Compare commits

...

27 Commits

Author SHA1 Message Date
comfyanonymous
ee9547ba31 Improve temporal VAE Encode (Tiled) math. 2024-12-26 07:18:49 -05:00
comfyanonymous
19a64d6291 Cleanup some mac related code. 2024-12-25 05:32:51 -05:00
comfyanonymous
b486885e08 Disable bfloat16 on older mac. 2024-12-25 05:18:50 -05:00
comfyanonymous
0229228f3f Clean up the VAE dtypes code. 2024-12-25 04:50:34 -05:00
comfyanonymous
1ed75ab30e Update nightly pytorch instructions in readme for nvidia. 2024-12-25 03:29:03 -05:00
comfyanonymous
99a1fb6027 Make fast fp8 take a bit less peak memory. 2024-12-24 18:05:19 -05:00
comfyanonymous
73e04987f7 Prevent black images in VAE Decode (Tiled) node.
Overlap should be minimum 1 with tiling 2 for tiled temporal VAE decoding.
2024-12-24 07:36:30 -05:00
comfyanonymous
5388df784a Add temporal tiling to VAE Encode (Tiled) node. 2024-12-24 07:10:09 -05:00
Alexander Piskun
26e0ba8f8c Enable External Event Loop Integration for ComfyUI [refactor] (#6114)
* Refactor main.py to support external event loop integration

* added optional "asyncio_loop" argument to allow using existing event loop

---------

Signed-off-by: bigcat88 <bigcat88@icloud.com>
2024-12-24 06:38:52 -05:00
comfyanonymous
bc6dac4327 Add temporal tiling to VAE Decode (Tiled) node.
You can now do tiled VAE decoding on the temporal direction for videos.
2024-12-23 20:03:37 -05:00
Chenlei Hu
f18ebbd316 Use raw dir name to serve static web content (#6107) 2024-12-23 03:29:42 -05:00
comfyanonymous
15564688ed Add a try except block so if torch version is weird it won't crash. 2024-12-23 03:22:48 -05:00
Simon Lui
c6b9c11ef6 Add oneAPI device selector for xpu and some other changes. (#6112)
* Add oneAPI device selector and some other minor changes.

* Fix device selector variable name.

* Flip minor version check sign.

* Undo changes to README.md.
2024-12-23 03:18:32 -05:00
comfyanonymous
e44d0ac7f7 Make --novram completely offload weights.
This flag is mainly used for testing the weight offloading, it shouldn't
actually be used in practice.

Remove useless import.
2024-12-23 01:51:08 -05:00
comfyanonymous
56bc64f351 Comment out some useless code. 2024-12-22 23:51:14 -05:00
zhangp365
f7d83b72e0 fixed a bug in ldm/pixart/blocks.py (#6158) 2024-12-22 23:44:20 -05:00
comfyanonymous
80f07952d2 Fix lowvram issue with ltxv vae. 2024-12-22 23:20:17 -05:00
comfyanonymous
57f330caf9 Relax minimum ratio of weights loaded in memory on nvidia.
This should make it possible to do higher res images/longer videos by
further offloading weights to CPU memory.

Please report an issue if this slows down things on your system.
2024-12-22 03:06:37 -05:00
comfyanonymous
601ff9e3db Add that Hunyuan Video and Pixart are supported to readme.
Clean up the supported models part of the readme.
2024-12-21 11:31:39 -05:00
TechnoByte
341667c4d5 remove minimum step count for AYS (#6137)
The 10 step minimum for the AYS scheduler is pointless, it works well at lower steps, like 8 steps, or even 4 steps.

For example with LCM or DMD2.

Example here: https://i.ibb.co/56CSPMj/image.png
2024-12-21 10:05:09 -05:00
Qiacheng Li
1419dee915 Update README.md for Intel GPUs (#6069) 2024-12-20 18:04:03 -05:00
comfyanonymous
da13b6b827 Get rid of meshgrid warning. 2024-12-20 18:02:12 -05:00
comfyanonymous
c86cd58573 Remove useless code. 2024-12-20 17:50:03 -05:00
comfyanonymous
b5fe39211a Remove some useless code. 2024-12-20 17:43:50 -05:00
comfyanonymous
e946667216 Some fixes/cleanups to pixart code.
Commented out the masking related code because it is never used in this
implementation.
2024-12-20 17:10:52 -05:00
Chenlei Hu
d7969cb070 Replace print with logging (#6138)
* Replace print with logging

* nit

* nit

* nit

* nit

* nit

* nit
2024-12-20 16:24:55 -05:00
City
bddb02660c Add PixArt model support (#6055)
* PixArt initial version

* PixArt Diffusers convert logic

* pos_emb and interpolation logic

* Reduce  duplicate code

* Formatting

* Use optimized attention

* Edit empty token logic

* Basic PixArt LoRA support

* Fix aspect ratio logic

* PixArtAlpha text encode with conds

* Use same detection key logic for PixArt diffusers
2024-12-20 15:25:00 -05:00
38 changed files with 1166 additions and 156 deletions

View File

@@ -28,7 +28,7 @@ def pull(repo, remote_name='origin', branch='master'):
if repo.index.conflicts is not None:
for conflict in repo.index.conflicts:
print('Conflicts found in:', conflict[0].path)
print('Conflicts found in:', conflict[0].path) # noqa: T201
raise AssertionError('Conflicts, ahhhhh!!')
user = repo.default_signature
@@ -49,18 +49,18 @@ repo_path = str(sys.argv[1])
repo = pygit2.Repository(repo_path)
ident = pygit2.Signature('comfyui', 'comfy@ui')
try:
print("stashing current changes")
print("stashing current changes") # noqa: T201
repo.stash(ident)
except KeyError:
print("nothing to stash")
print("nothing to stash") # noqa: T201
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name))
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
try:
repo.branches.local.create(backup_branch_name, repo.head.peel())
except:
pass
print("checking out master branch")
print("checking out master branch") # noqa: T201
branch = repo.lookup_branch('master')
if branch is None:
ref = repo.lookup_reference('refs/remotes/origin/master')
@@ -72,7 +72,7 @@ else:
ref = repo.lookup_reference(branch.name)
repo.checkout(ref)
print("pulling latest changes")
print("pulling latest changes") # noqa: T201
pull(repo)
if "--stable" in sys.argv:
@@ -94,7 +94,7 @@ if "--stable" in sys.argv:
if latest_tag is not None:
repo.checkout(latest_tag)
print("Done!")
print("Done!") # noqa: T201
self_update = True
if len(sys.argv) > 2:

