'be', '': 'bo',
'': 'pa', '': 'pi', '': 'pu', '': 'pe', '': 'po',
# Hiragana combinations
'きゃ': 'kya', 'きゅ': 'kyu', 'きょ': 'kyo',
'しゃ': 'sha', 'しゅ': 'shu', 'しょ': 'sho',
'ちゃ': 'cha', 'ちゅ': 'chu', 'ちょ': 'cho',
'にゃ': 'nya', 'にゅ': 'nyu', 'にょ': 'nyo',
'ひゃ': 'hya', 'ひゅ': 'hyu', 'ひょ': 'hyo',
'みゃ': 'mya', 'みゅ': 'myu', 'みょ': 'myo',
'りゃ': 'rya', 'りゅ': 'ryu', 'りょ': 'ryo',
'ぎゃ': 'gya', 'ぎゅ': 'gyu', 'ぎょ': 'gyo',
'じゃ': 'ja', 'じゅ': 'ju', 'じょ': 'jo',
'びゃ': 'bya', 'びゅ': 'byu', 'びょ': 'byo',
'ぴゃ': 'pya', 'ぴゅ': 'pyu', 'ぴょ': 'pyo',
# Hiragana small characters and special cases
'': '', # Small tsu (doubles the following consonant)
'': 'ya', '': 'yu', '': 'yo',
# Common punctuation and spaces
' ': ' ', # Japanese space
'': ', ', '': '. ',
}
result = []
i = 0
while i < len(japanese_text):
# Check for small tsu (doubling the following consonant)
if i < len(japanese_text) - 1 and (japanese_text[i] == '' or japanese_text[i] == ''):
if i < len(japanese_text) - 1 and japanese_text[i+1] in kana_map:
next_romaji = kana_map[japanese_text[i+1]]
if next_romaji and next_romaji[0] not in 'aiueon':
result.append(next_romaji[0]) # Double the consonant
i += 1
continue
# Check for combinations with small ya, yu, yo
if i < len(japanese_text) - 1 and japanese_text[i+1] in ('', '', '', '', '', ''):
combo = japanese_text[i:i+2]
if combo in kana_map:
result.append(kana_map[combo])
i += 2
continue
# Regular character
if japanese_text[i] in kana_map:
result.append(kana_map[japanese_text[i]])
else:
# If it's not in our map, keep it as is (might be kanji, romaji, etc.)
result.append(japanese_text[i])
i += 1
return ''.join(result)
def number_to_text(num, ordinal=False):
"""
Convert a number (int or float) to its text representation.
Args:
num: The number to convert
Returns:
str: Text representation of the number
"""
if not isinstance(num, (int, float)):
return "Input must be a number"
# Handle special case of zero
if num == 0:
return "zero"
# Handle negative numbers
negative = num < 0
num = abs(num)
# Handle floats
if isinstance(num, float):
# Split into integer and decimal parts
int_part = int(num)
# Convert both parts
int_text = _int_to_text(int_part)
# Handle decimal part (convert to string and remove '0.')
decimal_str = str(num).split('.')[1]
decimal_text = " point " + " ".join(_digit_to_text(int(digit)) for digit in decimal_str)
result = int_text + decimal_text
else:
# Handle integers
result = _int_to_text(num)
# Add 'negative' prefix for negative numbers
if negative:
result = "negative " + result
return result
def _int_to_text(num):
"""Helper function to convert an integer to text"""
ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine",
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen",
"seventeen", "eighteen", "nineteen"]
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
if num < 20:
return ones[num]
if num < 100:
return tens[num // 10] + (" " + ones[num % 10] if num % 10 != 0 else "")
if num < 1000:
return ones[num // 100] + " hundred" + (" " + _int_to_text(num % 100) if num % 100 != 0 else "")
if num < 1000000:
return _int_to_text(num // 1000) + " thousand" + (" " + _int_to_text(num % 1000) if num % 1000 != 0 else "")
if num < 1000000000:
return _int_to_text(num // 1000000) + " million" + (" " + _int_to_text(num % 1000000) if num % 1000000 != 0 else "")
return _int_to_text(num // 1000000000) + " billion" + (" " + _int_to_text(num % 1000000000) if num % 1000000000 != 0 else "")
def _digit_to_text(digit):
"""Convert a single digit to text"""
digits = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
return digits[digit]
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = {
"en": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
],
}
def expand_abbreviations_multilingual(text, lang="en"):
for regex, replacement in _abbreviations[lang]:
text = re.sub(regex, replacement, text)
return text
_symbols_multilingual = {
"en": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " and "),
("@", " at "),
("%", " percent "),
("#", " hash "),
("$", " dollar "),
("£", " pound "),
("°", " degree "),
]
],
}
def expand_symbols_multilingual(text, lang="en"):
for regex, replacement in _symbols_multilingual[lang]:
text = re.sub(regex, replacement, text)
text = text.replace(" ", " ") # Ensure there are no double spaces
return text.strip()
_ordinal_re = {
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
}
_number_re = re.compile(r"[0-9]+")
_currency_re = {
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
}
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
_dot_number_re = re.compile(r"\b\d{1,3}(.\d{3})*(\,\d+)?\b")
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
def _remove_commas(m):
text = m.group(0)
if "," in text:
text = text.replace(",", "")
return text
def _remove_dots(m):
text = m.group(0)
if "." in text:
text = text.replace(".", "")
return text
def _expand_decimal_point(m, lang="en"):
amount = m.group(1).replace(",", ".")
return number_to_text(float(amount))
def _expand_currency(m, lang="en", currency="USD"):
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
full_amount = number_to_text(amount)
and_equivalents = {
"en": ", ",
"es": " con ",
"fr": " et ",
"de": " und ",
"pt": " e ",
"it": " e ",
"pl": ", ",
"cs": ", ",
"ru": ", ",
"nl": ", ",
"ar": ", ",
"tr": ", ",
"hu": ", ",
"ko": ", ",
}
if amount.is_integer():
last_and = full_amount.rfind(and_equivalents[lang])
if last_and != -1:
full_amount = full_amount[:last_and]
return full_amount
def _expand_ordinal(m, lang="en"):
return number_to_text(int(m.group(1)), ordinal=True)
def _expand_number(m, lang="en"):
return number_to_text(int(m.group(0)))
def expand_numbers_multilingual(text, lang="en"):
if lang in ["en", "ru"]:
text = re.sub(_comma_number_re, _remove_commas, text)
else:
text = re.sub(_dot_number_re, _remove_dots, text)
try:
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
except:
pass
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def multilingual_cleaners(text, lang):
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
text = lowercase(text)
try:
text = expand_numbers_multilingual(text, lang)
except:
pass
try:
text = expand_abbreviations_multilingual(text, lang)
except:
pass
try:
text = expand_symbols_multilingual(text, lang=lang)
except:
pass
text = collapse_whitespace(text)
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text

