Compare commits

...

121 Commits

Author SHA1 Message Date
kosinkadink1@gmail.com
0336b0ace8 Merge branch 'master' into worksplit-multigpu 2025-06-01 02:39:26 -07:00
Benjamin Lu
180db6753f Add Help Menu in NodeLibrarySidebarTab (#8179) 2025-06-01 04:32:32 -04:00
Christian Byrne
d062fcc5c0 [feat] Add ImageStitch node for concatenating images (#8369)
* [feat] Add ImageStitch node for concatenating images with borders

Add ImageStitch node that concatenates images in four directions with optional borders and intelligent size handling. Features include optional second image input, configurable borders with color selection, automatic batch size matching, and dimension alignment via padding or resizing.

Upstreamed from https://github.com/kijai/ComfyUI-KJNodes with enhancements for better error handling and comprehensive test coverage.

* [fix] Fix CI issues with CUDA dependencies and linting

- Mock CUDA-dependent modules in tests to avoid CI failures on CPU-only runners
- Fix ruff linting issues for code style compliance

* [fix] Improve CI compatibility by mocking nodes module import

Prevent CUDA initialization chain by mocking the nodes module at import time,
which is cleaner than deep mocking of CUDA-specific functions.

* [refactor] Clean up ImageStitch tests

- Remove unnecessary sys.path manipulation (pythonpath set in pytest.ini)
- Remove metadata tests that test framework internals rather than functionality
- Rename complex scenario test to be more descriptive of what it tests

* [refactor] Rename 'border' to 'spacing' for semantic accuracy

- Change border_width/border_color to spacing_width/spacing_color in API
- Update all tests to use spacing terminology
- Update comments and variable names throughout
- More accurately describes the gap/separator between images
2025-06-01 04:28:52 -04:00
filtered
456abad834 Update frontend to 1.21 (#8366) 2025-06-01 01:10:04 -04:00
comfyanonymous
19e45e9b0e Make it easier to pass lists of tensors to models. (#8358) 2025-05-31 20:00:20 -04:00
ComfyUI Wiki
97f23b81f3 Bump template to 0.1.23 (#8353)
Correct some error settings in VACE
2025-05-30 23:05:42 -07:00
drhead
08b7cc7506 use fused multiply-add pointwise ops in chroma (#8279) 2025-05-30 18:09:54 -04:00
BennyKok
6c319cbb4e fix: custom comfy-api-base works with subpath (#8332) 2025-05-30 17:51:28 -04:00
Chenlei Hu
df1aebe52e Remove huchenlei from CODEOWNERS (#8350) 2025-05-30 17:27:52 -04:00
comfyanonymous
704fc78854 Put ROCm version in tuple to make it easier to enable stuff based on it. (#8348) 2025-05-30 15:41:02 -04:00
JettHu
1d9fee79fd Add node for regex replace(sub) operation (#8340)
* Add node for regex replace(sub) operation

* Apply suggestions from code review

add tooltips

Co-authored-by: Christian Byrne <abolkonsky.rem@gmail.com>

* Fix indentation

---------

Co-authored-by: Christian Byrne <abolkonsky.rem@gmail.com>
2025-05-30 15:08:59 -04:00
Jedrzej Kosinski
aeba0b3a26 Reduce code duplication for [pro] and [max], rename Pro and Max to [pro] and [max] to be consistent with other BFL nodes, make default seed for Kontext nodes be 1234. since 0 is interpreted by API as 'choose random seed' (#8337) 2025-05-29 17:14:27 -04:00
comfyanonymous
094306b626 ComfyUI version 0.3.39 2025-05-29 14:26:39 -04:00
filtered
31260f0275 Update templates 0.1.22 (#8334) 2025-05-30 03:52:27 +10:00
Robin Huang
f1c9ca816a Add BFL Kontext API Nodes. (#8333)
* Added initial Flux.1 Kontext Pro Image node - recreated branch to save myself sanity from rebase crap after master got rebased

* Add safety filter to Kontext.

* Make safety = 2 and input image is optional.

* Add BFL kontext API nodes.

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-05-29 13:27:40 -04:00
comfyanonymous
f2289a1f59 Delete useless file. (#8327) 2025-05-29 08:29:37 -04:00
Robin Huang
fb83eda287 Revert "Add support for Veo3 API node." (#8322)
This reverts commit 592d056100.
2025-05-29 03:03:11 -04:00
comfyanonymous
5e5e46d40c Not really tested WAN Phantom Support. (#8321) 2025-05-28 23:46:15 -04:00
Yoland Yan
4eba3161cf Refactor Pika API node imports and fix unique_id issue. (#8319)
Added unique_id to hidden parameters and corrected description formatting in PikAdditionsNode.
2025-05-28 23:42:25 -04:00
Robin Huang
592d056100 Add support for Veo3 API node. (#8320) 2025-05-28 23:42:02 -04:00
comfyanonymous
1c1687ab1c Support HiDream SimpleTuner loras. (#8318) 2025-05-28 18:47:15 -04:00
comfyanonymous
e6609dacde ComfyUI version 0.3.38 2025-05-28 02:15:11 -04:00
Christian Byrne
ba37e67964 update frontend patch 1.20.7 (#8312) 2025-05-28 01:42:18 -04:00
comfyanonymous
06c661004e Memory estimation code can now take into account conds. (#8307) 2025-05-27 15:09:05 -04:00
comfyanonymous
c9e1821a7b ComfyUI version 0.3.37 2025-05-27 07:07:44 -04:00
Robin Huang
f58f0f5696 More API nodes: Gemini/Open AI Chat, Tripo, Rodin, Runway Image (#8295)
* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

This reverts commit 8415404ce8fbc0262b7de54fc700c5c8854a34fc.

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Refactor util functions (#20)

* Add rest of Luma node functionality (#19)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Fix image_luma_ref not working (#28)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add Pixverse and updated Kling types (#75)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Update Pika Duration and Resolution options (#94)

* Removed Infinite Style Library until later (#99)

* fix multi image return (#101)

close #96

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Use 3.9 compat syntax (#164)

* Handle Comfy API key based authorizaton (#167)

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>

* [BFL] Print download URL of successful task result directly on nodes (#175)

* Show output URL and progress text on Pika nodes (#168)

* [Ideogram] Print download URL of successful task result directly on nodes (#176)

* [Kling] Print download URL of successful task result directly on nodes (#181)

* Merge upstream may 14 25 (#186)

Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: AustinMroz <austinmroz@utexas.edu>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Benjamin Lu <benceruleanlu@proton.me>
Co-authored-by: Andrew Kvochko <kvochko@users.noreply.github.com>
Co-authored-by: Pam <42671363+pamparamm@users.noreply.github.com>
Co-authored-by: chaObserv <154517000+chaObserv@users.noreply.github.com>
Co-authored-by: Yoland Yan <4950057+yoland68@users.noreply.github.com>
Co-authored-by: guill <guill@users.noreply.github.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Silver <65376327+silveroxides@users.noreply.github.com>
Co-authored-by: catboxanon <122327233+catboxanon@users.noreply.github.com>
Co-authored-by: liesen <liesen.dev@gmail.com>
Co-authored-by: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: blepping <157360029+blepping@users.noreply.github.com>

* Update instructions on how to develop API Nodes. (#171)

* Add Runway FLF and I2V nodes (#187)

* Add OpenAI chat node (#188)

* Update README.

