Compare commits

..

19 Commits

Author SHA1 Message Date
Chenlei Hu
522d923948 nit 2025-03-25 16:47:52 -04:00
Chenlei Hu
c05c9b552b nit 2025-03-25 16:47:42 -04:00
Chenlei Hu
27598702e9 [Type] Annotate graph.get_input_info 2025-03-25 16:44:55 -04:00
comfyanonymous
8edc1f44c1 Support more float8 types. 2025-03-25 05:23:49 -04:00
comfyanonymous
eade1551bb Add Hunyuan3D to readme. 2025-03-24 07:14:32 -04:00
comfyanonymous
581a9991ff Add model merging node for WAN 2.1 2025-03-23 08:06:36 -04:00
comfyanonymous
e471c726e5 Fallback to pytorch attention if sage attention fails. 2025-03-22 15:45:56 -04:00
comfyanonymous
75c1c757d9 ComfyUI version v0.3.27 2025-03-21 20:09:54 -04:00
Chenlei Hu
ce9b084279 [nit] Format error strings (#7345) 2025-03-21 19:08:25 -04:00
Terry Jia
2206246055 support output normal and lineart once (#7290) 2025-03-21 16:24:13 -04:00
comfyanonymous
d9fa9d307f Automatically set the right sampling type for lotus. 2025-03-21 14:19:37 -04:00
thot experiment
83e839a89b Native LotusD Implementation (#7125)
* draft pass at a native comfy implementation of Lotus-D depth and normal est

* fix model_sampling kludges

* fix ruff

---------

Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
2025-03-21 14:04:15 -04:00
Chenlei Hu
0cf2274699 Update frontend to 1.14 (#7343) 2025-03-21 13:50:09 -04:00
comfyanonymous
0956107170 Nodes to convert images to YUV and back.
Can be used to convert an image to black and white.
2025-03-21 06:32:44 -04:00
Chenlei Hu
a4a956dbbd Add backend primitive nodes (#7328)
* Add backend primitive nodes

* Add control after generate to int primitive
2025-03-21 01:47:18 -04:00
Chenlei Hu
8b9ce4ed18 Update frontend to 1.13 (#7331) 2025-03-21 00:17:36 -04:00
comfyanonymous
3872b43d4b A few fixes for the hunyuan3d models. 2025-03-20 04:52:31 -04:00
comfyanonymous
32ca0805b7 Fix orientation of hunyuan 3d model. 2025-03-19 19:55:24 -04:00
comfyanonymous
11f1b41bab Initial Hunyuan3Dv2 implementation.
Supports the multiview, mini, turbo models and VAEs.
2025-03-19 16:52:58 -04:00
33 changed files with 1632 additions and 846 deletions

View File

@@ -69,6 +69,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- 3D Models
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.

View File

@@ -22,13 +22,21 @@ import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message():
"""The warning message to display when the frontend version is not up to date."""
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
return f"""
Please install the updated requirements.txt file by running:
{sys.executable} {extra}-m pip install -r {req_path}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
""".strip()
def check_frontend_version():
@@ -43,7 +51,17 @@ def check_frontend_version():
with open(req_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), frontend_install_warning_message()))
app.logger.log_startup_warning(
f"""
________________________________________________________________________
WARNING WARNING WARNING WARNING WARNING
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
{frontend_install_warning_message()}
________________________________________________________________________
""".strip()
)
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
@@ -150,9 +168,20 @@ class FrontendManager:
def default_frontend_path(cls) -> str:
try:
import comfyui_frontend_package
return str(importlib.resources.files(comfyui_frontend_package) / "static")
except ImportError:
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
logging.error(
f"""
********** ERROR ***********
comfyui-frontend-package is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
sys.exit(-1)
@classmethod
@@ -175,7 +204,9 @@ class FrontendManager:
return match_result.group(1), match_result.group(2), match_result.group(3)
@classmethod
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
def init_frontend_unsafe(
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
"""
Initializes the frontend for the specified version.
@@ -197,12 +228,20 @@ class FrontendManager:
repo_owner, repo_name, version = cls.parse_version_string(version_string)
if version.startswith("v"):
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
expected_path = str(
Path(cls.CUSTOM_FRONTENDS_ROOT)
/ f"{repo_owner}_{repo_name}"
/ version.lstrip("v")
)
if os.path.exists(expected_path):
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
logging.info(
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
)
return expected_path
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
logging.info(
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
)
provider = provider or FrontEndProvider(repo_owner, repo_name)
release = provider.get_release(version)

View File

@@ -49,7 +49,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")

View File

@@ -15,14 +15,13 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import torch
from enum import Enum
import math
import os
import logging
import copy
import comfy.utils
import comfy.model_management
import comfy.model_detection
@@ -37,7 +36,7 @@ import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING, Union
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.hooks import HookGroup
@@ -64,18 +63,6 @@ class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlIsolation:
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
def __init__(self, control: ControlBase):
self.control = control
self.orig_previous_controlnet = control.previous_controlnet
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
class ControlBase:
def __init__(self):
self.cond_hint_original = None
@@ -89,7 +76,7 @@ class ControlBase:
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
self.previous_controlnet: Union[ControlBase, None] = None
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
self.concat_mask = False
@@ -97,7 +84,6 @@ class ControlBase:
self.extra_concat = None
self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a
self.multigpu_clones: dict[torch.device, ControlBase] = {}
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
@@ -124,38 +110,17 @@ class ControlBase:
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
for device_cnet in self.multigpu_clones.values():
with ControlIsolation(device_cnet):
device_cnet.cleanup()
self.cond_hint = None
self.extra_concat = None
self.timestep_range = None
def get_models(self):
out = []
for device_cnet in self.multigpu_clones.values():
out += device_cnet.get_models_only_self()
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def get_models_only_self(self):
'Calls get_models, but temporarily sets previous_controlnet to None.'
with ControlIsolation(self):
return self.get_models()
def get_instance_for_device(self, device):
'Returns instance of this Control object intended for selected device.'
return self.multigpu_clones.get(device, self)
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
def get_extra_hooks(self):
out = []
if self.extra_hooks is not None:
@@ -164,7 +129,7 @@ class ControlBase:
out += self.previous_controlnet.get_extra_hooks()
return out
def copy_to(self, c: ControlBase):
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
@@ -315,14 +280,6 @@ class ControlNet(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.control_model = copy.deepcopy(c.control_model)
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
if autoregister:
self.multigpu_clones[load_device] = c
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
@@ -847,14 +804,6 @@ class T2IAdapter(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)
c.device = load_device
if autoregister:
self.multigpu_clones[load_device] = c
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8
upscale_algorithm = 'nearest-exact'

View File

@@ -456,3 +456,13 @@ class Wan21(LatentFormat):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 1.0188137142395404

View File

@@ -0,0 +1,135 @@
import torch
from torch import nn
from comfy.ldm.flux.layers import (
DoubleStreamBlock,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
class Hunyuan3Dv2(nn.Module):
def __init__(
self,
in_channels=64,
context_in_dim=1536,
hidden_size=1024,
mlp_ratio=4.0,
num_heads=16,
depth=16,
depth_single_blocks=32,
qkv_bias=True,
guidance_embed=False,
image_model=None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.dtype = dtype
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
self.max_period = 1000 # While reimplementing the model I noticed that they messed up. This 1000 value was meant to be the time_factor but they set the max_period instead
self.latent_in = operations.Linear(in_channels, hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) if guidance_embed else None
)
self.cond_in = operations.Linear(context_in_dim, hidden_size, dtype=dtype, device=device)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
dtype=dtype, device=device, operations=operations
)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations)
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
x = x.movedim(-1, -2)
timestep = 1.0 - timestep
txt = context
img = self.latent_in(x)
vec = self.time_in(timestep_embedding(timestep, 256, self.max_period).to(dtype=img.dtype))
if self.guidance_in is not None:
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256, self.max_period).to(img.dtype))
txt = self.cond_in(txt)
pe = None
attn_mask = None
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = img[:, txt.shape[1]:, ...]
img = self.final_layer(img, vec)
return img.movedim(-2, -1) * (-1.0)