View File

@@ -11,7 +11,7 @@ class PT5XlModel(sd1_clip.SDClipModel):
class PT5XlTokenizer(sd1_clip.SDTokenizer): class PT5XlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model") tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer): class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -93,11 +93,8 @@ class BertEmbeddings(torch.nn.Module):
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device) self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, input_tokens, embeds=None, token_type_ids=None, dtype=None): def forward(self, input_tokens, token_type_ids=None, dtype=None):
if embeds is not None: x = self.word_embeddings(input_tokens, out_dtype=dtype)
x = embeds
else:
x = self.word_embeddings(input_tokens, out_dtype=dtype)
x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x) x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
if token_type_ids is not None: if token_type_ids is not None:
x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype) x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
@@ -116,8 +113,8 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations) self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations) self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype) x = self.embeddings(input_tokens, dtype=dtype)
mask = None mask = None
if attention_mask is not None: if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@@ -22,7 +22,7 @@ class CosmosT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512)
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -9,18 +9,19 @@ import os
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
class FluxTokenizer: class FluxTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {} out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs) out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
return out return out
def untokenize(self, token_weight_pair): def untokenize(self, token_weight_pair):
@@ -34,7 +35,8 @@ class FluxClipModel(torch.nn.Module):
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}): def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
super().__init__() super().__init__()
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device) dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options) self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5]) self.dtypes = set([dtype, dtype_t5])

