Compare commits

..

11 Commits

Author SHA1 Message Date
Jedrzej Kosinski
50603859ab Merge branch 'master' into v3-definition 2025-06-01 01:51:04 -07:00
Jedrzej Kosinski
0d185b721f Created and handled NodeOutput class to be the return value of v3 nodes' execute function 2025-06-01 01:08:07 -07:00
Jedrzej Kosinski
8642757971 Made V3 NODES_LIST work properly 2025-05-31 15:32:11 -07:00
kosinkadink1@gmail.com
de86d8e32b Attempting to simplify node list definition in a python file via NODES_LIST 2025-05-31 15:24:37 -07:00
kosinkadink1@gmail.com
8b331c5ca2 Made proper None checks in V1 translation class properties for ComfyNodeV3 2025-05-31 04:14:01 -07:00
Jedrzej Kosinski
937d2d5325 Fixed 'display' serialization for Float/IntergerInput, some commented out code made during exploration 2025-05-31 04:00:03 -07:00
Jedrzej Kosinski
0400497d5e Merge branch 'master' into v3-definition 2025-05-30 02:49:02 -07:00
Jedrzej Kosinski
5f0e04e2d7 Temporarily adding nodes_v3_test.py file to comfy_extras for testing/sharing purposes 2025-05-28 21:35:14 -07:00
Jedrzej Kosinski
96c2e3856d Add V3-to-V1 compatibility on early V3 node definition and node_info in server.py 2025-05-28 20:56:25 -07:00
Jedrzej Kosinski
880f756dc1 More progress on V3 definition 2025-05-27 15:02:17 -07:00
Jedrzej Kosinski
4480ed488e Initial prototyping on v3 classes 2025-05-25 19:22:42 -07:00
14 changed files with 988 additions and 763 deletions

View File

@@ -49,7 +49,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")

View File

@@ -15,14 +15,13 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import torch
from enum import Enum
import math
import os
import logging
import copy
import comfy.utils
import comfy.model_management
import comfy.model_detection
@@ -37,7 +36,7 @@ import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING, Union
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.hooks import HookGroup
@@ -64,18 +63,6 @@ class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlIsolation:
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
def __init__(self, control: ControlBase):
self.control = control
self.orig_previous_controlnet = control.previous_controlnet
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
class ControlBase:
def __init__(self):
self.cond_hint_original = None
@@ -89,7 +76,7 @@ class ControlBase:
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
self.previous_controlnet: Union[ControlBase, None] = None
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
self.concat_mask = False
@@ -97,7 +84,6 @@ class ControlBase:
self.extra_concat = None
self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a
self.multigpu_clones: dict[torch.device, ControlBase] = {}
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
@@ -124,38 +110,17 @@ class ControlBase:
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
for device_cnet in self.multigpu_clones.values():
with ControlIsolation(device_cnet):
device_cnet.cleanup()
self.cond_hint = None
self.extra_concat = None
self.timestep_range = None
def get_models(self):
out = []
for device_cnet in self.multigpu_clones.values():
out += device_cnet.get_models_only_self()
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def get_models_only_self(self):
'Calls get_models, but temporarily sets previous_controlnet to None.'
with ControlIsolation(self):
return self.get_models()
def get_instance_for_device(self, device):
'Returns instance of this Control object intended for selected device.'
return self.multigpu_clones.get(device, self)
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
def get_extra_hooks(self):
out = []
if self.extra_hooks is not None:
@@ -164,7 +129,7 @@ class ControlBase:
out += self.previous_controlnet.get_extra_hooks()
return out
def copy_to(self, c: ControlBase):
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
@@ -315,14 +280,6 @@ class ControlNet(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.control_model = copy.deepcopy(c.control_model)
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
if autoregister:
self.multigpu_clones[load_device] = c
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
@@ -848,14 +805,6 @@ class T2IAdapter(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)
c.device = load_device
if autoregister:
self.multigpu_clones[load_device] = c
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8
upscale_algorithm = 'nearest-exact'

View File

@@ -15,7 +15,6 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import psutil
import logging
@@ -27,10 +26,6 @@ import platform
import weakref
import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
@@ -176,25 +171,6 @@ def get_torch_device():
else:
return torch.device(torch.cuda.current_device())
def get_all_torch_devices(exclude_current=False):
global cpu_state
devices = []
if cpu_state == CPUState.GPU:
if is_nvidia():
for i in range(torch.cuda.device_count()):
devices.append(torch.device(i))
elif is_intel_xpu():
for i in range(torch.xpu.device_count()):
devices.append(torch.device(i))
elif is_ascend_npu():
for i in range(torch.npu.device_count()):
devices.append(torch.device(i))
else:
devices.append(get_torch_device())
if exclude_current:
devices.remove(get_torch_device())
return devices
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
@@ -411,13 +387,9 @@ try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
try:
for device in get_all_torch_devices(exclude_current=True):
logging.info("Device: {}".format(get_torch_device_name(device)))
except:
pass
current_loaded_models: list[LoadedModel] = []
current_loaded_models = []
def module_size(module):
module_mem = 0
@@ -428,7 +400,7 @@ def module_size(module):
return module_mem
class LoadedModel:
def __init__(self, model: ModelPatcher):
def __init__(self, model):
self._set_model(model)
self.device = model.load_device
self.real_model = None
@@ -436,7 +408,7 @@ class LoadedModel:
self.model_finalizer = None
self._patcher_finalizer = None
def _set_model(self, model: ModelPatcher):
def _set_model(self, model):
self._model = weakref.ref(model)
if model.parent is not None:
self._parent_model = weakref.ref(model.parent)
@@ -1328,34 +1300,8 @@ def soft_empty_cache(force=False):
torch.cuda.ipc_collect()
def unload_all_models():
for device in get_all_torch_devices():
free_memory(1e30, device)
free_memory(1e30, get_torch_device())
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
'Unload only model and its clones - primarily for multigpu cloning purposes.'
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
additional_models = []
if unload_additional_models:
additional_models = model.get_nested_additional_models()
keep_loaded = []
for loaded_model in initial_keep_loaded:
if loaded_model.model is not None:
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
continue
# check additional models if they are a match
skip = False
for add_model in additional_models:
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
skip = True
break
if skip:
continue
keep_loaded.append(loaded_model)
if not all_devices:
free_memory(1e30, get_torch_device(), keep_loaded)
else:
for device in get_all_torch_devices():
free_memory(1e30, device, keep_loaded)
#TODO: might be cleaner to put this somewhere else
import threading