587
comfy/ldm/hunyuan3d/vae.py Normal file
View File

@@ -0,0 +1,587 @@
# Original: https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/models/autoencoders/model.py
# Since the header on their VAE source file was a bit confusing we asked for permission to use this code from tencent under the GPL license used in ComfyUI.
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, Tuple, List, Callable, Optional
import numpy as np
from einops import repeat, rearrange
from tqdm import tqdm
import logging
import comfy.ops
ops = comfy.ops.disable_weight_init
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length
class VanillaVolumeDecoder:
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
return grid_logits
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
[
sin(x[..., i]),
sin(f_1*x[..., i]),
sin(f_2*x[..., i]),
...
sin(f_N * x[..., i]),
cos(x[..., i]),
cos(f_1*x[..., i]),
cos(f_2*x[..., i]),
...
cos(f_N * x[..., i]),
x[..., i] # only present if include_input is True.
], here f_i is the frequency.
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
Args:
num_freqs (int): the number of frequencies, default is 6;
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
input_dim (int): the input dimension, default is 3;
include_input (bool): include the input tensor or not, default is True.
Attributes:
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
otherwise, it is input_dim * num_freqs * 2.
"""
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
"""The initialization"""
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Forward process.
Args:
x: tensor of shape [..., dim]
Returns:
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
where temp is 1 if include_input is True and 0 otherwise.
"""
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies.to(device=x.device, dtype=x.dtype)).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = F.scaled_dot_product_attention(q, k, v)
return out
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if self.drop_prob == 0. or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and self.scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
def extra_repr(self):
return f'drop_prob={round(self.drop_prob, 3):0.3f}'
class MLP(nn.Module):
def __init__(
self, *,
width: int,
expand_ratio: int = 4,
output_width: int = None,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.c_fc = ops.Linear(width, width * expand_ratio)
self.c_proj = ops.Linear(width * expand_ratio, output_width if output_width is not None else width)
self.gelu = nn.GELU()
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool = True,
data_width: Optional[int] = None,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
kv_cache: bool = False,
):
super().__init__()
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = ops.Linear(width, width, bias=qkv_bias)
self.c_kv = ops.Linear(self.data_width, width * 2, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadCrossAttention(
heads=heads,
width=width,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.kv_cache = kv_cache
self.data = None
def forward(self, x, data):
x = self.c_q(x)
if self.kv_cache:
if self.data is None:
self.data = self.c_kv(data)
logging.info('Save kv cache,this should be called only once for one mesh')
data = self.data
else:
data = self.c_kv(data)
x = self.attention(x, data)
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
mlp_expand_ratio: int = 4,
data_width: Optional[int] = None,
qkv_bias: bool = True,
norm_layer=ops.LayerNorm,
qk_norm: bool = False
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
width=width,
heads=heads,
data_width=data_width,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6)
self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.mlp = MLP(width=width, expand_ratio=mlp_expand_ratio)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x
class QKVMultiheadAttention(nn.Module):
def __init__(
self,
*,
heads: int,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadAttention(
heads=heads,
width=width,
norm_layer=norm_layer,
qk_norm=qk_norm
)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
x = self.c_qkv(x)
x = self.attention(x)
x = self.drop_path(self.c_proj(x))
return x
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
qkv_bias: bool = True,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0,
):
super().__init__()
self.attn = MultiheadAttention(
width=width,
heads=heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
self.mlp = MLP(width=width, drop_path_rate=drop_path_rate)
self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6)
def forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self,
*,
width: int,
layers: int,
heads: int,
qkv_bias: bool = True,
norm_layer=ops.LayerNorm,
qk_norm: bool = False,
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
width=width,
heads=heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x
class CrossAttentionDecoder(nn.Module):
def __init__(
self,
*,
out_channels: int,
fourier_embedder: FourierEmbedder,
width: int,
heads: int,
mlp_expand_ratio: int = 4,
downsample_ratio: int = 1,
enable_ln_post: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary"
):
super().__init__()
self.enable_ln_post = enable_ln_post
self.fourier_embedder = fourier_embedder
self.downsample_ratio = downsample_ratio
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = ops.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
width=width,
mlp_expand_ratio=mlp_expand_ratio,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm
)
if self.enable_ln_post:
self.ln_post = ops.LayerNorm(width)
self.output_proj = ops.Linear(width, out_channels)
self.label_type = label_type
self.count = 0
def forward(self, queries=None, query_embeddings=None, latents=None):
if query_embeddings is None:
query_embeddings = self.query_proj(self.fourier_embedder(queries).to(latents.dtype))
self.count += query_embeddings.shape[1]
if self.downsample_ratio != 1:
latents = self.latents_proj(latents)
x = self.cross_attn_decoder(query_embeddings, latents)
if self.enable_ln_post:
x = self.ln_post(x)
occ = self.output_proj(x)
return occ
class ShapeVAE(nn.Module):
def __init__(
self,
*,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.post_kl = ops.Linear(embed_dim, width)
self.transformer = Transformer(
width=width,
layers=num_decoder_layers,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate
)
self.geo_decoder = CrossAttentionDecoder(
fourier_embedder=self.fourier_embedder,
out_channels=1,
mlp_expand_ratio=geo_decoder_mlp_expand_ratio,
downsample_ratio=geo_decoder_downsample_ratio,
enable_ln_post=self.geo_decoder_ln_post,
width=width // geo_decoder_downsample_ratio,
heads=heads // geo_decoder_downsample_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
label_type=label_type,
)
self.volume_decoder = VanillaVolumeDecoder()
self.scale_factor = scale_factor
def decode(self, latents, **kwargs):
latents = self.post_kl(latents.movedim(-2, -1))
latents = self.transformer(latents)
bounds = kwargs.get("bounds", 1.01)
num_chunks = kwargs.get("num_chunks", 8000)
octree_resolution = kwargs.get("octree_resolution", 256)
enable_pbar = kwargs.get("enable_pbar", True)
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
return grid_logits.movedim(-2, -1)
def encode(self, x):
return None

View File

@@ -471,7 +471,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout="HND"
tensor_layout = "HND"
else:
b, _, dim_head = q.shape
dim_head //= heads
@@ -479,7 +479,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.view(b, -1, heads, dim_head),
(q, k, v),
)
tensor_layout="NHD"
tensor_layout = "NHD"
if mask is not None:
# add a batch dimension if there isn't already one
@@ -489,7 +489,17 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
if mask.ndim == 3:
mask = mask.unsqueeze(1)
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
try:
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
except Exception as e:
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
if tensor_layout == "NHD":
q, k, v = map(
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
if tensor_layout == "HND":
if not skip_output_reshape:
out = (