* Add Google Gemini API node (#191)

* Add Runway Gen 4 Text to Image Node (#193)

* [Runway, Gemini] Update node display names and attributes (#194)

* Update path from "image-to-video" to "image_to_video" (#197)

* [Runway] Split I2V nodes into separate gen3 and gen4 nodes (#198)

* Update runway i2v ratio enum (#201)

* Rodin3D: implement Rodin3D API Nodes (#190)

Co-authored-by: WhiteGiven <c15838568211@163.com>
Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Add Tripo Nodes. (#189)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Change casing of categories "3D"  => "3d" (#208)

* [tripo] fix negtive_prompt and mv2model (#212)

* [tripo] set default param to None (#215)

* Add description and tooltip to Tripo Refine model. (#218)

* Update.

* Fix rebase errors.

* Fix rebase errors.

* Update templates.

* Bump frontend.

* Add file type info for file inputs.

---------

Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: AustinMroz <austinmroz@utexas.edu>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Benjamin Lu <benceruleanlu@proton.me>
Co-authored-by: Andrew Kvochko <kvochko@users.noreply.github.com>
Co-authored-by: Pam <42671363+pamparamm@users.noreply.github.com>
Co-authored-by: chaObserv <154517000+chaObserv@users.noreply.github.com>
Co-authored-by: Yoland Yan <4950057+yoland68@users.noreply.github.com>
Co-authored-by: guill <guill@users.noreply.github.com>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Silver <65376327+silveroxides@users.noreply.github.com>
Co-authored-by: catboxanon <122327233+catboxanon@users.noreply.github.com>
Co-authored-by: liesen <liesen.dev@gmail.com>
Co-authored-by: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>
Co-authored-by: blepping <157360029+blepping@users.noreply.github.com>
Co-authored-by: Changrz <51637999+WhiteGiven@users.noreply.github.com>
Co-authored-by: WhiteGiven <c15838568211@163.com>
Co-authored-by: seed93 <liangding1990@163.com>
2025-05-27 03:00:58 -04:00
filtered
3a10b9641c [BugFix] Update frontend to 1.20.6 (#8296) 2025-05-27 02:47:06 -04:00
comfyanonymous
89a84e32d2 Disable initial GPU load when novram is used. (#8294) 2025-05-26 16:39:27 -04:00
comfyanonymous
e5799c4899 Enable pytorch attention by default on AMD gfx1151 (#8282) 2025-05-26 04:29:25 -04:00
comfyanonymous
a0651359d7 Return proper error if diffusion model not detected properly. (#8272) 2025-05-25 05:28:11 -04:00
comfyanonymous
ad3bd8aa49 ComfyUI version 0.3.36 2025-05-24 17:30:37 -04:00
comfyanonymous
5a87757ef9 Better error if sageattention is installed but a dependency is missing. (#8264) 2025-05-24 06:43:12 -04:00
Christian Byrne
464aece92b update frontend package to v1.20.5 (#8260) 2025-05-23 21:53:49 -07:00
comfyanonymous
0b50d4c0db Add argument to explicitly enable fp8 compute support. (#8257)
This can be used to test if your current GPU/pytorch version supports fp8 matrix mult in combination with --fast or the fp8_e4m3fn_fast dtype.
2025-05-23 17:43:50 -04:00
drhead
30b2eb8a93 create arange on-device (#8255) 2025-05-23 16:15:06 -04:00
comfyanonymous
f85c08df06 Make VACE conditionings stackable. (#8240) 2025-05-22 19:22:26 -04:00
comfyanonymous
4202e956a0 Add append feature to conditioning_set_values (#8239)
Refactor unclipconditioning node.
2025-05-22 08:11:13 -04:00
Terry Jia
b838c36720 remove mtl from 3d model file list (#8192) 2025-05-22 08:08:36 -04:00
Chenlei Hu
fc39184ea9 Update frontend to 1.20 (#8232) 2025-05-22 02:24:36 -04:00
kosinkadink1@gmail.com
8ae25235ec Merge branch 'master' into worksplit-multigpu 2025-05-21 12:01:27 -07:00
ComfyUI Wiki
ded60c33a0 Update templates to 0.1.18 (#8224) 2025-05-21 11:40:08 -07:00
Michael Abrahams
8bb858e4d3 Improve performance with large number of queued prompts (#8176)
* get_current_queue_volatile

* restore get_current_queue method

* remove extra import
2025-05-21 05:14:17 -04:00
编程界的小学生
57893c843f Code Optimization and Issues Fixes in ComfyUI server (#8196)
* Update server.py

* Update server.py
2025-05-21 04:59:42 -04:00
Jedrzej Kosinski
65da29aaa9 Make torch.compile LoRA/key-compatible (#8213)
* Make torch compile node use wrapper instead of object_patch for the entire diffusion_models object, allowing key assotiations on diffusion_models to not break (loras, getting attributes, etc.)