View File

@@ -84,15 +84,12 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches, copy_tuples=False):
def create_hook_patches_clone(orig_hook_patches):
new_hook_patches = {}
for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
if copy_tuples:
for i in range(len(new_hook_patches[hook_ref][k])):
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
return new_hook_patches
def wipe_lowvram_weight(m):
@@ -243,9 +240,6 @@ class ModelPatcher:
self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0
@@ -324,92 +318,18 @@ class ModelPatcher:
n.is_clip = self.is_clip
n.hook_mode = self.hook_mode
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n)
return n
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
comfy.model_management.unload_model_and_clones(self)
n = self.clone()
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled
if models_cache is None:
models_cache = {}
for key, model_list in n.additional_models.items():
for i in range(len(model_list)):
add_model = n.additional_models[key][i]
if add_model.clone_base_uuid not in models_cache:
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
callback(self, n)
return n
def match_multigpu_clones(self):
multigpu_models = self.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
new_multigpu_models = []
for mm in multigpu_models:
# clone main model, but bring over relevant props from existing multigpu clone
n = self.clone()
n.load_device = mm.load_device
n.backup = mm.backup
n.object_patches_backup = mm.object_patches_backup
n.hook_backup = mm.hook_backup
n.model = mm.model
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
n.remove_additional_models("multigpu")
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
# figure out which additional models are not present in multigpu clone
models_cache = {}
for mm_add_model in mm.get_additional_models():
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
remove_models_uuids = set(list(models_cache.keys()))
for key, model_list in orig_additional_models.items():
for orig_add_model in model_list:
if orig_add_model.clone_base_uuid not in models_cache:
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
existing_list = n.get_additional_models_with_key(key)
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
n.set_additional_models(key, existing_list)
if orig_add_model.clone_base_uuid in remove_models_uuids:
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
# remove duplicate additional models
for key, model_list in n.additional_models.items():
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
n.set_additional_models(key, new_model_list)
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
callback(self, n)
new_multigpu_models.append(n)
self.set_additional_models("multigpu", new_multigpu_models)
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False):
if allow_multigpu:
if self.clone_base_uuid != clone.clone_base_uuid:
return False
else:
if not self.is_clone(clone):
return False
def clone_has_same_weights(self, clone: 'ModelPatcher'):
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks:
return False
@@ -1009,7 +929,7 @@ class ModelPatcher:
return self.additional_models.get(key, [])
def get_additional_models(self):
all_models: list[ModelPatcher] = []
all_models = []
for models in self.additional_models.values():
all_models.extend(models)
return all_models
@@ -1063,13 +983,9 @@ class ModelPatcher:
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self)
def prepare_state(self, timestep, model_options, ignore_multigpu=False):
def prepare_state(self, timestep):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep, model_options, ignore_multigpu)
if not ignore_multigpu and "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p.prepare_state(timestep, model_options, ignore_multigpu=True)
callback(self, timestep)
def restore_hook_patches(self):
if self.hook_patches_backup is not None:
@@ -1082,18 +998,12 @@ class ModelPatcher:
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0]
reset_current_hooks = False
multigpu_kf_changed_cache = None
transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling
if changed:
# cache changed for multigpu usage
if "multigpu_clones" in model_options:
if multigpu_kf_changed_cache is None:
multigpu_kf_changed_cache = []
multigpu_kf_changed_cache.append(hook)
# reset current_hooks if contains hook that changed
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
@@ -1105,28 +1015,6 @@ class ModelPatcher:
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
if "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
if kf_changed_cache is None:
return
reset_current_hooks = False
# reset current_hooks if contains hook that changed
for hook in kf_changed_cache:
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
registered: comfy.hooks.HookGroup = None):

View File

@@ -1,167 +0,0 @@
from __future__ import annotations
import torch
import logging
from collections import namedtuple
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.utils
import comfy.patcher_extension
import comfy.model_management
class GPUOptions:
def __init__(self, device_index: int, relative_speed: float):
self.device_index = device_index
self.relative_speed = relative_speed
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
}
class GPUOptionsGroup:
def __init__(self):
self.options: dict[int, GPUOptions] = {}
def add(self, info: GPUOptions):
self.options[info.device_index] = info
def clone(self):
c = GPUOptionsGroup()
for opt in self.options.values():
c.add(opt)
return c
def register(self, model: ModelPatcher):
opts_dict = {}
# get devices that are valid for this model
devices: list[torch.device] = [model.load_device]
for extra_model in model.get_additional_models_with_key("multigpu"):
extra_model: ModelPatcher
devices.append(extra_model.load_device)
# create dictionary with actual device mapped to its GPUOptions
device_opts_list: list[GPUOptions] = []
for device in devices:
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
opts_dict[device] = device_opts.create_dict()
device_opts_list.append(device_opts)
# make relative_speed relative to 1.0
min_speed = min([x.relative_speed for x in device_opts_list])
for value in opts_dict.values():
value['relative_speed'] /= min_speed
model.model_options['multigpu_options'] = opts_dict
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
model = model.clone()
# check if multigpu is already prepared - get the load devices from them if possible to exclude
skip_devices = set()
multigpu_models = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
for mm in multigpu_models:
skip_devices.add(mm.load_device)
skip_devices = list(skip_devices)
full_extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
limit_extra_devices = full_extra_devices[:max_gpus-1]
extra_devices = limit_extra_devices.copy()
# exclude skipped devices
for skip in skip_devices:
if skip in extra_devices:
extra_devices.remove(skip)
# create new deepclones
if len(extra_devices) > 0:
for device in extra_devices:
device_patcher = None
if reuse_loaded:
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
for lm in loaded_models:
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
multigpu_models.append(device_patcher)
model.set_additional_models("multigpu", multigpu_models)
model.match_multigpu_clones()
if gpu_options is None:
gpu_options = GPUOptionsGroup()
gpu_options.register(model)
else:
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
# TODO: only keep model clones that don't go 'past' the intended max_gpu count
# multigpu_models = model.get_additional_models_with_key("multigpu")
# new_multigpu_models = []
# for m in multigpu_models:
# if m.load_device in limit_extra_devices:
# new_multigpu_models.append(m)
# model.set_additional_models("multigpu", new_multigpu_models)
# persist skip_devices for use in sampling code
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
# model.model_options["multigpu_skip_devices"] = skip_devices
return model
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
opts_dict = model_options['multigpu_options']
devices = list(model_options['multigpu_clones'].keys())
speed_per_device = []
work_per_device = []
# get sum of each device's relative_speed
total_speed = 0.0
for opts in opts_dict.values():
total_speed += opts['relative_speed']
# get relative work for each device;
# obtained by w = (W*r)/R
for device in devices:
relative_speed = opts_dict[device]['relative_speed']
relative_work = (total_work*relative_speed) / total_speed
speed_per_device.append(relative_speed)
work_per_device.append(relative_work)
# relative work must be expressed in whole numbers, but likely is a decimal;
# perform rounding while maintaining total sum equal to total work (sum of relative works)
work_per_device = round_preserved(work_per_device)
dict_work_per_device = {}
for device, relative_work in zip(devices, work_per_device):
dict_work_per_device[device] = relative_work
if not return_idle_time:
return LoadBalance(dict_work_per_device, None)
# divide relative work by relative speed to get estimated completion time of said work by each device;
# time here is relative and does not correspond to real-world units
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
# calculate relative time spent by the devices waiting on each other after their work is completed
idle_time = abs(min(completion_time) - max(completion_time))
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):
'Round all values in a list, preserving the combined sum of values.'
# get floor of values; casting to int does it too
floored = [int(x) for x in values]
total_floored = sum(floored)
# get remainder to distribute
remainder = round(sum(values)) - total_floored
# pair values with fractional portions
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
# sort by fractional part in descending order
fractional.sort(key=lambda x: x[1], reverse=True)
# distribute the remainder
for i in range(remainder):
index = fractional[i][0]
floored[index] += 1
return floored

