Compare commits

..

1 Commits

Author SHA1 Message Date
Yoland Yan
ef0c2b0819 Add pre-commit configuration and update README for backend development 2025-03-02 12:43:19 -08:00
71 changed files with 479 additions and 2549 deletions

View File

@@ -1,2 +0,0 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
pause

View File

@@ -22,7 +22,7 @@ on:
description: 'Python patch version'
required: true
type: string
default: "9"
default: "8"
jobs:

View File

@@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "9"
default: "8"
# push:
# branches:
# - master

View File

@@ -7,7 +7,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "128"
default: "126"
python_minor:
description: 'python minor version'
@@ -19,7 +19,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "2"
default: "1"
# push:
# branches:
# - master
@@ -34,7 +34,7 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 30
fetch-depth: 0
persist-credentials: false
- uses: actions/setup-python@v5
with:
@@ -74,7 +74,7 @@ jobs:
pause" > ./update/update_comfyui_and_python_dependencies.bat
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
cd ComfyUI_windows_portable_nightly_pytorch

View File

@@ -19,7 +19,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "9"
default: "8"
# push:
# branches:
# - master

13
.pre-commit-config.yaml Normal file
View File

@@ -0,0 +1,13 @@
repos:
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: v0.0.241 # Use the desired version of Ruff
hooks:
- id: ruff
- repo: local
hooks:
- id: pytest
name: Run Pytest
entry: pytest
language: system
types: [python]

View File

@@ -19,6 +19,5 @@
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
# Extra nodes
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink

View File

@@ -215,9 +215,9 @@ Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
This is the command to install pytorch nightly instead which supports the new blackwell 50xx series GPUs and might have performance improvements.
This is the command to install pytorch nightly instead which might have performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126```
#### Troubleshooting
@@ -330,6 +330,25 @@ Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app w
See also: [https://www.comfy.org/](https://www.comfy.org/)
## ComfyUI Backend Development
### Setup Environment
Install pre-commit to run tests and linters
```
pip install pre-commit
```
```
pre-commit install
```
### Reporting Issues and Requesting Features
For any bugs, issues, or feature requests related to the backend, please use the [ComfyUI repository](https://github.com/comfyanonymous/ComfyUI). This will help us manage and address backend-specific concerns more efficiently.
## Frontend Development
As of August 15, 2024, we have transitioned to a new frontend, which is now hosted in a separate repository: [ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend). This repository now hosts the compiled JS (from TS/Vue) under the `web/` directory.

View File

@@ -3,7 +3,6 @@ import argparse
import logging
import os
import re
import sys
import tempfile
import zipfile
import importlib
@@ -11,43 +10,19 @@ from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import TypedDict, Optional
from importlib.metadata import version
import requests
from typing_extensions import NotRequired
from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message():
"""The warning message to display when the frontend version is not up to date."""
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
def check_frontend_version():
"""Check if the frontend version is up to date."""
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version = parse_version(frontend_version_str)
with open(req_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), frontend_install_warning_message()))
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
logging.error(f"Failed to check frontend version: {e}")
try:
import comfyui_frontend_package
except ImportError as e:
# TODO: Remove the check after roll out of 0.3.16
logging.error("comfyui-frontend-package is not installed. Please install the updated requirements.txt file by running: pip install -r requirements.txt")
raise e
REQUEST_TIMEOUT = 10 # seconds
@@ -144,17 +119,9 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
class FrontendManager:
DEFAULT_FRONTEND_PATH = str(importlib.resources.files(comfyui_frontend_package) / "static")
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
def default_frontend_path(cls) -> str:
try:
import comfyui_frontend_package
return str(importlib.resources.files(comfyui_frontend_package) / "static")
except ImportError:
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
sys.exit(-1)
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
@@ -191,8 +158,7 @@ class FrontendManager:
main error source might be request timeout or invalid URL.
"""
if version_string == DEFAULT_VERSION_STRING:
check_frontend_version()
return cls.default_frontend_path()
return cls.DEFAULT_FRONTEND_PATH
repo_owner, repo_name, version = cls.parse_version_string(version_string)
@@ -245,5 +211,4 @@ class FrontendManager:
except Exception as e:
logging.error("Failed to initialize frontend: %s", e)
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
return cls.DEFAULT_FRONTEND_PATH

View File

@@ -82,17 +82,3 @@ def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool
logger.addHandler(stdout_handler)
logger.addHandler(stream_handler)
STARTUP_WARNINGS = []
def log_startup_warning(msg):
logging.warning(msg)
STARTUP_WARNINGS.append(msg)
def print_startup_warnings():
for s in STARTUP_WARNINGS:
logging.warning(s)
STARTUP_WARNINGS.clear()

View File

@@ -1,6 +1,7 @@
import argparse
import enum
import os
from typing import Optional
import comfy.options
@@ -49,7 +50,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
@@ -106,7 +107,6 @@ attn_group.add_argument("--use-split-cross-attention", action="store_true", help
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
@@ -166,14 +166,13 @@ parser.add_argument(
""",
)
def is_valid_directory(path: str) -> str:
"""Validate if the given path is a directory, and check permissions."""
if not os.path.exists(path):
raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
def is_valid_directory(path: Optional[str]) -> Optional[str]:
"""Validate if the given path is a directory."""
if path is None:
return None
if not os.path.isdir(path):
raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
if not os.access(path, os.R_OK):
raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
return path
parser.add_argument(

View File

@@ -97,12 +97,8 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
if embeds is not None:
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:
x = self.embeddings(input_tokens, dtype=dtype)
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
x = self.embeddings(input_tokens, dtype=dtype)
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
@@ -120,10 +116,7 @@ class CLIPTextModel_(torch.nn.Module):
if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i)
if num_tokens is not None:
pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
else:
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
return x, i, pooled_output
class CLIPTextModel(torch.nn.Module):
@@ -211,15 +204,6 @@ class CLIPVision(torch.nn.Module):
pooled_output = self.post_layernorm(x[:, 0, :])
return x, i, pooled_output
class LlavaProjector(torch.nn.Module):
def __init__(self, in_dim, out_dim, dtype, device, operations):
super().__init__()
self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
def forward(self, x):
return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
class CLIPVisionModelProjection(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
@@ -229,16 +213,7 @@ class CLIPVisionModelProjection(torch.nn.Module):
else:
self.visual_projection = lambda a: a
if "llava3" == config_dict.get("projector_type", None):
self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
else:
self.multi_modal_projector = None
def forward(self, *args, **kwargs):
x = self.vision_model(*args, **kwargs)
out = self.visual_projection(x[2])
projected = None
if self.multi_modal_projector is not None:
projected = self.multi_modal_projector(x[1])
return (x[0], x[1], out, projected)
return (x[0], x[1], out)

View File

@@ -9,7 +9,6 @@ import comfy.model_patcher
import comfy.model_management
import comfy.utils
import comfy.clip_model
import comfy.image_encoders.dino2
class Output:
def __getitem__(self, key):
@@ -35,12 +34,6 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
IMAGE_ENCODERS = {
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
}
class ClipVisionModel():
def __init__(self, json_config):
with open(json_config) as f:
@@ -49,11 +42,10 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
@@ -73,7 +65,6 @@ class ClipVisionModel():
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs
def convert_to_transformers(sd, prefix):
@@ -113,14 +104,9 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
else:
return None

View File

@@ -1,19 +0,0 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"image_size": 336,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-5,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"projector_type": "llava3",
"torch_dtype": "float32"
}

View File

@@ -1,6 +1,6 @@
import torch
from typing import Callable, Protocol, TypedDict, Optional, List
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin, FileLocator
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
class UnetApplyFunction(Protocol):
@@ -42,5 +42,4 @@ __all__ = [
InputTypeDict.__name__,
ComfyNodeABC.__name__,
CheckLazyMixin.__name__,
FileLocator.__name__,
]

View File

@@ -2,7 +2,6 @@
from __future__ import annotations
from typing import Literal, TypedDict
from typing_extensions import NotRequired
from abc import ABC, abstractmethod
from enum import Enum
@@ -27,7 +26,6 @@ class IO(StrEnum):
BOOLEAN = "BOOLEAN"
INT = "INT"
FLOAT = "FLOAT"
COMBO = "COMBO"
CONDITIONING = "CONDITIONING"
SAMPLER = "SAMPLER"
SIGMAS = "SIGMAS"
@@ -68,7 +66,6 @@ class IO(StrEnum):
b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b))
class RemoteInputOptions(TypedDict):
route: str
"""The route to the remote source."""
@@ -83,14 +80,6 @@ class RemoteInputOptions(TypedDict):
refresh: int
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
class MultiSelectOptions(TypedDict):
placeholder: NotRequired[str]
"""The placeholder text to display in the multi-select widget when no items are selected."""
chip: NotRequired[bool]
"""Specifies whether to use chips instead of comma separated values for the multi-select widget."""
class InputTypeOptions(TypedDict):
"""Provides type hinting for the return type of the INPUT_TYPES node function.
@@ -125,7 +114,7 @@ class InputTypeOptions(TypedDict):
# default: bool
label_on: str
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
label_off: str
label_on: str
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
# class InputTypeString(InputTypeOptions):
# default: str
@@ -144,22 +133,7 @@ class InputTypeOptions(TypedDict):
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
"""
remote: RemoteInputOptions
"""Specifies the configuration for a remote input.
Available after ComfyUI frontend v1.9.7
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
control_after_generate: bool
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
options: NotRequired[list[str | int | float]]
"""COMBO type only. Specifies the selectable options for the combo widget.
Prefer:
["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
Over:
[["Option 1", "Option 2", "Option 3"]]
"""
multi_select: NotRequired[MultiSelectOptions]
"""COMBO type only. Specifies the configuration for a multi-select widget.
Available after ComfyUI frontend v1.13.4
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
"""Specifies the configuration for a remote input."""
class HiddenInputTypeDict(TypedDict):
@@ -319,14 +293,3 @@ class CheckLazyMixin:
need = [name for name in kwargs if kwargs[name] is None]
return need
class FileLocator(TypedDict):
"""Provides type hinting for the file location"""
filename: str
"""The filename of the file."""
subfolder: str
"""The subfolder of the file."""
type: Literal["input", "output", "temp"]
"""The root folder of the file."""

View File

@@ -15,14 +15,13 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import torch
from enum import Enum
import math
import os
import logging
import copy
import comfy.utils
import comfy.model_management
import comfy.model_detection
@@ -37,7 +36,7 @@ import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING, Union
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.hooks import HookGroup
@@ -64,18 +63,6 @@ class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlIsolation:
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
def __init__(self, control: ControlBase):
self.control = control
self.orig_previous_controlnet = control.previous_controlnet
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
class ControlBase:
def __init__(self):
self.cond_hint_original = None
@@ -89,7 +76,7 @@ class ControlBase:
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
self.previous_controlnet: Union[ControlBase, None] = None
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
self.concat_mask = False
@@ -97,7 +84,6 @@ class ControlBase:
self.extra_concat = None
self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a
self.multigpu_clones: dict[torch.device, ControlBase] = {}
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
@@ -124,38 +110,17 @@ class ControlBase:
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
for device_cnet in self.multigpu_clones.values():
with ControlIsolation(device_cnet):
device_cnet.cleanup()
self.cond_hint = None
self.extra_concat = None
self.timestep_range = None
def get_models(self):
out = []
for device_cnet in self.multigpu_clones.values():
out += device_cnet.get_models_only_self()
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def get_models_only_self(self):
'Calls get_models, but temporarily sets previous_controlnet to None.'
with ControlIsolation(self):
return self.get_models()
def get_instance_for_device(self, device):
'Returns instance of this Control object intended for selected device.'
return self.multigpu_clones.get(device, self)
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
def get_extra_hooks(self):
out = []
if self.extra_hooks is not None:
@@ -164,7 +129,7 @@ class ControlBase:
out += self.previous_controlnet.get_extra_hooks()
return out
def copy_to(self, c: ControlBase):
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
@@ -315,14 +280,6 @@ class ControlNet(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.control_model = copy.deepcopy(c.control_model)
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
if autoregister:
self.multigpu_clones[load_device] = c
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
@@ -847,14 +804,6 @@ class T2IAdapter(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)
c.device = load_device
if autoregister:
self.multigpu_clones[load_device] = c
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8
upscale_algorithm = 'nearest-exact'

View File

@@ -1,141 +0,0 @@
import torch
from comfy.text_encoders.bert import BertAttention
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention_for_device
class Dino2AttentionOutput(torch.nn.Module):
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
super().__init__()
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
def forward(self, x):
return self.dense(x)
class Dino2AttentionBlock(torch.nn.Module):
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = BertAttention(embed_dim, heads, dtype, device, operations)
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
def forward(self, x, mask, optimized_attention):
return self.output(self.attention(x, mask, optimized_attention))
class LayerScale(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
in_features = out_features = dim
hidden_features = int(dim * 4)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype)
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype)
def forward(self, x):
x = self.weights_in(x)
x1, x2 = x.chunk(2, dim=-1)
x = torch.nn.functional.silu(x1) * x2
return self.weights_out(x)
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, x, optimized_attention):
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention))
x = x + self.layer_scale2(self.mlp(self.norm2(x)))
return x
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class Dino2PatchEmbeddings(torch.nn.Module):
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None):
super().__init__()
self.projection = operations.Conv2d(
in_channels=num_channels,
out_channels=dim,
kernel_size=patch_size,
stride=patch_size,
bias=True,
dtype=dtype,
device=device
)
def forward(self, pixel_values):
return self.projection(pixel_values).flatten(2).transpose(1, 2)
class Dino2Embeddings(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
patch_size = 14
image_size = 518
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations)
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device))
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device))
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device))
def forward(self, pixel_values):
x = self.patch_embeddings(pixel_values)
# TODO: mask_token?
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
return x
class Dinov2Model(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
num_layers = config_dict["num_hidden_layers"]
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
x = self.embeddings(pixel_values)
x, i = self.encoder(x, intermediate_output=intermediate_output)
x = self.layernorm(x)
pooled_output = x[:, 0, :]
return x, i, pooled_output, None