* Moved torch compile code into comfy_api so it can be used by custom nodes with a degree of confidence

* Refactor set_torch_compile_wrapper to support a list of keys instead of just diffusion_model, as well as additional torch.compile args

* remove unused import

* Moved torch compile kwargs to be stored in model_options instead of attachments; attachments are more intended for things to be 'persisted', AKA not deepcopied

* Add some comments

* Remove random line of code, not sure how it got there
2025-05-21 04:56:56 -04:00
Jedrzej Kosinski
9726eac475 Merge branch 'master' into worksplit-multigpu 2025-05-12 19:29:13 -05:00
Jedrzej Kosinski
272e8d42c1 Merge branch 'master' into worksplit-multigpu 2025-04-22 22:40:00 -05:00
Jedrzej Kosinski
6211d2be5a Merge branch 'master' into worksplit-multigpu 2025-04-19 17:36:23 -05:00
Jedrzej Kosinski
8be711715c Make unload_all_models account for all devices 2025-04-19 17:35:54 -05:00
Jedrzej Kosinski
b5cccf1325 Merge branch 'master' into worksplit-multigpu 2025-04-18 15:39:34 -05:00
Jedrzej Kosinski
2a54a904f4 Merge branch 'master' into worksplit-multigpu 2025-04-16 19:26:48 -05:00
Jedrzej Kosinski
ed6f92c975 Merge branch 'master' into worksplit-multigpu 2025-04-16 16:53:57 -05:00
Jedrzej Kosinski
adc66c0698 Merge branch 'master' into worksplit-multigpu 2025-04-16 14:23:56 -05:00
Jedrzej Kosinski
ccd5c01e5a Merge branch 'master' into worksplit-multigpu 2025-04-09 09:17:12 -05:00
Jedrzej Kosinski
2fa9affcc1 Merge branch 'master' into worksplit-multigpu 2025-04-08 22:52:17 -05:00
Jedrzej Kosinski
407a5a656f Rollback core of last commit due to weird behavior 2025-03-28 02:48:11 -05:00
kosinkadink1@gmail.com
9ce9ff8ef8 Allow chained MultiGPU Work Unit nodes to affect max_gpus present on ModelPatcher clone 2025-03-28 15:29:44 +08:00
Jedrzej Kosinski
63567c0ce8 Merge branch 'master' into worksplit-multigpu 2025-03-27 22:36:46 -05:00
Jedrzej Kosinski
a786ce5ead Merge branch 'master' into worksplit-multigpu 2025-03-26 22:26:26 -05:00
Jedrzej Kosinski
4879b47648 Merge branch 'master' into worksplit-multigpu 2025-03-18 22:19:32 -05:00
Jedrzej Kosinski
5ccec33c22 Merge branch 'worksplit-multigpu' of https://github.com/comfyanonymous/ComfyUI into worksplit-multigpu 2025-03-17 14:27:39 -05:00
Jedrzej Kosinski
219d3cd0d0 Merge branch 'master' into worksplit-multigpu 2025-03-17 14:26:35 -05:00
Jedrzej Kosinski
c4ba399475 Merge branch 'master' into worksplit-multigpu 2025-03-15 09:12:09 -05:00
Jedrzej Kosinski
cc928a786d Merge branch 'master' into worksplit-multigpu 2025-03-13 20:59:11 -05:00
Jedrzej Kosinski
6e144b98c4 Merge branch 'master' into worksplit-multigpu 2025-03-09 00:00:38 -06:00
Jedrzej Kosinski
6dca17bd2d Satisfy ruff linting 2025-03-03 23:08:29 -06:00
Jedrzej Kosinski
5080105c23 Merge branch 'master' into worksplit-multigpu 2025-03-03 22:56:53 -06:00
Jedrzej Kosinski
093914a247 Made MultiGPU Work Units node more robust by forcing ModelPatcher clones to match at sample time, reuse loaded MultiGPU clones, finalize MultiGPU Work Units node ID and name, small refactors/cleanup of logging and multigpu-related code 2025-03-03 22:56:13 -06:00
Jedrzej Kosinski
605893d3cf Merge branch 'master' into worksplit-multigpu 2025-02-24 19:23:16 -06:00
Jedrzej Kosinski
048f4f0b3a Merge branch 'master' into worksplit-multigpu 2025-02-17 19:35:58 -06:00
Jedrzej Kosinski
d2504fb701 Merge branch 'master' into worksplit-multigpu 2025-02-11 22:34:51 -06:00
Jedrzej Kosinski
b03763bca6 Merge branch 'multigpu_support' into worksplit-multigpu 2025-02-07 13:27:49 -06:00
Jedrzej Kosinski
476aa79b64 Let --cuda-device take in a string to allow multiple devices (or device order) to be chosen, print available devices on startup, potentially support MultiGPU Intel and Ascend setups 2025-02-06 08:44:07 -06:00
Jedrzej Kosinski
441cfd1a7a Merge branch 'master' into multigpu_support 2025-02-06 08:10:48 -06:00
Jedrzej Kosinski
99a5c1068a Merge branch 'master' into multigpu_support 2025-02-02 03:19:18 -06:00
Jedrzej Kosinski
02747cde7d Carry over change from _calc_cond_batch into _calc_cond_batch_multigpu 2025-01-29 11:10:23 -06:00
Jedrzej Kosinski
0b3233b4e2 Merge remote-tracking branch 'origin/master' into multigpu_support 2025-01-28 06:11:07 -06:00
Jedrzej Kosinski
eda866bf51 Extracted multigpu core code into multigpu.py, added load_balance_devices to get subdivision of work based on available devices and splittable work item count, added MultiGPU Options nodes to set relative_speed of specific devices; does not change behavior yet 2025-01-27 06:25:48 -06:00
Jedrzej Kosinski
e3298b84de Create proper MultiGPU Initialize node, create gpu_options to create scaffolding for asymmetrical GPU support 2025-01-26 09:34:20 -06:00
Jedrzej Kosinski
c7feef9060 Cast transformer_options for multigpu 2025-01-26 05:29:27 -06:00
Jedrzej Kosinski
51af7fa1b4 Fix multigpu ControlBase get_models and cleanup calls to avoid multiple calls of functions on multigpu_clones versions of controlnets 2025-01-25 06:05:01 -06:00
Jedrzej Kosinski
46969c380a Initial MultiGPU support for controlnets 2025-01-24 05:39:38 -06:00
Jedrzej Kosinski
5db4277449 Make sure additional_models are unloaded as well when perform 2025-01-23 19:06:05 -06:00
Jedrzej Kosinski
02a4d0ad7d Added unload_model_and_clones to model_management.py to allow unloading only relevant models 2025-01-23 01:20:00 -06:00
Jedrzej Kosinski
ef137ac0b6 Merge branch 'multigpu_support' of https://github.com/kosinkadink/ComfyUI into multigpu_support 2025-01-20 04:34:39 -06:00
Jedrzej Kosinski
