Compare commits

...

18 Commits

Author SHA1 Message Date
Jedrzej Kosinski
c3f48337ae Create venv_management.py, add get_bootstrap_requirements_string() to help in bootstrapping a new venv's torch dependencies based on existing venv 2025-05-21 16:27:27 -07:00
ComfyUI Wiki
ded60c33a0 Update templates to 0.1.18 (#8224) 2025-05-21 11:40:08 -07:00
Michael Abrahams
8bb858e4d3 Improve performance with large number of queued prompts (#8176)
* get_current_queue_volatile

* restore get_current_queue method

* remove extra import
2025-05-21 05:14:17 -04:00
编程界的小学生
57893c843f Code Optimization and Issues Fixes in ComfyUI server (#8196)
* Update server.py

* Update server.py
2025-05-21 04:59:42 -04:00
Jedrzej Kosinski
65da29aaa9 Make torch.compile LoRA/key-compatible (#8213)
* Make torch compile node use wrapper instead of object_patch for the entire diffusion_models object, allowing key assotiations on diffusion_models to not break (loras, getting attributes, etc.)

* Moved torch compile code into comfy_api so it can be used by custom nodes with a degree of confidence

* Refactor set_torch_compile_wrapper to support a list of keys instead of just diffusion_model, as well as additional torch.compile args

* remove unused import

* Moved torch compile kwargs to be stored in model_options instead of attachments; attachments are more intended for things to be 'persisted', AKA not deepcopied

* Add some comments

* Remove random line of code, not sure how it got there
2025-05-21 04:56:56 -04:00
comfyanonymous
10024a38ea ComfyUI version v0.3.35 2025-05-21 04:50:37 -04:00
comfyanonymous
87f9130778 Revert "This doesn't seem to be needed on chroma. (#8209)" (#8210)
This reverts commit 7e84bf5373.
2025-05-20 05:39:55 -04:00
comfyanonymous
7e84bf5373 This doesn't seem to be needed on chroma. (#8209) 2025-05-20 05:29:23 -04:00
filtered
4f3b50ba51 Update README ROCm text to match link (#8199)
- Follow-up on #8198
2025-05-19 16:40:55 -04:00
comfyanonymous
e930a387d6 Update AMD instructions in README. (#8198) 2025-05-19 04:58:41 -04:00
comfyanonymous
d8e5662822 Remove default delimiter. (#8183) 2025-05-18 04:12:12 -04:00
LaVie024
3d44a09812 Update nodes_string.py (#8173) 2025-05-18 04:11:11 -04:00
comfyanonymous
62690eddec Node to add pixel space noise to an image. (#8182) 2025-05-18 04:09:56 -04:00
Christian Byrne
05eb10b43a Validate video inputs (#8133)
* validate kling lip sync input video

* add tooltips

* update duration estimates

* decrease epsilon

* fix rebase error
2025-05-18 04:08:47 -04:00
Silver
f5e4e976f4 Add missing category for T5TokenizerOption (#8177)
Change it if you need to but it should at least have a category.
2025-05-18 02:59:06 -04:00
comfyanonymous
aee2908d03 Remove useless log. (#8166) 2025-05-17 06:27:34 -04:00
comfyanonymous
dc46db7aa4 Make ImagePadForOutpaint return a 3 channel mask. (#8157) 2025-05-16 15:15:55 -04:00
filtered
7046983d95 Remove Desktop versioning claim from README (#8155) 2025-05-16 10:45:36 -07:00
19 changed files with 373 additions and 47 deletions

View File

@@ -110,7 +110,6 @@ ComfyUI follows a weekly release cycle every Friday, with three interconnected r
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
- Builds a new release using the latest stable core version
- Version numbers match the core release (e.g., Desktop v1.7.0 uses Core v1.7.0)
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
- Weekly frontend updates are merged into the core repository
@@ -198,11 +197,11 @@ Put your VAE in: models/vae
### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
This is the command to install the nightly with ROCm 6.3 which might have some performance improvements:
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
### Intel GPUs (Windows and Linux)