View File

@@ -38,10 +38,21 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- Image Models
- SD1.x, SD2.x,
- [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
- [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/)
- [SD3 and SD3.5](https://comfyanonymous.github.io/ComfyUI_examples/sd3/)
- Pixart Alpha and Sigma
- [AuraFlow](https://comfyanonymous.github.io/ComfyUI_examples/aura_flow/)
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
@@ -61,9 +72,6 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
- [AuraFlow](https://comfyanonymous.github.io/ComfyUI_examples/aura_flow/)
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast.
- Works fully offline: will never download anything.
@@ -149,6 +157,30 @@ This is the command to install the nightly with ROCm 6.2 which might have some p
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.2.4```
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip (currently available in PyTorch nightly builds). More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch nightly, use the following command:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
2. Launch ComfyUI by running `python main.py`
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. For Intel® Arc™ A-Series Graphics utilizing IPEX, create a conda environment and use the commands below:
```
conda install libuv
pip install torch==2.3.1.post0+cxx11.abi torchvision==0.18.1.post0+cxx11.abi torchaudio==2.3.1.post0+cxx11.abi intel-extension-for-pytorch==2.3.110.post0+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
```
For other supported Intel GPUs with IPEX, visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
### NVIDIA
Nvidia users should install stable pytorch using this command:
@@ -157,7 +189,7 @@ Nvidia users should install stable pytorch using this command:
This is the command to install pytorch nightly instead which might have performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu124```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126```
#### Troubleshooting
@@ -177,17 +209,6 @@ After this you should have everything installed and can proceed to running Comfy
### Others:
#### Intel GPUs
Intel GPU support is available for all Intel GPUs supported by Intel's Extension for Pytorch (IPEX) with the support requirements listed in the [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) page. Choose your platform and method of install and follow the instructions. The steps are as follows:
1. Start by installing the drivers or kernel listed or newer in the Installation page of IPEX linked above for Windows and Linux if needed.
1. Follow the instructions to install [Intel's oneAPI Basekit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html) for your platform.
1. Install the packages for IPEX using the instructions provided in the Installation page for your platform.
1. Follow the [ComfyUI manual installation](#manual-install-windows-linux) instructions for Windows and Linux and run ComfyUI normally as described above after everything is installed.
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
#### Apple Mac silicon
You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS version.
@@ -308,4 +329,3 @@ This will use a snapshot of the legacy frontend preserved in the [ComfyUI Legacy
### Which GPU should I buy for this?
[See this page for some recommendations](https://github.com/comfyanonymous/ComfyUI/wiki/Which-GPU-should-I-buy-for-ComfyUI)

View File

@@ -38,8 +38,8 @@ class UserManager():
if not os.path.exists(user_directory):
os.makedirs(user_directory, exist_ok=True)
if not args.multi_user:
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
if args.multi_user:
if os.path.isfile(self.get_users_file()):

View File

@@ -160,7 +160,6 @@ class ControlNet(nn.Module):
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None

View File

@@ -84,7 +84,8 @@ parser.add_argument("--force-channels-last", action="store_true", help="Force ch
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"

View File

@@ -2,6 +2,7 @@
import torch
import math
import logging
from tqdm.auto import trange
@@ -474,7 +475,7 @@ class UniPC:
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
ns = self.noise_schedule
assert order <= len(model_prev_list)
@@ -518,7 +519,6 @@ class UniPC:
A_p = C_inv_p
if use_corrector:
print('using corrector')
C_inv = torch.linalg.inv(C)
A_c = C_inv

View File

@@ -5,6 +5,7 @@ import math
import torch
import numpy as np
import itertools
import logging
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher, PatcherInjection
@@ -575,7 +576,7 @@ def load_hook_lora_for_models(model: 'ModelPatcher', clip: 'CLIP', lora: dict[st
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
print(f"NOT LOADED {x}")
logging.warning(f"NOT LOADED {x}")
return (new_modelpatcher, new_clip, hook_group)
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):

View File

@@ -381,7 +381,6 @@ class MMDiT(nn.Module):
pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
self.h_max, self.w_max = target_dim
print("PE extended to", target_dim)
def pe_selection_index_based_on_dim(self, h, w):
h_p, w_p = h // self.patch_size, w // self.patch_size

View File

@@ -53,7 +53,7 @@ class Patchifier(ABC):
grid_h = torch.arange(h, dtype=torch.float32, device=device)
grid_w = torch.arange(w, dtype=torch.float32, device=device)
grid_f = torch.arange(f, dtype=torch.float32, device=device)
grid = torch.meshgrid(grid_f, grid_h, grid_w)
grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing='ij')
grid = torch.stack(grid, dim=0)
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)

View File

@@ -378,7 +378,7 @@ class Decoder(nn.Module):
assert (
timestep is not None
), "should pass timestep with timestep_conditioning=True"
scaled_timestep = timestep * self.timestep_scale_multiplier
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
for up_block in self.up_blocks:
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
@@ -403,7 +403,7 @@ class Decoder(nn.Module):
)
ada_values = self.last_scale_shift_table[
None, ..., None, None, None
] + embedded_timestep.reshape(
].to(device=sample.device, dtype=sample.dtype) + embedded_timestep.reshape(
batch_size,
2,
-1,
@@ -697,7 +697,7 @@ class ResnetBlock3D(nn.Module):
), "should pass timestep with timestep_conditioning=True"
ada_values = self.scale_shift_table[
None, ..., None, None, None
] + timestep.reshape(
].to(device=hidden_states.device, dtype=hidden_states.dtype) + timestep.reshape(
batch_size,
4,
-1,
@@ -715,7 +715,7 @@ class ResnetBlock3D(nn.Module):
if self.inject_noise:
hidden_states = self._feed_spatial_noise(
hidden_states, self.per_channel_scale1
hidden_states, self.per_channel_scale1.to(device=hidden_states.device, dtype=hidden_states.dtype)
)
hidden_states = self.norm2(hidden_states)
@@ -731,7 +731,7 @@ class ResnetBlock3D(nn.Module):
if self.inject_noise:
hidden_states = self._feed_spatial_noise(
hidden_states, self.per_channel_scale2
hidden_states, self.per_channel_scale2.to(device=hidden_states.device, dtype=hidden_states.dtype)
)
input_tensor = self.norm3(input_tensor)

View File

@@ -9,6 +9,7 @@
import math
import logging
import torch
import torch.nn as nn
import numpy as np
@@ -130,7 +131,7 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
# add one to get the final alpha values right (the ones from first scale to data during sampling)
steps_out = ddim_timesteps + 1
if verbose:
print(f'Selected timesteps for ddim sampler: {steps_out}')
logging.info(f'Selected timesteps for ddim sampler: {steps_out}')
return steps_out
@@ -142,8 +143,8 @@ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
# according the the formula provided in https://arxiv.org/abs/2010.02502
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
if verbose:
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
print(f'For the chosen value of eta, which is {eta}, '
logging.info(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
logging.info(f'For the chosen value of eta, which is {eta}, '
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
return sigmas, alphas, alphas_prev