328d4f16a9 Make WeightHooks compatible with MultiGPU, clean up some code 2025-01-20 04:34:26 -06:00
Jedrzej Kosinski
bdbcb85b8d Merge branch 'multigpu_support' of https://github.com/Kosinkadink/ComfyUI into multigpu_support 2025-01-20 00:51:42 -06:00
Jedrzej Kosinski
6c9e94bae7 Merge branch 'master' into multigpu_support 2025-01-20 00:51:37 -06:00
Jedrzej Kosinski
bfce723311 Initial work on multigpu_clone function, which will account for additional_models getting cloned 2025-01-17 03:31:28 -06:00
Jedrzej Kosinski
31f5458938 Merge branch 'master' into multigpu_support 2025-01-16 18:25:05 -06:00
Jedrzej Kosinski
2145a202eb Merge branch 'master' into multigpu_support 2025-01-15 19:58:28 -06:00
Jedrzej Kosinski
25818dc848 Added a 'max_gpus' input 2025-01-14 13:45:14 -06:00
Jedrzej Kosinski
198953cd08 Add nodes_multigpu.py to loaded nodes 2025-01-14 12:24:55 -06:00
Jedrzej Kosinski
ec16ee2f39 Merge branch 'master' into multigpu_support 2025-01-13 20:21:06 -06:00
Jedrzej Kosinski
d5088072fb Make test node for multigpu instead of storing it in just a local __init__.py 2025-01-13 20:20:25 -06:00
Jedrzej Kosinski
8d4b50158e Merge branch 'master' into multigpu_support 2025-01-11 20:16:42 -06:00
Jedrzej Kosinski
e88c6c03ff Fix cond_cat to not try to cast anything that doesn't have a 'to' function 2025-01-10 23:05:24 -06:00
Jedrzej Kosinski
d3cf2b7b24 Merge branch 'comfyanonymous:master' into multigpu_support 2025-01-10 20:24:37 -06:00
Jedrzej Kosinski
7448f02b7c Initial proof of concept of giving splitting cond sampling between multiple GPUs 2025-01-08 03:33:05 -06:00
Jedrzej Kosinski
871258aa72 Add get_all_torch_devices to get detected devices intended for current torch hardware device 2025-01-07 21:06:03 -06:00
Jedrzej Kosinski
66838ebd39 Merge branch 'comfyanonymous:master' into multigpu_support 2025-01-07 20:11:27 -06:00
Jedrzej Kosinski
7333281698 Clean up a typehint 2025-01-07 02:58:59 -06:00
Jedrzej Kosinski
3cd4c5cb0a Rename AddModelsHooks to AdditionalModelsHook, rename SetInjectionsHook to InjectionsHook (not yet implemented, but at least getting the naming figured out) 2025-01-07 02:22:49 -06:00
Jedrzej Kosinski
11c6d56037 Merge branch 'master' into hooks_part2 2025-01-07 01:01:53 -06:00
Jedrzej Kosinski
216fea15ee Made TransformerOptionsHook contribute to registered hooks properly, added some doc strings and removed a so-far unused variable 2025-01-07 00:59:18 -06:00
Jedrzej Kosinski
58bf8815c8 Add a get_injections function to ModelPatcher 2025-01-06 20:34:30 -06:00
Jedrzej Kosinski
1b38f5bf57 removed 4 whitespace lines to satisfy Ruff, 2025-01-06 17:11:12 -06:00
Jedrzej Kosinski
2724ac4a60 Merge branch 'master' into hooks_part2 2025-01-06 17:04:24 -06:00
Jedrzej Kosinski
f48f90e471 Make hook_scope functional for TransformerOptionsHook 2025-01-06 02:23:04 -06:00
Jedrzej Kosinski
6463c39ce0 Merge branch 'master' into hooks_part2 2025-01-06 01:28:26 -06:00
Jedrzej Kosinski
0a7e2ae787 Filter only registered hooks on self.conds in CFGGuider.sample 2025-01-06 01:04:29 -06:00
Jedrzej Kosinski
03a97b604a Fix performance of hooks when hooks are appended via Cond Pair Set Props nodes by properly caching between positive and negative conds, make hook_patches_backup behave as intended (in the case that something pre-registers WeightHooks on the ModelPatcher instead of registering it at sample time) 2025-01-06 01:03:59 -06:00
Jedrzej Kosinski
4446c86052 Made hook clone code sane, made clear ObjectPatchHook and SetInjectionsHook are not yet operational 2025-01-05 22:25:51 -06:00
Jedrzej Kosinski
8270ff312f Refactored 'registered' to be HookGroup instead of a list of Hooks, made AddModelsHook operational and compliant with should_register result, moved TransformerOptionsHook handling out of ModelPatcher.register_all_hook_patches, support patches in TransformerOptionsHook properly by casting any patches/wrappers/hooks to proper device at sample time 2025-01-05 21:07:02 -06:00
Jedrzej Kosinski
db2d7ad9ba Merge branch 'add_sample_sigmas' into hooks_part2 2025-01-05 15:45:13 -06:00
Jedrzej Kosinski
6620d86318 In inner_sample, change "sigmas" to "sampler_sigmas" in transformer_options to not conflict with the "sigmas" that will overwrite "sigmas" in _calc_cond_batch 2025-01-05 15:26:22 -06:00
Jedrzej Kosinski
111fd0cadf Refactored HookGroup to also store a dictionary of hooks separated by hook_type, modified necessary code to no longer need to manually separate out hooks by hook_type 2025-01-04 02:04:07 -06:00
Jedrzej Kosinski
776aa734e1 Refactor WrapperHook into TransformerOptionsHook, as there is no need to separate out Wrappers/Callbacks/Patches into different hook types (all affect transformer_options) 2025-01-04 01:02:21 -06:00
Jedrzej Kosinski
5a2ad032cb Cleaned up hooks.py, refactored Hook.should_register and add_hook_patches to use target_dict instead of target so that more information can be provided about the current execution environment if needed 2025-01-03 20:02:27 -06:00
Jedrzej Kosinski
d44295ef71 Merge branch 'master' into hooks_part2 2025-01-03 18:28:31 -06:00
Jedrzej Kosinski
bf21be066f Merge branch 'master' into hooks_part2 2024-12-30 14:16:22 -06:00
Jedrzej Kosinski
72bbf49349 Add 'sigmas' to transformer_options so that downstream code can know about the full scope of current sampling run, fix Hook Keyframes' guarantee_steps=1 inconsistent behavior with sampling split across different Sampling nodes/sampling runs by referencing 'sigmas' 2024-12-29 15:49:09 -06:00
51 changed files with 7637 additions and 3328 deletions