View File

@@ -3,8 +3,6 @@ from typing import Callable
class CallbacksMP:
ON_CLONE = "on_clone"
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
ON_LOAD = "on_load_after"
ON_DETACH = "on_detach_after"
ON_CLEANUP = "on_cleanup"

View File

@@ -1,11 +1,9 @@
from __future__ import annotations
import torch
import uuid
import math
import collections
import comfy.model_management
import comfy.conds
import comfy.model_patcher
import comfy.utils
import comfy.hooks
import comfy.patcher_extension
@@ -108,47 +106,6 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'):
m.cleanup()
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) == 0:
return
extra_devices = [x.load_device for x in multigpu_models]
# handle controlnets
controlnets: set[ControlBase] = set()
for k in conds:
for kk in conds[k]:
if 'control' in kk:
controlnets.add(kk['control'])
if len(controlnets) > 0:
# first, unload all controlnet clones
for cnet in list(controlnets):
cnet_models = cnet.get_models()
for cm in cnet_models:
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
# next, make sure each controlnet has a deepclone for all relevant devices
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
for device in extra_devices:
if device not in curr_cnet.multigpu_clones:
curr_cnet.deepclone_multigpu(device, autoregister=True)
curr_cnet = curr_cnet.previous_controlnet
# since all device clones are now present, recreate the linked list for cloned cnets per device
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
prev_cnet = curr_cnet.previous_controlnet
for device in extra_devices:
device_cnet = curr_cnet.get_instance_for_device(device)
prev_device_cnet = None
if prev_cnet is not None:
prev_device_cnet = prev_cnet.get_instance_for_device(device)
device_cnet.set_previous_controlnet(prev_device_cnet)
curr_cnet = prev_cnet
# potentially handle gligen - since not widely used, ignored for now
def estimate_memory(model, noise_shape, conds):
cond_shapes = collections.defaultdict(list)
cond_shapes_min = {}
@@ -173,8 +130,7 @@ def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
model.match_multigpu_clones()
preprocess_multigpu_conds(conds, model, model_options)
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
@@ -193,7 +149,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
'''
Registers hooks from conds.
'''
@@ -226,18 +182,3 @@ def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False)
return to_load_options
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
'''
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
'''
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
if len(multigpu_patchers) > 0:
multigpu_dict: dict[torch.device, ModelPatcher] = {}
multigpu_dict[model_patcher.load_device] = model_patcher
for x in multigpu_patchers:
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
multigpu_dict[x.load_device] = x
model_options["multigpu_clones"] = multigpu_dict
return multigpu_patchers