380
comfy/ldm/pixart/blocks.py Normal file
View File

@@ -0,0 +1,380 @@
# Based on:
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, Mlp, timestep_embedding
from comfy.ldm.modules.attention import optimized_attention
# if model_management.xformers_enabled():
# import xformers.ops
# if int((xformers.__version__).split(".")[2].split("+")[0]) >= 28:
# block_diagonal_mask_from_seqlens = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens
# else:
# block_diagonal_mask_from_seqlens = xformers.ops.fmha.BlockDiagonalMask.from_seqlens
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., dtype=None, device=None, operations=None, **kwargs):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.kv_linear = operations.Linear(d_model, d_model*2, dtype=dtype, device=device)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
assert mask is None # TODO?
# # TODO: xformers needs separate mask logic here
# if model_management.xformers_enabled():
# attn_bias = None
# if mask is not None:
# attn_bias = block_diagonal_mask_from_seqlens([N] * B, mask)
# x = xformers.ops.memory_efficient_attention(q, k, v, p=0, attn_bias=attn_bias)
# else:
# q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),)
# attn_mask = None
# mask = torch.ones(())
# if mask is not None and len(mask) > 1:
# # Create equivalent of xformer diagonal block mask, still only correct for square masks
# # But depth doesn't matter as tensors can expand in that dimension
# attn_mask_template = torch.ones(
# [q.shape[2] // B, mask[0]],
# dtype=torch.bool,
# device=q.device
# )
# attn_mask = torch.block_diag(attn_mask_template)
#
# # create a mask on the diagonal for each mask in the batch
# for _ in range(B - 1):
# attn_mask = torch.block_diag(attn_mask, attn_mask_template)
# x = optimized_attention(q, k, v, self.num_heads, mask=attn_mask, skip_reshape=True)
x = optimized_attention(q.view(B, -1, C), k.view(B, -1, C), v.view(B, -1, C), self.num_heads, mask=None)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentionKVCompress(nn.Module):
"""Multi-head Attention block with KV token compression and qk norm."""
def __init__(self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **kwargs):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
"""
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every']
self.sr_ratio = sr_ratio
if sr_ratio > 1 and sampling == 'conv':
# Avg Conv Init.
self.sr = operations.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio, dtype=dtype, device=device)
# self.sr.weight.data.fill_(1/sr_ratio**2)
# self.sr.bias.data.zero_()
self.norm = operations.LayerNorm(dim, dtype=dtype, device=device)
if qk_norm:
self.q_norm = operations.LayerNorm(dim, dtype=dtype, device=device)
self.k_norm = operations.LayerNorm(dim, dtype=dtype, device=device)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None):
if sampling is None or scale_factor == 1:
return tensor
B, N, C = tensor.shape
if sampling == 'uniform_every':
return tensor[:, ::scale_factor], int(N // scale_factor)
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2)
new_H, new_W = int(H / scale_factor), int(W / scale_factor)
new_N = new_H * new_W
if sampling == 'ave':
tensor = F.interpolate(
tensor, scale_factor=1 / scale_factor, mode='nearest'
).permute(0, 2, 3, 1)
elif sampling == 'uniform':
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1)
elif sampling == 'conv':
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1)
tensor = self.norm(tensor)
else:
raise ValueError
return tensor.reshape(B, new_N, C).contiguous(), new_N
def forward(self, x, mask=None, HW=None, block_id=None):
B, N, C = x.shape # 2 4096 1152
new_N = N
if HW is None:
H = W = int(N ** 0.5)
else:
H, W = HW
qkv = self.qkv(x).reshape(B, N, 3, C)
q, k, v = qkv.unbind(2)
q = self.q_norm(q)
k = self.k_norm(k)
# KV compression
if self.sr_ratio > 1:
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling)
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling)
q = q.reshape(B, N, self.num_heads, C // self.num_heads)
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads)
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads)
if mask is not None:
raise NotImplementedError("Attn mask logic not added for self attention")
# This is never called at the moment
# attn_bias = None
# if mask is not None:
# attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device)
# attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf'))
# attention 2
q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),)
x = optimized_attention(q, k, v, self.num_heads, mask=None, skip_reshape=True)
x = x.view(B, N, C)
x = self.proj(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5)
self.out_channels = out_channels
def forward(self, x, t):
shift, scale = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MaskFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
)
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DecoderLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, decoder_hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.norm_decoder = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, decoder_hidden_size, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
)
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_decoder(x), shift, scale)
x = self.linear(x)
return x
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size, operations=operations)
self.mlp = nn.Sequential(
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs//s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = timestep_embedding(s, self.frequency_embedding_size)
s_emb = self.mlp(s_freq.to(s.dtype))
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob, dtype=None, device=None, operations=None):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = operations.Embedding(num_classes + use_cfg_embedding, hidden_size, dtype=dtype, device=device),
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer,
dtype=dtype, device=device, operations=operations,
)
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class CaptionEmbedderDoubleBr(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None):
super().__init__()
self.proj = Mlp(
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer,
dtype=dtype, device=device, operations=operations,
)
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5)
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5)
self.uncond_prob = uncond_prob
def token_drop(self, global_caption, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption)
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return global_caption, caption
def forward(self, caption, train, force_drop_ids=None):
assert caption.shape[2: ] == self.y_embedding.shape
global_caption = caption.mean(dim=2).squeeze()
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids)
y_embed = self.proj(global_caption)
return y_embed, caption