View File

@@ -5,20 +5,20 @@
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
# Python web server
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne

View File

@@ -205,6 +205,19 @@ comfyui-workflow-templates is not installed.
""".strip()
)
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""

View File

@@ -49,7 +49,7 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
parser.add_argument("--cuda-device", type=str, default=None, metavar="DEVICE_ID", help="Set the ids of cuda devices this instance will use.")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
@@ -88,6 +88,7 @@ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE"
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"

View File

@@ -24,6 +24,10 @@ class CONDRegular:
conds.append(x.cond)
return torch.cat(conds)
def size(self):
return list(self.cond.size())
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond
@@ -64,6 +68,7 @@ class CONDCrossAttn(CONDRegular):
out.append(c)
return torch.cat(out)
class CONDConstant(CONDRegular):
def __init__(self, cond):
self.cond = cond
@@ -78,3 +83,48 @@ class CONDConstant(CONDRegular):
def concat(self, others):
return self.cond
def size(self):
return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]

View File

@@ -15,13 +15,14 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import torch
from enum import Enum
import math
import os
import logging
import copy
import comfy.utils
import comfy.model_management
import comfy.model_detection
@@ -36,7 +37,7 @@ import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Union
if TYPE_CHECKING:
from comfy.hooks import HookGroup
@@ -63,6 +64,18 @@ class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlIsolation:
'''Temporarily set a ControlBase object's previous_controlnet to None to prevent cascading calls.'''
def __init__(self, control: ControlBase):
self.control = control
self.orig_previous_controlnet = control.previous_controlnet
def __enter__(self):
self.control.previous_controlnet = None
def __exit__(self, *args):
self.control.previous_controlnet = self.orig_previous_controlnet
class ControlBase:
def __init__(self):
self.cond_hint_original = None
@@ -76,7 +89,7 @@ class ControlBase:
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
self.previous_controlnet = None
self.previous_controlnet: Union[ControlBase, None] = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
self.concat_mask = False
@@ -84,6 +97,7 @@ class ControlBase:
self.extra_concat = None
self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a
self.multigpu_clones: dict[torch.device, ControlBase] = {}
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
@@ -110,17 +124,38 @@ class ControlBase:
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
for device_cnet in self.multigpu_clones.values():
with ControlIsolation(device_cnet):
device_cnet.cleanup()
self.cond_hint = None
self.extra_concat = None
self.timestep_range = None
def get_models(self):
out = []
for device_cnet in self.multigpu_clones.values():
out += device_cnet.get_models_only_self()
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def get_models_only_self(self):
'Calls get_models, but temporarily sets previous_controlnet to None.'
with ControlIsolation(self):
return self.get_models()
def get_instance_for_device(self, device):
'Returns instance of this Control object intended for selected device.'
return self.multigpu_clones.get(device, self)
def deepclone_multigpu(self, load_device, autoregister=False):
'''
Create deep clone of Control object where model(s) is set to other devices.
When autoregister is set to True, the deep clone is also added to multigpu_clones dict.
'''
raise NotImplementedError("Classes inheriting from ControlBase should define their own deepclone_multigpu funtion.")
def get_extra_hooks(self):
out = []
if self.extra_hooks is not None:
@@ -129,7 +164,7 @@ class ControlBase:
out += self.previous_controlnet.get_extra_hooks()
return out
def copy_to(self, c):
def copy_to(self, c: ControlBase):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
@@ -280,6 +315,14 @@ class ControlNet(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.control_model = copy.deepcopy(c.control_model)
c.control_model_wrapped = comfy.model_patcher.ModelPatcher(c.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
if autoregister:
self.multigpu_clones[load_device] = c
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
@@ -805,6 +848,14 @@ class T2IAdapter(ControlBase):
self.copy_to(c)
return c
def deepclone_multigpu(self, load_device, autoregister=False):
c = self.copy()
c.t2i_model = copy.deepcopy(c.t2i_model)
c.device = load_device
if autoregister:
self.multigpu_clones[load_device] = c
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8
upscale_algorithm = 'nearest-exact'

View File

@@ -80,15 +80,13 @@ class DoubleStreamBlock(nn.Module):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
@@ -102,12 +100,12 @@ class DoubleStreamBlock(nn.Module):
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
@@ -152,7 +150,7 @@ class SingleStreamBlock(nn.Module):
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
mod = vec
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
@@ -162,7 +160,7 @@ class SingleStreamBlock(nn.Module):
attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += mod.gate * output
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
@@ -178,6 +176,6 @@ class LastLayer(nn.Module):
shift, scale = vec
shift = shift.squeeze(1)
scale = scale.squeeze(1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
x = self.linear(x)
return x

View File

@@ -163,7 +163,7 @@ class Chroma(nn.Module):
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
# get all modulation index
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
# and we need to broadcast timestep and guidance along too

View File

@@ -20,8 +20,11 @@ if model_management.xformers_enabled():
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError:
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
except ModuleNotFoundError as e:
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():

View File

@@ -539,13 +539,20 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def forward(self, x, timestep, context, clip_fea=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if time_dim_concat is not None:
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
@@ -635,7 +642,7 @@ class VaceWanModel(WanModel):
t,
context,
vace_context,
vace_strength=1.0,
vace_strength,
clip_fea=None,
freqs=None,
transformer_options={},
@@ -661,8 +668,11 @@ class VaceWanModel(WanModel):
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
# arguments
x_orig = x
@@ -682,8 +692,9 @@ class VaceWanModel(WanModel):
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
c_skip, c = self.vace_blocks[ii](c, x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
# head
x = self.head(x, e)

View File

@@ -283,8 +283,9 @@ def model_lora_keys_unet(model, key_map={}):
for k in sdk:
if k.startswith("diffusion_model."):
if k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lycoris_{}".format(key_lora)] = k #SimpleTuner lycoris format
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
key_map["transformer.{}".format(key_lora)] = k #SimpleTuner regular format
if isinstance(model, comfy.model_base.ACEStep):
for k in sdk:

View File

@@ -135,6 +135,7 @@ class BaseModel(torch.nn.Module):
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@@ -167,6 +168,11 @@ class BaseModel(torch.nn.Module):
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
if isinstance(extra, list):
ex = []
for ext in extra:
ex.append(ext.to(dtype))
extra = ex
extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
@@ -325,19 +331,28 @@ class BaseModel(torch.nn.Module):
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image)
def memory_required(self, input_shape):
def memory_required(self, input_shape, cond_shapes={}):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked
area = input_shape[0] * math.prod(input_shape[2:])
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = input_shape[0] * math.prod(input_shape[2:])
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
def extra_conds_shapes(self, **kwargs):
return {}
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
adm_inputs = []
@@ -1047,6 +1062,11 @@ class WAN21(BaseModel):
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
time_dim_concat = kwargs.get("time_dim_concat", None)
if time_dim_concat is not None:
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
return out
@@ -1062,20 +1082,25 @@ class WAN21_Vace(WAN21):
vace_frames = kwargs.get("vace_frames", None)
if vace_frames is None:
noise_shape[1] = 32
vace_frames = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
for i in range(0, vace_frames.shape[1], 16):
vace_frames = vace_frames.clone()
vace_frames[:, i:i + 16] = self.process_latent_in(vace_frames[:, i:i + 16])
vace_frames = [torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)]
mask = kwargs.get("vace_mask", None)
if mask is None:
noise_shape[1] = 64
mask = torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)
mask = [torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)] * len(vace_frames)
out['vace_context'] = comfy.conds.CONDRegular(torch.cat([vace_frames.to(noise), mask.to(noise)], dim=1))
vace_frames_out = []
for j in range(len(vace_frames)):
vf = vace_frames[j].clone()
for i in range(0, vf.shape[1], 16):
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
vf = torch.cat([vf, mask[j]], dim=1)
vace_frames_out.append(vf)
vace_strength = kwargs.get("vace_strength", 1.0)
vace_frames = torch.stack(vace_frames_out, dim=1)
out['vace_context'] = comfy.conds.CONDRegular(vace_frames)
vace_strength = kwargs.get("vace_strength", [1.0] * len(vace_frames_out))
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
return out