View File

@@ -1,6 +1,4 @@
from __future__ import annotations
import comfy.model_management
from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc
from typing import TYPE_CHECKING, Callable, NamedTuple
@@ -20,7 +18,6 @@ import comfy.patcher_extension
import comfy.hooks
import scipy.stats
import numpy
import threading
def add_area_dims(area, num_dims):
@@ -143,7 +140,7 @@ def can_concat_cond(c1, c2):
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list, device=None):
def cond_cat(c_list):
temp = {}
for x in c_list:
for k in x:
@@ -155,8 +152,6 @@ def cond_cat(c_list, device=None):
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
if device is not None and hasattr(out[k], 'to'):
out[k] = out[k].to(device)
return out
@@ -210,9 +205,7 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
)
return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
if 'multigpu_clones' in model_options:
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
out_conds = []
out_counts = []
# separate conds by matching hooks
@@ -244,7 +237,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
model.current_patcher.prepare_state(timestep)
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
@@ -352,190 +345,6 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
return out_conds
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
out_conds = []
out_counts = []
# separate conds by matching hooks
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
default_conds = []
has_default_conds = False
output_device = x_in.device
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
default_c = []
if cond is not None:
for x in cond:
if 'default' in x:
default_c.append(x)
has_default_conds = True
continue
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c)
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
index_device = 0
current_device = devices[index_device]
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
while len(to_run) > 0:
current_device = devices[index_device % len(devices)]
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
# keep track of conds currently scheduled onto this device
batched_to_run_length = 0
for btr in batched_to_run:
batched_to_run_length += len(btr[1])
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
# make sure not over conds_per_device limit when creating temp batch
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
conds_to_batch = []
for x in to_batch:
conds_to_batch.append(to_run.pop(x))
batched_to_run_length += len(conds_to_batch)
batched_to_run.append((hooks, conds_to_batch))
if batched_to_run_length >= conds_per_device:
index_device += 1
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
model_current: BaseModel = model_options["multigpu_clones"][device].model
# run every hooked_to_run separately
with torch.no_grad():
for hooks, to_batch in batch_tuple:
input_x = []
mult = []
c = []
cond_or_uncond = []
uuids = []
area = []
control: ControlBase = None
patches = None
for x in to_batch:
o = x
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
uuids.append(p.uuid)
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x).to(device)
c = cond_cat(c, device=device)
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
if 'transformer_options' in model_options:
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
model_options['transformer_options'],
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device
cast_transformer_options(transformer_options, device=device)
c['transformer_options'] = transformer_options
if control is not None:
device_control = control.get_instance_for_device(device)
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
else:
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
results: list[thread_result] = []
threads: list[threading.Thread] = []
for device, batch_tuple in device_batched_hooked_to_run.items():
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()
for output, mult, area, batch_chunks, cond_or_uncond in results:
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]
return out_conds
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
@@ -833,8 +642,6 @@ def pre_run_control(model, conds):
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
if 'control' in x:
x['control'].pre_run(model, percent_to_timestep_function)
for device_cnet in x['control'].multigpu_clones.values():
device_cnet.pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []
@@ -1077,9 +884,7 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
to_load_options = model_options.get("to_load_options", None)
if to_load_options is None:
return
cast_transformer_options(to_load_options, device, dtype)
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
casts = []
if device is not None:
casts.append(device)
@@ -1088,17 +893,18 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# if nothing to apply, do nothing
if len(casts) == 0:
return
# try to call .to on patches
if "patches" in transformer_options:
patches = transformer_options["patches"]
if "patches" in to_load_options:
patches = to_load_options["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
for cast in casts:
patch_list[i] = patch_list[i].to(cast)
if "patches_replace" in transformer_options:
patches = transformer_options["patches_replace"]
if "patches_replace" in to_load_options:
patches = to_load_options["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
@@ -1108,8 +914,8 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# try to call .to on any wrappers/callbacks
wrappers_and_callbacks = ["wrappers", "callbacks"]
for wc_name in wrappers_and_callbacks:
if wc_name in transformer_options:
wc: dict[str, list] = transformer_options[wc_name]
if wc_name in to_load_options:
wc: dict[str, list] = to_load_options[wc_name]
for wc_dict in wc.values():
for wc_list in wc_dict.values():
for i in range(len(wc_list)):
@@ -1117,6 +923,7 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
for cast in casts:
wc_list[i] = wc_list[i].to(cast)
class CFGGuider:
def __init__(self, model_patcher: ModelPatcher):
self.model_patcher = model_patcher
@@ -1162,8 +969,6 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
@@ -1174,13 +979,9 @@ class CFGGuider:
try:
self.model_patcher.pre_run()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
finally:
self.model_patcher.cleanup()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model