View File

@@ -1,21 +0,0 @@
{
"attention_probs_dropout_prob": 0.0,
"drop_path_rate": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"hidden_size": 1536,
"image_size": 518,
"initializer_range": 0.02,
"layer_norm_eps": 1e-06,
"layerscale_value": 1.0,
"mlp_ratio": 4,
"model_type": "dinov2",
"num_attention_heads": 24,
"num_channels": 3,
"num_hidden_layers": 40,
"patch_size": 14,
"qkv_bias": true,
"use_swiglu_ffn": true,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@@ -688,10 +688,10 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
@@ -762,10 +762,10 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
@@ -808,10 +808,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
denoised_1, denoised_2 = None, None
@@ -858,7 +858,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@@ -867,7 +867,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@@ -876,7 +876,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
@@ -1366,59 +1366,3 @@ def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None,
x = x + d_bar * dt
old_d = d
return x
@torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
"""
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
def default_noise_scaler(sigma):
return sigma * ((sigma ** 0.3).exp() + 10.0)
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
num_integration_points = 200.0
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
old_denoised = None
old_denoised_d = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
stage_used = min(max_stage, i + 1)
if sigmas[i + 1] == 0:
x = denoised
elif stage_used == 1:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
else:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
dt = sigmas[i + 1] - sigmas[i]
sigma_step_size = -dt / num_integration_points
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
scaled_pos = noise_scaler(sigma_pos)
# Stage 2
s = torch.sum(1 / scaled_pos) * sigma_step_size
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
if stage_used >= 3:
# Stage 3
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
old_denoised_d = denoised_d
if s_noise != 0 and sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x

View File

@@ -19,10 +19,6 @@
import torch
from torch import nn
from torch.autograd import Function
import comfy.ops
ops = comfy.ops.disable_weight_init
class vector_quantize(Function):
@staticmethod
@@ -125,15 +121,15 @@ class ResBlock(nn.Module):
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential(
nn.ReplicationPad2d(1),
ops.Conv2d(c, c, kernel_size=3, groups=c)
nn.Conv2d(c, c, kernel_size=3, groups=c)
)
# channelwise
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
ops.Linear(c, c_hidden),
nn.Linear(c, c_hidden),
nn.GELU(),
ops.Linear(c_hidden, c),
nn.Linear(c_hidden, c),
)
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
@@ -175,16 +171,16 @@ class StageA(nn.Module):
# Encoder blocks
self.in_block = nn.Sequential(
nn.PixelUnshuffle(2),
ops.Conv2d(3 * 4, c_levels[0], kernel_size=1)
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
)
down_blocks = []
for i in range(levels):
if i > 0:
down_blocks.append(ops.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = ResBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block)
down_blocks.append(nn.Sequential(
ops.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
))
self.down_blocks = nn.Sequential(*down_blocks)
@@ -195,7 +191,7 @@ class StageA(nn.Module):
# Decoder blocks
up_blocks = [nn.Sequential(
ops.Conv2d(c_latent, c_levels[-1], kernel_size=1)
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
)]
for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1):
@@ -203,11 +199,11 @@ class StageA(nn.Module):
up_blocks.append(block)
if i < levels - 1:
up_blocks.append(
ops.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
padding=1))
self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential(
ops.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.PixelShuffle(2),
)
@@ -236,17 +232,17 @@ class Discriminator(nn.Module):
super().__init__()
d = max(depth - 3, 3)
layers = [
nn.utils.spectral_norm(ops.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
nn.LeakyReLU(0.2),
]
for i in range(depth - 1):
c_in = c_hidden // (2 ** max((d - i), 0))
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
layers.append(nn.utils.spectral_norm(ops.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
layers.append(nn.InstanceNorm2d(c_out))
layers.append(nn.LeakyReLU(0.2))
self.encoder = nn.Sequential(*layers)
self.shuffle = ops.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
self.logits = nn.Sigmoid()
def forward(self, x, cond=None):

View File

@@ -19,9 +19,6 @@ import torch
import torchvision
from torch import nn
import comfy.ops
ops = comfy.ops.disable_weight_init
# EfficientNet
class EfficientNetEncoder(nn.Module):
@@ -29,7 +26,7 @@ class EfficientNetEncoder(nn.Module):
super().__init__()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
self.mapper = nn.Sequential(
ops.Conv2d(1280, c_latent, kernel_size=1, bias=False),
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
)
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
@@ -37,7 +34,7 @@ class EfficientNetEncoder(nn.Module):
def forward(self, x):
x = x * 0.5 + 0.5
x = (x - self.mean.view([3,1,1]).to(device=x.device, dtype=x.dtype)) / self.std.view([3,1,1]).to(device=x.device, dtype=x.dtype)
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
o = self.mapper(self.backbone(x))
return o
@@ -47,39 +44,39 @@ class Previewer(nn.Module):
def __init__(self, c_in=16, c_hidden=512, c_out=3):
super().__init__()
self.blocks = nn.Sequential(
ops.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
nn.GELU(),
nn.BatchNorm2d(c_hidden),
ops.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden),
ops.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
nn.GELU(),
nn.BatchNorm2d(c_hidden // 2),
ops.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden // 2),
ops.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
ops.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
ops.Conv2d(c_hidden // 4, c_out, kernel_size=1),
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
)
def forward(self, x):

View File

@@ -105,9 +105,7 @@ class Modulation(nn.Module):
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple:
if vec.ndim == 2:
vec = vec[:, None, :]
out = self.lin(nn.functional.silu(vec)).chunk(self.multiplier, dim=-1)
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
@@ -115,20 +113,6 @@ class Modulation(nn.Module):
)
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return tensor * m_mult + m_add
else:
return tensor * m_mult
else:
for d in modulation_dims:
tensor[:, d[0]:d[1]] *= m_mult[:, d[2]]
if m_add is not None:
tensor[:, d[0]:d[1]] += m_add[:, d[2]]
return tensor
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
@@ -159,20 +143,20 @@ class DoubleStreamBlock(nn.Module):
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
@@ -195,12 +179,12 @@ class DoubleStreamBlock(nn.Module):
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
@@ -244,9 +228,9 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
qkv, mlp = torch.split(self.linear1((1 + mod.scale) * self.pre_norm(x) + mod.shift), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
@@ -255,7 +239,7 @@ class SingleStreamBlock(nn.Module):
attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)
x += mod.gate * output
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
@@ -268,11 +252,8 @@ class LastLayer(nn.Module):
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
if vec.ndim == 2:
vec = vec[:, None, :]
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=-1)
x = apply_mod(self.norm_final(x), (1 + scale), shift, modulation_dims)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x

View File

@@ -10,11 +10,10 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
q_shape = q.shape
k_shape = k.shape
if pe is not None:
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
q = q.float().reshape(*q.shape[:-1], -1, 1, 2)
k = k.float().reshape(*k.shape[:-1], -1, 1, 2)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
@@ -37,8 +36,8 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -115,11 +115,8 @@ class Flux(nn.Module):
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
txt = self.txt_in(txt)
if img_ids is not None:
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
else:
pe = None
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):

View File

@@ -227,7 +227,6 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor,
y: Tensor,
guidance: Tensor = None,
guiding_frame_index=None,
control=None,
transformer_options={},
) -> Tensor:
@@ -238,17 +237,7 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
modulation_dims_txt = [(0, None, 1)]
else:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
modulation_dims = None
modulation_dims_txt = None
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.params.guidance_embed:
if guidance is not None:
@@ -275,14 +264,14 @@ class HunyuanVideo(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"])
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
return out
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt)
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet
control_i = control.get("input")
@@ -297,13 +286,13 @@ class HunyuanVideo(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"])
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
return out
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet
control_o = control.get("output")
@@ -314,7 +303,7 @@ class HunyuanVideo(nn.Module):
img = img[:, : img_len]
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
shape = initial_shape[-3:]
for i in range(len(shape)):
@@ -324,7 +313,7 @@ class HunyuanVideo(nn.Module):
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
return img
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, control=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
@@ -336,5 +325,5 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, control, transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
return out

View File

@@ -7,7 +7,7 @@ from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
from .symmetric_patchifier import SymmetricPatchifier
def get_timestep_embedding(
@@ -377,16 +377,12 @@ class LTXVModel(torch.nn.Module):
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.generator = None
self.vae_scale_factors = vae_scale_factors
self.dtype = dtype
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
@@ -420,23 +416,42 @@ class LTXVModel(torch.nn.Module):
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latent_noise_scale=0, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
indices_grid = self.patchifier.get_grid(
orig_num_frames=x.shape[2],
orig_height=x.shape[3],
orig_width=x.shape[4],
batch_size=x.shape[0],
scale_grid=((1 / frame_rate) * 8, 32, 32),
device=x.device,
)
if guiding_latent is not None:
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
ts *= input_ts
ts[:, :, 0] = guiding_latent_noise_scale * (input_ts[:, :, 0] ** 2)
timestep = self.patchifier.patchify(ts)
input_x = x.clone()
x[:, :, 0] = guiding_latent[:, :, 0]
if guiding_latent_noise_scale > 0:
if self.generator is None:
self.generator = torch.Generator(device=x.device).manual_seed(42)
elif self.generator.device != x.device:
self.generator = torch.Generator(device=x.device).set_state(self.generator.get_state())
noise_shape = [guiding_latent.shape[0], guiding_latent.shape[1], 1, guiding_latent.shape[3], guiding_latent.shape[4]]
scale = guiding_latent_noise_scale * (input_ts ** 2)
guiding_noise = scale * torch.randn(size=noise_shape, device=x.device, generator=self.generator)
x[:, :, 0] = guiding_noise[:, :, 0] + x[:, :, 0] * (1.0 - scale[:, :, 0])
orig_shape = list(x.shape)
x, latent_coords = self.patchifier.patchify(x)
pixel_coords = latent_to_pixel_coords(
latent_coords=latent_coords,
scale_factors=self.vae_scale_factors,
causal_fix=self.causal_temporal_positioning,
)
if keyframe_idxs is not None:
pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
x = self.patchifier.patchify(x)
x = self.patchify_proj(x)
timestep = timestep * 1000.0
@@ -444,7 +459,7 @@ class LTXVModel(torch.nn.Module):
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype)
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single(
@@ -504,4 +519,8 @@ class LTXVModel(torch.nn.Module):
out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
)
if guiding_latent is not None:
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]
# print("res", x)
return x

View File

@@ -6,29 +6,16 @@ from einops import rearrange
from torch import Tensor
def latent_to_pixel_coords(
latent_coords: Tensor, scale_factors: Tuple[int, int, int], causal_fix: bool = False
) -> Tensor:
"""
Converts latent coordinates to pixel coordinates by scaling them according to the VAE's
configuration.
Args:
latent_coords (Tensor): A tensor of shape [batch_size, 3, num_latents]
containing the latent corner coordinates of each token.
scale_factors (Tuple[int, int, int]): The scale factors of the VAE's latent space.
causal_fix (bool): Whether to take into account the different temporal scale
of the first frame. Default = False for backwards compatibility.
Returns:
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
"""
pixel_coords = (
latent_coords
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
)
if causal_fix:
# Fix temporal scale for first frame to 1 due to causality
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
return pixel_coords
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
)
elif dims_to_append == 0:
return x
return x[(...,) + (None,) * dims_to_append]
class Patchifier(ABC):
@@ -57,26 +44,29 @@ class Patchifier(ABC):
def patch_size(self):
return self._patch_size
def get_latent_coords(
self, latent_num_frames, latent_height, latent_width, batch_size, device
def get_grid(
self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device
):
"""
Return a tensor of shape [batch_size, 3, num_patches] containing the
top-left corner latent coordinates of each latent patch.
The tensor is repeated for each batch element.
"""
latent_sample_coords = torch.meshgrid(
torch.arange(0, latent_num_frames, self._patch_size[0], device=device),
torch.arange(0, latent_height, self._patch_size[1], device=device),
torch.arange(0, latent_width, self._patch_size[2], device=device),
indexing="ij",
)
latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_coords = rearrange(
latent_coords, "b c f h w -> b c (f h w)", b=batch_size
)
return latent_coords
f = orig_num_frames // self._patch_size[0]
h = orig_height // self._patch_size[1]
w = orig_width // self._patch_size[2]
grid_h = torch.arange(h, dtype=torch.float32, device=device)
grid_w = torch.arange(w, dtype=torch.float32, device=device)
grid_f = torch.arange(f, dtype=torch.float32, device=device)
grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing='ij')
grid = torch.stack(grid, dim=0)
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
if scale_grid is not None:
for i in range(3):
if isinstance(scale_grid[i], Tensor):
scale = append_dims(scale_grid[i], grid.ndim - 1)
else:
scale = scale_grid[i]
grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i]
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size)
return grid
class SymmetricPatchifier(Patchifier):
@@ -84,8 +74,6 @@ class SymmetricPatchifier(Patchifier):
self,
latents: Tensor,
) -> Tuple[Tensor, Tensor]:
b, _, f, h, w = latents.shape
latent_coords = self.get_latent_coords(f, h, w, b, latents.device)
latents = rearrange(
latents,
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
@@ -93,7 +81,7 @@ class SymmetricPatchifier(Patchifier):
p2=self._patch_size[1],
p3=self._patch_size[2],
)
return latents, latent_coords
return latents
def unpatchify(
self,