View File

@@ -36,6 +36,7 @@ import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.model_management
import comfy.patcher_extension
@@ -58,6 +59,7 @@ class ModelType(Enum):
FLOW = 6
V_PREDICTION_CONTINUOUS = 7
FLUX = 8
IMG_TO_IMG = 9
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
@@ -88,6 +90,8 @@ def model_sampling(model_config, model_type):
elif model_type == ModelType.FLUX:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingFlux
elif model_type == ModelType.IMG_TO_IMG:
c = comfy.model_sampling.IMG_TO_IMG
class ModelSampling(s, c):
pass
@@ -139,6 +143,7 @@ class BaseModel(torch.nn.Module):
def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t
xc = self.model_sampling.calculate_input(sigma, x)
if c_concat is not None:
xc = torch.cat([xc] + [c_concat], dim=1)
@@ -600,6 +605,19 @@ class SDXL_instructpix2pix(IP2P, SDXL):
else:
self.process_ip2p_image_in = lambda image: image #diffusers ip2p
class Lotus(BaseModel):
def extra_conds(self, **kwargs):
out = {}
cross_attn = kwargs.get("cross_attn", None)
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
device = kwargs["device"]
task_emb = torch.tensor([1, 0]).float().to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)]).unsqueeze(0)
out['y'] = comfy.conds.CONDRegular(task_emb)
return out
def __init__(self, model_config, model_type=ModelType.IMG_TO_IMG, device=None):
super().__init__(model_config, model_type, device=device)
class StableCascade_C(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
@@ -1013,3 +1031,18 @@ class WAN21(BaseModel):
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
return out
class Hunyuan3Dv2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3d.model.Hunyuan3Dv2)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guidance = kwargs.get("guidance", 5.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out

View File

@@ -154,7 +154,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = len(guidance_keys) > 0
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
dit_config = {}
dit_config["image_model"] = "flux"
dit_config["in_channels"] = 16
@@ -323,6 +323,21 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["model_type"] = "t2v"
return dit_config
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
in_shape = state_dict['{}latent_in.weight'.format(key_prefix)].shape
dit_config = {}
dit_config["image_model"] = "hunyuan3d2"
dit_config["in_channels"] = in_shape[1]
dit_config["context_in_dim"] = state_dict['{}cond_in.weight'.format(key_prefix)].shape[1]
dit_config["hidden_size"] = in_shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 16
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["qkv_bias"] = True
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@@ -667,8 +682,13 @@ def unet_config_from_diffusers_unet(state_dict, dtype=None):
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
'use_temporal_attention': False, 'use_temporal_resblock': False}
LotusD = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': 4,
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_heads': 8,
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
'use_temporal_attention': False, 'use_temporal_resblock': False}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
supported_models = [LotusD, SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
for unet_config in supported_models:
matches = True

View File

@@ -15,7 +15,6 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import psutil
import logging
@@ -27,10 +26,6 @@ import platform
import weakref
import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
@@ -51,6 +46,32 @@ cpu_state = CPUState.GPU
total_vram = 0
def get_supported_float8_types():
float8_types = []
try:
float8_types.append(torch.float8_e4m3fn)
except:
pass
try:
float8_types.append(torch.float8_e4m3fnuz)
except:
pass
try:
float8_types.append(torch.float8_e5m2)
except:
pass
try:
float8_types.append(torch.float8_e5m2fnuz)
except:
pass
try:
float8_types.append(torch.float8_e8m0fnu)
except:
pass
return float8_types
FLOAT8_TYPES = get_supported_float8_types()
xpu_available = False
torch_version = ""
try:
@@ -150,25 +171,6 @@ def get_torch_device():
else:
return torch.device(torch.cuda.current_device())
def get_all_torch_devices(exclude_current=False):
global cpu_state
devices = []
if cpu_state == CPUState.GPU:
if is_nvidia():
for i in range(torch.cuda.device_count()):
devices.append(torch.device(i))
elif is_intel_xpu():
for i in range(torch.xpu.device_count()):
devices.append(torch.device(i))
elif is_ascend_npu():
for i in range(torch.npu.device_count()):
devices.append(torch.device(i))
else:
devices.append(get_torch_device())
if exclude_current:
devices.remove(get_torch_device())
return devices
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
@@ -380,13 +382,9 @@ try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
try:
for device in get_all_torch_devices(exclude_current=True):
logging.info("Device: {}".format(get_torch_device_name(device)))
except:
pass
current_loaded_models: list[LoadedModel] = []
current_loaded_models = []
def module_size(module):
module_mem = 0
@@ -397,7 +395,7 @@ def module_size(module):
return module_mem
class LoadedModel:
def __init__(self, model: ModelPatcher):
def __init__(self, model):
self._set_model(model)
self.device = model.load_device
self.real_model = None
@@ -405,7 +403,7 @@ class LoadedModel:
self.model_finalizer = None
self._patcher_finalizer = None
def _set_model(self, model: ModelPatcher):
def _set_model(self, model):
self._model = weakref.ref(model)
if model.parent is not None:
self._parent_model = weakref.ref(model.parent)
@@ -729,11 +727,8 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
return torch.float8_e5m2
fp8_dtype = None
try:
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
fp8_dtype = weight_dtype
except:
pass
if weight_dtype in FLOAT8_TYPES:
fp8_dtype = weight_dtype
if fp8_dtype is not None:
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
@@ -1247,31 +1242,6 @@ def soft_empty_cache(force=False):
def unload_all_models():
free_memory(1e30, get_torch_device())
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
'Unload only model and its clones - primarily for multigpu cloning purposes.'
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
additional_models = []
if unload_additional_models:
additional_models = model.get_nested_additional_models()
keep_loaded = []
for loaded_model in initial_keep_loaded:
if loaded_model.model is not None:
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
continue
# check additional models if they are a match
skip = False
for add_model in additional_models:
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
skip = True
break
if skip:
continue
keep_loaded.append(loaded_model)
if not all_devices:
free_memory(1e30, get_torch_device(), keep_loaded)
else:
for device in get_all_torch_devices():
free_memory(1e30, device, keep_loaded)
#TODO: might be cleaner to put this somewhere else
import threading

View File

@@ -84,15 +84,12 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches, copy_tuples=False):
def create_hook_patches_clone(orig_hook_patches):
new_hook_patches = {}
for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
if copy_tuples:
for i in range(len(new_hook_patches[hook_ref][k])):
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
return new_hook_patches
def wipe_lowvram_weight(m):
@@ -243,9 +240,6 @@ class ModelPatcher:
self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0
@@ -324,92 +318,18 @@ class ModelPatcher:
n.is_clip = self.is_clip
n.hook_mode = self.hook_mode
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n)
return n
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
comfy.model_management.unload_model_and_clones(self)
n = self.clone()
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled
if models_cache is None:
models_cache = {}
for key, model_list in n.additional_models.items():
for i in range(len(model_list)):
add_model = n.additional_models[key][i]
if add_model.clone_base_uuid not in models_cache:
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
callback(self, n)
return n
def match_multigpu_clones(self):
multigpu_models = self.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
new_multigpu_models = []
for mm in multigpu_models:
# clone main model, but bring over relevant props from existing multigpu clone
n = self.clone()
n.load_device = mm.load_device
n.backup = mm.backup
n.object_patches_backup = mm.object_patches_backup
n.hook_backup = mm.hook_backup
n.model = mm.model
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
n.remove_additional_models("multigpu")
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
# figure out which additional models are not present in multigpu clone
models_cache = {}
for mm_add_model in mm.get_additional_models():
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
remove_models_uuids = set(list(models_cache.keys()))
for key, model_list in orig_additional_models.items():
for orig_add_model in model_list:
if orig_add_model.clone_base_uuid not in models_cache:
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
existing_list = n.get_additional_models_with_key(key)
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
n.set_additional_models(key, existing_list)
if orig_add_model.clone_base_uuid in remove_models_uuids:
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
# remove duplicate additional models
for key, model_list in n.additional_models.items():
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
n.set_additional_models(key, new_model_list)
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
callback(self, n)
new_multigpu_models.append(n)
self.set_additional_models("multigpu", new_multigpu_models)
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False):
if allow_multigpu:
if self.clone_base_uuid != clone.clone_base_uuid:
return False
else:
if not self.is_clone(clone):
return False
def clone_has_same_weights(self, clone: 'ModelPatcher'):
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks:
return False
@@ -1009,7 +929,7 @@ class ModelPatcher:
return self.additional_models.get(key, [])
def get_additional_models(self):
all_models: list[ModelPatcher] = []
all_models = []
for models in self.additional_models.values():
all_models.extend(models)
return all_models
@@ -1063,13 +983,9 @@ class ModelPatcher:
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self)
def prepare_state(self, timestep, model_options, ignore_multigpu=False):
def prepare_state(self, timestep):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep, model_options, ignore_multigpu)
if not ignore_multigpu and "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p.prepare_state(timestep, model_options, ignore_multigpu=True)
callback(self, timestep)
def restore_hook_patches(self):
if self.hook_patches_backup is not None:
@@ -1082,18 +998,12 @@ class ModelPatcher:
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0]
reset_current_hooks = False
multigpu_kf_changed_cache = None
transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling
if changed:
# cache changed for multigpu usage
if "multigpu_clones" in model_options:
if multigpu_kf_changed_cache is None:
multigpu_kf_changed_cache = []
multigpu_kf_changed_cache.append(hook)
# reset current_hooks if contains hook that changed
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
@@ -1105,28 +1015,6 @@ class ModelPatcher:
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
if "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
if kf_changed_cache is None:
return
reset_current_hooks = False
# reset current_hooks if contains hook that changed
for hook in kf_changed_cache:
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
registered: comfy.hooks.HookGroup = None):