125
app/venv_management.py Normal file
View File

@@ -0,0 +1,125 @@
import torch
import torchvision
import torchaudio
from dataclasses import dataclass
import importlib
if importlib.util.find_spec("torch_directml"):
from pip._vendor import pkg_resources
class VEnvException(Exception):
pass
@dataclass
class TorchVersionInfo:
name: str = None
version: str = None
extension: str = None
is_nightly: bool = False
is_cpu: bool = False
is_cuda: bool = False
is_xpu: bool = False
is_rocm: bool = False
is_directml: bool = False
def get_bootstrap_requirements_string():
'''
Get string to insert into a 'pip install' command to get the same torch dependencies as current venv.
'''
torch_info = get_torch_info(torch)
packages = [torchvision, torchaudio]
infos = [torch_info] + [get_torch_info(x) for x in packages]
# directml should be first dependency, if exists
directml_info = get_torch_directml_info()
if directml_info is not None:
infos = [directml_info] + infos
# create list of strings to combine into install string
install_str_list = []
for info in infos:
info_string = f"{info.name}=={info.version}"
if not info.is_cpu and not info.is_directml:
info_string = f"{info_string}+{info.extension}"
install_str_list.append(info_string)
# handle extra_index_url, if needed
extra_index_url = get_index_url(torch_info)
if extra_index_url:
install_str_list.append(extra_index_url)
# format nightly install properly
if torch_info.is_nightly:
install_str_list = ["--pre"] + install_str_list
install_str = " ".join(install_str_list)
return install_str
def get_index_url(info: TorchVersionInfo=None):
'''
Get --extra-index-url (or --index-url) for torch install.
'''
if info is None:
info = get_torch_info()
# for cpu, don't need any index_url
if info.is_cpu and not info.is_nightly:
return None
# otherwise, format index_url
base_url = "https://download.pytorch.org/whl/"
if info.is_nightly:
base_url = f"--index-url {base_url}nightly/"
else:
base_url = f"--extra-index-url {base_url}"
base_url = f"{base_url}{info.extension}"
return base_url
def get_torch_info(package=None):
'''
Get info about an installed torch-related package.
'''
if package is None:
package = torch
info = TorchVersionInfo(name=package.__name__)
info.version = package.__version__
info.extension = None
info.is_nightly = False
# get extension, separate from version
info.version, info.extension = info.version.split('+', 1)
if info.extension.startswith('cpu'):
info.is_cpu = True
elif info.extension.startswith('cu'):
info.is_cuda = True
elif info.extension.startswith('rocm'):
info.is_rocm = True
elif info.extension.startswith('xpu'):
info.is_xpu = True
# TODO: add checks for some odd pytorch versions, if possible
# check if nightly install
if 'dev' in info.version:
info.is_nightly = True
return info
def get_torch_directml_info():
'''
Get info specifically about torch-directml package.
Returns None if torch-directml is not installed.
'''
# the import string and the pip string are different
pip_name = "torch-directml"
# if no torch_directml, do nothing
if not importlib.util.find_spec("torch_directml"):
return None
info = TorchVersionInfo(name=pip_name)
info.is_directml = True
for p in pkg_resources.working_set:
if p.project_name.lower() == pip_name:
info.version = p.version
if p.version is None:
return None
return info
if __name__ == '__main__':
print(get_bootstrap_requirements_string())

View File

@@ -78,8 +78,6 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
else:
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
if "global_step" in pl_sd:
logging.debug(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:

View File

@@ -0,0 +1,5 @@
from .torch_compile import set_torch_compile_wrapper
__all__ = [
"set_torch_compile_wrapper",
]