View File

@@ -18,7 +18,7 @@ class MochiT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer): class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -1,155 +0,0 @@
from . import hunyuan_video
from . import sd3_clip
from comfy import sd1_clip
from comfy import sdxl_clip
import comfy.model_management
import torch
import logging
class HiDreamTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
def state_dict(self):
return {}
class HiDreamTEModel(torch.nn.Module):
def __init__(self, clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
self.dtypes = set()
if clip_l:
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=True, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_l = None
if clip_g:
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_g = None
if t5:
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.t5xxl = sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=True)
self.dtypes.add(dtype_t5)
else:
self.t5xxl = None
if llama:
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
if "vocab_size" not in model_options:
model_options["vocab_size"] = 128256
self.llama = hunyuan_video.LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None, special_tokens={"start": 128000, "pad": 128009})
self.dtypes.add(dtype_llama)
else:
self.llama = None
logging.debug("Created HiDream text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}, llama {}:{}".format(clip_l, clip_g, t5, dtype_t5, llama, dtype_llama))
def set_clip_options(self, options):
if self.clip_l is not None:
self.clip_l.set_clip_options(options)
if self.clip_g is not None:
self.clip_g.set_clip_options(options)
if self.t5xxl is not None:
self.t5xxl.set_clip_options(options)
if self.llama is not None:
self.llama.set_clip_options(options)
def reset_clip_options(self):
if self.clip_l is not None:
self.clip_l.reset_clip_options()
if self.clip_g is not None:
self.clip_g.reset_clip_options()
if self.t5xxl is not None:
self.t5xxl.reset_clip_options()
if self.llama is not None:
self.llama.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
token_weight_pairs_llama = token_weight_pairs["llama"]
lg_out = None
pooled = None
extra = {}
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
if self.clip_l is not None:
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
else:
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
if self.clip_g is not None:
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
else:
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
if self.t5xxl is not None:
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
t5_out, t5_pooled = t5_output[:2]
else:
t5_out = None
if self.llama is not None:
ll_output = self.llama.encode_token_weights(token_weight_pairs_llama)
ll_out, ll_pooled = ll_output[:2]
ll_out = ll_out[:, 1:]
else:
ll_out = None
if t5_out is None:
t5_out = torch.zeros((1, 128, 4096), device=comfy.model_management.intermediate_device())
if ll_out is None:
ll_out = torch.zeros((1, 32, 1, 4096), device=comfy.model_management.intermediate_device())
if pooled is None:
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
extra["conditioning_llama3"] = ll_out
return t5_out, pooled, extra
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return self.clip_g.load_sd(sd)
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
return self.t5xxl.load_sd(sd)
else:
return self.llama.load_sd(sd)
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
class HiDreamTEModel_(HiDreamTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HiDreamTEModel_