View File

@@ -69,6 +69,15 @@ class CONST:
sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1))
return latent / (1.0 - sigma)
class X0(EPS):
def calculate_denoised(self, sigma, model_output, model_input):
return model_output
class IMG_TO_IMG(X0):
def calculate_input(self, sigma, noise):
return noise
class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None, zsnr=None):
super().__init__()

View File

@@ -1,176 +0,0 @@
from __future__ import annotations
import torch
import logging
from collections import namedtuple
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.utils
import comfy.patcher_extension
import comfy.model_management
class GPUOptions:
def __init__(self, device_index: int, relative_speed: float):
self.device_index = device_index
self.relative_speed = relative_speed
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
}
class GPUOptionsGroup:
def __init__(self):
self.options: dict[int, GPUOptions] = {}
def add(self, info: GPUOptions):
self.options[info.device_index] = info
def clone(self):
c = GPUOptionsGroup()
for opt in self.options.values():
c.add(opt)
return c
def register(self, model: ModelPatcher):
opts_dict = {}
# get devices that are valid for this model
devices: list[torch.device] = [model.load_device]
for extra_model in model.get_additional_models_with_key("multigpu"):
extra_model: ModelPatcher
devices.append(extra_model.load_device)
# create dictionary with actual device mapped to its GPUOptions
device_opts_list: list[GPUOptions] = []
for device in devices:
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
opts_dict[device] = device_opts.create_dict()
device_opts_list.append(device_opts)
# make relative_speed relative to 1.0
min_speed = min([x.relative_speed for x in device_opts_list])
for value in opts_dict.values():
value['relative_speed'] /= min_speed
model.model_options['multigpu_options'] = opts_dict
def get_torch_device_list():
devices = ["default"]
for device in comfy.model_management.get_all_torch_devices():
device: torch.device
devices.append(str(device.index))
return devices
def get_device_from_str(device_str: str, throw_error_if_not_found=False):
if device_str == "default":
return comfy.model_management.get_torch_device()
for device in comfy.model_management.get_all_torch_devices():
device: torch.device
if str(device.index) == device_str:
return device
if throw_error_if_not_found:
raise Exception(f"Device with index '{device_str}' not found.")
logging.warning(f"Device with index '{device_str}' not found, using default device ({comfy.model_management.get_torch_device()}) instead.")
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
model = model.clone()
# check if multigpu is already prepared - get the load devices from them if possible to exclude
skip_devices = set()
multigpu_models = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
for mm in multigpu_models:
skip_devices.add(mm.load_device)
skip_devices = list(skip_devices)
extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
extra_devices = extra_devices[:max_gpus-1]
# exclude skipped devices
for skip in skip_devices:
if skip in extra_devices:
extra_devices.remove(skip)
# create new deepclones
if len(extra_devices) > 0:
for device in extra_devices:
device_patcher = None
if reuse_loaded:
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
for lm in loaded_models:
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
multigpu_models.append(device_patcher)
model.set_additional_models("multigpu", multigpu_models)
model.match_multigpu_clones()
if gpu_options is None:
gpu_options = GPUOptionsGroup()
gpu_options.register(model)
else:
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
# persist skip_devices for use in sampling code
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
# model.model_options["multigpu_skip_devices"] = skip_devices
return model
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
opts_dict = model_options['multigpu_options']
devices = list(model_options['multigpu_clones'].keys())
speed_per_device = []
work_per_device = []
# get sum of each device's relative_speed
total_speed = 0.0
for opts in opts_dict.values():
total_speed += opts['relative_speed']
# get relative work for each device;
# obtained by w = (W*r)/R
for device in devices:
relative_speed = opts_dict[device]['relative_speed']
relative_work = (total_work*relative_speed) / total_speed
speed_per_device.append(relative_speed)
work_per_device.append(relative_work)
# relative work must be expressed in whole numbers, but likely is a decimal;
# perform rounding while maintaining total sum equal to total work (sum of relative works)
work_per_device = round_preserved(work_per_device)
dict_work_per_device = {}
for device, relative_work in zip(devices, work_per_device):
dict_work_per_device[device] = relative_work
if not return_idle_time:
return LoadBalance(dict_work_per_device, None)
# divide relative work by relative speed to get estimated completion time of said work by each device;
# time here is relative and does not correspond to real-world units
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
# calculate relative time spent by the devices waiting on each other after their work is completed
idle_time = abs(min(completion_time) - max(completion_time))
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):
'Round all values in a list, preserving the combined sum of values.'
# get floor of values; casting to int does it too
floored = [int(x) for x in values]
total_floored = sum(floored)
# get remainder to distribute
remainder = round(sum(values)) - total_floored
# pair values with fractional portions
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
# sort by fractional part in descending order
fractional.sort(key=lambda x: x[1], reverse=True)
# distribute the remainder
for i in range(remainder):
index = fractional[i][0]
floored[index] += 1
return floored

View File

@@ -3,8 +3,6 @@ from typing import Callable
class CallbacksMP:
ON_CLONE = "on_clone"
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
ON_LOAD = "on_load_after"
ON_DETACH = "on_detach_after"
ON_CLEANUP = "on_cleanup"

View File

@@ -1,9 +1,7 @@
from __future__ import annotations
import torch
import uuid
import comfy.model_management
import comfy.conds
import comfy.model_patcher
import comfy.utils
import comfy.hooks
import comfy.patcher_extension
@@ -106,57 +104,16 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'):
m.cleanup()
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) == 0:
return
extra_devices = [x.load_device for x in multigpu_models]
# handle controlnets
controlnets: set[ControlBase] = set()
for k in conds:
for kk in conds[k]:
if 'control' in kk:
controlnets.add(kk['control'])
if len(controlnets) > 0:
# first, unload all controlnet clones
for cnet in list(controlnets):
cnet_models = cnet.get_models()
for cm in cnet_models:
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
# next, make sure each controlnet has a deepclone for all relevant devices
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
for device in extra_devices:
if device not in curr_cnet.multigpu_clones:
curr_cnet.deepclone_multigpu(device, autoregister=True)
curr_cnet = curr_cnet.previous_controlnet
# since all device clones are now present, recreate the linked list for cloned cnets per device
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
prev_cnet = curr_cnet.previous_controlnet
for device in extra_devices:
device_cnet = curr_cnet.get_instance_for_device(device)
prev_device_cnet = None
if prev_cnet is not None:
prev_device_cnet = prev_cnet.get_instance_for_device(device)
device_cnet.set_previous_controlnet(prev_device_cnet)
curr_cnet = prev_cnet
# potentially handle gligen - since not widely used, ignored for now
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
model.match_multigpu_clones()
preprocess_multigpu_conds(conds, model, model_options)
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model: BaseModel = model.model
real_model = model.model
return real_model, conds, models
@@ -169,7 +126,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
'''
Registers hooks from conds.
'''
@@ -202,18 +159,3 @@ def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False)
return to_load_options
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
'''
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
'''
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
if len(multigpu_patchers) > 0:
multigpu_dict: dict[torch.device, ModelPatcher] = {}
multigpu_dict[model_patcher.load_device] = model_patcher
for x in multigpu_patchers:
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
multigpu_dict[x.load_device] = x
model_options["multigpu_clones"] = multigpu_dict
return multigpu_patchers