View File

@@ -0,0 +1,256 @@
# Based on:
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
import torch
import torch.nn as nn
from .blocks import (
t2i_modulate,
CaptionEmbedder,
AttentionKVCompress,
MultiHeadCrossAttention,
T2IFinalLayer,
SizeEmbedder,
)
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
grid_h, grid_w = torch.meshgrid(
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
indexing='ij'
)
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
return emb
class PixArtMSBlock(nn.Module):
"""
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
super().__init__()
self.hidden_size = hidden_size
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.attn = AttentionKVCompress(
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
)
self.cross_attn = MultiHeadCrossAttention(
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
)
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
# to be compatible with lower version pytorch
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
dtype=dtype, device=device, operations=operations
)
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
x = x + self.cross_attn(x, y, mask)
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
### Core PixArt Model ###
class PixArtMS(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
learn_sigma=True,
pred_sigma=True,
drop_path: float = 0.,
caption_channels=4096,
pe_interpolation=None,
pe_precision=None,
config=None,
model_max_length=120,
micro_condition=True,
qk_norm=False,
kv_compress_config=None,
dtype=None,
device=None,
operations=None,
**kwargs,
):
nn.Module.__init__(self)
self.dtype = dtype
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.pe_interpolation = pe_interpolation
self.pe_precision = pe_precision
self.hidden_size = hidden_size
self.depth = depth
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.t_block = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
)
self.x_embedder = PatchEmbed(
patch_size=patch_size,
in_chans=in_channels,
embed_dim=hidden_size,
bias=True,
dtype=dtype,
device=device,
operations=operations
)
self.t_embedder = TimestepEmbedder(
hidden_size, dtype=dtype, device=device, operations=operations,
)
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
act_layer=approx_gelu, token_num=model_max_length,
dtype=dtype, device=device, operations=operations,
)
self.micro_conditioning = micro_condition
if self.micro_conditioning:
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
# For fixed sin-cos embedding:
# num_patches = (input_size // patch_size) * (input_size // patch_size)
# self.base_size = input_size // self.patch_size
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
if kv_compress_config is None:
kv_compress_config = {
'sampling': None,
'scale_factor': 1,
'kv_compress_layer': [],
}
self.blocks = nn.ModuleList([
PixArtMSBlock(
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
sampling=kv_compress_config['sampling'],
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
qk_norm=qk_norm,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(depth)
])
self.final_layer = T2IFinalLayer(
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
)
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
"""
Original forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) conditioning
ar: (N, 1): aspect ratio
cs: (N ,2) size conditioning for height/width
"""
B, C, H, W = x.shape
c_res = (H + W) // 2
pe_interpolation = self.pe_interpolation
if pe_interpolation is None or self.pe_precision is not None:
# calculate pe_interpolation on-the-fly
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
pos_embed = get_2d_sincos_pos_embed_torch(
self.hidden_size,
h=(H // self.patch_size),
w=(W // self.patch_size),
pe_interpolation=pe_interpolation,
base_size=((round(c_res / 64) * 64) // self.patch_size),
device=x.device,
dtype=x.dtype,
).unsqueeze(0)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep, x.dtype) # (N, D)
if self.micro_conditioning and (c_size is not None and c_ar is not None):
bs = x.shape[0]
c_size = self.csize_embedder(c_size, bs) # (N, D)
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
t = t + torch.cat([c_size, c_ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = None
y = y.squeeze(1).view(1, -1, x.shape[-1])
for block in self.blocks:
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
return x
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
B, C, H, W = x.shape
# Fallback for missing microconds
if self.micro_conditioning:
if c_size is None:
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
if c_ar is None:
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
## Still accepts the input w/o that dim but returns garbage
if len(context.shape) == 3:
context = context.unsqueeze(1)
## run original forward pass
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
## only return EPS
if self.pred_sigma:
return out[:, :self.in_channels]
return out
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = h // self.patch_size
w = w // self.patch_size
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs

View File

@@ -1,4 +1,5 @@
import importlib
import logging
import torch
from torch import optim
@@ -23,7 +24,7 @@ def log_txt_as_img(wh, xc, size=10):
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
logging.warning("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
@@ -65,7 +66,7 @@ def mean_flat(tensor):
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
logging.info(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
return total_params

View File

@@ -344,7 +344,6 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format
key_map[key_lora] = to
if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
@@ -353,6 +352,20 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
key_map[key_lora] = to
if isinstance(model, comfy.model_base.PixArt):
diffusers_keys = comfy.utils.pixart_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
if k.endswith(".weight"):
to = diffusers_keys[k]
key_lora = "transformer.{}".format(k[:-len(".weight")]) #default format
key_map[key_lora] = to
key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #diffusers training script
key_map[key_lora] = to
key_lora = "unet.base_model.model.{}".format(k[:-len(".weight")]) #old reference peft script
key_map[key_lora] = to
if isinstance(model, comfy.model_base.HunyuanDiT):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):

View File

@@ -26,6 +26,7 @@ from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAug
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
import comfy.ldm.genmo.joint_model.asymm_models_joint
import comfy.ldm.aura.mmdit
import comfy.ldm.pixart.pixartms
import comfy.ldm.hydit.models
import comfy.ldm.audio.dit
import comfy.ldm.audio.embedders
@@ -718,6 +719,25 @@ class HunyuanDiT(BaseModel):
out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
return out
class PixArt(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.pixart.pixartms.PixArtMS)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
width = kwargs.get("width", None)
height = kwargs.get("height", None)
if width is not None and height is not None:
out["c_size"] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width]]))
out["c_ar"] = comfy.conds.CONDRegular(torch.FloatTensor([[kwargs.get("aspect_ratio", height/width)]]))
return out
class Flux(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
@@ -754,7 +774,6 @@ class Flux(BaseModel):
mask = torch.ones_like(noise)[:, :1]
mask = torch.mean(mask, dim=1, keepdim=True)
print(mask.shape)
mask = utils.common_upscale(mask.to(device), noise.shape[-1] * 8, noise.shape[-2] * 8, "bilinear", "center")
mask = mask.view(mask.shape[0], mask.shape[2] // 8, 8, mask.shape[3] // 8, 8).permute(0, 2, 4, 1, 3).reshape(mask.shape[0], -1, mask.shape[2] // 8, mask.shape[3] // 8)
mask = utils.resize_to_batch_size(mask, noise.shape[0])

View File

@@ -203,11 +203,42 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["rope_theta"] = 10000.0
return dit_config
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys and '{}pos_embed.proj.bias'.format(key_prefix) in state_dict_keys:
# PixArt diffusers
return None
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxv"
return dit_config
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
patch_size = 2
dit_config = {}
dit_config["num_heads"] = 16
dit_config["patch_size"] = patch_size
dit_config["hidden_size"] = 1152
dit_config["in_channels"] = 4
dit_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
y_key = "{}y_embedder.y_embedding".format(key_prefix)
if y_key in state_dict_keys:
dit_config["model_max_length"] = state_dict[y_key].shape[0]
pe_key = "{}pos_embed".format(key_prefix)
if pe_key in state_dict_keys:
dit_config["input_size"] = int(math.sqrt(state_dict[pe_key].shape[1])) * patch_size
dit_config["pe_interpolation"] = dit_config["input_size"] // (512//8) # guess
ar_key = "{}ar_embedder.mlp.0.weight".format(key_prefix)
if ar_key in state_dict_keys:
dit_config["image_model"] = "pixart_alpha"
dit_config["micro_condition"] = True
else:
dit_config["image_model"] = "pixart_sigma"
dit_config["micro_condition"] = False
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@@ -573,6 +604,9 @@ def convert_diffusers_mmdit(state_dict, output_prefix=""):
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
elif 'adaln_single.emb.timestep_embedder.linear_1.bias' in state_dict and 'pos_embed.proj.bias' in state_dict: # PixArt
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
sd_map = comfy.utils.pixart_to_diffusers({"depth": num_blocks}, output_prefix=output_prefix)
elif 'x_embedder.weight' in state_dict: #Flux
depth = count_blocks(state_dict, 'transformer_blocks.{}.')
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')