View File

@@ -15,7 +15,6 @@ class CausalConv3d(nn.Module):
stride: Union[int, Tuple[int]] = 1,
dilation: int = 1,
groups: int = 1,
spatial_padding_mode: str = "zeros",
**kwargs,
):
super().__init__()
@@ -39,7 +38,7 @@ class CausalConv3d(nn.Module):
stride=stride,
dilation=dilation,
padding=padding,
padding_mode=spatial_padding_mode,
padding_mode="zeros",
groups=groups,
)

View File

@@ -1,15 +1,13 @@
from __future__ import annotations
import torch
from torch import nn
from functools import partial
import math
from einops import rearrange
from typing import List, Optional, Tuple, Union
from typing import Optional, Tuple, Union
from .conv_nd_factory import make_conv_nd, make_linear_nd
from .pixel_norm import PixelNorm
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
import comfy.ops
ops = comfy.ops.disable_weight_init
class Encoder(nn.Module):
@@ -34,7 +32,7 @@ class Encoder(nn.Module):
norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
latent_log_var (`str`, *optional*, defaults to `per_channel`):
The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
"""
def __init__(
@@ -42,13 +40,12 @@ class Encoder(nn.Module):
dims: Union[int, Tuple[int, int]] = 3,
in_channels: int = 3,
out_channels: int = 3,
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
blocks=[("res_x", 1)],
base_channels: int = 128,
norm_num_groups: int = 32,
patch_size: Union[int, Tuple[int]] = 1,
norm_layer: str = "group_norm", # group_norm, pixel_norm
latent_log_var: str = "per_channel",
spatial_padding_mode: str = "zeros",
):
super().__init__()
self.patch_size = patch_size
@@ -68,7 +65,6 @@ class Encoder(nn.Module):
stride=1,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
self.down_blocks = nn.ModuleList([])
@@ -86,7 +82,6 @@ class Encoder(nn.Module):
resnet_eps=1e-6,
resnet_groups=norm_num_groups,
norm_layer=norm_layer,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "res_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel
@@ -97,7 +92,6 @@ class Encoder(nn.Module):
eps=1e-6,
groups=norm_num_groups,
norm_layer=norm_layer,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_time":
block = make_conv_nd(
@@ -107,7 +101,6 @@ class Encoder(nn.Module):
kernel_size=3,
stride=(2, 1, 1),
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_space":
block = make_conv_nd(
@@ -117,7 +110,6 @@ class Encoder(nn.Module):
kernel_size=3,
stride=(1, 2, 2),
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_all":
block = make_conv_nd(
@@ -127,7 +119,6 @@ class Encoder(nn.Module):
kernel_size=3,
stride=(2, 2, 2),
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_all_x_y":
output_channel = block_params.get("multiplier", 2) * output_channel
@@ -138,34 +129,6 @@ class Encoder(nn.Module):
kernel_size=3,
stride=(2, 2, 2),
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_all_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(2, 2, 2),
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_space_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(1, 2, 2),
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_time_res":
output_channel = block_params.get("multiplier", 2) * output_channel
block = SpaceToDepthDownsample(
dims=dims,
in_channels=input_channel,
out_channels=output_channel,
stride=(2, 1, 1),
spatial_padding_mode=spatial_padding_mode,
)
else:
raise ValueError(f"unknown block: {block_name}")
@@ -189,18 +152,10 @@ class Encoder(nn.Module):
conv_out_channels *= 2
elif latent_log_var == "uniform":
conv_out_channels += 1
elif latent_log_var == "constant":
conv_out_channels += 1
elif latent_log_var != "none":
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
self.conv_out = make_conv_nd(
dims,
output_channel,
conv_out_channels,
3,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
)
self.gradient_checkpointing = False
@@ -242,15 +197,6 @@ class Encoder(nn.Module):
sample = torch.cat([sample, repeated_last_channel], dim=1)
else:
raise ValueError(f"Invalid input shape: {sample.shape}")
elif self.latent_log_var == "constant":
sample = sample[:, :-1, ...]
approx_ln_0 = (
-30
) # this is the minimal clamp value in DiagonalGaussianDistribution objects
sample = torch.cat(
[sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
dim=1,
)
return sample
@@ -285,7 +231,7 @@ class Decoder(nn.Module):
dims,
in_channels: int = 3,
out_channels: int = 3,
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
blocks=[("res_x", 1)],
base_channels: int = 128,
layers_per_block: int = 2,
norm_num_groups: int = 32,
@@ -293,7 +239,6 @@ class Decoder(nn.Module):
norm_layer: str = "group_norm",
causal: bool = True,
timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
):
super().__init__()
self.patch_size = patch_size
@@ -319,7 +264,6 @@ class Decoder(nn.Module):
stride=1,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
self.up_blocks = nn.ModuleList([])
@@ -339,7 +283,6 @@ class Decoder(nn.Module):
norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "attn_res_x":
block = UNetMidBlock3D(
@@ -351,7 +294,6 @@ class Decoder(nn.Module):
inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning,
attention_head_dim=block_params["attention_head_dim"],
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "res_x_y":
output_channel = output_channel // block_params.get("multiplier", 2)
@@ -364,21 +306,14 @@ class Decoder(nn.Module):
norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=False,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "compress_time":
block = DepthToSpaceUpsample(
dims=dims,
in_channels=input_channel,
stride=(2, 1, 1),
spatial_padding_mode=spatial_padding_mode,
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
)
elif block_name == "compress_space":
block = DepthToSpaceUpsample(
dims=dims,
in_channels=input_channel,
stride=(1, 2, 2),
spatial_padding_mode=spatial_padding_mode,
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
)
elif block_name == "compress_all":
output_channel = output_channel // block_params.get("multiplier", 1)
@@ -388,7 +323,6 @@ class Decoder(nn.Module):
stride=(2, 2, 2),
residual=block_params.get("residual", False),
out_channels_reduction_factor=block_params.get("multiplier", 1),
spatial_padding_mode=spatial_padding_mode,
)
else:
raise ValueError(f"unknown layer: {block_name}")
@@ -406,13 +340,7 @@ class Decoder(nn.Module):
self.conv_act = nn.SiLU()
self.conv_out = make_conv_nd(
dims,
output_channel,
out_channels,
3,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
dims, output_channel, out_channels, 3, padding=1, causal=True
)
self.gradient_checkpointing = False
@@ -505,12 +433,6 @@ class UNetMidBlock3D(nn.Module):
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
resnet_groups (`int`, *optional*, defaults to 32):
The number of groups to use in the group normalization layers of the resnet blocks.
norm_layer (`str`, *optional*, defaults to `group_norm`):
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
inject_noise (`bool`, *optional*, defaults to `False`):
Whether to inject noise into the hidden states.
timestep_conditioning (`bool`, *optional*, defaults to `False`):
Whether to condition the hidden states on the timestep.
Returns:
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
@@ -529,7 +451,6 @@ class UNetMidBlock3D(nn.Module):
norm_layer: str = "group_norm",
inject_noise: bool = False,
timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
):
super().__init__()
resnet_groups = (
@@ -555,17 +476,13 @@ class UNetMidBlock3D(nn.Module):
norm_layer=norm_layer,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
)
for _ in range(num_layers)
]
)
def forward(
self,
hidden_states: torch.FloatTensor,
causal: bool = True,
timestep: Optional[torch.Tensor] = None,
self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None
) -> torch.FloatTensor:
timestep_embed = None
if self.timestep_conditioning:
@@ -590,62 +507,9 @@ class UNetMidBlock3D(nn.Module):
return hidden_states
class SpaceToDepthDownsample(nn.Module):
def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
super().__init__()
self.stride = stride
self.group_size = in_channels * math.prod(stride) // out_channels
self.conv = make_conv_nd(
dims=dims,
in_channels=in_channels,
out_channels=out_channels // math.prod(stride),
kernel_size=3,
stride=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
def forward(self, x, causal: bool = True):
if self.stride[0] == 2:
x = torch.cat(
[x[:, :, :1, :, :], x], dim=2
) # duplicate first frames for padding
# skip connection
x_in = rearrange(
x,
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
x_in = x_in.mean(dim=2)
# conv
x = self.conv(x, causal=causal)
x = rearrange(
x,
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
x = x + x_in
return x
class DepthToSpaceUpsample(nn.Module):
def __init__(
self,
dims,
in_channels,
stride,
residual=False,
out_channels_reduction_factor=1,
spatial_padding_mode="zeros",
self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1
):
super().__init__()
self.stride = stride
@@ -659,7 +523,6 @@ class DepthToSpaceUpsample(nn.Module):
kernel_size=3,
stride=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
self.residual = residual
self.out_channels_reduction_factor = out_channels_reduction_factor
@@ -695,7 +558,7 @@ class DepthToSpaceUpsample(nn.Module):
class LayerNorm(nn.Module):
def __init__(self, dim, eps, elementwise_affine=True) -> None:
super().__init__()
self.norm = ops.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(self, x):
x = rearrange(x, "b c d h w -> b d h w c")
@@ -728,7 +591,6 @@ class ResnetBlock3D(nn.Module):
norm_layer: str = "group_norm",
inject_noise: bool = False,
timestep_conditioning: bool = False,
spatial_padding_mode: str = "zeros",
):
super().__init__()
self.in_channels = in_channels
@@ -755,7 +617,6 @@ class ResnetBlock3D(nn.Module):
stride=1,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
if inject_noise:
@@ -780,7 +641,6 @@ class ResnetBlock3D(nn.Module):
stride=1,
padding=1,
causal=True,
spatial_padding_mode=spatial_padding_mode,
)
if inject_noise:
@@ -941,44 +801,9 @@ class processor(nn.Module):
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
class VideoVAE(nn.Module):
def __init__(self, version=0, config=None):
def __init__(self, version=0):
super().__init__()
if config is None:
config = self.guess_config(version)
self.timestep_conditioning = config.get("timestep_conditioning", False)
double_z = config.get("double_z", True)
latent_log_var = config.get(
"latent_log_var", "per_channel" if double_z else "none"
)
self.encoder = Encoder(
dims=config["dims"],
in_channels=config.get("in_channels", 3),
out_channels=config["latent_channels"],
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
latent_log_var=latent_log_var,
norm_layer=config.get("norm_layer", "group_norm"),
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
)
self.decoder = Decoder(
dims=config["dims"],
in_channels=config["latent_channels"],
out_channels=config.get("out_channels", 3),
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
norm_layer=config.get("norm_layer", "group_norm"),
causal=config.get("causal_decoder", False),
timestep_conditioning=self.timestep_conditioning,
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
)
self.per_channel_statistics = processor()
def guess_config(self, version):
if version == 0:
config = {
"_class_name": "CausalVideoAutoencoder",
@@ -1005,7 +830,7 @@ class VideoVAE(nn.Module):
"use_quant_conv": False,
"causal_decoder": False,
}
elif version == 1:
else:
config = {
"_class_name": "CausalVideoAutoencoder",
"dims": 3,
@@ -1041,47 +866,37 @@ class VideoVAE(nn.Module):
"causal_decoder": False,
"timestep_conditioning": True,
}
else:
config = {
"_class_name": "CausalVideoAutoencoder",
"dims": 3,
"in_channels": 3,
"out_channels": 3,
"latent_channels": 128,
"encoder_blocks": [
["res_x", {"num_layers": 4}],
["compress_space_res", {"multiplier": 2}],
["res_x", {"num_layers": 6}],
["compress_time_res", {"multiplier": 2}],
["res_x", {"num_layers": 6}],
["compress_all_res", {"multiplier": 2}],
["res_x", {"num_layers": 2}],
["compress_all_res", {"multiplier": 2}],
["res_x", {"num_layers": 2}]
],
"decoder_blocks": [
["res_x", {"num_layers": 5, "inject_noise": False}],
["compress_all", {"residual": True, "multiplier": 2}],
["res_x", {"num_layers": 5, "inject_noise": False}],
["compress_all", {"residual": True, "multiplier": 2}],
["res_x", {"num_layers": 5, "inject_noise": False}],
["compress_all", {"residual": True, "multiplier": 2}],
["res_x", {"num_layers": 5, "inject_noise": False}]
],
"scaling_factor": 1.0,
"norm_layer": "pixel_norm",
"patch_size": 4,
"latent_log_var": "uniform",
"use_quant_conv": False,
"causal_decoder": False,
"timestep_conditioning": True
}
return config
double_z = config.get("double_z", True)
latent_log_var = config.get(
"latent_log_var", "per_channel" if double_z else "none"
)
self.encoder = Encoder(
dims=config["dims"],
in_channels=config.get("in_channels", 3),
out_channels=config["latent_channels"],
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
latent_log_var=latent_log_var,
norm_layer=config.get("norm_layer", "group_norm"),
)
self.decoder = Decoder(
dims=config["dims"],
in_channels=config["latent_channels"],
out_channels=config.get("out_channels", 3),
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
patch_size=config.get("patch_size", 1),
norm_layer=config.get("norm_layer", "group_norm"),
causal=config.get("causal_decoder", False),
timestep_conditioning=config.get("timestep_conditioning", False),
)
self.timestep_conditioning = config.get("timestep_conditioning", False)
self.per_channel_statistics = processor()
def encode(self, x):
frames_count = x.shape[2]
if ((frames_count - 1) % 8) != 0:
raise ValueError("Invalid number of frames: Encode input must have 1 + 8 * x frames (e.g., 1, 9, 17, ...). Please check your input.")
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
return self.per_channel_statistics.normalize(means)