View File

@@ -1,6 +1,4 @@
from __future__ import annotations
import comfy.model_management
from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc
from typing import TYPE_CHECKING, Callable, NamedTuple
@@ -20,7 +18,6 @@ import comfy.patcher_extension
import comfy.hooks
import scipy.stats
import numpy
import threading
def add_area_dims(area, num_dims):
@@ -143,7 +140,7 @@ def can_concat_cond(c1, c2):
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list, device=None):
def cond_cat(c_list):
temp = {}
for x in c_list:
for k in x:
@@ -155,8 +152,6 @@ def cond_cat(c_list, device=None):
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
if device is not None and hasattr(out[k], 'to'):
out[k] = out[k].to(device)
return out
@@ -210,9 +205,7 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
)
return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
if 'multigpu_clones' in model_options:
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
out_conds = []
out_counts = []
# separate conds by matching hooks
@@ -244,7 +237,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
model.current_patcher.prepare_state(timestep)
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
@@ -346,190 +339,6 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
return out_conds
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
out_conds = []
out_counts = []
# separate conds by matching hooks
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
default_conds = []
has_default_conds = False
output_device = x_in.device
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
default_c = []
if cond is not None:
for x in cond:
if 'default' in x:
default_c.append(x)
has_default_conds = True
continue
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c)
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
index_device = 0
current_device = devices[index_device]
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
while len(to_run) > 0:
current_device = devices[index_device % len(devices)]
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
# keep track of conds currently scheduled onto this device
batched_to_run_length = 0
for btr in batched_to_run:
batched_to_run_length += len(btr[1])
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
# make sure not over conds_per_device limit when creating temp batch
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
conds_to_batch = []
for x in to_batch:
conds_to_batch.append(to_run.pop(x))
batched_to_run_length += len(conds_to_batch)
batched_to_run.append((hooks, conds_to_batch))
if batched_to_run_length >= conds_per_device:
index_device += 1
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
model_current: BaseModel = model_options["multigpu_clones"][device].model
# run every hooked_to_run separately
with torch.no_grad():
for hooks, to_batch in batch_tuple:
input_x = []
mult = []
c = []
cond_or_uncond = []
uuids = []
area = []
control: ControlBase = None
patches = None
for x in to_batch:
o = x
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
uuids.append(p.uuid)
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x).to(device)
c = cond_cat(c, device=device)
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
if 'transformer_options' in model_options:
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
model_options['transformer_options'],
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device
cast_transformer_options(transformer_options, device=device)
c['transformer_options'] = transformer_options
if control is not None:
device_control = control.get_instance_for_device(device)
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
else:
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
results: list[thread_result] = []
threads: list[threading.Thread] = []
for device, batch_tuple in device_batched_hooked_to_run.items():
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()
for output, mult, area, batch_chunks, cond_or_uncond in results:
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]
return out_conds
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
@@ -827,8 +636,6 @@ def pre_run_control(model, conds):
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
if 'control' in x:
x['control'].pre_run(model, percent_to_timestep_function)
for device_cnet in x['control'].multigpu_clones.values():
device_cnet.pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []
@@ -1071,9 +878,7 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
to_load_options = model_options.get("to_load_options", None)
if to_load_options is None:
return
cast_transformer_options(to_load_options, device, dtype)
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
casts = []
if device is not None:
casts.append(device)
@@ -1082,17 +887,18 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# if nothing to apply, do nothing
if len(casts) == 0:
return
# try to call .to on patches
if "patches" in transformer_options:
patches = transformer_options["patches"]
if "patches" in to_load_options:
patches = to_load_options["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
for cast in casts:
patch_list[i] = patch_list[i].to(cast)
if "patches_replace" in transformer_options:
patches = transformer_options["patches_replace"]
if "patches_replace" in to_load_options:
patches = to_load_options["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
@@ -1102,8 +908,8 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
# try to call .to on any wrappers/callbacks
wrappers_and_callbacks = ["wrappers", "callbacks"]
for wc_name in wrappers_and_callbacks:
if wc_name in transformer_options:
wc: dict[str, list] = transformer_options[wc_name]
if wc_name in to_load_options:
wc: dict[str, list] = to_load_options[wc_name]
for wc_dict in wc.values():
for wc_list in wc_dict.values():
for i in range(len(wc_list)):
@@ -1111,6 +917,7 @@ def cast_transformer_options(transformer_options: dict[str], device=None, dtype=
for cast in casts:
wc_list[i] = wc_list[i].to(cast)
class CFGGuider:
def __init__(self, model_patcher: ModelPatcher):
self.model_patcher = model_patcher
@@ -1156,8 +963,6 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
@@ -1168,13 +973,9 @@ class CFGGuider:
try:
self.model_patcher.pre_run()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
finally:
self.model_patcher.cleanup()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model

View File

@@ -14,6 +14,7 @@ import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae
import comfy.ldm.hunyuan3d.vae
import yaml
import math
@@ -412,6 +413,17 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
ln_post = "geo_decoder.ln_post.weight" in sd
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -498,7 +510,7 @@ class VAE:
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
def decode(self, samples_in):
def decode(self, samples_in, vae_options={}):
self.throw_exception_if_invalid()
pixel_samples = None
try:
@@ -510,7 +522,7 @@ class VAE:
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
out = self.process_output(self.first_stage_model.decode(samples, **vae_options).to(self.output_device).float())
if pixel_samples is None:
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
pixel_samples[x:x+batch_number] = out

View File

@@ -506,6 +506,22 @@ class SDXL_instructpix2pix(SDXL):
def get_model(self, state_dict, prefix="", device=None):
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
class LotusD(SD20):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"use_temporal_attention": False,
"adm_in_channels": 4,
"in_channels": 4,
}
unet_extra_config = {
"num_classes": 'sequential'
}
def get_model(self, state_dict, prefix="", device=None):
return model_base.Lotus(self, device=device)
class SD3(supported_models_base.BASE):
unet_config = {
"in_channels": 16,
@@ -959,6 +975,44 @@ class WAN21_I2V(WAN21_T2V):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
}
unet_extra_config = {}
sampling_settings = {
"multiplier": 1.0,
"shift": 1.0,
}
memory_usage_factor = 3.5
clip_vision_prefix = "conditioner.main_image_encoder.model."
vae_key_prefix = ["vae."]
latent_format = latent_formats.Hunyuan3Dv2
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model."}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Hunyuan3Dv2(self, device=device)
return out
def clip_target(self, state_dict={}):
return None
class Hunyuan3Dv2mini(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2",
"depth": 8,
}
latent_format = latent_formats.Hunyuan3Dv2mini
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, Hunyuan3Dv2mini, Hunyuan3Dv2]
models += [SVD_img2vid]