View File

@@ -75,7 +75,7 @@ if args.directml is not None:
try:
import intel_extension_for_pytorch as ipex
_ = torch.xpu.device_count()
xpu_available = torch.xpu.is_available()
xpu_available = xpu_available or torch.xpu.is_available()
except:
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
@@ -188,38 +188,44 @@ def is_nvidia():
return True
return False
def is_amd():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.hip:
return True
return False
MIN_WEIGHT_MEMORY_RATIO = 0.4
if is_nvidia():
MIN_WEIGHT_MEMORY_RATIO = 0.2
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
ENABLE_PYTORCH_ATTENTION = True
XFORMERS_IS_AVAILABLE = False
VAE_DTYPES = [torch.float32]
try:
if is_nvidia():
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
if is_intel_xpu():
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if is_intel_xpu():
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
if args.cpu_vae:
VAE_DTYPES = [torch.float32]
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
try:
if int(torch_version[0]) == 2 and int(torch_version[2]) >= 5:
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except:
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
@@ -509,13 +515,14 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
model_size = loaded_model.model_memory_required(torch_dev)
loaded_memory = loaded_model.model_loaded_memory()
current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
lowvram_model_memory = 0.1
loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
current_loaded_models.insert(0, loaded_model)
@@ -743,7 +750,6 @@ def vae_offload_device():
return torch.device("cpu")
def vae_dtype(device=None, allowed_dtypes=[]):
global VAE_DTYPES
if args.fp16_vae:
return torch.float16
elif args.bf16_vae:
@@ -752,12 +758,14 @@ def vae_dtype(device=None, allowed_dtypes=[]):
return torch.float32
for d in allowed_dtypes:
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
return d
if d in VAE_DTYPES:
if d == torch.float16 and should_use_fp16(device):
return d
return VAE_DTYPES[0]
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
return d
return torch.float32
def get_autocast_device(dev):
if hasattr(dev, 'type'):
@@ -878,14 +886,19 @@ def pytorch_attention_flash_attention():
return True
return False
def mac_version():
try:
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
except:
return None
def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
try:
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
if (14, 5) <= macos_version <= (15, 2): # black image bug on recent versions of macOS
upcast = True
except:
pass
macos_version = mac_version()
if macos_version is not None and ((14, 5) <= macos_version <= (15, 2)): # black image bug on recent versions of macOS
upcast = True
if upcast:
return torch.float32
else:
@@ -956,17 +969,13 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
if FORCE_FP16:
return True
if device is not None:
if is_device_mps(device):
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if mps_mode():
if (device is not None and is_device_mps(device)) or mps_mode():
return True
if cpu_mode():
@@ -1015,17 +1024,15 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
return False
if device is not None:
if is_device_mps(device):
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if mps_mode():
if (device is not None and is_device_mps(device)) or mps_mode():
if mac_version() < (14,):
return False
return True
if cpu_mode():
@@ -1084,7 +1091,7 @@ def unload_all_models():
def resolve_lowvram_weight(weight, model, key): #TODO: remove
print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
logging.warning("The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
return weight
#TODO: might be cleaner to put this somewhere else

View File

@@ -773,7 +773,7 @@ class ModelPatcher:
return self.model.device
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
logging.warning("The ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
def cleanup(self):
@@ -1029,7 +1029,7 @@ class ModelPatcher:
if cached_weights is not None:
for key in cached_weights:
if key not in model_sd_keys:
print(f"WARNING cached hook could not patch. key does not exist in model: {key}")
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
else:
@@ -1039,7 +1039,7 @@ class ModelPatcher:
original_weights = self.get_key_patches()
for key in relevant_patches:
if key not in model_sd_keys:
print(f"WARNING cached hook would not patch. key does not exist in model: {key}")
logging.warning(f"Cached hook would not patch. Key does not exist in model: {key}")
continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
memory_counter=memory_counter)

View File

@@ -255,9 +255,10 @@ def fp8_linear(self, input):
tensor_2d = True
input = input.unsqueeze(1)
input_shape = input.shape
input_dtype = input.dtype
if len(input.shape) == 3:
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype)
w = w.t()
scale_weight = self.scale_weight
@@ -269,23 +270,24 @@ def fp8_linear(self, input):
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
inn = torch.clamp(input, min=-448, max=448).reshape(-1, input.shape[2]).to(dtype)
input = torch.clamp(input, min=-448, max=448, out=input)
input = input.reshape(-1, input_shape[2]).to(dtype)
else:
scale_input = scale_input.to(input.device)
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype)
if bias is not None:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
else:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight)
o = torch._scaled_mm(input, w, out_dtype=input_dtype, scale_a=scale_input, scale_b=scale_weight)
if isinstance(o, tuple):
o = o[0]
if tensor_2d:
return o.reshape(input.shape[0], -1)
return o.reshape(input_shape[0], -1)
return o.reshape((-1, input.shape[1], self.weight.shape[0]))
return o.reshape((-1, input_shape[1], self.weight.shape[0]))
return None

View File

@@ -27,6 +27,7 @@ import comfy.text_encoders.sd2_clip
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.sa_t5
import comfy.text_encoders.aura_t5
import comfy.text_encoders.pixart_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.long_clipl
@@ -110,7 +111,7 @@ class CLIP:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
self.use_clip_schedule = False
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
logging.info("CLIP model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
def clone(self):
n = CLIP(no_init=True)
@@ -258,6 +259,9 @@ class VAE:
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.downscale_index_formula = None
self.upscale_index_formula = None
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@@ -337,7 +341,9 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
self.upscale_index_formula = (6, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 5) / 6)), 8, 8)
self.downscale_index_formula = (6, 8, 8)
self.working_dtypes = [torch.float16, torch.float32]
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: #lightricks ltxv
tensor_conv1 = sd["decoder.up_blocks.0.res_blocks.0.conv1.conv.weight"]
@@ -352,14 +358,18 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
self.upscale_index_formula = (8, 32, 32)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
self.downscale_index_formula = (8, 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
ddconfig["time_compress"] = 4
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
@@ -392,7 +402,7 @@ class VAE:
self.output_device = model_management.intermediate_device()
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
def vae_encode_crop_pixels(self, pixels):
downscale_ratio = self.spacial_compression_encode()
@@ -425,7 +435,7 @@ class VAE:
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, index_formulas=self.upscale_index_formula, output_device=self.output_device))
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
@@ -446,7 +456,7 @@ class VAE:
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, output_device=self.output_device)
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
def decode(self, samples_in):
pixel_samples = None
@@ -478,7 +488,7 @@ class VAE:
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
return pixel_samples
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None):
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
dims = samples.ndim - 2
@@ -496,6 +506,13 @@ class VAE:
elif dims == 2:
output = self.decode_tiled_(samples, **args)
elif dims == 3:
if overlap_t is None:
args["overlap"] = (1, overlap, overlap)
else:
args["overlap"] = (max(1, overlap_t), overlap, overlap)
if tile_t is not None:
args["tile_t"] = max(2, tile_t)
output = self.decode_tiled_3d(samples, **args)
return output.movedim(1, -1)
@@ -531,7 +548,7 @@ class VAE:
return samples
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None):
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1)
@@ -555,7 +572,20 @@ class VAE:
elif dims == 2:
samples = self.encode_tiled_(pixel_samples, **args)
elif dims == 3:
samples = self.encode_tiled_3d(pixel_samples, **args)
if tile_t is not None:
tile_t_latent = max(2, self.downscale_ratio[0](tile_t))
else:
tile_t_latent = 9999
args["tile_t"] = self.upscale_ratio[0](tile_t_latent)
if overlap_t is None:
args["overlap"] = (1, overlap, overlap)
else:
args["overlap"] = (self.upscale_ratio[0](max(1, min(tile_t_latent // 2, self.downscale_ratio[0](overlap_t)))), overlap, overlap)
maximum = pixel_samples.shape[2]
maximum = self.upscale_ratio[0](self.downscale_ratio[0](maximum))
samples = self.encode_tiled_3d(pixel_samples[:,:,:maximum], **args)
return samples
@@ -574,6 +604,12 @@ class VAE:
except:
return self.downscale_ratio
def temporal_compression_decode(self):
try:
return round(self.upscale_ratio[0](8192) / 8192)
except:
return None
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
@@ -604,6 +640,8 @@ class CLIPType(Enum):
MOCHI = 7
LTXV = 8
HUNYUAN_VIDEO = 9
PIXART = 10
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
@@ -696,6 +734,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
elif clip_type == CLIPType.PIXART:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
@@ -934,11 +975,11 @@ def load_diffusion_model(unet_path, model_options={}):
return model
def load_unet(unet_path, dtype=None):
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
logging.warning("The load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
def load_unet_state_dict(sd, dtype=None):
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
logging.warning("The load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):