View File

@@ -17,11 +17,7 @@ def make_conv_nd(
groups=1,
bias=True,
causal=False,
spatial_padding_mode="zeros",
temporal_padding_mode="zeros",
):
if not (spatial_padding_mode == temporal_padding_mode or causal):
raise NotImplementedError("spatial and temporal padding modes must be equal")
if dims == 2:
return ops.Conv2d(
in_channels=in_channels,
@@ -32,7 +28,6 @@ def make_conv_nd(
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=spatial_padding_mode,
)
elif dims == 3:
if causal:
@@ -45,7 +40,6 @@ def make_conv_nd(
dilation=dilation,
groups=groups,
bias=bias,
spatial_padding_mode=spatial_padding_mode,
)
return ops.Conv3d(
in_channels=in_channels,
@@ -56,7 +50,6 @@ def make_conv_nd(
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=spatial_padding_mode,
)
elif dims == (2, 1):
return DualConv3d(
@@ -66,7 +59,6 @@ def make_conv_nd(
stride=stride,
padding=padding,
bias=bias,
padding_mode=spatial_padding_mode,
)
else:
raise ValueError(f"unsupported dimensions: {dims}")

View File

@@ -18,13 +18,11 @@ class DualConv3d(nn.Module):
dilation: Union[int, Tuple[int, int, int]] = 1,
groups=1,
bias=True,
padding_mode="zeros",
):
super(DualConv3d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.padding_mode = padding_mode
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size, kernel_size)
@@ -110,7 +108,6 @@ class DualConv3d(nn.Module):
self.padding1,
self.dilation1,
self.groups,
padding_mode=self.padding_mode,
)
if skip_time_conv:
@@ -125,7 +122,6 @@ class DualConv3d(nn.Module):
self.padding2,
self.dilation2,
self.groups,
padding_mode=self.padding_mode,
)
return x
@@ -141,16 +137,7 @@ class DualConv3d(nn.Module):
stride1 = (self.stride1[1], self.stride1[2])
padding1 = (self.padding1[1], self.padding1[2])
dilation1 = (self.dilation1[1], self.dilation1[2])
x = F.conv2d(
x,
weight1,
self.bias1,
stride1,
padding1,
dilation1,
self.groups,
padding_mode=self.padding_mode,
)
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
_, _, h, w = x.shape
@@ -167,16 +154,7 @@ class DualConv3d(nn.Module):
stride2 = self.stride2[0]
padding2 = self.padding2[0]
dilation2 = self.dilation2[0]
x = F.conv1d(
x,
weight2,
self.bias2,
stride2,
padding2,
dilation2,
self.groups,
padding_mode=self.padding_mode,
)
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
return x

View File

@@ -24,13 +24,6 @@ if model_management.sage_attention_enabled():
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
exit(-1)
if model_management.flash_attention_enabled():
try:
from flash_attn import flash_attn_func
except ModuleNotFoundError:
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
exit(-1)
from comfy.cli_args import args
import comfy.ops
ops = comfy.ops.disable_weight_init
@@ -503,63 +496,6 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
return out
try:
@torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
return flash_attn_func(q, k, v, dropout_p=dropout_p, causal=causal)
@flash_attn_wrapper.register_fake
def flash_attn_fake(q, k, v, dropout_p=0.0, causal=False):
# Output shape is the same as q
return q.new_empty(q.shape)
except AttributeError as error:
FLASH_ATTN_ERROR = error
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
if mask is not None:
# add a batch dimension if there isn't already one
if mask.ndim == 2:
mask = mask.unsqueeze(0)
# add a heads dimension if there isn't already one
if mask.ndim == 3:
mask = mask.unsqueeze(1)
try:
assert mask is None
out = flash_attn_wrapper(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
dropout_p=0.0,
causal=False,
).transpose(1, 2)
except Exception as e:
logging.warning(f"Flash Attention failed, using default SDPA: {e}")
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
return out
optimized_attention = attention_basic
if model_management.sage_attention_enabled():
@@ -568,9 +504,6 @@ if model_management.sage_attention_enabled():
elif model_management.xformers_enabled():
logging.info("Using xformers attention")
optimized_attention = attention_xformers
elif model_management.flash_attention_enabled():
logging.info("Using Flash Attention")
optimized_attention = attention_flash
elif model_management.pytorch_attention_enabled():
logging.info("Using pytorch attention")
optimized_attention = attention_pytorch

View File

@@ -384,7 +384,6 @@ class WanModel(torch.nn.Module):
context,
clip_fea=None,
freqs=None,
transformer_options={},
):
r"""
Forward pass through the diffusion model
@@ -424,18 +423,14 @@ class WanModel(torch.nn.Module):
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context)
# arguments
kwargs = dict(
e=e0,
freqs=freqs,
context=context)
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
@@ -444,7 +439,7 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def forward(self, x, timestep, context, clip_fea=None, transformer_options={},**kwargs):
def forward(self, x, timestep, context, clip_fea=None, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
@@ -458,7 +453,7 @@ class WanModel(torch.nn.Module):
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w]
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
r"""

View File

@@ -108,7 +108,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False)
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
else:
operations = model_config.custom_operations
@@ -161,13 +161,9 @@ class BaseModel(torch.nn.Module):
extra = extra.to(dtype)
extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def process_timestep(self, timestep, **kwargs):
return timestep
def get_dtype(self):
return self.diffusion_model.dtype
@@ -189,11 +185,6 @@ class BaseModel(torch.nn.Module):
if concat_latent_image.shape[1:] != noise.shape[1:]:
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
if noise.ndim == 5:
if concat_latent_image.shape[-3] < noise.shape[-3]:
concat_latent_image = torch.nn.functional.pad(concat_latent_image, (0, 0, 0, 0, 0, noise.shape[-3] - concat_latent_image.shape[-3]), "constant", 0)
else:
concat_latent_image = concat_latent_image[:, :, :noise.shape[-3]]
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
@@ -222,11 +213,6 @@ class BaseModel(torch.nn.Module):
cond_concat.append(self.blank_inpaint_image_like(noise))
elif ck == "mask_inverted":
cond_concat.append(torch.zeros_like(noise)[:, :1])
if ck == "concat_image":
if concat_latent_image is not None:
cond_concat.append(concat_latent_image.to(device))
else:
cond_concat.append(torch.zeros_like(noise))
data = torch.cat(cond_concat, dim=1)
return data
return None
@@ -859,26 +845,17 @@ class LTXV(BaseModel):
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guiding_latent = kwargs.get("guiding_latent", None)
if guiding_latent is not None:
out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent)
guiding_latent_noise_scale = kwargs.get("guiding_latent_noise_scale", None)
if guiding_latent_noise_scale is not None:
out["guiding_latent_noise_scale"] = comfy.conds.CONDConstant(guiding_latent_noise_scale)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
keyframe_idxs = kwargs.get("keyframe_idxs", None)
if keyframe_idxs is not None:
out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs)
return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
return self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0]
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class HunyuanVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
@@ -895,35 +872,20 @@ class HunyuanVideo(BaseModel):
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if image is not None:
padding_shape = (noise.shape[0], 16, noise.shape[2] - 1, noise.shape[3], noise.shape[4])
latent_padding = torch.zeros(padding_shape, device=noise.device, dtype=noise.dtype)
image_latents = torch.cat([image.to(noise), latent_padding], dim=2)
out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_latents))
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
guiding_frame_index = kwargs.get("guiding_frame_index", None)
if guiding_frame_index is not None:
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
return out
def scale_latent_inpaint(self, latent_image, **kwargs):
return latent_image
class HunyuanVideoI2V(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("concat_image", "mask_inverted")
def scale_latent_inpaint(self, latent_image, **kwargs):
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("concat_image",)
def scale_latent_inpaint(self, latent_image, **kwargs):
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
class CosmosVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT)
@@ -973,11 +935,11 @@ class WAN21(BaseModel):
self.image_to_video = image_to_video
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
if not self.image_to_video:
return None
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if image is None:
@@ -987,9 +949,6 @@ class WAN21(BaseModel):
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video:
return image
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]

View File

@@ -1,4 +1,3 @@
import json
import comfy.supported_models
import comfy.supported_models_base
import comfy.utils
@@ -34,7 +33,7 @@ def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
return None
def detect_unet_config(state_dict, key_prefix, metadata=None):
def detect_unet_config(state_dict, key_prefix):
state_dict_keys = list(state_dict.keys())
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
@@ -211,8 +210,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxv"
if metadata is not None and "config" in metadata:
dit_config.update(json.loads(metadata["config"]).get("transformer", {}))
return dit_config
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
@@ -457,8 +454,8 @@ def model_config_from_unet_config(unet_config, state_dict=None):
logging.error("no match {}".format(unet_config))
return None
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False, metadata=None):
unet_config = detect_unet_config(state_dict, unet_key_prefix, metadata=metadata)
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
unet_config = detect_unet_config(state_dict, unet_key_prefix)
if unet_config is None:
return None
model_config = model_config_from_unet_config(unet_config, state_dict)
@@ -471,10 +468,6 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
model_config.optimizations["fp8"] = False
else:
model_config.optimizations["fp8"] = True
return model_config

View File

@@ -15,7 +15,6 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import psutil
import logging
@@ -27,10 +26,6 @@ import platform
import weakref
import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
@@ -150,25 +145,6 @@ def get_torch_device():
else:
return torch.device(torch.cuda.current_device())
def get_all_torch_devices(exclude_current=False):
global cpu_state
devices = []
if cpu_state == CPUState.GPU:
if is_nvidia():
for i in range(torch.cuda.device_count()):
devices.append(torch.device(i))
elif is_intel_xpu():
for i in range(torch.xpu.device_count()):
devices.append(torch.device(i))
elif is_ascend_npu():
for i in range(torch.npu.device_count()):
devices.append(torch.device(i))
else:
devices.append(get_torch_device())
if exclude_current:
devices.remove(get_torch_device())
return devices
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
@@ -210,21 +186,12 @@ def get_total_memory(dev=None, torch_total_too=False):
else:
return mem_total
def mac_version():
try:
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
except:
return None
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
try:
logging.info("pytorch version: {}".format(torch_version))
mac_ver = mac_version()
if mac_ver is not None:
logging.info("Mac Version {}".format(mac_ver))
except:
pass
@@ -380,13 +347,9 @@ try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
try:
for device in get_all_torch_devices(exclude_current=True):
logging.info("Device: {}".format(get_torch_device_name(device)))
except:
pass
current_loaded_models: list[LoadedModel] = []
current_loaded_models = []
def module_size(module):
module_mem = 0
@@ -397,7 +360,7 @@ def module_size(module):
return module_mem
class LoadedModel:
def __init__(self, model: ModelPatcher):
def __init__(self, model):
self._set_model(model)
self.device = model.load_device
self.real_model = None
@@ -405,7 +368,7 @@ class LoadedModel:
self.model_finalizer = None
self._patcher_finalizer = None
def _set_model(self, model: ModelPatcher):
def _set_model(self, model):
self._model = weakref.ref(model)
if model.parent is not None:
self._parent_model = weakref.ref(model.parent)
@@ -618,7 +581,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
loaded_memory = loaded_model.model_loaded_memory()
current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
if vram_set_state == VRAMState.NO_VRAM:
@@ -958,9 +921,6 @@ def cast_to_device(tensor, device, dtype, copy=False):
def sage_attention_enabled():
return args.use_sage_attention
def flash_attention_enabled():
return args.use_flash_attention
def xformers_enabled():
global directml_enabled
global cpu_state
@@ -1009,6 +969,12 @@ def pytorch_attention_flash_attention():
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
return False
def mac_version():
try:
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
except:
return None
def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
@@ -1247,31 +1213,6 @@ def soft_empty_cache(force=False):
def unload_all_models():
free_memory(1e30, get_torch_device())
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
'Unload only model and its clones - primarily for multigpu cloning purposes.'
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
additional_models = []
if unload_additional_models:
additional_models = model.get_nested_additional_models()
keep_loaded = []
for loaded_model in initial_keep_loaded:
if loaded_model.model is not None:
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
continue
# check additional models if they are a match
skip = False
for add_model in additional_models:
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
skip = True
break
if skip:
continue
keep_loaded.append(loaded_model)
if not all_devices:
free_memory(1e30, get_torch_device(), keep_loaded)
else:
for device in get_all_torch_devices():
free_memory(1e30, device, keep_loaded)
#TODO: might be cleaner to put this somewhere else
import threading