View File

@@ -4,7 +4,6 @@ import comfy.text_encoders.llama
from transformers import LlamaTokenizerFast from transformers import LlamaTokenizerFast
import torch import torch
import os import os
import numbers
def llama_detect(state_dict, prefix=""): def llama_detect(state_dict, prefix=""):
@@ -21,49 +20,33 @@ def llama_detect(state_dict, prefix=""):
class LLAMA3Tokenizer(sd1_clip.SDTokenizer): class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256, pad_token=128258): def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=pad_token, min_length=min_length, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, end_token=128009, min_length=min_length)
class LLAMAModel(sd1_clip.SDClipModel): class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None) llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None: if llama_scaled_fp8 is not None:
model_options = model_options.copy() model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8 model_options["scaled_fp8"] = llama_scaled_fp8
textmodel_json_config = {} super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
vocab_size = model_options.get("vocab_size", None)
if vocab_size is not None:
textmodel_json_config["vocab_size"] = vocab_size
model_options = {**model_options, "model_name": "llama"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens=special_tokens, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class HunyuanVideoTokenizer: class HunyuanVideoTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1, tokenizer_data=tokenizer_data) self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n""" # 95 tokens
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {} out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
if llama_template is None: llama_text = "{}{}".format(self.llama_template, text)
llama_text = self.llama_template.format(text) out["llama"] = self.llama.tokenize_with_weights(llama_text, return_word_ids)
else:
llama_text = llama_template.format(text)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids, **kwargs)
embed_count = 0
for r in llama_text_tokens:
for i in range(len(r)):
if r[i][0] == 128257:
if image_embeds is not None and embed_count < image_embeds.shape[0]:
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image", "image_interleave": image_interleave},) + r[i][1:]
embed_count += 1
out["llama"] = llama_text_tokens
return out return out
def untokenize(self, token_weight_pair): def untokenize(self, token_weight_pair):
@@ -77,7 +60,8 @@ class HunyuanVideoClipModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__() super().__init__()
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device) dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options) self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
self.dtypes = set([dtype, dtype_llama]) self.dtypes = set([dtype, dtype_llama])
@@ -96,51 +80,20 @@ class HunyuanVideoClipModel(torch.nn.Module):
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama) llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
template_end = 0 template_end = 0
extra_template_end = 0 for i, v in enumerate(token_weight_pairs_llama[0]):
extra_sizes = 0 if v[0] == 128007: # <|end_header_id|>
user_end = 9999999999999 template_end = i
images = []
tok_pairs = token_weight_pairs_llama[0]
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 128006:
if tok_pairs[i + 1][0] == 882:
if tok_pairs[i + 2][0] == 128007:
template_end = i + 2
user_end = -1
if elem == 128009 and user_end == -1:
user_end = i + 1
else:
if elem.get("original_type") == "image":
elem_size = elem.get("data").shape[0]
if template_end > 0:
if user_end == -1:
extra_template_end += elem_size - 1
else:
image_start = i + extra_sizes
image_end = i + elem_size + extra_sizes
images.append((image_start, image_end, elem.get("image_interleave", 1)))
extra_sizes += elem_size - 1
if llama_out.shape[1] > (template_end + 2): if llama_out.shape[1] > (template_end + 2):
if tok_pairs[template_end + 1][0] == 271: if token_weight_pairs_llama[0][template_end + 1][0] == 271:
template_end += 2 template_end += 2
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end] llama_out = llama_out[:, template_end:]
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end] llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end:]
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]): if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
if len(images) > 0:
out = []
for i in images:
out.append(llama_out[:, i[0]: i[1]: i[2]])
llama_output = torch.cat(out + [llama_output], dim=1)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return llama_output, l_pooled, llama_extra_out return llama_out, l_pooled, llama_extra_out
def load_sd(self, sd): def load_sd(self, sd):
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:

View File

@@ -9,26 +9,24 @@ import torch
class HyditBertModel(sd1_clip.SDClipModel): class HyditBertModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
model_options = {**model_options, "model_name": "hydit_clip"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class HyditBertTokenizer(sd1_clip.SDTokenizer): class HyditBertTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
class MT5XLModel(sd1_clip.SDClipModel): class MT5XLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
model_options = {**model_options, "model_name": "mt5xl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class MT5XLTokenizer(sd1_clip.SDTokenizer): class MT5XLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model") #tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
tokenizer = tokenizer_data.get("spiece_model", None) tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data) super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
def state_dict(self): def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()} return {"spiece_model": self.tokenizer.serialize_model()}
@@ -37,12 +35,12 @@ class HyditTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None) mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory) self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={**tokenizer_data, "spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory) self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {} out = {}
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids, **kwargs) out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids, **kwargs) out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
return out return out
def untokenize(self, token_weight_pair): def untokenize(self, token_weight_pair):