View File

@@ -37,7 +37,10 @@ class ClipTokenWeightEncoder:
sections = len(to_encode)
if has_weights or sections == 0:
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
if hasattr(self, "gen_empty_tokens"):
to_encode.append(self.gen_empty_tokens(self.special_tokens, max_token_len))
else:
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
o = self.encode(to_encode)
out, pooled = o[:2]

View File

@@ -8,6 +8,7 @@ import comfy.text_encoders.sd2_clip
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.sa_t5
import comfy.text_encoders.aura_t5
import comfy.text_encoders.pixart_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.genmo
@@ -592,6 +593,37 @@ class AuraFlow(supported_models_base.BASE):
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.aura_t5.AuraT5Tokenizer, comfy.text_encoders.aura_t5.AuraT5Model)
class PixArtAlpha(supported_models_base.BASE):
unet_config = {
"image_model": "pixart_alpha",
}
sampling_settings = {
"beta_schedule" : "sqrt_linear",
"linear_start" : 0.0001,
"linear_end" : 0.02,
"timesteps" : 1000,
}
unet_extra_config = {}
latent_format = latent_formats.SD15
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.PixArt(self, device=device)
return out.eval()
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.PixArtT5XXL)
class PixArtSigma(PixArtAlpha):
unet_config = {
"image_model": "pixart_sigma",
}
latent_format = latent_formats.SDXL
class HunyuanDiT(supported_models_base.BASE):
unet_config = {
"image_model": "hydit",
@@ -787,6 +819,6 @@ class HunyuanVideo(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo]
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo]
models += [SVD_img2vid]

View File

@@ -0,0 +1,42 @@
import os
from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
from comfy.sd1_clip import gen_empty_tokens
from transformers import T5TokenizerFast
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
# PixArt expects the negative to be all pad tokens
special_tokens = special_tokens.copy()
special_tokens.pop("end")
return gen_empty_tokens(special_tokens, *args, **kwargs)
class PixArtT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
class PixArtTEModel_(PixArtT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return PixArtTEModel_

View File

@@ -386,6 +386,77 @@ def mmdit_to_diffusers(mmdit_config, output_prefix=""):
return key_map
PIXART_MAP_BASIC = {
("csize_embedder.mlp.0.weight", "adaln_single.emb.resolution_embedder.linear_1.weight"),
("csize_embedder.mlp.0.bias", "adaln_single.emb.resolution_embedder.linear_1.bias"),
("csize_embedder.mlp.2.weight", "adaln_single.emb.resolution_embedder.linear_2.weight"),
("csize_embedder.mlp.2.bias", "adaln_single.emb.resolution_embedder.linear_2.bias"),
("ar_embedder.mlp.0.weight", "adaln_single.emb.aspect_ratio_embedder.linear_1.weight"),
("ar_embedder.mlp.0.bias", "adaln_single.emb.aspect_ratio_embedder.linear_1.bias"),
("ar_embedder.mlp.2.weight", "adaln_single.emb.aspect_ratio_embedder.linear_2.weight"),
("ar_embedder.mlp.2.bias", "adaln_single.emb.aspect_ratio_embedder.linear_2.bias"),
("x_embedder.proj.weight", "pos_embed.proj.weight"),
("x_embedder.proj.bias", "pos_embed.proj.bias"),
("y_embedder.y_embedding", "caption_projection.y_embedding"),
("y_embedder.y_proj.fc1.weight", "caption_projection.linear_1.weight"),
("y_embedder.y_proj.fc1.bias", "caption_projection.linear_1.bias"),
("y_embedder.y_proj.fc2.weight", "caption_projection.linear_2.weight"),
("y_embedder.y_proj.fc2.bias", "caption_projection.linear_2.bias"),
("t_embedder.mlp.0.weight", "adaln_single.emb.timestep_embedder.linear_1.weight"),
("t_embedder.mlp.0.bias", "adaln_single.emb.timestep_embedder.linear_1.bias"),
("t_embedder.mlp.2.weight", "adaln_single.emb.timestep_embedder.linear_2.weight"),
("t_embedder.mlp.2.bias", "adaln_single.emb.timestep_embedder.linear_2.bias"),
("t_block.1.weight", "adaln_single.linear.weight"),
("t_block.1.bias", "adaln_single.linear.bias"),
("final_layer.linear.weight", "proj_out.weight"),
("final_layer.linear.bias", "proj_out.bias"),
("final_layer.scale_shift_table", "scale_shift_table"),
}
PIXART_MAP_BLOCK = {
("scale_shift_table", "scale_shift_table"),
("attn.proj.weight", "attn1.to_out.0.weight"),
("attn.proj.bias", "attn1.to_out.0.bias"),
("mlp.fc1.weight", "ff.net.0.proj.weight"),
("mlp.fc1.bias", "ff.net.0.proj.bias"),
("mlp.fc2.weight", "ff.net.2.weight"),
("mlp.fc2.bias", "ff.net.2.bias"),
("cross_attn.proj.weight" ,"attn2.to_out.0.weight"),
("cross_attn.proj.bias" ,"attn2.to_out.0.bias"),
}
def pixart_to_diffusers(mmdit_config, output_prefix=""):
key_map = {}
depth = mmdit_config.get("depth", 0)
offset = mmdit_config.get("hidden_size", 1152)
for i in range(depth):
block_from = "transformer_blocks.{}".format(i)
block_to = "{}blocks.{}".format(output_prefix, i)
for end in ("weight", "bias"):
s = "{}.attn1.".format(block_from)
qkv = "{}.attn.qkv.{}".format(block_to, end)
key_map["{}to_q.{}".format(s, end)] = (qkv, (0, 0, offset))
key_map["{}to_k.{}".format(s, end)] = (qkv, (0, offset, offset))
key_map["{}to_v.{}".format(s, end)] = (qkv, (0, offset * 2, offset))
s = "{}.attn2.".format(block_from)
q = "{}.cross_attn.q_linear.{}".format(block_to, end)
kv = "{}.cross_attn.kv_linear.{}".format(block_to, end)
key_map["{}to_q.{}".format(s, end)] = q
key_map["{}to_k.{}".format(s, end)] = (kv, (0, 0, offset))
key_map["{}to_v.{}".format(s, end)] = (kv, (0, offset, offset))
for k in PIXART_MAP_BLOCK:
key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])
for k in PIXART_MAP_BASIC:
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
return key_map
def auraflow_to_diffusers(mmdit_config, output_prefix=""):
n_double_layers = mmdit_config.get("n_double_layers", 0)
@@ -751,7 +822,7 @@ def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return rows * cols
@torch.inference_mode()
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", downscale=False, pbar=None):
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", downscale=False, index_formulas=None, pbar=None):
dims = len(tile)
if not (isinstance(upscale_amount, (tuple, list))):
@@ -760,6 +831,12 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
if not (isinstance(overlap, (tuple, list))):
overlap = [overlap] * dims
if index_formulas is None:
index_formulas = upscale_amount
if not (isinstance(index_formulas, (tuple, list))):
index_formulas = [index_formulas] * dims
def get_upscale(dim, val):
up = upscale_amount[dim]
if callable(up):
@@ -774,10 +851,26 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
else:
return val / up
def get_upscale_pos(dim, val):
up = index_formulas[dim]
if callable(up):
return up(val)
else:
return up * val
def get_downscale_pos(dim, val):
up = index_formulas[dim]
if callable(up):
return up(val)
else:
return val / up
if downscale:
get_scale = get_downscale
get_pos = get_downscale_pos
else:
get_scale = get_upscale
get_pos = get_upscale_pos
def mult_list_upscale(a):
out = []
@@ -810,7 +903,7 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
pos = max(0, min(s.shape[d + 2] - overlap[d], it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(get_scale(d, pos)))
upscaled.append(round(get_pos(d, pos)))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)