View File

@@ -84,15 +84,12 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches, copy_tuples=False):
def create_hook_patches_clone(orig_hook_patches):
new_hook_patches = {}
for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
if copy_tuples:
for i in range(len(new_hook_patches[hook_ref][k])):
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
return new_hook_patches
def wipe_lowvram_weight(m):
@@ -243,9 +240,6 @@ class ModelPatcher:
self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0
@@ -324,92 +318,18 @@ class ModelPatcher:
n.is_clip = self.is_clip
n.hook_mode = self.hook_mode
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n)
return n
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
comfy.model_management.unload_model_and_clones(self)
n = self.clone()
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled
if models_cache is None:
models_cache = {}
for key, model_list in n.additional_models.items():
for i in range(len(model_list)):
add_model = n.additional_models[key][i]
if add_model.clone_base_uuid not in models_cache:
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
callback(self, n)
return n
def match_multigpu_clones(self):
multigpu_models = self.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
new_multigpu_models = []
for mm in multigpu_models:
# clone main model, but bring over relevant props from existing multigpu clone
n = self.clone()
n.load_device = mm.load_device
n.backup = mm.backup
n.object_patches_backup = mm.object_patches_backup
n.hook_backup = mm.hook_backup
n.model = mm.model
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
n.remove_additional_models("multigpu")
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
# figure out which additional models are not present in multigpu clone
models_cache = {}
for mm_add_model in mm.get_additional_models():
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
remove_models_uuids = set(list(models_cache.keys()))
for key, model_list in orig_additional_models.items():
for orig_add_model in model_list:
if orig_add_model.clone_base_uuid not in models_cache:
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
existing_list = n.get_additional_models_with_key(key)
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
n.set_additional_models(key, existing_list)
if orig_add_model.clone_base_uuid in remove_models_uuids:
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
# remove duplicate additional models
for key, model_list in n.additional_models.items():
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
n.set_additional_models(key, new_model_list)
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
callback(self, n)
new_multigpu_models.append(n)
self.set_additional_models("multigpu", new_multigpu_models)
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False):
if allow_multigpu:
if self.clone_base_uuid != clone.clone_base_uuid:
return False
else:
if not self.is_clone(clone):
return False
def clone_has_same_weights(self, clone: 'ModelPatcher'):
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks:
return False
@@ -827,7 +747,6 @@ class ModelPatcher:
def partially_unload(self, device_to, memory_to_free=0):
with self.use_ejected():
hooks_unpatched = False
memory_freed = 0
patch_counter = 0
unload_list = self._load_list()
@@ -851,10 +770,6 @@ class ModelPatcher:
move_weight = False
break
if not hooks_unpatched:
self.unpatch_hooks()
hooks_unpatched = True
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight)
else:
@@ -1009,7 +924,7 @@ class ModelPatcher:
return self.additional_models.get(key, [])
def get_additional_models(self):
all_models: list[ModelPatcher] = []
all_models = []
for models in self.additional_models.values():
all_models.extend(models)
return all_models
@@ -1063,13 +978,9 @@ class ModelPatcher:
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self)
def prepare_state(self, timestep, model_options, ignore_multigpu=False):
def prepare_state(self, timestep):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep, model_options, ignore_multigpu)
if not ignore_multigpu and "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p.prepare_state(timestep, model_options, ignore_multigpu=True)
callback(self, timestep)
def restore_hook_patches(self):
if self.hook_patches_backup is not None:
@@ -1082,18 +993,12 @@ class ModelPatcher:
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0]
reset_current_hooks = False
multigpu_kf_changed_cache = None
transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling
if changed:
# cache changed for multigpu usage
if "multigpu_clones" in model_options:
if multigpu_kf_changed_cache is None:
multigpu_kf_changed_cache = []
multigpu_kf_changed_cache.append(hook)
# reset current_hooks if contains hook that changed
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
@@ -1105,28 +1010,6 @@ class ModelPatcher:
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
if "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
if kf_changed_cache is None:
return
reset_current_hooks = False
# reset current_hooks if contains hook that changed
for hook in kf_changed_cache:
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
registered: comfy.hooks.HookGroup = None):
@@ -1206,6 +1089,7 @@ class ModelPatcher:
def patch_hooks(self, hooks: comfy.hooks.HookGroup):
with self.use_ejected():
self.unpatch_hooks()
if hooks is not None:
model_sd_keys = list(self.model_state_dict().keys())
memory_counter = None
@@ -1216,16 +1100,12 @@ class ModelPatcher:
# if have cached weights for hooks, use it
cached_weights = self.cached_hook_patches.get(hooks, None)
if cached_weights is not None:
model_sd_keys_set = set(model_sd_keys)
for key in cached_weights:
if key not in model_sd_keys:
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
model_sd_keys_set.remove(key)
self.unpatch_hooks(model_sd_keys_set)
else:
self.unpatch_hooks()
relevant_patches = self.get_combined_hook_patches(hooks=hooks)
original_weights = None
if len(relevant_patches) > 0:
@@ -1236,8 +1116,6 @@ class ModelPatcher:
continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
memory_counter=memory_counter)
else:
self.unpatch_hooks()
self.current_hooks = hooks
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
@@ -1294,23 +1172,17 @@ class ModelPatcher:
del out_weight
del weight
def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None:
def unpatch_hooks(self) -> None:
with self.use_ejected():
if len(self.hook_backup) == 0:
self.current_hooks = None
return
keys = list(self.hook_backup.keys())
if whitelist_keys_set:
for k in keys:
if k in whitelist_keys_set:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.pop(k)
else:
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.clear()
self.current_hooks = None
self.hook_backup.clear()
self.current_hooks = None
def clean_hooks(self):
self.unpatch_hooks()

View File

@@ -1,176 +0,0 @@
from __future__ import annotations
import torch
import logging
from collections import namedtuple
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.utils
import comfy.patcher_extension
import comfy.model_management
class GPUOptions:
def __init__(self, device_index: int, relative_speed: float):
self.device_index = device_index
self.relative_speed = relative_speed
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
}
class GPUOptionsGroup:
def __init__(self):
self.options: dict[int, GPUOptions] = {}
def add(self, info: GPUOptions):
self.options[info.device_index] = info
def clone(self):
c = GPUOptionsGroup()
for opt in self.options.values():
c.add(opt)
return c
def register(self, model: ModelPatcher):
opts_dict = {}
# get devices that are valid for this model
devices: list[torch.device] = [model.load_device]
for extra_model in model.get_additional_models_with_key("multigpu"):
extra_model: ModelPatcher
devices.append(extra_model.load_device)
# create dictionary with actual device mapped to its GPUOptions
device_opts_list: list[GPUOptions] = []
for device in devices:
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
opts_dict[device] = device_opts.create_dict()
device_opts_list.append(device_opts)
# make relative_speed relative to 1.0
min_speed = min([x.relative_speed for x in device_opts_list])
for value in opts_dict.values():
value['relative_speed'] /= min_speed
model.model_options['multigpu_options'] = opts_dict
def get_torch_device_list():
devices = ["default"]
for device in comfy.model_management.get_all_torch_devices():
device: torch.device
devices.append(str(device.index))
return devices
def get_device_from_str(device_str: str, throw_error_if_not_found=False):
if device_str == "default":
return comfy.model_management.get_torch_device()
for device in comfy.model_management.get_all_torch_devices():
device: torch.device
if str(device.index) == device_str:
return device
if throw_error_if_not_found:
raise Exception(f"Device with index '{device_str}' not found.")
logging.warning(f"Device with index '{device_str}' not found, using default device ({comfy.model_management.get_torch_device()}) instead.")
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
model = model.clone()
# check if multigpu is already prepared - get the load devices from them if possible to exclude
skip_devices = set()
multigpu_models = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
for mm in multigpu_models:
skip_devices.add(mm.load_device)
skip_devices = list(skip_devices)
extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
extra_devices = extra_devices[:max_gpus-1]
# exclude skipped devices
for skip in skip_devices:
if skip in extra_devices:
extra_devices.remove(skip)
# create new deepclones
if len(extra_devices) > 0:
for device in extra_devices:
device_patcher = None
if reuse_loaded:
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
for lm in loaded_models:
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
multigpu_models.append(device_patcher)
model.set_additional_models("multigpu", multigpu_models)
model.match_multigpu_clones()
if gpu_options is None:
gpu_options = GPUOptionsGroup()
gpu_options.register(model)
else:
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
# persist skip_devices for use in sampling code
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
# model.model_options["multigpu_skip_devices"] = skip_devices
return model
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
opts_dict = model_options['multigpu_options']
devices = list(model_options['multigpu_clones'].keys())
speed_per_device = []
work_per_device = []
# get sum of each device's relative_speed
total_speed = 0.0
for opts in opts_dict.values():
total_speed += opts['relative_speed']
# get relative work for each device;
# obtained by w = (W*r)/R
for device in devices:
relative_speed = opts_dict[device]['relative_speed']
relative_work = (total_work*relative_speed) / total_speed
speed_per_device.append(relative_speed)
work_per_device.append(relative_work)
# relative work must be expressed in whole numbers, but likely is a decimal;
# perform rounding while maintaining total sum equal to total work (sum of relative works)
work_per_device = round_preserved(work_per_device)
dict_work_per_device = {}
for device, relative_work in zip(devices, work_per_device):
dict_work_per_device[device] = relative_work
if not return_idle_time:
return LoadBalance(dict_work_per_device, None)
# divide relative work by relative speed to get estimated completion time of said work by each device;
# time here is relative and does not correspond to real-world units
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
# calculate relative time spent by the devices waiting on each other after their work is completed
idle_time = abs(min(completion_time) - max(completion_time))
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):
'Round all values in a list, preserving the combined sum of values.'
# get floor of values; casting to int does it too
floored = [int(x) for x in values]
total_floored = sum(floored)
# get remainder to distribute
remainder = round(sum(values)) - total_floored
# pair values with fractional portions
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
# sort by fractional part in descending order
fractional.sort(key=lambda x: x[1], reverse=True)
# distribute the remainder
for i in range(remainder):
index = fractional[i][0]
floored[index] += 1
return floored

View File

@@ -17,7 +17,6 @@
"""
import torch
import logging
import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
import comfy.float
@@ -309,7 +308,6 @@ class fp8_ops(manual_cast):
return torch.nn.functional.linear(input, weight, bias)
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
@@ -360,7 +358,7 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
if (
fp8_compute and

View File

@@ -3,8 +3,6 @@ from typing import Callable
class CallbacksMP:
ON_CLONE = "on_clone"
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
ON_LOAD = "on_load_after"
ON_DETACH = "on_detach_after"
ON_CLEANUP = "on_cleanup"

View File

@@ -1,9 +1,7 @@
from __future__ import annotations
import torch
import uuid
import comfy.model_management
import comfy.conds
import comfy.model_patcher
import comfy.utils
import comfy.hooks
import comfy.patcher_extension
@@ -106,57 +104,16 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'):
m.cleanup()
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) == 0:
return
extra_devices = [x.load_device for x in multigpu_models]
# handle controlnets
controlnets: set[ControlBase] = set()
for k in conds:
for kk in conds[k]:
if 'control' in kk:
controlnets.add(kk['control'])
if len(controlnets) > 0:
# first, unload all controlnet clones
for cnet in list(controlnets):
cnet_models = cnet.get_models()
for cm in cnet_models:
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
# next, make sure each controlnet has a deepclone for all relevant devices
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
for device in extra_devices:
if device not in curr_cnet.multigpu_clones:
curr_cnet.deepclone_multigpu(device, autoregister=True)
curr_cnet = curr_cnet.previous_controlnet
# since all device clones are now present, recreate the linked list for cloned cnets per device
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
prev_cnet = curr_cnet.previous_controlnet
for device in extra_devices:
device_cnet = curr_cnet.get_instance_for_device(device)
prev_device_cnet = None
if prev_cnet is not None:
prev_device_cnet = prev_cnet.get_instance_for_device(device)
device_cnet.set_previous_controlnet(prev_device_cnet)
curr_cnet = prev_cnet
# potentially handle gligen - since not widely used, ignored for now
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
model.match_multigpu_clones()
preprocess_multigpu_conds(conds, model, model_options)
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model: BaseModel = model.model
real_model = model.model
return real_model, conds, models
@@ -169,7 +126,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
'''
Registers hooks from conds.
'''
@@ -202,18 +159,3 @@ def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False)
return to_load_options
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
'''
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
'''
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
if len(multigpu_patchers) > 0:
multigpu_dict: dict[torch.device, ModelPatcher] = {}
multigpu_dict[model_patcher.load_device] = model_patcher
for x in multigpu_patchers:
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
multigpu_dict[x.load_device] = x
model_options["multigpu_clones"] = multigpu_dict
return multigpu_patchers