View File

@@ -0,0 +1,69 @@
from __future__ import annotations
import torch
import comfy.utils
from comfy.patcher_extension import WrappersMP
from typing import TYPE_CHECKING, Callable, Optional
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
from comfy.patcher_extension import WrapperExecutor
COMPILE_KEY = "torch.compile"
TORCH_COMPILE_KWARGS = "torch_compile_kwargs"
def apply_torch_compile_factory(compiled_module_dict: dict[str, Callable]) -> Callable:
'''
Create a wrapper that will refer to the compiled_diffusion_model.
'''
def apply_torch_compile_wrapper(executor: WrapperExecutor, *args, **kwargs):
try:
orig_modules = {}
for key, value in compiled_module_dict.items():
orig_modules[key] = comfy.utils.get_attr(executor.class_obj, key)
comfy.utils.set_attr(executor.class_obj, key, value)
return executor(*args, **kwargs)
finally:
for key, value in orig_modules.items():
comfy.utils.set_attr(executor.class_obj, key, value)
return apply_torch_compile_wrapper
def set_torch_compile_wrapper(model: ModelPatcher, backend: str, options: Optional[dict[str,str]]=None,
mode: Optional[str]=None, fullgraph=False, dynamic: Optional[bool]=None,
keys: list[str]=["diffusion_model"], *args, **kwargs):
'''
Perform torch.compile that will be applied at sample time for either the whole model or specific params of the BaseModel instance.
When keys is None, it will default to using ["diffusion_model"], compiling the whole diffusion_model.
When a list of keys is provided, it will perform torch.compile on only the selected modules.
'''
# clear out any other torch.compile wrappers
model.remove_wrappers_with_key(WrappersMP.APPLY_MODEL, COMPILE_KEY)
# if no keys, default to 'diffusion_model'
if not keys:
keys = ["diffusion_model"]
# create kwargs dict that can be referenced later
compile_kwargs = {
"backend": backend,
"options": options,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
# get a dict of compiled keys
compiled_modules = {}
for key in keys:
compiled_modules[key] = torch.compile(
model=model.get_model_object(key),
**compile_kwargs,
)
# add torch.compile wrapper
wrapper_func = apply_torch_compile_factory(
compiled_module_dict=compiled_modules,
)
# store wrapper to run on BaseModel's apply_model function
model.add_wrapper_with_key(WrappersMP.APPLY_MODEL, COMPILE_KEY, wrapper_func)
# keep compile kwargs for reference
model.model_options[TORCH_COMPILE_KWARGS] = compile_kwargs