View File

@@ -1,5 +1,6 @@
import logging
from spandrel import ModelLoader
def load_state_dict(state_dict):
print("WARNING: comfy_extras.chainner_models is deprecated and has been replaced by the spandrel library.")
logging.warning("comfy_extras.chainner_models is deprecated and has been replaced by the spandrel library.")
return ModelLoader().load_from_state_dict(state_dict).eval()

View File

@@ -24,7 +24,7 @@ class AlignYourStepsScheduler:
def INPUT_TYPES(s):
return {"required":
{"model_type": (["SD1", "SDXL", "SVD"], ),
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
"steps": ("INT", {"default": 10, "min": 1, "max": 10000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}

View File

@@ -1,5 +1,6 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Union
import logging
import torch
from collections.abc import Iterable
@@ -539,7 +540,7 @@ class CreateHookKeyframesInterpolated:
is_first = False
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
if print_keyframes:
print(f"Hook Keyframe - start_percent:{percent} = {strength}")
logging.info(f"Hook Keyframe - start_percent:{percent} = {strength}")
return (prev_hook_kf,)
class CreateHookKeyframesFromFloats:
@@ -588,7 +589,7 @@ class CreateHookKeyframesFromFloats:
is_first = False
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
if print_keyframes:
print(f"Hook Keyframe - start_percent:{percent} = {strength}")
logging.info(f"Hook Keyframe - start_percent:{percent} = {strength}")
return (prev_hook_kf,)
#------------------------------------------
###########################################

View File

@@ -0,0 +1,24 @@
from nodes import MAX_RESOLUTION
class CLIPTextEncodePixArtAlpha:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
# "aspect_ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
DESCRIPTION = "Encodes text and sets the resolution conditioning for PixArt Alpha. Does not apply to PixArt Sigma."
def encode(self, clip, width, height, text):
tokens = clip.tokenize(text)
return (clip.encode_from_tokens_scheduled(tokens, add_dict={"width": width, "height": height}),)
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodePixArtAlpha": CLIPTextEncodePixArtAlpha,
}

72
main.py
View File

@@ -63,7 +63,7 @@ def execute_prestartup_script():
spec.loader.exec_module(module)
return True
except Exception as e:
print(f"Failed to execute startup-script: {script_path} / {e}")
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
return False
if args.disable_all_custom_nodes:
@@ -85,14 +85,14 @@ def execute_prestartup_script():
success = execute_script(script_path)
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_prestartup_times) > 0:
print("\nPrestartup times for custom nodes:")
logging.info("\nPrestartup times for custom nodes:")
for n in sorted(node_prestartup_times):
if n[2]:
import_message = ""
else:
import_message = " (PRESTARTUP FAILED)"
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
print()
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
logging.info("")
apply_custom_paths()
execute_prestartup_script()
@@ -114,6 +114,10 @@ if __name__ == "__main__":
os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device)
logging.info("Set cuda device to: {}".format(args.cuda_device))
if args.oneapi_device_selector is not None:
os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector
logging.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector))
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
@@ -146,9 +150,10 @@ def cuda_malloc_warning():
if cuda_malloc_warning:
logging.warning("\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
def prompt_worker(q, server):
def prompt_worker(q, server_instance):
current_time: float = 0.0
e = execution.PromptExecutor(server, lru_size=args.cache_lru)
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru)
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0
@@ -163,7 +168,7 @@ def prompt_worker(q, server):
item, item_id = queue_item
execution_start_time = time.perf_counter()
prompt_id = item[1]
server.last_prompt_id = prompt_id
server_instance.last_prompt_id = prompt_id
e.execute(item[2], prompt_id, item[3], item[4])
need_gc = True
@@ -173,8 +178,8 @@ def prompt_worker(q, server):
status_str='success' if e.success else 'error',
completed=e.success,
messages=e.status_messages))
if server.client_id is not None:
server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id)
if server_instance.client_id is not None:
server_instance.send_sync("executing", {"node": None, "prompt_id": prompt_id}, server_instance.client_id)
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
@@ -201,21 +206,23 @@ def prompt_worker(q, server):
last_gc_collect = current_time
need_gc = False
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
async def run(server_instance, address='', port=8188, verbose=True, call_on_start=None):
addresses = []
for addr in address.split(","):
addresses.append((addr, port))
await asyncio.gather(server.start_multi_address(addresses, call_on_start), server.publish_loop())
await asyncio.gather(server_instance.start_multi_address(addresses, call_on_start), server_instance.publish_loop())
def hijack_progress(server):
def hijack_progress(server_instance):
def hook(value, total, preview_image):
comfy.model_management.throw_exception_if_processing_interrupted()
progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id}
progress = {"value": value, "max": total, "prompt_id": server_instance.last_prompt_id, "node": server_instance.last_node_id}
server.send_sync("progress", progress, server.client_id)
server_instance.send_sync("progress", progress, server_instance.client_id)
if preview_image is not None:
server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
server_instance.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server_instance.client_id)
comfy.utils.set_progress_bar_global_hook(hook)
@@ -225,7 +232,11 @@ def cleanup_temp():
shutil.rmtree(temp_dir, ignore_errors=True)
if __name__ == "__main__":
def start_comfyui(asyncio_loop=None):
"""
Starts the ComfyUI server using the provided asyncio event loop or creates a new one.
Returns the event loop, server instance, and a function to start the server asynchronously.
"""
if args.temp_directory:
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
logging.info(f"Setting temp directory to: {temp_dir}")
@@ -239,19 +250,20 @@ if __name__ == "__main__":
except:
pass
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server = server.PromptServer(loop)
q = execution.PromptQueue(server)
if not asyncio_loop:
asyncio_loop = asyncio.new_event_loop()
asyncio.set_event_loop(asyncio_loop)
prompt_server = server.PromptServer(asyncio_loop)
q = execution.PromptQueue(prompt_server)
nodes.init_extra_nodes(init_custom_nodes=not args.disable_all_custom_nodes)
cuda_malloc_warning()
server.add_routes()
hijack_progress(server)
prompt_server.add_routes()
hijack_progress(prompt_server)
threading.Thread(target=prompt_worker, daemon=True, args=(q, server,)).start()
threading.Thread(target=prompt_worker, daemon=True, args=(q, prompt_server,)).start()
if args.quick_test_for_ci:
exit(0)
@@ -268,9 +280,19 @@ if __name__ == "__main__":
webbrowser.open(f"{scheme}://{address}:{port}")
call_on_start = startup_server
async def start_all():
await prompt_server.setup()
await run(prompt_server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start)
# Returning these so that other code can integrate with the ComfyUI loop and server
return asyncio_loop, prompt_server, start_all
if __name__ == "__main__":
# Running directly, just start ComfyUI.
event_loop, _, start_all_func = start_comfyui()
try:
loop.run_until_complete(server.setup())
loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start))
event_loop.run_until_complete(start_all_func())
except KeyboardInterrupt:
logging.info("\nStopped server")