View File

@@ -620,6 +620,9 @@ def convert_config(unet_config):
def unet_config_from_diffusers_unet(state_dict, dtype=None):
if "conv_in.weight" not in state_dict:
return None
match = {}
transformer_depth = []

View File

@@ -15,6 +15,7 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
from __future__ import annotations
import psutil
import logging
@@ -26,6 +27,10 @@ import platform
import weakref
import gc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
@@ -171,6 +176,25 @@ def get_torch_device():
else:
return torch.device(torch.cuda.current_device())
def get_all_torch_devices(exclude_current=False):
global cpu_state
devices = []
if cpu_state == CPUState.GPU:
if is_nvidia():
for i in range(torch.cuda.device_count()):
devices.append(torch.device(i))
elif is_intel_xpu():
for i in range(torch.xpu.device_count()):
devices.append(torch.device(i))
elif is_ascend_npu():
for i in range(torch.npu.device_count()):
devices.append(torch.device(i))
else:
devices.append(get_torch_device())
if exclude_current:
devices.remove(get_torch_device())
return devices
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
@@ -297,11 +321,16 @@ except:
try:
if is_amd():
try:
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
except:
rocm_version = (6, -1)
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches
if any((a in arch) for a in ["gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches
ENABLE_PYTORCH_ATTENTION = True
except:
pass
@@ -382,9 +411,13 @@ try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
try:
for device in get_all_torch_devices(exclude_current=True):
logging.info("Device: {}".format(get_torch_device_name(device)))
except:
pass
current_loaded_models = []
current_loaded_models: list[LoadedModel] = []
def module_size(module):
module_mem = 0
@@ -395,7 +428,7 @@ def module_size(module):
return module_mem
class LoadedModel:
def __init__(self, model):
def __init__(self, model: ModelPatcher):
self._set_model(model)
self.device = model.load_device
self.real_model = None
@@ -403,7 +436,7 @@ class LoadedModel:
self.model_finalizer = None
self._patcher_finalizer = None
def _set_model(self, model):
def _set_model(self, model: ModelPatcher):
self._model = weakref.ref(model)
if model.parent is not None:
self._parent_model = weakref.ref(model.parent)
@@ -695,7 +728,7 @@ def unet_inital_load_device(parameters, dtype):
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
if DISABLE_SMART_MEMORY or vram_state == VRAMState.NO_VRAM:
return cpu_dev
model_size = dtype_size(dtype) * parameters
@@ -1257,6 +1290,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
def supports_fp8_compute(device=None):
if args.supports_fp8_compute:
return True
if not is_nvidia():
return False
@@ -1292,8 +1328,34 @@ def soft_empty_cache(force=False):
torch.cuda.ipc_collect()
def unload_all_models():
free_memory(1e30, get_torch_device())
for device in get_all_torch_devices():
free_memory(1e30, device)
def unload_model_and_clones(model: ModelPatcher, unload_additional_models=True, all_devices=False):
'Unload only model and its clones - primarily for multigpu cloning purposes.'
initial_keep_loaded: list[LoadedModel] = current_loaded_models.copy()
additional_models = []
if unload_additional_models:
additional_models = model.get_nested_additional_models()
keep_loaded = []
for loaded_model in initial_keep_loaded:
if loaded_model.model is not None:
if model.clone_base_uuid == loaded_model.model.clone_base_uuid:
continue
# check additional models if they are a match
skip = False
for add_model in additional_models:
if add_model.clone_base_uuid == loaded_model.model.clone_base_uuid:
skip = True
break
if skip:
continue
keep_loaded.append(loaded_model)
if not all_devices:
free_memory(1e30, get_torch_device(), keep_loaded)
else:
for device in get_all_torch_devices():
free_memory(1e30, device, keep_loaded)
#TODO: might be cleaner to put this somewhere else
import threading