View File

@@ -65,6 +65,12 @@ from comfy_api_nodes.apinode_utils import (
download_url_to_image_tensor,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api_nodes.util.validation_utils import (
validate_image_dimensions,
validate_image_aspect_ratio,
validate_video_dimensions,
validate_video_duration,
)
from comfy_api.input.basic_types import AudioInput
from comfy_api.input.video_types import VideoInput
from comfy_api.input_impl import VideoFromFile
@@ -80,18 +86,16 @@ PATH_CHARACTER_IMAGE = f"/proxy/kling/{KLING_API_VERSION}/images/generations"
PATH_VIRTUAL_TRY_ON = f"/proxy/kling/{KLING_API_VERSION}/images/kolors-virtual-try-on"
PATH_IMAGE_GENERATIONS = f"/proxy/kling/{KLING_API_VERSION}/images/generations"
MAX_PROMPT_LENGTH_T2V = 2500
MAX_PROMPT_LENGTH_I2V = 500
MAX_PROMPT_LENGTH_IMAGE_GEN = 500
MAX_NEGATIVE_PROMPT_LENGTH_IMAGE_GEN = 200
MAX_PROMPT_LENGTH_LIP_SYNC = 120
# TODO: adjust based on tests
AVERAGE_DURATION_T2V = 319 # 319,
AVERAGE_DURATION_I2V = 164 # 164,
AVERAGE_DURATION_LIP_SYNC = 120
AVERAGE_DURATION_VIRTUAL_TRY_ON = 19 # 19,
AVERAGE_DURATION_T2V = 319
AVERAGE_DURATION_I2V = 164
AVERAGE_DURATION_LIP_SYNC = 455
AVERAGE_DURATION_VIRTUAL_TRY_ON = 19
AVERAGE_DURATION_IMAGE_GEN = 32
AVERAGE_DURATION_VIDEO_EFFECTS = 320
AVERAGE_DURATION_VIDEO_EXTEND = 320
@@ -211,23 +215,8 @@ def validate_input_image(image: torch.Tensor) -> None:
See: https://app.klingai.com/global/dev/document-api/apiReference/model/imageToVideo
"""
if len(image.shape) == 4:
height, width = image.shape[1], image.shape[2]
elif len(image.shape) == 3:
height, width = image.shape[0], image.shape[1]
else:
raise ValueError("Invalid image tensor shape.")
# Ensure minimum resolution is met
if height < 300:
raise ValueError("Image height must be at least 300px")
if width < 300:
raise ValueError("Image width must be at least 300px")
# Ensure aspect ratio is within acceptable range
aspect_ratio = width / height
if aspect_ratio < 1 / 2.5 or aspect_ratio > 2.5:
raise ValueError("Image aspect ratio must be between 1:2.5 and 2.5:1")
validate_image_dimensions(image, min_width=300, min_height=300)
validate_image_aspect_ratio(image, min_aspect_ratio=1 / 2.5, max_aspect_ratio=2.5)
def get_camera_control_input_config(
@@ -1243,6 +1232,17 @@ class KlingLipSyncBase(KlingNodeBase):
RETURN_TYPES = ("VIDEO", "STRING", "STRING")
RETURN_NAMES = ("VIDEO", "video_id", "duration")
def validate_lip_sync_video(self, video: VideoInput):
"""
Validates the input video adheres to the expectations of the Kling Lip Sync API:
- Video length does not exceed 10s and is not shorter than 2s
- Length and width dimensions should both be between 720px and 1920px
See: https://app.klingai.com/global/dev/document-api/apiReference/model/videoTolip
"""
validate_video_dimensions(video, 720, 1920)
validate_video_duration(video, 2, 10)
def validate_text(self, text: str):
if not text:
raise ValueError("Text is required")
@@ -1282,6 +1282,7 @@ class KlingLipSyncBase(KlingNodeBase):
) -> tuple[VideoFromFile, str, str]:
if text:
self.validate_text(text)
self.validate_lip_sync_video(video)
# Upload video to Comfy API and get download URL
video_url = upload_video_to_comfyapi(video, auth_kwargs=kwargs)
@@ -1352,7 +1353,7 @@ class KlingLipSyncAudioToVideoNode(KlingLipSyncBase):
},
}
DESCRIPTION = "Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file."
DESCRIPTION = "Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file. When using, ensure that the audio contains clearly distinguishable vocals and that the video contains a distinct face. The audio file should not be larger than 5MB. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length."
def api_call(
self,
@@ -1464,7 +1465,7 @@ class KlingLipSyncTextToVideoNode(KlingLipSyncBase):
},
}
DESCRIPTION = "Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt."
DESCRIPTION = "Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length."
def api_call(
self,