View File

@@ -32,4 +32,4 @@ def update_windows_updater():
except:
pass
shutil.copy(bat_path, dest_bat_path)
print("Updated the windows standalone package updater.")
print("Updated the windows standalone package updater.") # noqa: T201

View File

@@ -293,17 +293,29 @@ class VAEDecodeTiled:
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 32}),
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
"temporal_size": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to decode at a time."}),
"temporal_overlap": ("INT", {"default": 8, "min": 4, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to overlap."}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "_for_testing"
def decode(self, vae, samples, tile_size, overlap=64):
def decode(self, vae, samples, tile_size, overlap=64, temporal_size=64, temporal_overlap=8):
if tile_size < overlap * 4:
overlap = tile_size // 4
if temporal_size < temporal_overlap * 2:
temporal_overlap = temporal_overlap // 2
temporal_compression = vae.temporal_compression_decode()
if temporal_compression is not None:
temporal_size = max(2, temporal_size // temporal_compression)
temporal_overlap = min(1, temporal_size // 2, temporal_overlap // temporal_compression)
else:
temporal_size = None
temporal_overlap = None
compression = vae.spacial_compression_decode()
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression)
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression, tile_t=temporal_size, overlap_t=temporal_overlap)
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )
@@ -327,15 +339,17 @@ class VAEEncodeTiled:
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
"temporal_size": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to encode at a time."}),
"temporal_overlap": ("INT", {"default": 8, "min": 4, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to overlap."}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "_for_testing"
def encode(self, vae, pixels, tile_size, overlap):
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap)
return ({"samples":t}, )
def encode(self, vae, pixels, tile_size, overlap, temporal_size=64, temporal_overlap=8):
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap)
return ({"samples": t}, )
class VAEEncodeForInpaint:
@classmethod
@@ -898,7 +912,7 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv"], ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
@@ -918,6 +932,8 @@ class CLIPLoader:
clip_type = comfy.sd.CLIPType.MOCHI
elif type == "ltxv":
clip_type = comfy.sd.CLIPType.LTXV
elif type == "pixart":
clip_type = comfy.sd.CLIPType.PIXART
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
@@ -2164,6 +2180,7 @@ def init_builtin_extra_nodes():
"nodes_stable3d.py",
"nodes_sdupscale.py",
"nodes_photomaker.py",
"nodes_pixart.py",
"nodes_cond.py",
"nodes_morphology.py",
"nodes_stable_cascade.py",

View File

@@ -4,7 +4,10 @@ lint.ignore = ["ALL"]
# Enable specific rules
lint.select = [
"S307", # suspicious-eval-usage
"T201", # print-usage
# The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names.
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f
"F",
]
]
exclude = ["*.ipynb"]

View File

@@ -714,9 +714,7 @@ class PromptServer():
self.app.add_routes(self.routes)
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
self.app.add_routes([
web.static('/extensions/' + urllib.parse.quote(name), dir),
])
self.app.add_routes([web.static('/extensions/' + name, dir)])
self.app.add_routes([
web.static('/', self.web_root),

View File

@@ -89,9 +89,9 @@ async def test_routes_added_to_app(aiohttp_client_factory, internal_routes):
client = await aiohttp_client_factory()
try:
resp = await client.get('/files')
print(f"Response received: status {resp.status}")
print(f"Response received: status {resp.status}") # noqa: T201
except Exception as e:
print(f"Exception occurred during GET request: {e}")
print(f"Exception occurred during GET request: {e}") # noqa: T201
raise
assert resp.status != 404, "Route /files does not exist"

View File

@@ -28,7 +28,7 @@ def pytest_collection_modifyitems(items):
last_items = []
for test_name in LAST_TESTS:
for item in items.copy():
print(item.module.__name__, item)
print(item.module.__name__, item) # noqa: T201
if item.module.__name__ == test_name:
last_items.append(item)
items.remove(item)

View File

@@ -134,7 +134,7 @@ class TestExecution:
use_lru, lru_size = request.param
if use_lru:
pargs += ['--cache-lru', str(lru_size)]
print("Running server with args:", pargs)
print("Running server with args:", pargs) # noqa: T201
p = subprocess.Popen(pargs)
yield
p.kill()
@@ -150,8 +150,8 @@ class TestExecution:
try:
comfy_client.connect(listen=listen, port=port)
except ConnectionRefusedError as e:
print(e)
print(f"({i+1}/{n_tries}) Retrying...")
print(e) # noqa: T201
print(f"({i+1}/{n_tries}) Retrying...") # noqa: T201
else:
break
return comfy_client

View File

@@ -171,8 +171,8 @@ class TestInference:
try:
comfy_client.connect(listen=listen, port=port)
except ConnectionRefusedError as e:
print(e)
print(f"({i+1}/{n_tries}) Retrying...")
print(e) # noqa: T201
print(f"({i+1}/{n_tries}) Retrying...") # noqa: T201
else:
break
return comfy_client