View File

@@ -241,11 +241,8 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype) # self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
if embeds is not None: x = self.embed_tokens(x, out_dtype=dtype)
x = embeds
else:
x = self.embed_tokens(x, out_dtype=dtype)
if self.normalize_in: if self.normalize_in:
x *= self.config.hidden_size ** 0.5 x *= self.config.hidden_size ** 0.5
@@ -268,17 +265,11 @@ class Llama2_(nn.Module):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None intermediate = None
all_intermediate = None
if intermediate_output is not None: if intermediate_output is not None:
if intermediate_output == "all": if intermediate_output < 0:
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output intermediate_output = len(self.layers) + intermediate_output
for i, layer in enumerate(self.layers): for i, layer in enumerate(self.layers):
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
x = layer( x = layer(
x=x, x=x,
attention_mask=mask, attention_mask=mask,
@@ -289,12 +280,6 @@ class Llama2_(nn.Module):
intermediate = x.clone() intermediate = x.clone()
x = self.norm(x) x = self.norm(x)
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
if intermediate is not None and final_layer_norm_intermediate: if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.norm(intermediate) intermediate = self.norm(intermediate)

View File

@@ -0,0 +1,25 @@
{
"_name_or_path": "openai/clip-vit-large-patch14",
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 49407,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 248,
"model_type": "clip_text_model",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"projection_dim": 768,
"torch_dtype": "float32",
"transformers_version": "4.24.0",
"vocab_size": 49408
}

View File

@@ -1,27 +1,30 @@
from comfy import sd1_clip
import os
class LongClipTokenizer_(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
class LongClipModel_(sd1_clip.SDClipModel):
def __init__(self, *args, **kwargs):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
class LongClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
def model_options_long_clip(sd, tokenizer_data, model_options): def model_options_long_clip(sd, tokenizer_data, model_options):
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None) w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
if w is None:
w = sd.get("clip_g.text_model.embeddings.position_embedding.weight", None)
else:
model_name = "clip_g"
if w is None: if w is None:
w = sd.get("text_model.embeddings.position_embedding.weight", None) w = sd.get("text_model.embeddings.position_embedding.weight", None)
if w is not None: if w is not None and w.shape[0] == 248:
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
model_name = "clip_g"
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
model_name = "clip_l"
else:
model_name = "clip_l"
if w is not None:
tokenizer_data = tokenizer_data.copy() tokenizer_data = tokenizer_data.copy()
model_options = model_options.copy() model_options = model_options.copy()
model_config = model_options.get("model_config", {}) tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
model_config["max_position_embeddings"] = w.shape[0] model_options["clip_l_class"] = LongClipModel_
model_options["{}_model_config".format(model_name)] = model_config
tokenizer_data["{}_max_length".format(model_name)] = w.shape[0]
return tokenizer_data, model_options return tokenizer_data, model_options

View File

@@ -6,7 +6,7 @@ import comfy.text_encoders.genmo
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128? super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128?
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer): class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -6,7 +6,7 @@ import comfy.text_encoders.llama
class Gemma2BTokenizer(sd1_clip.SDTokenizer): class Gemma2BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None) tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False})
def state_dict(self): def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()} return {"spiece_model": self.tokenizer.serialize_model()}

View File

@@ -24,7 +24,7 @@ class PixArtT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer): class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -11,7 +11,7 @@ class T5BaseModel(sd1_clip.SDClipModel):
class T5BaseTokenizer(sd1_clip.SDTokenizer): class T5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
class SAT5Tokenizer(sd1_clip.SD1Tokenizer): class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -12,7 +12,7 @@ class SD2ClipHModel(sd1_clip.SDClipModel):
class SD2ClipHTokenizer(sd1_clip.SDTokenizer): class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}): def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='clip_h', tokenizer_data=tokenizer_data) super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
class SD2Tokenizer(sd1_clip.SD1Tokenizer): class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

Some files were not shown because too many files have changed in this diff Show More