View File

@@ -1,6 +1,9 @@
import nodes
from __future__ import annotations
from typing import Type, Literal
import nodes
from comfy_execution.graph_utils import is_link
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, InputTypeOptions
class DependencyCycleError(Exception):
pass
@@ -54,7 +57,22 @@ class DynamicPrompt:
def get_original_prompt(self):
return self.original_prompt
def get_input_info(class_def, input_name, valid_inputs=None):
def get_input_info(
class_def: Type[ComfyNodeABC],
input_name: str,
valid_inputs: InputTypeDict | None = None
) -> tuple[str, Literal["required", "optional", "hidden"], InputTypeOptions] | tuple[None, None, None]:
"""Get the input type, category, and extra info for a given input name.
Arguments:
class_def: The class definition of the node.
input_name: The name of the input to get info for.
valid_inputs: The valid inputs for the node, or None to use the class_def.INPUT_TYPES().
Returns:
tuple[str, str, dict] | tuple[None, None, None]: The input type, category, and extra info for the input name.
"""
valid_inputs = valid_inputs or class_def.INPUT_TYPES()
input_info = None
input_category = None
@@ -126,7 +144,7 @@ class TopologicalSort:
from_node_id, from_socket = value
if subgraph_nodes is not None and from_node_id not in subgraph_nodes:
continue
input_type, input_category, input_info = self.get_input_info(unique_id, input_name)
_, _, input_info = self.get_input_info(unique_id, input_name)
is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"]
if (include_lazy or not is_lazy) and not self.is_cached(from_node_id):
node_ids.append(from_node_id)

View File

@@ -0,0 +1,415 @@
import torch
import os
import json
import struct
import numpy as np
from comfy.ldm.modules.diffusionmodules.mmdit import get_1d_sincos_pos_embed_from_grid_torch
import folder_paths
import comfy.model_management
from comfy.cli_args import args
class EmptyLatentHunyuan3Dv2:
@classmethod
def INPUT_TYPES(s):
return {"required": {"resolution": ("INT", {"default": 3072, "min": 1, "max": 8192}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/3d"
def generate(self, resolution, batch_size):
latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device())
return ({"samples": latent, "type": "hunyuan3dv2"}, )
class Hunyuan3Dv2Conditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, clip_vision_output):
embeds = clip_vision_output.last_hidden_state
positive = [[embeds, {}]]
negative = [[torch.zeros_like(embeds), {}]]
return (positive, negative)
class Hunyuan3Dv2ConditioningMultiView:
@classmethod
def INPUT_TYPES(s):
return {"required": {},
"optional": {"front": ("CLIP_VISION_OUTPUT",),
"left": ("CLIP_VISION_OUTPUT",),
"back": ("CLIP_VISION_OUTPUT",),
"right": ("CLIP_VISION_OUTPUT",), }}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, front=None, left=None, back=None, right=None):
all_embeds = [front, left, back, right]
out = []
pos_embeds = None
for i, e in enumerate(all_embeds):
if e is not None:
if pos_embeds is None:
pos_embeds = get_1d_sincos_pos_embed_from_grid_torch(e.last_hidden_state.shape[-1], torch.arange(4))
out.append(e.last_hidden_state + pos_embeds[i].reshape(1, 1, -1))
embeds = torch.cat(out, dim=1)
positive = [[embeds, {}]]
negative = [[torch.zeros_like(embeds), {}]]
return (positive, negative)
class VOXEL:
def __init__(self, data):
self.data = data
class VAEDecodeHunyuan3D:
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT", ),
"vae": ("VAE", ),
"num_chunks": ("INT", {"default": 8000, "min": 1000, "max": 500000}),
"octree_resolution": ("INT", {"default": 256, "min": 16, "max": 512}),
}}
RETURN_TYPES = ("VOXEL",)
FUNCTION = "decode"
CATEGORY = "latent/3d"
def decode(self, vae, samples, num_chunks, octree_resolution):
voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
return (voxels, )
def voxel_to_mesh(voxels, threshold=0.5, device=None):
if device is None:
device = torch.device("cpu")
voxels = voxels.to(device)
binary = (voxels > threshold).float()
padded = torch.nn.functional.pad(binary, (1, 1, 1, 1, 1, 1), 'constant', 0)
D, H, W = binary.shape
neighbors = torch.tensor([
[0, 0, 1],
[0, 0, -1],
[0, 1, 0],
[0, -1, 0],
[1, 0, 0],
[-1, 0, 0]
], device=device)
z, y, x = torch.meshgrid(
torch.arange(D, device=device),
torch.arange(H, device=device),
torch.arange(W, device=device),
indexing='ij'
)
voxel_indices = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
solid_mask = binary.flatten() > 0
solid_indices = voxel_indices[solid_mask]
corner_offsets = [
torch.tensor([
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1]
], device=device),
torch.tensor([
[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]
], device=device),
torch.tensor([
[0, 1, 0], [1, 1, 0], [1, 1, 1], [0, 1, 1]
], device=device),
torch.tensor([
[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]
], device=device),
torch.tensor([
[1, 0, 1], [1, 1, 1], [1, 1, 0], [1, 0, 0]
], device=device),
torch.tensor([
[0, 1, 0], [0, 1, 1], [0, 0, 1], [0, 0, 0]
], device=device)
]
all_vertices = []
all_indices = []
vertex_count = 0
for face_idx, offset in enumerate(neighbors):
neighbor_indices = solid_indices + offset
padded_indices = neighbor_indices + 1
is_exposed = padded[
padded_indices[:, 0],
padded_indices[:, 1],
padded_indices[:, 2]
] == 0
if not is_exposed.any():
continue
exposed_indices = solid_indices[is_exposed]
corners = corner_offsets[face_idx].unsqueeze(0)
face_vertices = exposed_indices.unsqueeze(1) + corners
all_vertices.append(face_vertices.reshape(-1, 3))
num_faces = exposed_indices.shape[0]
face_indices = torch.arange(
vertex_count,
vertex_count + 4 * num_faces,
device=device
).reshape(-1, 4)
all_indices.append(torch.stack([face_indices[:, 0], face_indices[:, 1], face_indices[:, 2]], dim=1))
all_indices.append(torch.stack([face_indices[:, 0], face_indices[:, 2], face_indices[:, 3]], dim=1))
vertex_count += 4 * num_faces
if len(all_vertices) > 0:
vertices = torch.cat(all_vertices, dim=0)
faces = torch.cat(all_indices, dim=0)
else:
vertices = torch.zeros((1, 3))
faces = torch.zeros((1, 3))
v_min = 0
v_max = max(voxels.shape)
vertices = vertices - (v_min + v_max) / 2
scale = (v_max - v_min) / 2
if scale > 0:
vertices = vertices / scale
vertices = torch.fliplr(vertices)
return vertices, faces
class MESH:
def __init__(self, vertices, faces):
self.vertices = vertices
self.faces = faces
class VoxelToMeshBasic:
@classmethod
def INPUT_TYPES(s):
return {"required": {"voxel": ("VOXEL", ),
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MESH",)
FUNCTION = "decode"
CATEGORY = "3d"
def decode(self, voxel, threshold):
vertices = []
faces = []
for x in voxel.data:
v, f = voxel_to_mesh(x, threshold=threshold, device=None)
vertices.append(v)
faces.append(f)
return (MESH(torch.stack(vertices), torch.stack(faces)), )
def save_glb(vertices, faces, filepath, metadata=None):
"""
Save PyTorch tensor vertices and faces as a GLB file without external dependencies.
Parameters:
vertices: torch.Tensor of shape (N, 3) - The vertex coordinates
faces: torch.Tensor of shape (M, 4) or (M, 3) - The face indices (quad or triangle faces)
filepath: str - Output filepath (should end with .glb)
"""
# Convert tensors to numpy arrays
vertices_np = vertices.cpu().numpy().astype(np.float32)
faces_np = faces.cpu().numpy().astype(np.uint32)
vertices_buffer = vertices_np.tobytes()
indices_buffer = faces_np.tobytes()
def pad_to_4_bytes(buffer):
padding_length = (4 - (len(buffer) % 4)) % 4
return buffer + b'\x00' * padding_length
vertices_buffer_padded = pad_to_4_bytes(vertices_buffer)
indices_buffer_padded = pad_to_4_bytes(indices_buffer)
buffer_data = vertices_buffer_padded + indices_buffer_padded
vertices_byte_length = len(vertices_buffer)
vertices_byte_offset = 0
indices_byte_length = len(indices_buffer)
indices_byte_offset = len(vertices_buffer_padded)
gltf = {
"asset": {"version": "2.0", "generator": "ComfyUI"},
"buffers": [
{
"byteLength": len(buffer_data)
}
],
"bufferViews": [
{
"buffer": 0,
"byteOffset": vertices_byte_offset,
"byteLength": vertices_byte_length,
"target": 34962 # ARRAY_BUFFER
},
{
"buffer": 0,
"byteOffset": indices_byte_offset,
"byteLength": indices_byte_length,
"target": 34963 # ELEMENT_ARRAY_BUFFER
}
],
"accessors": [
{
"bufferView": 0,
"byteOffset": 0,
"componentType": 5126, # FLOAT
"count": len(vertices_np),
"type": "VEC3",
"max": vertices_np.max(axis=0).tolist(),
"min": vertices_np.min(axis=0).tolist()
},
{
"bufferView": 1,
"byteOffset": 0,
"componentType": 5125, # UNSIGNED_INT
"count": faces_np.size,
"type": "SCALAR"
}
],
"meshes": [
{
"primitives": [
{
"attributes": {
"POSITION": 0
},
"indices": 1,
"mode": 4 # TRIANGLES
}
]
}
],
"nodes": [
{
"mesh": 0
}
],
"scenes": [
{
"nodes": [0]
}
],
"scene": 0
}
if metadata is not None:
gltf["asset"]["extras"] = metadata
# Convert the JSON to bytes
gltf_json = json.dumps(gltf).encode('utf8')
def pad_json_to_4_bytes(buffer):
padding_length = (4 - (len(buffer) % 4)) % 4
return buffer + b' ' * padding_length
gltf_json_padded = pad_json_to_4_bytes(gltf_json)
# Create the GLB header
# Magic glTF
glb_header = struct.pack('<4sII', b'glTF', 2, 12 + 8 + len(gltf_json_padded) + 8 + len(buffer_data))
# Create JSON chunk header (chunk type 0)
json_chunk_header = struct.pack('<II', len(gltf_json_padded), 0x4E4F534A) # "JSON" in little endian
# Create BIN chunk header (chunk type 1)
bin_chunk_header = struct.pack('<II', len(buffer_data), 0x004E4942) # "BIN\0" in little endian
# Write the GLB file
with open(filepath, 'wb') as f:
f.write(glb_header)
f.write(json_chunk_header)
f.write(gltf_json_padded)
f.write(bin_chunk_header)
f.write(buffer_data)
return filepath
class SaveGLB:
@classmethod
def INPUT_TYPES(s):
return {"required": {"mesh": ("MESH", ),
"filename_prefix": ("STRING", {"default": "mesh/ComfyUI"}), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, }
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "3d"
def save(self, mesh, filename_prefix, prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
results = []
metadata = {}
if not args.disable_metadata:
if prompt is not None:
metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
for i in range(mesh.vertices.shape[0]):
f = f"{filename}_{counter:05}_.glb"
save_glb(mesh.vertices[i], mesh.faces[i], os.path.join(full_output_folder, f), metadata)
results.append({
"filename": f,
"subfolder": subfolder,
"type": "output"
})
counter += 1
return {"ui": {"3d": results}}
NODE_CLASS_MAPPINGS = {
"EmptyLatentHunyuan3Dv2": EmptyLatentHunyuan3Dv2,
"Hunyuan3Dv2Conditioning": Hunyuan3Dv2Conditioning,
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
"VoxelToMeshBasic": VoxelToMeshBasic,
"SaveGLB": SaveGLB,
}