View File

@@ -84,12 +84,15 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
def create_model_options_clone(orig_model_options: dict):
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
def create_hook_patches_clone(orig_hook_patches):
def create_hook_patches_clone(orig_hook_patches, copy_tuples=False):
new_hook_patches = {}
for hook_ref in orig_hook_patches:
new_hook_patches[hook_ref] = {}
for k in orig_hook_patches[hook_ref]:
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
if copy_tuples:
for i in range(len(new_hook_patches[hook_ref][k])):
new_hook_patches[hook_ref][k][i] = tuple(new_hook_patches[hook_ref][k][i])
return new_hook_patches
def wipe_lowvram_weight(m):
@@ -240,6 +243,9 @@ class ModelPatcher:
self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0
@@ -318,18 +324,92 @@ class ModelPatcher:
n.is_clip = self.is_clip
n.hook_mode = self.hook_mode
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
callback(self, n)
return n
def deepclone_multigpu(self, new_load_device=None, models_cache: dict[uuid.UUID,ModelPatcher]=None):
logging.info(f"Creating deepclone of {self.model.__class__.__name__} for {new_load_device if new_load_device else self.load_device}.")
comfy.model_management.unload_model_and_clones(self)
n = self.clone()
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled
if models_cache is None:
models_cache = {}
for key, model_list in n.additional_models.items():
for i in range(len(model_list)):
add_model = n.additional_models[key][i]
if add_model.clone_base_uuid not in models_cache:
models_cache[add_model.clone_base_uuid] = add_model.deepclone_multigpu(new_load_device=new_load_device, models_cache=models_cache)
n.additional_models[key][i] = models_cache[add_model.clone_base_uuid]
for callback in self.get_all_callbacks(CallbacksMP.ON_DEEPCLONE_MULTIGPU):
callback(self, n)
return n
def match_multigpu_clones(self):
multigpu_models = self.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
new_multigpu_models = []
for mm in multigpu_models:
# clone main model, but bring over relevant props from existing multigpu clone
n = self.clone()
n.load_device = mm.load_device
n.backup = mm.backup
n.object_patches_backup = mm.object_patches_backup
n.hook_backup = mm.hook_backup
n.model = mm.model
n.is_multigpu_base_clone = mm.is_multigpu_base_clone
n.remove_additional_models("multigpu")
orig_additional_models: dict[str, list[ModelPatcher]] = comfy.patcher_extension.copy_nested_dicts(n.additional_models)
n.additional_models = comfy.patcher_extension.copy_nested_dicts(mm.additional_models)
# figure out which additional models are not present in multigpu clone
models_cache = {}
for mm_add_model in mm.get_additional_models():
models_cache[mm_add_model.clone_base_uuid] = mm_add_model
remove_models_uuids = set(list(models_cache.keys()))
for key, model_list in orig_additional_models.items():
for orig_add_model in model_list:
if orig_add_model.clone_base_uuid not in models_cache:
models_cache[orig_add_model.clone_base_uuid] = orig_add_model.deepclone_multigpu(new_load_device=n.load_device, models_cache=models_cache)
existing_list = n.get_additional_models_with_key(key)
existing_list.append(models_cache[orig_add_model.clone_base_uuid])
n.set_additional_models(key, existing_list)
if orig_add_model.clone_base_uuid in remove_models_uuids:
remove_models_uuids.remove(orig_add_model.clone_base_uuid)
# remove duplicate additional models
for key, model_list in n.additional_models.items():
new_model_list = [x for x in model_list if x.clone_base_uuid not in remove_models_uuids]
n.set_additional_models(key, new_model_list)
for callback in self.get_all_callbacks(CallbacksMP.ON_MATCH_MULTIGPU_CLONES):
callback(self, n)
new_multigpu_models.append(n)
self.set_additional_models("multigpu", new_multigpu_models)
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def clone_has_same_weights(self, clone: 'ModelPatcher'):
if not self.is_clone(clone):
return False
def clone_has_same_weights(self, clone: ModelPatcher, allow_multigpu=False):
if allow_multigpu:
if self.clone_base_uuid != clone.clone_base_uuid:
return False
else:
if not self.is_clone(clone):
return False
if self.current_hooks != clone.current_hooks:
return False
@@ -929,7 +1009,7 @@ class ModelPatcher:
return self.additional_models.get(key, [])
def get_additional_models(self):
all_models = []
all_models: list[ModelPatcher] = []
for models in self.additional_models.values():
all_models.extend(models)
return all_models
@@ -983,9 +1063,13 @@ class ModelPatcher:
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
callback(self)
def prepare_state(self, timestep):
def prepare_state(self, timestep, model_options, ignore_multigpu=False):
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
callback(self, timestep)
callback(self, timestep, model_options, ignore_multigpu)
if not ignore_multigpu and "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p.prepare_state(timestep, model_options, ignore_multigpu=True)
def restore_hook_patches(self):
if self.hook_patches_backup is not None:
@@ -998,12 +1082,18 @@ class ModelPatcher:
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0]
reset_current_hooks = False
multigpu_kf_changed_cache = None
transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling
if changed:
# cache changed for multigpu usage
if "multigpu_clones" in model_options:
if multigpu_kf_changed_cache is None:
multigpu_kf_changed_cache = []
multigpu_kf_changed_cache.append(hook)
# reset current_hooks if contains hook that changed
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
@@ -1015,6 +1105,28 @@ class ModelPatcher:
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
if "multigpu_clones" in model_options:
for p in model_options["multigpu_clones"].values():
p: ModelPatcher
p._handle_changed_hook_keyframes(multigpu_kf_changed_cache)
def _handle_changed_hook_keyframes(self, kf_changed_cache: list[comfy.hooks.Hook]):
'Used to handle multigpu behavior inside prepare_hook_patches_current_keyframe.'
if kf_changed_cache is None:
return
reset_current_hooks = False
# reset current_hooks if contains hook that changed
for hook in kf_changed_cache:
if self.current_hooks is not None:
for current_hook in self.current_hooks.hooks:
if current_hook == hook:
reset_current_hooks = True
break
for cached_group in list(self.cached_hook_patches.keys()):
if cached_group.contains(hook):
self.cached_hook_patches.pop(cached_group)
if reset_current_hooks:
self.patch_hooks(None)
def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None,
registered: comfy.hooks.HookGroup = None):