View File

@@ -1,6 +1,4 @@
from __future__ import annotations
import comfy.model_management
from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc
from typing import TYPE_CHECKING, Callable, NamedTuple
@@ -20,13 +18,6 @@ import comfy.patcher_extension
import comfy.hooks
import scipy.stats
import numpy
import threading
def add_area_dims(area, num_dims):
while (len(area) // 2) < num_dims:
area = [2147483648] + area[:len(area) // 2] + [0] + area[len(area) // 2:]
return area
def get_area_and_mult(conds, x_in, timestep_in):
dims = tuple(x_in.shape[2:])
@@ -43,9 +34,8 @@ def get_area_and_mult(conds, x_in, timestep_in):
return None
if 'area' in conds:
area = list(conds['area'])
area = add_area_dims(area, len(dims))
if (len(area) // 2) > len(dims):
area = area[:len(dims)] + area[len(area) // 2:(len(area) // 2) + len(dims)]
while (len(area) // 2) < len(dims):
area = [2147483648] + area[:len(area) // 2] + [0] + area[len(area) // 2:]
if 'strength' in conds:
strength = conds['strength']
@@ -63,7 +53,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
if "mask_strength" in conds:
mask_strength = conds["mask_strength"]
mask = conds['mask']
assert (mask.shape[1:] == x_in.shape[2:])
assert(mask.shape[1:] == x_in.shape[2:])
mask = mask[:input_x.shape[0]]
if area is not None:
@@ -77,17 +67,16 @@ def get_area_and_mult(conds, x_in, timestep_in):
mult = mask * strength
if 'mask' not in conds and area is not None:
fuzz = 8
rr = 8
for i in range(len(dims)):
rr = min(fuzz, mult.shape[2 + i] // 4)
if area[len(dims) + i] != 0:
for t in range(rr):
m = mult.narrow(i + 2, t, 1)
m *= ((1.0 / rr) * (t + 1))
m *= ((1.0/rr) * (t + 1))
if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
for t in range(rr):
m = mult.narrow(i + 2, area[i] - 1 - t, 1)
m *= ((1.0 / rr) * (t + 1))
m *= ((1.0/rr) * (t + 1))
conditioning = {}
model_conds = conds["model_conds"]
@@ -143,7 +132,7 @@ def can_concat_cond(c1, c2):
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list, device=None):
def cond_cat(c_list):
temp = {}
for x in c_list:
for k in x:
@@ -155,8 +144,6 @@ def cond_cat(c_list, device=None):
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
if device is not None and hasattr(out[k], 'to'):
out[k] = out[k].to(device)
return out
@@ -210,9 +197,7 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
)
return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
if 'multigpu_clones' in model_options:
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
out_conds = []
out_counts = []
# separate conds by matching hooks
@@ -244,7 +229,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
model.current_patcher.prepare_state(timestep)
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
@@ -346,190 +331,6 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
return out_conds
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
out_conds = []
out_counts = []
# separate conds by matching hooks
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
default_conds = []
has_default_conds = False
output_device = x_in.device
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
default_c = []
if cond is not None:
for x in cond:
if 'default' in x:
default_c.append(x)
has_default_conds = True
continue
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c)
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
index_device = 0
current_device = devices[index_device]
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
while len(to_run) > 0:
current_device = devices[index_device % len(devices)]
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
# keep track of conds currently scheduled onto this device
batched_to_run_length = 0
for btr in batched_to_run:
batched_to_run_length += len(btr[1])
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
# make sure not over conds_per_device limit when creating temp batch
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
conds_to_batch = []
for x in to_batch:
conds_to_batch.append(to_run.pop(x))
batched_to_run_length += len(conds_to_batch)
batched_to_run.append((hooks, conds_to_batch))
if batched_to_run_length >= conds_per_device:
index_device += 1
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
model_current: BaseModel = model_options["multigpu_clones"][device].model
# run every hooked_to_run separately
with torch.no_grad():
for hooks, to_batch in batch_tuple:
input_x = []
mult = []
c = []
cond_or_uncond = []
uuids = []
area = []
control: ControlBase = None
patches = None
for x in to_batch:
o = x
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
uuids.append(p.uuid)
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x).to(device)
c = cond_cat(c, device=device)
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
if 'transformer_options' in model_options:
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
model_options['transformer_options'],
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device
cast_transformer_options(transformer_options, device=device)
c['transformer_options'] = transformer_options
if control is not None:
device_control = control.get_instance_for_device(device)
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
else:
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
results: list[thread_result] = []
threads: list[threading.Thread] = []
for device, batch_tuple in device_batched_hooked_to_run.items():
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()
for output, mult, area, batch_chunks, cond_or_uncond in results:
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]
return out_conds
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
@@ -750,37 +551,25 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)
def create_cond_with_same_area_if_none(conds, c):
def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
if 'area' not in c:
return
def area_inside(a, area_cmp):
a = add_area_dims(a, len(area_cmp) // 2)
area_cmp = add_area_dims(area_cmp, len(a) // 2)
a_l = len(a) // 2
area_cmp_l = len(area_cmp) // 2
for i in range(min(a_l, area_cmp_l)):
if a[a_l + i] < area_cmp[area_cmp_l + i]:
return False
for i in range(min(a_l, area_cmp_l)):
if (a[i] + a[a_l + i]) > (area_cmp[i] + area_cmp[area_cmp_l + i]):
return False
return True
c_area = c['area']
smallest = None
for x in conds:
if 'area' in x:
a = x['area']
if area_inside(c_area, a):
if smallest is None:
smallest = x
elif 'area' not in smallest:
smallest = x
else:
if math.prod(smallest['area'][:len(smallest['area']) // 2]) > math.prod(a[:len(a) // 2]):
smallest = x
if c_area[2] >= a[2] and c_area[3] >= a[3]:
if a[0] + a[2] >= c_area[0] + c_area[2]:
if a[1] + a[3] >= c_area[1] + c_area[3]:
if smallest is None:
smallest = x
elif 'area' not in smallest:
smallest = x
else:
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
smallest = x
else:
if smallest is None:
smallest = x
@@ -827,8 +616,6 @@ def pre_run_control(model, conds):
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
if 'control' in x:
x['control'].pre_run(model, percent_to_timestep_function)
for device_cnet in x['control'].multigpu_clones.values():
device_cnet.pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []
@@ -903,7 +690,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "er_sde"]
"gradient_estimation"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
@@ -1071,9 +858,7 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
to_load_options = model_options.get("to_load_options", None)
if to_load_options is None:
return
cast_transformer_options(to_load_options, device, dtype)
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
casts = []
if device is not None:
casts.append(device)
@@ -1082,17 +867,18 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# if nothing to apply, do nothing
if len(casts) == 0:
return
# try to call .to on patches
if "patches" in transformer_options:
patches = transformer_options["patches"]
if "patches" in to_load_options:
patches = to_load_options["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
for cast in casts:
patch_list[i] = patch_list[i].to(cast)
if "patches_replace" in transformer_options:
patches = transformer_options["patches_replace"]
if "patches_replace" in to_load_options:
patches = to_load_options["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
@@ -1102,8 +888,8 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# try to call .to on any wrappers/callbacks
wrappers_and_callbacks = ["wrappers", "callbacks"]
for wc_name in wrappers_and_callbacks:
if wc_name in transformer_options:
wc: dict[str, list] = transformer_options[wc_name]
if wc_name in to_load_options:
wc: dict[str, list] = to_load_options[wc_name]
for wc_dict in wc.values():
for wc_list in wc_dict.values():
for i in range(len(wc_list)):
@@ -1111,6 +897,7 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
for cast in casts:
wc_list[i] = wc_list[i].to(cast)
class CFGGuider:
def __init__(self, model_patcher: ModelPatcher):
self.model_patcher = model_patcher
@@ -1156,8 +943,6 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
@@ -1168,13 +953,9 @@ class CFGGuider:
try:
self.model_patcher.pre_run()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
finally:
self.model_patcher.cleanup()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model

View File

@@ -1,5 +1,4 @@
from __future__ import annotations
import json
import torch
from enum import Enum
import logging
@@ -135,8 +134,8 @@ class CLIP:
def clip_layer(self, layer_idx):
self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False, **kwargs):
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
def tokenize(self, text, return_word_ids=False):
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
def add_hooks_to_dict(self, pooled_dict: dict[str]):
if self.apply_hooks_to_conds:
@@ -250,7 +249,7 @@ class CLIP:
return self.patcher.get_key_patches()
class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None, metadata=None):
def __init__(self, sd=None, device=None, config=None, dtype=None):
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd)
@@ -358,12 +357,7 @@ class VAE:
version = 0
elif tensor_conv1.shape[0] == 1024:
version = 1
if "encoder.down_blocks.1.conv.conv.bias" in sd:
version = 2
vae_config = None
if metadata is not None and "config" in metadata:
vae_config = json.loads(metadata["config"]).get("vae", None)
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config)
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version)
self.latent_channels = 128
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
@@ -440,10 +434,6 @@ class VAE:
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
def throw_exception_if_invalid(self):
if self.first_stage_model is None:
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
def vae_encode_crop_pixels(self, pixels):
downscale_ratio = self.spacial_compression_encode()
@@ -499,7 +489,6 @@ class VAE:
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
def decode(self, samples_in):
self.throw_exception_if_invalid()
pixel_samples = None
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
@@ -530,7 +519,6 @@ class VAE:
return pixel_samples
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
dims = samples.ndim - 2
@@ -559,7 +547,6 @@ class VAE:
return output.movedim(1, -1)
def encode(self, pixel_samples):
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1)
if self.latent_dim == 3 and pixel_samples.ndim < 5:
@@ -592,7 +579,6 @@ class VAE:
return samples
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1)
@@ -887,13 +873,13 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (model, clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
sd = comfy.utils.load_torch_file(ckpt_path)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
clip = None
clipvision = None
vae = None
@@ -905,14 +891,9 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
if diffusion_model is None:
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
return None
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
@@ -939,7 +920,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd, metadata=metadata)
vae = VAE(sd=vae_sd)
if output_clip:
clip_target = model_config.clip_target(state_dict=sd)

View File

@@ -158,93 +158,71 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2]
def process_tokens(self, tokens, device):
end_token = self.special_tokens.get("end", None)
if end_token is None:
cmp_token = self.special_tokens.get("pad", -1)
else:
cmp_token = end_token
embeds_out = []
attention_masks = []
num_tokens = []
def set_up_textual_embeddings(self, tokens, current_embeds):
out_tokens = []
next_new_token = token_dict_size = current_embeds.weight.shape[0]
embedding_weights = []
for x in tokens:
attention_mask = []
tokens_temp = []
other_embeds = []
eos = False
index = 0
for y in x:
if isinstance(y, numbers.Integral):
if eos:
attention_mask.append(0)
tokens_temp += [int(y)]
else:
if y.shape[0] == current_embeds.weight.shape[1]:
embedding_weights += [y]
tokens_temp += [next_new_token]
next_new_token += 1
else:
attention_mask.append(1)
token = int(y)
tokens_temp += [token]
if not eos and token == cmp_token:
if end_token is None:
attention_mask[-1] = 0
eos = True
else:
other_embeds.append((index, y))
index += 1
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
while len(tokens_temp) < len(x):
tokens_temp += [self.special_tokens["pad"]]
out_tokens += [tokens_temp]
tokens_embed = torch.tensor([tokens_temp], device=device, dtype=torch.long)
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
index = 0
pad_extra = 0
for o in other_embeds:
emb = o[1]
if torch.is_tensor(emb):
emb = {"type": "embedding", "data": emb}
n = token_dict_size
if len(embedding_weights) > 0:
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
new_embedding.weight[:token_dict_size] = current_embeds.weight
for x in embedding_weights:
new_embedding.weight[n] = x
n += 1
self.transformer.set_input_embeddings(new_embedding)
emb_type = emb.get("type", None)
if emb_type == "embedding":
emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
processed_tokens = []
for x in out_tokens:
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
if emb is None:
index += -1
continue
ind = index + o[0]
emb = emb.view(1, -1, emb.shape[-1]).to(device=device, dtype=torch.float32)
emb_shape = emb.shape[1]
if emb.shape[-1] == tokens_embed.shape[-1]:
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
else:
index += -1
pad_extra += emb_shape
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(emb.shape[-1], tokens_embed.shape[-1]))
if pad_extra > 0:
padd_embed = self.transformer.get_input_embeddings()(torch.tensor([[self.special_tokens["pad"]] * pad_extra], device=device, dtype=torch.long), out_dtype=torch.float32)
tokens_embed = torch.cat([tokens_embed, padd_embed], dim=1)
attention_mask = attention_mask + [0] * pad_extra
embeds_out.append(tokens_embed)
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
return processed_tokens
def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
attention_mask = None
if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
attention_mask = torch.zeros_like(tokens)
end_token = self.special_tokens.get("end", None)
if end_token is None:
cmp_token = self.special_tokens.get("pad", -1)
else:
cmp_token = end_token
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == cmp_token:
if end_token is None:
attention_mask[x, y] = 0
break
attention_mask_model = None
if self.enable_attention_masks:
attention_mask_model = attention_mask
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0].float()
@@ -504,7 +482,7 @@ class SDTokenizer:
return (embed, leftover)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
@@ -618,7 +596,7 @@ class SD1Tokenizer:
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
return out

View File

@@ -26,7 +26,7 @@ class SDXLTokenizer:
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)

View File

@@ -762,7 +762,7 @@ class LTXV(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.LTXV
memory_usage_factor = 5.5 # TODO: img2vid is about 2x vs txt2vid
memory_usage_factor = 2.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
@@ -826,26 +826,6 @@ class HunyuanVideo(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect))
class HunyuanVideoI2V(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"in_channels": 33,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideoI2V(self, device=device)
return out
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"in_channels": 32,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideoSkyreelsI2V(self, device=device)
return out
class CosmosT2V(supported_models_base.BASE):
unet_config = {
"image_model": "cosmos",
@@ -931,7 +911,7 @@ class WAN21_T2V(supported_models_base.BASE):
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
@@ -959,6 +939,6 @@ class WAN21_I2V(WAN21_T2V):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
models += [SVD_img2vid]

View File

@@ -93,11 +93,8 @@ class BertEmbeddings(torch.nn.Module):
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, input_tokens, embeds=None, token_type_ids=None, dtype=None):
if embeds is not None:
x = embeds
else:
x = self.word_embeddings(input_tokens, out_dtype=dtype)
def forward(self, input_tokens, token_type_ids=None, dtype=None):
x = self.word_embeddings(input_tokens, out_dtype=dtype)
x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
if token_type_ids is not None:
x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
@@ -116,8 +113,8 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embeddings(input_tokens, dtype=dtype)
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@@ -18,7 +18,7 @@ class FluxTokenizer:
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)