855
comfy_api/v3/io.py Normal file
View File

@@ -0,0 +1,855 @@
from __future__ import annotations
from typing import Any, Literal
from enum import Enum
from abc import ABC, abstractmethod
from dataclasses import dataclass, asdict
from comfy.comfy_types.node_typing import IO
class InputBehavior(str, Enum):
required = "required"
optional = "optional"
def is_class(obj):
'''
Returns True if is a class type.
Returns False if is a class instance.
'''
return isinstance(obj, type)
class NumberDisplay(str, Enum):
number = "number"
slider = "slider"
class IO_V3:
'''
Base class for V3 Inputs and Outputs.
'''
def __init__(self):
pass
def __init_subclass__(cls, io_type: IO | str, **kwargs):
cls.io_type = io_type
super().__init_subclass__(**kwargs)
class InputV3(IO_V3, io_type=None):
'''
Base class for a V3 Input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None):
super().__init__()
self.id = id
self.display_name = display_name
self.behavior = behavior
self.tooltip = tooltip
self.lazy = lazy
def as_dict_V1(self):
return prune_dict({
"display_name": self.display_name,
"tooltip": self.tooltip,
"lazy": self.lazy
})
def get_io_type_V1(self):
return self.io_type
class WidgetInputV3(InputV3, io_type=None):
'''
Base class for a V3 Input with widget.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
default: Any=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, behavior, tooltip, lazy)
self.default = default
self.socketless = socketless
self.widgetType = widgetType
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"default": self.default,
"socketless": self.socketless,
"widgetType": self.widgetType,
})
def CustomType(io_type: IO | str) -> type[IO_V3]:
name = f"{io_type}_IO_V3"
return type(name, (IO_V3,), {}, io_type=io_type)
def CustomInput(id: str, io_type: IO | str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None) -> InputV3:
'''
Defines input for 'io_type'. Can be used to stand in for non-core types.
'''
input_kwargs = {
"id": id,
"display_name": display_name,
"behavior": behavior,
"tooltip": tooltip,
"lazy": lazy,
}
return type(f"{io_type}Input", (InputV3,), {}, io_type=io_type)(**input_kwargs)
def CustomOutput(id: str, io_type: IO | str, display_name: str=None, tooltip: str=None) -> OutputV3:
'''
Defines output for 'io_type'. Can be used to stand in for non-core types.
'''
input_kwargs = {
"id": id,
"display_name": display_name,
"tooltip": tooltip,
}
return type(f"{io_type}Output", (OutputV3,), {}, io_type=io_type)(**input_kwargs)
class BooleanInput(WidgetInputV3, io_type=IO.BOOLEAN):
'''
Boolean input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
default: bool=None, label_on: str=None, label_off: str=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, behavior, tooltip, lazy, default, socketless, widgetType)
self.label_on = label_on
self.label_off = label_off
self.default: bool
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"label_on": self.label_on,
"label_off": self.label_off,
})
class IntegerInput(WidgetInputV3, io_type=IO.INT):
'''
Integer input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None,
display_mode: NumberDisplay=None, socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, behavior, tooltip, lazy, default, socketless, widgetType)
self.min = min
self.max = max
self.step = step
self.control_after_generate = control_after_generate
self.display_mode = display_mode
self.default: int
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"min": self.min,
"max": self.max,
"step": self.step,
"control_after_generate": self.control_after_generate,
"display": self.display_mode, # NOTE: in frontend, the parameter is called "display"
})
class FloatInput(WidgetInputV3, io_type=IO.FLOAT):
'''
Float input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
default: float=None, min: float=None, max: float=None, step: float=None, round: float=None,
display_mode: NumberDisplay=None, socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, behavior, tooltip, lazy, default, socketless, widgetType)
self.default = default
self.min = min
self.max = max
self.step = step
self.round = round
self.display_mode = display_mode
self.default: float
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"min": self.min,
"max": self.max,
"step": self.step,
"round": self.round,
"display": self.display_mode, # NOTE: in frontend, the parameter is called "display"
})
class StringInput(WidgetInputV3, io_type=IO.STRING):
'''
String input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
multiline=False, placeholder: str=None, default: int=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, behavior, tooltip, lazy, default, socketless, widgetType)
self.multiline = multiline
self.placeholder = placeholder
self.default: str
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"multiline": self.multiline,
"placeholder": self.placeholder,
})
class ComboInput(WidgetInputV3, io_type=IO.COMBO):
'''Combo input (dropdown).'''
def __init__(self, id: str, options: list[str], display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
default: str=None, control_after_generate: bool=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, behavior, tooltip, lazy, default, socketless, widgetType)
self.multiselect = False
self.options = options
self.control_after_generate = control_after_generate
self.default: str
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"multiselect": self.multiselect,
"options": self.options,
"control_after_generate": self.control_after_generate,
})
class MultiselectComboWidget(ComboInput, io_type=IO.COMBO):
'''Multiselect Combo input (dropdown for selecting potentially more than one value).'''
def __init__(self, id: str, options: list[str], display_name: str=None, behavior=InputBehavior.required, tooltip: str=None, lazy: bool=None,
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, options, display_name, behavior, tooltip, lazy, default, control_after_generate, socketless, widgetType)
self.multiselect = True
self.placeholder = placeholder
self.chip = chip
self.default: list[str]
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"multiselect": self.multiselect,
"placeholder": self.placeholder,
"chip": self.chip,
})
class ImageInput(InputV3, io_type=IO.IMAGE):
'''
Image input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None):
super().__init__(id, display_name, behavior, tooltip)
class MaskInput(InputV3, io_type=IO.MASK):
'''
Mask input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None):
super().__init__(id, display_name, behavior, tooltip)
class LatentInput(InputV3, io_type=IO.LATENT):
'''
Latent input.
'''
def __init__(self, id: str, display_name: str=None, behavior=InputBehavior.required, tooltip: str=None):
super().__init__(id, display_name, behavior, tooltip)
class MultitypedInput(InputV3, io_type="COMFY_MULTITYPED_V3"):
'''
Input that permits more than one input type.
'''
def __init__(self, id: str, io_types: list[type[IO_V3] | InputV3 | IO |str], display_name: str=None, behavior=InputBehavior.required, tooltip: str=None,):
super().__init__(id, display_name, behavior, tooltip)
self._io_types = io_types
@property
def io_types(self) -> list[type[InputV3]]:
'''
Returns list of InputV3 class types permitted.
'''
io_types = []
for x in self._io_types:
if not is_class(x):
io_types.append(type(x))
else:
io_types.append(x)
return io_types
def get_io_type_V1(self):
return ",".join(x.io_type for x in self.io_types)
class OutputV3:
def __init__(self, id: str, display_name: str=None, tooltip: str=None,
is_output_list=False):
self.id = id
self.display_name = display_name
self.tooltip = tooltip
self.is_output_list = is_output_list
def __init_subclass__(cls, io_type, **kwargs):
cls.io_type = io_type
super().__init_subclass__(**kwargs)
class IntegerOutput(OutputV3, io_type=IO.INT):
pass
class FloatOutput(OutputV3, io_type=IO.FLOAT):
pass
class StringOutput(OutputV3, io_type=IO.STRING):
pass
# def __init__(self, id: str, display_name: str=None, tooltip: str=None):
# super().__init__(id, display_name, tooltip)
class ImageOutput(OutputV3, io_type=IO.IMAGE):
pass
class MaskOutput(OutputV3, io_type=IO.MASK):
pass
class LatentOutput(OutputV3, io_type=IO.LATENT):
pass
class DynamicInput(InputV3, io_type=None):
'''
Abstract class for dynamic input registration.
'''
def __init__(self, io_type: str, id: str, display_name: str=None):
super().__init__(io_type, id, display_name)
class DynamicOutput(OutputV3, io_type=None):
'''
Abstract class for dynamic output registration.
'''
def __init__(self, io_type: str, id: str, display_name: str=None):
super().__init__(io_type, id, display_name)
class AutoGrowDynamicInput(DynamicInput, io_type="COMFY_MULTIGROW_V3"):
'''
Dynamic Input that adds another template_input each time one is provided.
Additional inputs are forced to have 'InputBehavior.optional'.
'''
def __init__(self, id: str, template_input: InputV3, min: int=1, max: int=None):
super().__init__("AutoGrowDynamicInput", id)
self.template_input = template_input
if min is not None:
assert(min >= 1)
if max is not None:
assert(max >= 1)
self.min = min
self.max = max
class ComboDynamicInput(DynamicInput, io_type="COMFY_COMBODYNAMIC_V3"):
def __init__(self, id: str):
pass
AutoGrowDynamicInput(id="dynamic", template_input=ImageInput(id="image"))
class Hidden(str, Enum):
'''
Enumerator for requesting hidden variables in nodes.
'''
unique_id = "UNIQUE_ID"
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt = "PROMPT"
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo = "EXTRA_PNGINFO"
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt = "DYNPROMPT"
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
auth_token_comfy_org = "AUTH_TOKEN_COMFY_ORG"
"""AUTH_TOKEN_COMFY_ORG is a token acquired from signing into a ComfyOrg account on frontend."""
api_key_comfy_org = "API_KEY_COMFY_ORG"
"""API_KEY_COMFY_ORG is an API Key generated by ComfyOrg that allows skipping signing into a ComfyOrg account on frontend."""
@dataclass
class NodeInfoV1:
input: dict=None
input_order: dict[str, list[str]]=None
output: list[str]=None
output_is_list: list[bool]=None
output_name: list[str]=None
output_tooltips: list[str]=None
name: str=None
display_name: str=None
description: str=None
python_module: Any=None
category: str=None
output_node: bool=None
deprecated: bool=None
experimental: bool=None
api_node: bool=None
def as_pruned_dict(dataclass_obj):
'''Return dict of dataclass object with pruned None values.'''
return prune_dict(asdict(dataclass_obj))
def prune_dict(d: dict):
return {k: v for k,v in d.items() if v is not None}
@dataclass
class SchemaV3:
"""Definition of V3 node properties."""
node_id: str