View File

View File

@@ -0,0 +1,100 @@
import logging
from typing import Optional
import torch
from comfy_api.input.video_types import VideoInput
def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]:
if len(image.shape) == 4:
return image.shape[1], image.shape[2]
elif len(image.shape) == 3:
return image.shape[0], image.shape[1]
else:
raise ValueError("Invalid image tensor shape.")
def validate_image_dimensions(
image: torch.Tensor,
min_width: Optional[int] = None,
max_width: Optional[int] = None,
min_height: Optional[int] = None,
max_height: Optional[int] = None,
):
height, width = get_image_dimensions(image)
if min_width is not None and width < min_width:
raise ValueError(f"Image width must be at least {min_width}px, got {width}px")
if max_width is not None and width > max_width:
raise ValueError(f"Image width must be at most {max_width}px, got {width}px")
if min_height is not None and height < min_height:
raise ValueError(
f"Image height must be at least {min_height}px, got {height}px"
)
if max_height is not None and height > max_height:
raise ValueError(f"Image height must be at most {max_height}px, got {height}px")
def validate_image_aspect_ratio(
image: torch.Tensor,
min_aspect_ratio: Optional[float] = None,
max_aspect_ratio: Optional[float] = None,
):
width, height = get_image_dimensions(image)
aspect_ratio = width / height
if min_aspect_ratio is not None and aspect_ratio < min_aspect_ratio:
raise ValueError(
f"Image aspect ratio must be at least {min_aspect_ratio}, got {aspect_ratio}"
)
if max_aspect_ratio is not None and aspect_ratio > max_aspect_ratio:
raise ValueError(
f"Image aspect ratio must be at most {max_aspect_ratio}, got {aspect_ratio}"
)
def validate_video_dimensions(
video: VideoInput,
min_width: Optional[int] = None,
max_width: Optional[int] = None,
min_height: Optional[int] = None,
max_height: Optional[int] = None,
):
try:
width, height = video.get_dimensions()
except Exception as e:
logging.error("Error getting dimensions of video: %s", e)
return
if min_width is not None and width < min_width:
raise ValueError(f"Video width must be at least {min_width}px, got {width}px")
if max_width is not None and width > max_width:
raise ValueError(f"Video width must be at most {max_width}px, got {width}px")
if min_height is not None and height < min_height:
raise ValueError(
f"Video height must be at least {min_height}px, got {height}px"
)
if max_height is not None and height > max_height:
raise ValueError(f"Video height must be at most {max_height}px, got {height}px")
def validate_video_duration(
video: VideoInput,
min_duration: Optional[float] = None,
max_duration: Optional[float] = None,
):
try:
duration = video.get_duration()
except Exception as e:
logging.error("Error getting duration of video: %s", e)
return
epsilon = 0.0001
if min_duration is not None and min_duration - epsilon > duration:
raise ValueError(
f"Video duration must be at least {min_duration}s, got {duration}s"
)
if max_duration is not None and duration > max_duration + epsilon:
raise ValueError(
f"Video duration must be at most {max_duration}s, got {duration}s"
)

View File

@@ -31,6 +31,7 @@ class T5TokenizerOptions:
}
}
CATEGORY = "_for_testing/conditioning"
RETURN_TYPES = ("CLIP",)
FUNCTION = "set_options"

View File

@@ -13,6 +13,7 @@ import os
import re
from io import BytesIO
from inspect import cleandoc
import torch
from comfy.comfy_types import FileLocator
@@ -74,6 +75,24 @@ class ImageFromBatch:
s = s_in[batch_index:batch_index + length].clone()
return (s,)
class ImageAddNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
CATEGORY = "image"
def repeat(self, image, seed, strength):
generator = torch.manual_seed(seed)
s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0)
return (s,)
class SaveAnimatedWEBP:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@@ -295,6 +314,7 @@ NODE_CLASS_MAPPINGS = {
"ImageCrop": ImageCrop,
"RepeatImageBatch": RepeatImageBatch,
"ImageFromBatch": ImageFromBatch,
"ImageAddNoise": ImageAddNoise,
"SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG,
"SaveSVGNode": SaveSVGNode,

View File

@@ -8,7 +8,8 @@ class StringConcatenate():
return {
"required": {
"string_a": (IO.STRING, {"multiline": True}),
"string_b": (IO.STRING, {"multiline": True})
"string_b": (IO.STRING, {"multiline": True}),
"delimiter": (IO.STRING, {"multiline": False, "default": ""})
}
}
@@ -16,8 +17,8 @@ class StringConcatenate():
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string_a, string_b, **kwargs):
return string_a + string_b,
def execute(self, string_a, string_b, delimiter, **kwargs):
return delimiter.join((string_a, string_b)),
class StringSubstring():
@classmethod

View File

@@ -1,4 +1,5 @@
import torch
from comfy_api.torch_helpers import set_torch_compile_wrapper
class TorchCompileModel:
@classmethod
@@ -14,7 +15,7 @@ class TorchCompileModel:
def patch(self, model, backend):
m = model.clone()
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model"), backend=backend))
set_torch_compile_wrapper(model=m, backend=backend)
return (m, )
NODE_CLASS_MAPPINGS = {