View File

@@ -4,7 +4,6 @@ import comfy.text_encoders.llama
from transformers import LlamaTokenizerFast
import torch
import os
import numbers
def llama_detect(state_dict, prefix=""):
@@ -23,7 +22,7 @@ def llama_detect(state_dict, prefix=""):
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, end_token=128009, min_length=min_length)
class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
@@ -39,26 +38,15 @@ class HunyuanVideoTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n""" # 95 tokens
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
embed_count = 0
for r in llama_text_tokens:
for i in range(len(r)):
if r[i][0] == 128257:
if image_embeds is not None and embed_count < image_embeds.shape[0]:
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image", "image_interleave": image_interleave},) + r[i][1:]
embed_count += 1
out["llama"] = llama_text_tokens
llama_text = "{}{}".format(self.llama_template, text)
out["llama"] = self.llama.tokenize_with_weights(llama_text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
@@ -92,51 +80,20 @@ class HunyuanVideoClipModel(torch.nn.Module):
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
template_end = 0
extra_template_end = 0
extra_sizes = 0
user_end = 9999999999999
images = []
tok_pairs = token_weight_pairs_llama[0]
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 128006:
if tok_pairs[i + 1][0] == 882:
if tok_pairs[i + 2][0] == 128007:
template_end = i + 2
user_end = -1
if elem == 128009 and user_end == -1:
user_end = i + 1
else:
if elem.get("original_type") == "image":
elem_size = elem.get("data").shape[0]
if template_end > 0:
if user_end == -1:
extra_template_end += elem_size - 1
else:
image_start = i + extra_sizes
image_end = i + elem_size + extra_sizes
images.append((image_start, image_end, elem.get("image_interleave", 1)))
extra_sizes += elem_size - 1
for i, v in enumerate(token_weight_pairs_llama[0]):
if v[0] == 128007: # <|end_header_id|>
template_end = i
if llama_out.shape[1] > (template_end + 2):
if tok_pairs[template_end + 1][0] == 271:
if token_weight_pairs_llama[0][template_end + 1][0] == 271:
template_end += 2
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
llama_out = llama_out[:, template_end:]
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end:]
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
if len(images) > 0:
out = []
for i in images:
out.append(llama_out[:, i[0]: i[1]: i[2]])
llama_output = torch.cat(out + [llama_output], dim=1)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return llama_output, l_pooled, llama_extra_out
return llama_out, l_pooled, llama_extra_out
def load_sd(self, sd):
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:

View File

@@ -37,7 +37,7 @@ class HyditTokenizer:
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)

View File

@@ -241,11 +241,8 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
if embeds is not None:
x = embeds
else:
x = self.embed_tokens(x, out_dtype=dtype)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embed_tokens(x, out_dtype=dtype)
if self.normalize_in:
x *= self.config.hidden_size ** 0.5

View File

@@ -43,7 +43,7 @@ class SD3Tokenizer:
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)

View File

@@ -239,11 +239,8 @@ class T5(torch.nn.Module):
def set_input_embeddings(self, embeddings):
self.shared = embeddings
def forward(self, input_ids, attention_mask, embeds=None, num_tokens=None, **kwargs):
if input_ids is None:
x = embeds
else:
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
def forward(self, input_ids, *args, **kwargs):
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
x = torch.nan_to_num(x) #Fix for fp8 T5 base
return self.encoder(x, attention_mask=attention_mask, **kwargs)
return self.encoder(x, *args, **kwargs)

View File

@@ -46,18 +46,12 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
else:
logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.")
def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
def load_torch_file(ckpt, safe_load=False, device=None):
if device is None:
device = torch.device("cpu")
metadata = None
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
try:
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
sd[k] = f.get_tensor(k)
if return_metadata:
metadata = f.metadata()
sd = safetensors.torch.load_file(ckpt, device=device.type)
except Exception as e:
if len(e.args) > 0:
message = e.args[0]
@@ -83,7 +77,7 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
sd = pl_sd
else:
sd = pl_sd
return (sd, metadata) if return_metadata else sd
return sd
def save_torch_file(sd, ckpt, metadata=None):
if metadata is not None:

View File

@@ -1,5 +1,3 @@
from __future__ import annotations
import torchaudio
import torch
import comfy.model_management
@@ -12,7 +10,6 @@ import random
import hashlib
import node_helpers
from comfy.cli_args import args
from comfy.comfy_types import FileLocator
class EmptyLatentAudio:
def __init__(self):
@@ -167,7 +164,7 @@ class SaveAudio:
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results: list[FileLocator] = []
results = list()
metadata = {}
if not args.disable_metadata:

View File

@@ -454,7 +454,7 @@ class SamplerCustom:
return {"required":
{"model": ("MODEL",),
"add_noise": ("BOOLEAN", {"default": True}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
@@ -605,16 +605,10 @@ class DisableNoise:
class RandomNoise(DisableNoise):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"noise_seed": ("INT", {
"default": 0,
"min": 0,
"max": 0xffffffffffffffff,
"control_after_generate": True,
}),
}
}
return {"required":{
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
def get_noise(self, noise_seed):
return (Noise_RandomNoise(noise_seed),)

View File

@@ -1,5 +1,4 @@
import nodes
import node_helpers
import torch
import comfy.model_management
@@ -39,83 +38,7 @@ class EmptyHunyuanLatentVideo:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return ({"samples":latent}, )
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
class TextEncodeHunyuanVideo_ImageToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"image_interleave": ("INT", {"default": 2, "min": 1, "max": 512, "tooltip": "How much the image influences things vs the text prompt. Higher number means more influence from the text prompt."}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, clip_vision_output, prompt, image_interleave):
tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected, image_interleave=image_interleave)
return (clip.encode_from_tokens_scheduled(tokens), )
class HunyuanImageToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 53, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"guidance_type": (["v1 (concat)", "v2 (replace)"], )
},
"optional": {"start_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, vae, width, height, length, batch_size, guidance_type, start_image=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
out_latent = {}
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length, :, :, :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image)
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
if guidance_type == "v1 (concat)":
cond = {"concat_latent_image": concat_latent_image, "concat_mask": mask}
else:
cond = {'guiding_frame_index': 0}
latent[:, :, :concat_latent_image.shape[2]] = concat_latent_image
out_latent["noise_mask"] = mask
positive = node_helpers.conditioning_set_values(positive, cond)
out_latent["samples"] = latent
return (positive, out_latent)
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
"TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo,
"EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo,
"HunyuanImageToVideo": HunyuanImageToVideo,
}

View File

@@ -1,5 +1,3 @@
from __future__ import annotations
import nodes
import folder_paths
from comfy.cli_args import args
@@ -11,8 +9,6 @@ import numpy as np
import json
import os
from comfy.comfy_types import FileLocator
MAX_RESOLUTION = nodes.MAX_RESOLUTION
class ImageCrop:
@@ -103,7 +99,7 @@ class SaveAnimatedWEBP:
method = self.methods.get(method)
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results: list[FileLocator] = []
results = list()
pil_images = []
for image in images:
i = 255. * image.cpu().numpy()

View File

@@ -19,6 +19,8 @@ class Load3D():
"image": ("LOAD_3D", {}),
"width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"material": (["original", "normal", "wireframe", "depth"],),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
@@ -53,6 +55,8 @@ class Load3DAnimation():
"image": ("LOAD_3D_ANIMATION", {}),
"width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"material": (["original", "normal", "wireframe", "depth"],),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
@@ -78,6 +82,8 @@ class Preview3D():
def INPUT_TYPES(s):
return {"required": {
"model_file": ("STRING", {"default": "", "multiline": False}),
"material": (["original", "normal", "wireframe", "depth"],),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
}}
OUTPUT_NODE = True
@@ -96,6 +102,8 @@ class Preview3DAnimation():
def INPUT_TYPES(s):
return {"required": {
"model_file": ("STRING", {"default": "", "multiline": False}),
"material": (["original", "normal", "wireframe", "depth"],),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
}}
OUTPUT_NODE = True

View File

@@ -1,14 +1,9 @@
import io
import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.model_sampling
import comfy.utils
import math
import numpy as np
import av
from comfy.ldm.lightricks.symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
class EmptyLTXVLatentVideo:
@classmethod
@@ -38,6 +33,7 @@ class LTXVImgToVideo:
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"image_noise_scale": ("FLOAT", {"default": 0.15, "min": 0, "max": 1.0, "step": 0.01, "tooltip": "Amount of noise to apply on conditioning image latent."})
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
@@ -46,219 +42,16 @@ class LTXVImgToVideo:
CATEGORY = "conditioning/video_models"
FUNCTION = "generate"
def generate(self, positive, negative, image, vae, width, height, length, batch_size):
def generate(self, positive, negative, image, vae, width, height, length, batch_size, image_noise_scale):
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels)
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale})
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t, "guiding_latent_noise_scale": image_noise_scale})
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
latent[:, :, :t.shape[2]] = t
conditioning_latent_frames_mask = torch.ones(
(batch_size, 1, latent.shape[2], 1, 1),
dtype=torch.float32,
device=latent.device,
)
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 0
return (positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}, )
def conditioning_get_any_value(conditioning, key, default=None):
for t in conditioning:
if key in t[1]:
return t[1][key]
return default
def get_noise_mask(latent):
noise_mask = latent.get("noise_mask", None)
latent_image = latent["samples"]
if noise_mask is None:
batch_size, _, latent_length, _, _ = latent_image.shape
noise_mask = torch.ones(
(batch_size, 1, latent_length, 1, 1),
dtype=torch.float32,
device=latent_image.device,
)
else:
noise_mask = noise_mask.clone()
return noise_mask
def get_keyframe_idxs(cond):
keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None)
if keyframe_idxs is None:
return None, 0
num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0]
return keyframe_idxs, num_keyframes
class LTXVAddGuide:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE",),
"latent": ("LATENT",),
"image": ("IMAGE", {"tooltip": "Image or video to condition the latent video on. Must be 8*n + 1 frames."
"If the video is not 8*n + 1 frames, it will be cropped to the nearest 8*n + 1 frames."}),
"frame_idx": ("INT", {"default": 0, "min": -9999, "max": 9999,
"tooltip": "Frame index to start the conditioning at. For single-frame images or "
"videos with 1-8 frames, any frame_idx value is acceptable. For videos with 9+ "
"frames, frame_idx must be divisible by 8, otherwise it will be rounded down to "
"the nearest multiple of 8. Negative values are counted from the end of the video."}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
CATEGORY = "conditioning/video_models"
FUNCTION = "generate"
def __init__(self):
self._num_prefix_frames = 2
self._patchifier = SymmetricPatchifier(1)
def encode(self, vae, latent_width, latent_height, images, scale_factors):
time_scale_factor, width_scale_factor, height_scale_factor = scale_factors
images = images[:(images.shape[0] - 1) // time_scale_factor * time_scale_factor + 1]
pixels = comfy.utils.common_upscale(images.movedim(-1, 1), latent_width * width_scale_factor, latent_height * height_scale_factor, "bilinear", crop="disabled").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels)
return encode_pixels, t
def get_latent_index(self, cond, latent_length, guide_length, frame_idx, scale_factors):
time_scale_factor, _, _ = scale_factors
_, num_keyframes = get_keyframe_idxs(cond)
latent_count = latent_length - num_keyframes
frame_idx = frame_idx if frame_idx >= 0 else max((latent_count - 1) * time_scale_factor + 1 + frame_idx, 0)
if guide_length > 1:
frame_idx = frame_idx // time_scale_factor * time_scale_factor # frame index must be divisible by 8
latent_idx = (frame_idx + time_scale_factor - 1) // time_scale_factor
return frame_idx, latent_idx
def add_keyframe_index(self, cond, frame_idx, guiding_latent, scale_factors):
keyframe_idxs, _ = get_keyframe_idxs(cond)
_, latent_coords = self._patchifier.patchify(guiding_latent)
pixel_coords = latent_to_pixel_coords(latent_coords, scale_factors, True)
pixel_coords[:, 0] += frame_idx
if keyframe_idxs is None:
keyframe_idxs = pixel_coords
else:
keyframe_idxs = torch.cat([keyframe_idxs, pixel_coords], dim=2)
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
def append_keyframe(self, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors):
positive = self.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
mask = torch.full(
(noise_mask.shape[0], 1, guiding_latent.shape[2], 1, 1),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,
)
latent_image = torch.cat([latent_image, guiding_latent], dim=2)
noise_mask = torch.cat([noise_mask, mask], dim=2)
return positive, negative, latent_image, noise_mask
def replace_latent_frames(self, latent_image, noise_mask, guiding_latent, latent_idx, strength):
cond_length = guiding_latent.shape[2]
assert latent_image.shape[2] >= latent_idx + cond_length, "Conditioning frames exceed the length of the latent sequence."
mask = torch.full(
(noise_mask.shape[0], 1, cond_length, 1, 1),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,
)
latent_image = latent_image.clone()
noise_mask = noise_mask.clone()
latent_image[:, :, latent_idx : latent_idx + cond_length] = guiding_latent
noise_mask[:, :, latent_idx : latent_idx + cond_length] = mask
return latent_image, noise_mask
def generate(self, positive, negative, vae, latent, image, frame_idx, strength):
scale_factors = vae.downscale_index_formula
latent_image = latent["samples"]
noise_mask = get_noise_mask(latent)
_, _, latent_length, latent_height, latent_width = latent_image.shape
image, t = self.encode(vae, latent_width, latent_height, image, scale_factors)
frame_idx, latent_idx = self.get_latent_index(positive, latent_length, len(image), frame_idx, scale_factors)
assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence."
num_prefix_frames = min(self._num_prefix_frames, t.shape[2])
positive, negative, latent_image, noise_mask = self.append_keyframe(
positive,
negative,
frame_idx,
latent_image,
noise_mask,
t[:, :, :num_prefix_frames],
strength,
scale_factors,
)
latent_idx += num_prefix_frames
t = t[:, :, num_prefix_frames:]
if t.shape[2] == 0:
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
latent_image, noise_mask = self.replace_latent_frames(
latent_image,
noise_mask,
t,
latent_idx,
strength,
)
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
class LTXVCropGuides:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent": ("LATENT",),
}
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
CATEGORY = "conditioning/video_models"
FUNCTION = "crop"
def __init__(self):
self._patchifier = SymmetricPatchifier(1)
def crop(self, positive, negative, latent):
latent_image = latent["samples"].clone()
noise_mask = get_noise_mask(latent)
_, num_keyframes = get_keyframe_idxs(positive)
if num_keyframes == 0:
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
latent_image = latent_image[:, :, :-num_keyframes]
noise_mask = noise_mask[:, :, :-num_keyframes]
positive = node_helpers.conditioning_set_values(positive, {"keyframe_idxs": None})
negative = node_helpers.conditioning_set_values(negative, {"keyframe_idxs": None})
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
return (positive, negative, {"samples": latent}, )
class LTXVConditioning:
@@ -381,77 +174,6 @@ class LTXVScheduler:
return (sigmas,)
def encode_single_frame(output_file, image_array: np.ndarray, crf):
container = av.open(output_file, "w", format="mp4")
try:
stream = container.add_stream(
"h264", rate=1, options={"crf": str(crf), "preset": "veryfast"}
)
stream.height = image_array.shape[0]
stream.width = image_array.shape[1]
av_frame = av.VideoFrame.from_ndarray(image_array, format="rgb24").reformat(
format="yuv420p"
)
container.mux(stream.encode(av_frame))
container.mux(stream.encode())
finally:
container.close()
def decode_single_frame(video_file):
container = av.open(video_file)
try:
stream = next(s for s in container.streams if s.type == "video")
frame = next(container.decode(stream))
finally:
container.close()
return frame.to_ndarray(format="rgb24")
def preprocess(image: torch.Tensor, crf=29):
if crf == 0:
return image
image_array = (image[:(image.shape[0] // 2) * 2, :(image.shape[1] // 2) * 2] * 255.0).byte().cpu().numpy()
with io.BytesIO() as output_file:
encode_single_frame(output_file, image_array, crf)
video_bytes = output_file.getvalue()
with io.BytesIO(video_bytes) as video_file:
image_array = decode_single_frame(video_file)
tensor = torch.tensor(image_array, dtype=image.dtype, device=image.device) / 255.0
return tensor
class LTXVPreprocess:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"img_compression": (
"INT",
{
"default": 35,
"min": 0,
"max": 100,
"tooltip": "Amount of compression to apply on image.",
},
),
}
}
FUNCTION = "preprocess"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("output_image",)
CATEGORY = "image"
def preprocess(self, image, img_compression):
if img_compression > 0:
output_images = []
for i in range(image.shape[0]):
output_images.append(preprocess(image[i], img_compression))
return (torch.stack(output_images),)
NODE_CLASS_MAPPINGS = {
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo,
@@ -459,7 +181,4 @@ NODE_CLASS_MAPPINGS = {
"ModelSamplingLTXV": ModelSamplingLTXV,
"LTXVConditioning": LTXVConditioning,
"LTXVScheduler": LTXVScheduler,
"LTXVAddGuide": LTXVAddGuide,
"LTXVPreprocess": LTXVPreprocess,
"LTXVCropGuides": LTXVCropGuides,
}