"""ID of node - should be globally unique. If this is a custom node, add a prefix or postfix to avoid name clashes."""
display_name: str = None
"""Display name of node."""
category: str = "sd"
"""The category of the node, as per the "Add Node" menu."""
inputs: list[InputV3]=None
outputs: list[OutputV3]=None
hidden: list[Hidden]=None
description: str=""
"""Node description, shown as a tooltip when hovering over the node."""
is_input_list: bool = False
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
From the docs:
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
is_output_node: bool=False
"""Flags this node as an output node, causing any inputs it requires to be executed.
If a node is not connected to any output nodes, that node will not be executed. Usage::
OUTPUT_NODE = True
From the docs:
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
"""
is_deprecated: bool=False
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
is_experimental: bool=False
"""Flags a node as experimental, informing users that it may change or not work as expected."""
is_api_node: bool=False
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
# class SchemaV3Class:
# def __init__(self,
# node_id: str,
# node_name: str,
# category: str,
# inputs: list[InputV3],
# outputs: list[OutputV3]=None,
# hidden: list[Hidden]=None,
# description: str="",
# is_input_list: bool = False,
# is_output_node: bool=False,
# is_deprecated: bool=False,
# is_experimental: bool=False,
# is_api_node: bool=False,
# ):
# self.node_id = node_id
# """ID of node - should be globally unique. If this is a custom node, add a prefix or postfix to avoid name clashes."""
# self.node_name = node_name
# """Display name of node."""
# self.category = category
# """The category of the node, as per the "Add Node" menu."""
# self.inputs = inputs
# self.outputs = outputs
# self.hidden = hidden
# self.description = description
# """Node description, shown as a tooltip when hovering over the node."""
# self.is_input_list = is_input_list
# """A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
# All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
# From the docs:
# A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
# Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
# """
# self.is_output_node = is_output_node
# """Flags this node as an output node, causing any inputs it requires to be executed.
# If a node is not connected to any output nodes, that node will not be executed. Usage::
# OUTPUT_NODE = True
# From the docs:
# By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
# Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
# """
# self.is_deprecated = is_deprecated
# """Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
# self.is_experimental = is_experimental
# """Flags a node as experimental, informing users that it may change or not work as expected."""
# self.is_api_node = is_api_node
# """Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
class classproperty(object):
def __init__(self, f):
self.f = f
def __get__(self, obj, owner):
return self.f(owner)
class ComfyNodeV3(ABC):
"""Common base class for all V3 nodes."""
RELATIVE_PYTHON_MODULE = None
#############################################
# V1 Backwards Compatibility code
#--------------------------------------------
_DESCRIPTION = None
@classproperty
def DESCRIPTION(cls):
if cls._DESCRIPTION is None:
cls.GET_SCHEMA()
return cls._DESCRIPTION
_CATEGORY = None
@classproperty
def CATEGORY(cls):
if cls._CATEGORY is None:
cls.GET_SCHEMA()
return cls._CATEGORY
_EXPERIMENTAL = None
@classproperty
def EXPERIMENTAL(cls):
if cls._EXPERIMENTAL is None:
cls.GET_SCHEMA()
return cls._EXPERIMENTAL
_DEPRECATED = None
@classproperty
def DEPRECATED(cls):
if cls._DEPRECATED is None:
cls.GET_SCHEMA()
return cls._DEPRECATED
_API_NODE = None
@classproperty
def API_NODE(cls):
if cls._API_NODE is None:
cls.GET_SCHEMA()
return cls._API_NODE
_OUTPUT_NODE = None
@classproperty
def OUTPUT_NODE(cls):
if cls._OUTPUT_NODE is None:
cls.GET_SCHEMA()
return cls._OUTPUT_NODE
_INPUT_IS_LIST = None
@classproperty
def INPUT_IS_LIST(cls):
if cls._INPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._INPUT_IS_LIST
_OUTPUT_IS_LIST = None
@classproperty
def OUTPUT_IS_LIST(cls):
if cls._OUTPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._OUTPUT_IS_LIST
_RETURN_TYPES = None
@classproperty
def RETURN_TYPES(cls):
if cls._RETURN_TYPES is None:
cls.GET_SCHEMA()
return cls._RETURN_TYPES
_RETURN_NAMES = None
@classproperty
def RETURN_NAMES(cls):
if cls._RETURN_NAMES is None:
cls.GET_SCHEMA()
return cls._RETURN_NAMES
_OUTPUT_TOOLTIPS = None
@classproperty
def OUTPUT_TOOLTIPS(cls):
if cls._OUTPUT_TOOLTIPS is None:
cls.GET_SCHEMA()
return cls._OUTPUT_TOOLTIPS
FUNCTION = "execute"
@classmethod
def INPUT_TYPES(cls) -> dict[str, dict]:
schema = cls.DEFINE_SCHEMA()
# for V1, make inputs be a dict with potential keys {required, optional, hidden}
input = {
"required": {}
}
if schema.inputs:
for i in schema.inputs:
input.setdefault(i.behavior.value, {})[i.id] = (i.get_io_type_V1(), i.as_dict_V1())
if schema.hidden:
for hidden in schema.hidden:
input.setdefault("hidden", {})[hidden.name] = (hidden.value,)
return input
@classmethod
def GET_SCHEMA(cls) -> SchemaV3:
schema = cls.DEFINE_SCHEMA()
if cls._DESCRIPTION is None:
cls._DESCRIPTION = schema.description
if cls._CATEGORY is None:
cls._CATEGORY = schema.category
if cls._EXPERIMENTAL is None:
cls._EXPERIMENTAL = schema.is_experimental
if cls._DEPRECATED is None:
cls._DEPRECATED = schema.is_deprecated
if cls._API_NODE is None:
cls._API_NODE = schema.is_api_node
if cls._OUTPUT_NODE is None:
cls._OUTPUT_NODE = schema.is_output_node
if cls._INPUT_IS_LIST is None:
cls._INPUT_IS_LIST = schema.is_input_list
if cls._RETURN_TYPES is None:
output = []
output_name = []
output_is_list = []
output_tooltips = []
if schema.outputs:
for o in schema.outputs:
output.append(o.io_type)
output_name.append(o.display_name if o.display_name else o.io_type)
output_is_list.append(o.is_output_list)
output_tooltips.append(o.tooltip if o.tooltip else None)
cls._RETURN_TYPES = output
cls._RETURN_NAMES = output_name
cls._OUTPUT_IS_LIST = output_is_list
cls._OUTPUT_TOOLTIPS = output_tooltips
return schema
@classmethod
def GET_NODE_INFO_V1(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
# get V1 inputs
input = cls.INPUT_TYPES()
# create separate lists from output fields
output = []
output_is_list = []
output_name = []
output_tooltips = []
if schema.outputs:
for o in schema.outputs:
output.append(o.io_type)
output_is_list.append(o.is_output_list)
output_name.append(o.display_name if o.display_name else o.io_type)
output_tooltips.append(o.tooltip if o.tooltip else None)
info = NodeInfoV1(
input=input,
input_order={key: list(value.keys()) for (key, value) in input.items()},
output=output,
output_is_list=output_is_list,
output_name=output_name,
output_tooltips=output_tooltips,
name=schema.node_id,
display_name=schema.display_name,
category=schema.category,
description=schema.description,
output_node=schema.is_output_node,
deprecated=schema.is_deprecated,
experimental=schema.is_experimental,
api_node=schema.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes")
)
return asdict(info)
#--------------------------------------------
#############################################
@classmethod
def GET_NODE_INFO_V3(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
# TODO: finish
return None
@classmethod
@abstractmethod
def DEFINE_SCHEMA(cls) -> SchemaV3:
"""
Override this function with one that returns a SchemaV3 instance.
"""
return None
DEFINE_SCHEMA = None
def __init__(self):
if self.DEFINE_SCHEMA is None:
raise Exception("No DEFINE_SCHEMA function was defined for this node.")
@abstractmethod
def execute(self, **kwargs) -> NodeOutput:
pass
# class ReturnedInputs:
# def __init__(self):
# pass
# class ReturnedOutputs:
# def __init__(self):
# pass
class NodeOutput:
'''
Standardized output of a node; can pass in any number of args and/or a UIOutput into 'ui' kwarg.
'''
def __init__(self, *args: Any, ui: UIOutput | dict=None, expand: dict=None, block_execution: str=None, **kwargs):
self.args = args
self.ui = ui
self.expand = expand
self.block_execution = block_execution
@property
def result(self):
return self.args if len(self.args) > 0 else None
class SavedResult:
def __init__(self, filename: str, subfolder: str, type: Literal["input", "output", "temp"]):
self.filename = filename
self.subfolder = subfolder
self.type = type
def as_dict(self):
return {
"filename": self.filename,
"subfolder": self.subfolder,
"type": self.type
}
class UIOutput(ABC):
def __init__(self):
pass
@abstractmethod
def as_dict(self) -> dict:
... # TODO: finish
class UIImages(UIOutput):
def __init__(self, values: list[SavedResult | dict], animated=False, **kwargs):
self.values = values
self.animated = animated
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"images": values,
"animated": (self.animated,)
}
class UILatents(UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"latents": values,
}
class UIAudio(UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"audio": values,
}
class UI3D(UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"3d": values,
}
class UIText(UIOutput):
def __init__(self, value: str, **kwargs):
self.value = value
def as_dict(self):
return {"text": (self.value,)}
class TestNode(ComfyNodeV3):
SCHEMA = SchemaV3(
node_id="TestNode_v3",
display_name="Test Node (V3)",
category="v3_test",
inputs=[IntegerInput("my_int"),
#AutoGrowDynamicInput("growing", ImageInput),
MaskInput("thing"),
],
outputs=[ImageOutput("image_output")],
hidden=[Hidden.api_key_comfy_org, Hidden.auth_token_comfy_org, Hidden.unique_id]
)
# @classmethod
# def GET_SCHEMA(cls):
# return cls.SCHEMA
@classmethod
def DEFINE_SCHEMA(cls):
return cls.SCHEMA
def execute(**kwargs):
pass
if __name__ == "__main__":
print("hello there")
inputs: list[InputV3] = [
IntegerInput("my_int"),
CustomInput("xyz", "XYZ"),
CustomInput("model1", "MODEL_M"),
ImageInput("my_image"),
FloatInput("my_float"),
MultitypedInput("my_inputs", [CustomType("MODEL_M"), CustomType("XYZ")]),
]
outputs: list[OutputV3] = [
ImageOutput("image"),
CustomOutput("xyz", "XYZ")
]
for c in inputs:
if isinstance(c, MultitypedInput):
print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}, {[x.io_type for x in c.io_types]}")
print(c.get_io_type_V1())
else:
print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
for c in outputs:
print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
zz = TestNode()
print(zz.GET_NODE_INFO_V1())
# aa = NodeInfoV1()
# print(asdict(aa))
# print(as_pruned_dict(aa))