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.34"
__version__ = "0.3.35"

View File

@@ -909,7 +909,6 @@ class PromptQueue:
self.currently_running = {}
self.history = {}
self.flags = {}
server.prompt_queue = self
def put(self, item):
with self.mutex:
@@ -954,6 +953,7 @@ class PromptQueue:
self.history[prompt[1]].update(history_result)
self.server.queue_updated()
# Note: slow
def get_current_queue(self):
with self.mutex:
out = []
@@ -961,6 +961,13 @@ class PromptQueue:
out += [x]
return (out, copy.deepcopy(self.queue))
# read-safe as long as queue items are immutable
def get_current_queue_volatile(self):
with self.mutex:
running = [x for x in self.currently_running.values()]
queued = copy.copy(self.queue)
return (running, queued)
def get_tasks_remaining(self):
with self.mutex:
return len(self.queue) + len(self.currently_running)

View File

@@ -260,7 +260,6 @@ def start_comfyui(asyncio_loop=None):
asyncio_loop = asyncio.new_event_loop()
asyncio.set_event_loop(asyncio_loop)
prompt_server = server.PromptServer(asyncio_loop)
q = execution.PromptQueue(prompt_server)
hook_breaker_ac10a0.save_functions()
nodes.init_extra_nodes(init_custom_nodes=not args.disable_all_custom_nodes, init_api_nodes=not args.disable_api_nodes)
@@ -271,7 +270,7 @@ def start_comfyui(asyncio_loop=None):
prompt_server.add_routes()
hijack_progress(prompt_server)
threading.Thread(target=prompt_worker, daemon=True, args=(q, prompt_server,)).start()
threading.Thread(target=prompt_worker, daemon=True, args=(prompt_server.prompt_queue, prompt_server,)).start()
if args.quick_test_for_ci:
exit(0)

View File

@@ -1940,7 +1940,7 @@ class ImagePadForOutpaint:
mask[top:top + d2, left:left + d3] = t
return (new_image, mask)
return (new_image, mask.unsqueeze(0))
NODE_CLASS_MAPPINGS = {

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.34"
version = "0.3.35"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,5 +1,5 @@
comfyui-frontend-package==1.19.9
comfyui-workflow-templates==0.1.14
comfyui-workflow-templates==0.1.18
torch
torchsde
torchvision

View File

@@ -29,6 +29,7 @@ import comfy.model_management
import node_helpers
from comfyui_version import __version__
from app.frontend_management import FrontendManager
from app.user_manager import UserManager
from app.model_manager import ModelFileManager
from app.custom_node_manager import CustomNodeManager
@@ -159,7 +160,7 @@ class PromptServer():
self.custom_node_manager = CustomNodeManager()
self.internal_routes = InternalRoutes(self)
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = None
self.prompt_queue = execution.PromptQueue(self)
self.loop = loop
self.messages = asyncio.Queue()
self.client_session:Optional[aiohttp.ClientSession] = None
@@ -226,7 +227,7 @@ class PromptServer():
return response
@routes.get("/embeddings")
def get_embeddings(self):
def get_embeddings(request):
embeddings = folder_paths.get_filename_list("embeddings")
return web.json_response(list(map(lambda a: os.path.splitext(a)[0], embeddings)))
@@ -282,7 +283,6 @@ class PromptServer():
a.update(f.read())
b.update(image.file.read())
image.file.seek(0)
f.close()
return a.hexdigest() == b.hexdigest()
return False
@@ -621,7 +621,7 @@ class PromptServer():
@routes.get("/queue")
async def get_queue(request):
queue_info = {}
current_queue = self.prompt_queue.get_current_queue()
current_queue = self.prompt_queue.get_current_queue_volatile()
queue_info['queue_running'] = current_queue[0]
queue_info['queue_pending'] = current_queue[1]
return web.json_response(queue_info)