View File

@@ -21,8 +21,8 @@ class Load3D():
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
RETURN_NAMES = ("image", "mask", "mesh_path")
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE")
RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart")
FUNCTION = "process"
EXPERIMENTAL = True
@@ -32,12 +32,16 @@ class Load3D():
def process(self, model_file, image, **kwargs):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
normal_path = folder_paths.get_annotated_filepath(image['normal'])
lineart_path = folder_paths.get_annotated_filepath(image['lineart'])
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path)
return output_image, output_mask, model_file,
return output_image, output_mask, model_file, normal_image, lineart_image
class Load3DAnimation():
@classmethod
@@ -55,8 +59,8 @@ class Load3DAnimation():
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
RETURN_NAMES = ("image", "mask", "mesh_path")
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE")
RETURN_NAMES = ("image", "mask", "mesh_path", "normal")
FUNCTION = "process"
EXPERIMENTAL = True
@@ -66,12 +70,14 @@ class Load3DAnimation():
def process(self, model_file, image, **kwargs):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
normal_path = folder_paths.get_annotated_filepath(image['normal'])
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
return output_image, output_mask, model_file,
return output_image, output_mask, model_file, normal_image
class Preview3D():
@classmethod

File diff suppressed because one or more lines are too long

View File

@@ -20,10 +20,6 @@ class LCM(comfy.model_sampling.EPS):
return c_out * x0 + c_skip * model_input
class X0(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
return model_output
class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete):
original_timesteps = 50
@@ -56,7 +52,7 @@ class ModelSamplingDiscrete:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["eps", "v_prediction", "lcm", "x0"],),
"sampling": (["eps", "v_prediction", "lcm", "x0", "img_to_img"],),
"zsnr": ("BOOLEAN", {"default": False}),
}}
@@ -77,7 +73,9 @@ class ModelSamplingDiscrete:
sampling_type = LCM
sampling_base = ModelSamplingDiscreteDistilled
elif sampling == "x0":
sampling_type = X0
sampling_type = comfy.model_sampling.X0
elif sampling == "img_to_img":
sampling_type = comfy.model_sampling.IMG_TO_IMG
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass

View File

@@ -244,6 +244,30 @@ class ModelMergeCosmos14B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
return {"required": arg_dict}
class ModelMergeWAN2_1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
CATEGORY = "advanced/model_merging/model_specific"
DESCRIPTION = "1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb."
@classmethod
def INPUT_TYPES(s):
arg_dict = { "model1": ("MODEL",),
"model2": ("MODEL",)}
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
arg_dict["patch_embedding."] = argument
arg_dict["time_embedding."] = argument
arg_dict["time_projection."] = argument
arg_dict["text_embedding."] = argument
arg_dict["img_emb."] = argument
for i in range(40):
arg_dict["blocks.{}.".format(i)] = argument
arg_dict["head."] = argument
return {"required": arg_dict}
NODE_CLASS_MAPPINGS = {
"ModelMergeSD1": ModelMergeSD1,
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
@@ -256,4 +280,5 @@ NODE_CLASS_MAPPINGS = {
"ModelMergeLTXV": ModelMergeLTXV,
"ModelMergeCosmos7B": ModelMergeCosmos7B,
"ModelMergeCosmos14B": ModelMergeCosmos14B,
"ModelMergeWAN2_1": ModelMergeWAN2_1,
}