View File

@@ -1,86 +0,0 @@
from __future__ import annotations
from inspect import cleandoc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.multigpu
class MultiGPUWorkUnitsNode:
"""
Prepares model to have sampling accelerated via splitting work units.
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
Other than those exceptions, this node can be placed in any order.
"""
NodeId = "MultiGPU_WorkUnits"
NodeName = "MultiGPU Work Units"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"max_gpus" : ("INT", {"default": 8, "min": 1, "step": 1}),
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "init_multigpu"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def init_multigpu(self, model: ModelPatcher, max_gpus: int, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
model = comfy.multigpu.create_multigpu_deepclones(model, max_gpus, gpu_options, reuse_loaded=True)
return (model,)
class MultiGPUOptionsNode:
"""
Select the relative speed of GPUs in the special case they have significantly different performance from one another.
"""
NodeId = "MultiGPU_Options"
NodeName = "MultiGPU Options"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"device_index": ("INT", {"default": 0, "min": 0, "max": 64}),
"relative_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01})
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("GPU_OPTIONS",)
FUNCTION = "create_gpu_options"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def create_gpu_options(self, device_index: int, relative_speed: float, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
if not gpu_options:
gpu_options = comfy.multigpu.GPUOptionsGroup()
gpu_options.clone()
opt = comfy.multigpu.GPUOptions(device_index=device_index, relative_speed=relative_speed)
gpu_options.add(opt)
return (gpu_options,)
node_list = [
MultiGPUWorkUnitsNode,
MultiGPUOptionsNode
]
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
for node in node_list:
NODE_CLASS_MAPPINGS[node.NodeId] = node
NODE_DISPLAY_NAME_MAPPINGS[node.NodeId] = node.NodeName