View File

@@ -1,108 +0,0 @@
from __future__ import annotations
from inspect import cleandoc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.multigpu
from nodes import VAELoader
class VAELoaderDevice(VAELoader):
NodeId = "VAELoaderDevice"
NodeName = "Load VAE MultiGPU"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"vae_name": (cls.vae_list(), ),
"load_device": (comfy.multigpu.get_torch_device_list(), ),
}
}
FUNCTION = "load_vae_device"
CATEGORY = "advanced/multigpu/loaders"
def load_vae_device(self, vae_name, load_device: str):
device = comfy.multigpu.get_device_from_str(load_device)
return self.load_vae(vae_name, device)
class MultiGPUWorkUnitsNode:
"""
Prepares model to have sampling accelerated via splitting work units.
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
Other than those exceptions, this node can be placed in any order.
"""
NodeId = "MultiGPU_WorkUnits"
NodeName = "MultiGPU Work Units"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"max_gpus" : ("INT", {"default": 8, "min": 1, "step": 1}),
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "init_multigpu"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def init_multigpu(self, model: ModelPatcher, max_gpus: int, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
model = comfy.multigpu.create_multigpu_deepclones(model, max_gpus, gpu_options, reuse_loaded=True)
return (model,)
class MultiGPUOptionsNode:
"""
Select the relative speed of GPUs in the special case they have significantly different performance from one another.
"""
NodeId = "MultiGPU_Options"
NodeName = "MultiGPU Options"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"device_index": ("INT", {"default": 0, "min": 0, "max": 64}),
"relative_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01})
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("GPU_OPTIONS",)
FUNCTION = "create_gpu_options"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def create_gpu_options(self, device_index: int, relative_speed: float, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
if not gpu_options:
gpu_options = comfy.multigpu.GPUOptionsGroup()
gpu_options.clone()
opt = comfy.multigpu.GPUOptions(device_index=device_index, relative_speed=relative_speed)
gpu_options.add(opt)
return (gpu_options,)
node_list = [
MultiGPUWorkUnitsNode,
MultiGPUOptionsNode,
VAELoaderDevice,
]
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
for node in node_list:
NODE_CLASS_MAPPINGS[node.NodeId] = node
NODE_DISPLAY_NAME_MAPPINGS[node.NodeId] = node.NodeName

View File

@@ -1,12 +1,9 @@
from __future__ import annotations
import os
import av
import torch
import folder_paths
import json
from fractions import Fraction
from comfy.comfy_types import FileLocator
class SaveWEBM:
@@ -65,7 +62,7 @@ class SaveWEBM:
container.mux(stream.encode())
container.close()
results: list[FileLocator] = [{
results = [{
"filename": file,
"subfolder": subfolder,
"type": self.type

View File

@@ -4,7 +4,6 @@ import comfy.utils
import comfy.sd
import folder_paths
import comfy_extras.nodes_model_merging
import node_helpers
class ImageOnlyCheckpointLoader:
@@ -122,38 +121,12 @@ class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
return {}
class ConditioningSetAreaPercentageVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"temporal": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"z": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, width, height, temporal, x, y, z, strength):
c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", temporal, height, width, z, y, x),
"strength": strength,
"set_area_to_bounds": False})
return (c, )
NODE_CLASS_MAPPINGS = {
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
"VideoTriangleCFGGuidance": VideoTriangleCFGGuidance,
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
"ConditioningSetAreaPercentageVideo": ConditioningSetAreaPercentageVideo,
}
NODE_DISPLAY_NAME_MAPPINGS = {

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.26"
__version__ = "0.3.18"

View File

@@ -634,13 +634,6 @@ def validate_inputs(prompt, item, validated):
continue
else:
try:
# Unwraps values wrapped in __value__ key. This is used to pass
# list widget value to execution, as by default list value is
# reserved to represent the connection between nodes.
if isinstance(val, dict) and "__value__" in val:
val = val["__value__"]
inputs[x] = val
if type_input == "INT":
val = int(val)
inputs[x] = val

View File

@@ -139,7 +139,6 @@ from server import BinaryEventTypes
import nodes
import comfy.model_management
import comfyui_version
import app.logger
def cuda_malloc_warning():
@@ -296,12 +295,9 @@ def start_comfyui(asyncio_loop=None):
if __name__ == "__main__":
# Running directly, just start ComfyUI.
logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
event_loop, _, start_all_func = start_comfyui()
try:
x = start_all_func()
app.logger.print_startup_warnings()
event_loop.run_until_complete(x)
event_loop.run_until_complete(start_all_func())
except KeyboardInterrupt:
logging.info("\nStopped server")

View File

@@ -25,7 +25,7 @@ import comfy.sample
import comfy.sd
import comfy.utils
import comfy.controlnet
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict, FileLocator
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
import comfy.clip_vision
@@ -479,7 +479,7 @@ class SaveLatent:
file = f"{filename}_{counter:05}_.latent"
results: list[FileLocator] = []
results = list()
results.append({
"filename": file,
"subfolder": subfolder,
@@ -489,7 +489,7 @@ class SaveLatent:
file = os.path.join(full_output_folder, file)
output = {}
output["latent_tensor"] = samples["samples"].contiguous()
output["latent_tensor"] = samples["samples"]
output["latent_format_version_0"] = torch.tensor([])
comfy.utils.save_torch_file(output, file, metadata=metadata)
@@ -763,14 +763,13 @@ class VAELoader:
CATEGORY = "loaders"
#TODO: scale factor?
def load_vae(self, vae_name, device=None):
def load_vae(self, vae_name):
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd, device=device)
vae.throw_exception_if_invalid()
vae = comfy.sd.VAE(sd=sd)
return (vae,)
class ControlNetLoader:
@@ -1520,7 +1519,7 @@ class KSampler:
return {
"required": {
"model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "The random seed used for creating the noise."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
@@ -1548,7 +1547,7 @@ class KSamplerAdvanced:
return {"required":
{"model": ("MODEL",),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
@@ -1786,7 +1785,14 @@ class LoadImageOutput(LoadImage):
DESCRIPTION = "Load an image from the output folder. When the refresh button is clicked, the node will update the image list and automatically select the first image, allowing for easy iteration."
EXPERIMENTAL = True
FUNCTION = "load_image"
FUNCTION = "load_image_output"
def load_image_output(self, image):
return self.load_image(f"{image} [output]")
@classmethod
def VALIDATE_INPUTS(s, image):
return True
class ImageScale:
@@ -2259,7 +2265,6 @@ def init_builtin_extra_nodes():
"nodes_mahiro.py",
"nodes_lt.py",
"nodes_hooks.py",
"nodes_multigpu.py",
"nodes_load_3d.py",
"nodes_cosmos.py",
"nodes_video.py",

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.26"
version = "0.3.18"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,4 +1,4 @@
comfyui-frontend-package==1.12.14
comfyui-frontend-package==1.10.17
torch
torchsde
torchvision

View File

@@ -70,7 +70,7 @@ def test_get_release_invalid_version(mock_provider):
def test_init_frontend_default():
version_string = DEFAULT_VERSION_STRING
frontend_path = FrontendManager.init_frontend(version_string)
assert frontend_path == FrontendManager.default_frontend_path()
assert frontend_path == FrontendManager.DEFAULT_FRONTEND_PATH
def test_init_frontend_invalid_version():
@@ -84,29 +84,24 @@ def test_init_frontend_invalid_provider():
with pytest.raises(HTTPError):
FrontendManager.init_frontend_unsafe(version_string)
@pytest.fixture
def mock_os_functions():
with (
patch("app.frontend_management.os.makedirs") as mock_makedirs,
patch("app.frontend_management.os.listdir") as mock_listdir,
patch("app.frontend_management.os.rmdir") as mock_rmdir,
):
with patch('app.frontend_management.os.makedirs') as mock_makedirs, \
patch('app.frontend_management.os.listdir') as mock_listdir, \
patch('app.frontend_management.os.rmdir') as mock_rmdir:
mock_listdir.return_value = [] # Simulate empty directory
yield mock_makedirs, mock_listdir, mock_rmdir
@pytest.fixture
def mock_download():
with patch("app.frontend_management.download_release_asset_zip") as mock:
with patch('app.frontend_management.download_release_asset_zip') as mock:
mock.side_effect = Exception("Download failed") # Simulate download failure
yield mock
def test_finally_block(mock_os_functions, mock_download, mock_provider):
# Arrange
mock_makedirs, mock_listdir, mock_rmdir = mock_os_functions
version_string = "test-owner/test-repo@1.0.0"
version_string = 'test-owner/test-repo@1.0.0'
# Act & Assert
with pytest.raises(Exception):
@@ -133,42 +128,3 @@ def test_parse_version_string_invalid():
version_string = "invalid"
with pytest.raises(argparse.ArgumentTypeError):
FrontendManager.parse_version_string(version_string)
def test_init_frontend_default_with_mocks():
# Arrange
version_string = DEFAULT_VERSION_STRING
# Act
with (
patch("app.frontend_management.check_frontend_version") as mock_check,
patch.object(
FrontendManager, "default_frontend_path", return_value="/mocked/path"
),
):
frontend_path = FrontendManager.init_frontend(version_string)
# Assert
assert frontend_path == "/mocked/path"
mock_check.assert_called_once()
def test_init_frontend_fallback_on_error():
# Arrange
version_string = "test-owner/test-repo@1.0.0"
# Act
with (
patch.object(
FrontendManager, "init_frontend_unsafe", side_effect=Exception("Test error")
),
patch("app.frontend_management.check_frontend_version") as mock_check,
patch.object(
FrontendManager, "default_frontend_path", return_value="/default/path"
),
):
frontend_path = FrontendManager.init_frontend(version_string)
# Assert
assert frontend_path == "/default/path"
mock_check.assert_called_once()