View File

@@ -2,6 +2,7 @@ import torch
import comfy.model_management
from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat
import kornia.color
class Morphology:
@@ -40,8 +41,45 @@ class Morphology:
img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1)
return (img_out,)
class ImageRGBToYUV:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE")
RETURN_NAMES = ("Y", "U", "V")
FUNCTION = "execute"
CATEGORY = "image/batch"
def execute(self, image):
out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1)
return (out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image))
class ImageYUVToRGB:
@classmethod
def INPUT_TYPES(s):
return {"required": {"Y": ("IMAGE",),
"U": ("IMAGE",),
"V": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "image/batch"
def execute(self, Y, U, V):
image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1)
out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1)
return (out,)
NODE_CLASS_MAPPINGS = {
"Morphology": Morphology,
"ImageRGBToYUV": ImageRGBToYUV,
"ImageYUVToRGB": ImageYUVToRGB,
}
NODE_DISPLAY_NAME_MAPPINGS = {

View File

@@ -1,108 +0,0 @@
from __future__ import annotations
from inspect import cleandoc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.multigpu
from nodes import VAELoader
class VAELoaderDevice(VAELoader):
NodeId = "VAELoaderDevice"
NodeName = "Load VAE MultiGPU"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"vae_name": (cls.vae_list(), ),
"load_device": (comfy.multigpu.get_torch_device_list(), ),
}
}
FUNCTION = "load_vae_device"
CATEGORY = "advanced/multigpu/loaders"
def load_vae_device(self, vae_name, load_device: str):
device = comfy.multigpu.get_device_from_str(load_device)
return self.load_vae(vae_name, device)
class MultiGPUWorkUnitsNode:
"""
Prepares model to have sampling accelerated via splitting work units.
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
Other than those exceptions, this node can be placed in any order.
"""
NodeId = "MultiGPU_WorkUnits"
NodeName = "MultiGPU Work Units"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"max_gpus" : ("INT", {"default": 8, "min": 1, "step": 1}),
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "init_multigpu"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def init_multigpu(self, model: ModelPatcher, max_gpus: int, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
model = comfy.multigpu.create_multigpu_deepclones(model, max_gpus, gpu_options, reuse_loaded=True)
return (model,)
class MultiGPUOptionsNode:
"""
Select the relative speed of GPUs in the special case they have significantly different performance from one another.
"""
NodeId = "MultiGPU_Options"
NodeName = "MultiGPU Options"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"device_index": ("INT", {"default": 0, "min": 0, "max": 64}),
"relative_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01})
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("GPU_OPTIONS",)
FUNCTION = "create_gpu_options"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def create_gpu_options(self, device_index: int, relative_speed: float, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
if not gpu_options:
gpu_options = comfy.multigpu.GPUOptionsGroup()
gpu_options.clone()
opt = comfy.multigpu.GPUOptions(device_index=device_index, relative_speed=relative_speed)
gpu_options.add(opt)
return (gpu_options,)
node_list = [
MultiGPUWorkUnitsNode,
MultiGPUOptionsNode,
VAELoaderDevice,
]
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
for node in node_list:
NODE_CLASS_MAPPINGS[node.NodeId] = node
NODE_DISPLAY_NAME_MAPPINGS[node.NodeId] = node.NodeName

View File

@@ -0,0 +1,79 @@
# Primitive nodes that are evaluated at backend.
from __future__ import annotations
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, IO
class String(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.STRING, {})},
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: str) -> tuple[str]:
return (value,)
class Int(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.INT, {"control_after_generate": True})},
}
RETURN_TYPES = (IO.INT,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: int) -> tuple[int]:
return (value,)
class Float(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.FLOAT, {})},
}
RETURN_TYPES = (IO.FLOAT,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: float) -> tuple[float]:
return (value,)
class Boolean(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {"value": (IO.BOOLEAN, {})},
}
RETURN_TYPES = (IO.BOOLEAN,)
FUNCTION = "execute"
CATEGORY = "utils/primitive"
def execute(self, value: bool) -> tuple[bool]:
return (value,)
NODE_CLASS_MAPPINGS = {
"PrimitiveString": String,
"PrimitiveInt": Int,
"PrimitiveFloat": Float,
"PrimitiveBoolean": Boolean,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PrimitiveString": "String",
"PrimitiveInt": "Int",
"PrimitiveFloat": "Float",
"PrimitiveBoolean": "Boolean",
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.26"
__version__ = "0.3.27"

View File

@@ -93,7 +93,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e
missing_keys = {}
for x in inputs:
input_data = inputs[x]
input_type, input_category, input_info = get_input_info(class_def, x, valid_inputs)
_, input_category, input_info = get_input_info(class_def, x, valid_inputs)
def mark_missing():
missing_keys[x] = True
input_data_all[x] = (None,)
@@ -555,7 +555,7 @@ def validate_inputs(prompt, item, validated):
received_types = {}
for x in valid_inputs:
type_input, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
assert extra_info is not None
if x not in inputs:
if input_category == "required":
@@ -571,7 +571,7 @@ def validate_inputs(prompt, item, validated):
continue
val = inputs[x]
info = (type_input, extra_info)
info = (input_type, extra_info)
if isinstance(val, list):
if len(val) != 2:
error = {
@@ -592,8 +592,8 @@ def validate_inputs(prompt, item, validated):
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
received_type = r[val[1]]
received_types[x] = received_type
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, type_input):
details = f"{x}, received_type({received_type}) mismatch input_type({type_input})"
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, input_type):
details = f"{x}, received_type({received_type}) mismatch input_type({input_type})"
error = {
"type": "return_type_mismatch",
"message": "Return type mismatch between linked nodes",
@@ -641,22 +641,22 @@ def validate_inputs(prompt, item, validated):
val = val["__value__"]
inputs[x] = val
if type_input == "INT":
if input_type == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
if input_type == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
if input_type == "STRING":
val = str(val)
inputs[x] = val
if type_input == "BOOLEAN":
if input_type == "BOOLEAN":
val = bool(val)
inputs[x] = val
except Exception as ex:
error = {
"type": "invalid_input_type",
"message": f"Failed to convert an input value to a {type_input} value",
"message": f"Failed to convert an input value to a {input_type} value",
"details": f"{x}, {val}, {ex}",
"extra_info": {
"input_name": x,
@@ -696,18 +696,19 @@ def validate_inputs(prompt, item, validated):
errors.append(error)
continue
if isinstance(type_input, list):
if val not in type_input:
if isinstance(input_type, list):
combo_options = input_type
if val not in combo_options:
input_config = info
list_info = ""
# Don't send back gigantic lists like if they're lots of
# scanned model filepaths
if len(type_input) > 20:
list_info = f"(list of length {len(type_input)})"
if len(combo_options) > 20:
list_info = f"(list of length {len(combo_options)})"
input_config = None
else:
list_info = str(type_input)
list_info = str(combo_options)
error = {
"type": "value_not_in_list",

View File

@@ -763,13 +763,13 @@ class VAELoader:
CATEGORY = "loaders"
#TODO: scale factor?
def load_vae(self, vae_name, device=None):
def load_vae(self, vae_name):
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd, device=device)
vae = comfy.sd.VAE(sd=sd)
vae.throw_exception_if_invalid()
return (vae,)
@@ -2259,12 +2259,14 @@ def init_builtin_extra_nodes():
"nodes_mahiro.py",
"nodes_lt.py",
"nodes_hooks.py",
"nodes_multigpu.py",
"nodes_load_3d.py",
"nodes_cosmos.py",
"nodes_video.py",
"nodes_lumina2.py",
"nodes_wan.py",
"nodes_lotus.py",
"nodes_hunyuan3d.py",
"nodes_primitive.py",
]
import_failed = []

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.26"
version = "0.3.27"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,4 +1,4 @@
comfyui-frontend-package==1.12.14
comfyui-frontend-package==1.14.5
torch
torchsde
torchvision