View File

@@ -0,0 +1,67 @@
import torch
from comfy_api.v3.io import (
ComfyNodeV3, SchemaV3, CustomType, CustomInput, CustomOutput, InputBehavior, NumberDisplay,
IntegerInput, MaskInput, ImageInput, ComboDynamicInput, NodeOutput,
)
class V3TestNode(ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return SchemaV3(
node_id="V3TestNode1",
display_name="V3 Test Node (1djekjd)",
description="This is a funky V3 node test.",
category="v3 nodes",
inputs=[
IntegerInput("some_int", display_name="new_name", min=0, tooltip="My tooltip 😎", display_mode=NumberDisplay.slider),
MaskInput("mask", behavior=InputBehavior.optional),
ImageInput("image", display_name="new_image"),
# IntegerInput("some_int", display_name="new_name", min=0, tooltip="My tooltip 😎", display=NumberDisplay.slider, ),
# ComboDynamicInput("mask", behavior=InputBehavior.optional),
# IntegerInput("some_int", display_name="new_name", min=0, tooltip="My tooltip 😎", display=NumberDisplay.slider,
# dependent_inputs=[ComboDynamicInput("mask", behavior=InputBehavior.optional)],
# dependent_values=[lambda my_value: IO.STRING if my_value < 5 else IO.NUMBER],
# ),
# ["option1", "option2". "option3"]
# ComboDynamicInput["sdfgjhl", [ComboDynamicOptions("option1", [IntegerInput("some_int", display_name="new_name", min=0, tooltip="My tooltip 😎", display=NumberDisplay.slider, ImageInput(), MaskInput(), String()]),
# CombyDynamicOptons("option2", [])
# ]]
],
is_output_node=True,
)
def execute(self, some_int: int, image: torch.Tensor, mask: torch.Tensor=None, **kwargs):
a = NodeOutput(1)
aa = NodeOutput(1, "hellothere")
ab = NodeOutput(1, "hellothere", ui={"lol": "jk"})
b = NodeOutput()
c = NodeOutput(ui={"lol": "jk"})
return NodeOutput()
return NodeOutput(1)
return NodeOutput(1, block_execution="Kill yourself")
return ()
NODES_LIST: list[ComfyNodeV3] = [
V3TestNode,
]
# NODE_CLASS_MAPPINGS = {}
# NODE_DISPLAY_NAME_MAPPINGS = {}
# for node in NODES_LIST:
# schema = node.GET_SCHEMA()
# NODE_CLASS_MAPPINGS[schema.node_id] = node
# if schema.display_name:
# NODE_DISPLAY_NAME_MAPPINGS[schema.node_id] = schema.display_name

View File

@@ -17,6 +17,7 @@ from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt,
from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.validation import validate_node_input
from comfy_api.v3.io import NodeOutput
class ExecutionResult(Enum):
SUCCESS = 0
@@ -242,6 +243,22 @@ def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb
result = tuple([result] * len(obj.RETURN_TYPES))
results.append(result)
subgraph_results.append((None, result))
elif isinstance(r, NodeOutput):
if r.ui is not None:
uis.append(r.ui.as_dict())
if r.expand is not None:
has_subgraph = True
new_graph = r.expand
result = r.result
if r.block_execution is not None:
result = tuple([ExecutionBlocker(r.block_execution)] * len(obj.RETURN_TYPES))
subgraph_results.append((new_graph, result))
elif r.result is not None:
result = r.result
if r.block_execution is not None:
result = tuple([ExecutionBlocker(r.block_execution)] * len(obj.RETURN_TYPES))
results.append(result)
subgraph_results.append((None, result))
else:
if isinstance(r, ExecutionBlocker):
r = tuple([r] * len(obj.RETURN_TYPES))

View File

@@ -26,6 +26,7 @@ import comfy.sd
import comfy.utils
import comfy.controlnet
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict, FileLocator
from comfy_api.v3.io import ComfyNodeV3
import comfy.clip_vision
@@ -2129,6 +2130,7 @@ def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes
if os.path.isdir(web_dir):
EXTENSION_WEB_DIRS[module_name] = web_dir
# V1 node definition
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
for name, node_cls in module.NODE_CLASS_MAPPINGS.items():
if name not in ignore:
@@ -2137,8 +2139,19 @@ def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
return True
# V3 node definition
elif getattr(module, "NODES_LIST", None) is not None:
for node_cls in module.NODES_LIST:
node_cls: ComfyNodeV3
schema = node_cls.GET_SCHEMA()
if schema.node_id not in ignore:
NODE_CLASS_MAPPINGS[schema.node_id] = node_cls
node_cls.RELATIVE_PYTHON_MODULE = "{}.{}".format(module_parent, get_module_name(module_path))
if schema.display_name is not None:
NODE_DISPLAY_NAME_MAPPINGS[schema.node_id] = schema.display_name
return True
else:
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS or NODES_LIST (need one).")
return False
except Exception as e:
logging.warning(traceback.format_exc())
@@ -2241,7 +2254,6 @@ def init_builtin_extra_nodes():
"nodes_mahiro.py",
"nodes_lt.py",
"nodes_hooks.py",
"nodes_multigpu.py",
"nodes_load_3d.py",
"nodes_cosmos.py",
"nodes_video.py",
@@ -2259,6 +2271,7 @@ def init_builtin_extra_nodes():
"nodes_ace.py",
"nodes_string.py",
"nodes_camera_trajectory.py",
"nodes_v3_test.py",
]
import_failed = []

View File

@@ -29,6 +29,7 @@ import comfy.model_management
import node_helpers
from comfyui_version import __version__
from app.frontend_management import FrontendManager
from comfy_api.v3.io import ComfyNodeV3
from app.user_manager import UserManager
from app.model_manager import ModelFileManager
@@ -555,6 +556,8 @@ class PromptServer():
def node_info(node_class):
obj_class = nodes.NODE_CLASS_MAPPINGS[node_class]
if isinstance(obj_class, ComfyNodeV3):
return obj_class.GET_NODE_INFO_V1()
info = {}
info['input'] = obj_class.INPUT_TYPES()
info['input_order'] = {key: list(value.keys()) for (key, value) in obj_class.INPUT_TYPES().items()}