167
comfy/multigpu.py Normal file
View File

@@ -0,0 +1,167 @@
from __future__ import annotations
import torch
import logging
from collections import namedtuple
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.utils
import comfy.patcher_extension
import comfy.model_management
class GPUOptions:
def __init__(self, device_index: int, relative_speed: float):
self.device_index = device_index
self.relative_speed = relative_speed
def clone(self):
return GPUOptions(self.device_index, self.relative_speed)
def create_dict(self):
return {
"relative_speed": self.relative_speed
}
class GPUOptionsGroup:
def __init__(self):
self.options: dict[int, GPUOptions] = {}
def add(self, info: GPUOptions):
self.options[info.device_index] = info
def clone(self):
c = GPUOptionsGroup()
for opt in self.options.values():
c.add(opt)
return c
def register(self, model: ModelPatcher):
opts_dict = {}
# get devices that are valid for this model
devices: list[torch.device] = [model.load_device]
for extra_model in model.get_additional_models_with_key("multigpu"):
extra_model: ModelPatcher
devices.append(extra_model.load_device)
# create dictionary with actual device mapped to its GPUOptions
device_opts_list: list[GPUOptions] = []
for device in devices:
device_opts = self.options.get(device.index, GPUOptions(device_index=device.index, relative_speed=1.0))
opts_dict[device] = device_opts.create_dict()
device_opts_list.append(device_opts)
# make relative_speed relative to 1.0
min_speed = min([x.relative_speed for x in device_opts_list])
for value in opts_dict.values():
value['relative_speed'] /= min_speed
model.model_options['multigpu_options'] = opts_dict
def create_multigpu_deepclones(model: ModelPatcher, max_gpus: int, gpu_options: GPUOptionsGroup=None, reuse_loaded=False):
'Prepare ModelPatcher to contain deepclones of its BaseModel and related properties.'
model = model.clone()
# check if multigpu is already prepared - get the load devices from them if possible to exclude
skip_devices = set()
multigpu_models = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) > 0:
for mm in multigpu_models:
skip_devices.add(mm.load_device)
skip_devices = list(skip_devices)
full_extra_devices = comfy.model_management.get_all_torch_devices(exclude_current=True)
limit_extra_devices = full_extra_devices[:max_gpus-1]
extra_devices = limit_extra_devices.copy()
# exclude skipped devices
for skip in skip_devices:
if skip in extra_devices:
extra_devices.remove(skip)
# create new deepclones
if len(extra_devices) > 0:
for device in extra_devices:
device_patcher = None
if reuse_loaded:
# check if there are any ModelPatchers currently loaded that could be referenced here after a clone
loaded_models: list[ModelPatcher] = comfy.model_management.loaded_models()
for lm in loaded_models:
if lm.model is not None and lm.clone_base_uuid == model.clone_base_uuid and lm.load_device == device:
device_patcher = lm.clone()
logging.info(f"Reusing loaded deepclone of {device_patcher.model.__class__.__name__} for {device}")
break
if device_patcher is None:
device_patcher = model.deepclone_multigpu(new_load_device=device)
device_patcher.is_multigpu_base_clone = True
multigpu_models = model.get_additional_models_with_key("multigpu")
multigpu_models.append(device_patcher)
model.set_additional_models("multigpu", multigpu_models)
model.match_multigpu_clones()
if gpu_options is None:
gpu_options = GPUOptionsGroup()
gpu_options.register(model)
else:
logging.info("No extra torch devices need initialization, skipping initializing MultiGPU Work Units.")
# TODO: only keep model clones that don't go 'past' the intended max_gpu count
# multigpu_models = model.get_additional_models_with_key("multigpu")
# new_multigpu_models = []
# for m in multigpu_models:
# if m.load_device in limit_extra_devices:
# new_multigpu_models.append(m)
# model.set_additional_models("multigpu", new_multigpu_models)
# persist skip_devices for use in sampling code
# if len(skip_devices) > 0 or "multigpu_skip_devices" in model.model_options:
# model.model_options["multigpu_skip_devices"] = skip_devices
return model
LoadBalance = namedtuple('LoadBalance', ['work_per_device', 'idle_time'])
def load_balance_devices(model_options: dict[str], total_work: int, return_idle_time=False, work_normalized: int=None):
'Optimize work assigned to different devices, accounting for their relative speeds and splittable work.'
opts_dict = model_options['multigpu_options']
devices = list(model_options['multigpu_clones'].keys())
speed_per_device = []
work_per_device = []
# get sum of each device's relative_speed
total_speed = 0.0
for opts in opts_dict.values():
total_speed += opts['relative_speed']
# get relative work for each device;
# obtained by w = (W*r)/R
for device in devices:
relative_speed = opts_dict[device]['relative_speed']
relative_work = (total_work*relative_speed) / total_speed
speed_per_device.append(relative_speed)
work_per_device.append(relative_work)
# relative work must be expressed in whole numbers, but likely is a decimal;
# perform rounding while maintaining total sum equal to total work (sum of relative works)
work_per_device = round_preserved(work_per_device)
dict_work_per_device = {}
for device, relative_work in zip(devices, work_per_device):
dict_work_per_device[device] = relative_work
if not return_idle_time:
return LoadBalance(dict_work_per_device, None)
# divide relative work by relative speed to get estimated completion time of said work by each device;
# time here is relative and does not correspond to real-world units
completion_time = [w/r for w,r in zip(work_per_device, speed_per_device)]
# calculate relative time spent by the devices waiting on each other after their work is completed
idle_time = abs(min(completion_time) - max(completion_time))
# if need to compare work idle time, need to normalize to a common total work
if work_normalized:
idle_time *= (work_normalized/total_work)
return LoadBalance(dict_work_per_device, idle_time)
def round_preserved(values: list[float]):
'Round all values in a list, preserving the combined sum of values.'
# get floor of values; casting to int does it too
floored = [int(x) for x in values]
total_floored = sum(floored)
# get remainder to distribute
remainder = round(sum(values)) - total_floored
# pair values with fractional portions
fractional = [(i, x-floored[i]) for i, x in enumerate(values)]
# sort by fractional part in descending order
fractional.sort(key=lambda x: x[1], reverse=True)
# distribute the remainder
for i in range(remainder):
index = fractional[i][0]
floored[index] += 1
return floored

View File

@@ -3,6 +3,8 @@ from typing import Callable
class CallbacksMP:
ON_CLONE = "on_clone"
ON_DEEPCLONE_MULTIGPU = "on_deepclone_multigpu"
ON_MATCH_MULTIGPU_CLONES = "on_match_multigpu_clones"
ON_LOAD = "on_load_after"
ON_DETACH = "on_detach_after"
ON_CLEANUP = "on_cleanup"

View File

@@ -1,7 +1,11 @@
from __future__ import annotations
import torch
import uuid
import math
import collections
import comfy.model_management
import comfy.conds
import comfy.model_patcher
import comfy.utils
import comfy.hooks
import comfy.patcher_extension
@@ -104,6 +108,62 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'):
m.cleanup()
def preprocess_multigpu_conds(conds: dict[str, list[dict[str]]], model: ModelPatcher, model_options: dict[str]):
'''If multigpu acceleration required, creates deepclones of ControlNets and GLIGEN per device.'''
multigpu_models: list[ModelPatcher] = model.get_additional_models_with_key("multigpu")
if len(multigpu_models) == 0:
return
extra_devices = [x.load_device for x in multigpu_models]
# handle controlnets
controlnets: set[ControlBase] = set()
for k in conds:
for kk in conds[k]:
if 'control' in kk:
controlnets.add(kk['control'])
if len(controlnets) > 0:
# first, unload all controlnet clones
for cnet in list(controlnets):
cnet_models = cnet.get_models()
for cm in cnet_models:
comfy.model_management.unload_model_and_clones(cm, unload_additional_models=True)
# next, make sure each controlnet has a deepclone for all relevant devices
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
for device in extra_devices:
if device not in curr_cnet.multigpu_clones:
curr_cnet.deepclone_multigpu(device, autoregister=True)
curr_cnet = curr_cnet.previous_controlnet
# since all device clones are now present, recreate the linked list for cloned cnets per device
for cnet in controlnets:
curr_cnet = cnet
while curr_cnet is not None:
prev_cnet = curr_cnet.previous_controlnet
for device in extra_devices:
device_cnet = curr_cnet.get_instance_for_device(device)
prev_device_cnet = None
if prev_cnet is not None:
prev_device_cnet = prev_cnet.get_instance_for_device(device)
device_cnet.set_previous_controlnet(prev_device_cnet)
curr_cnet = prev_cnet
# potentially handle gligen - since not widely used, ignored for now
def estimate_memory(model, noise_shape, conds):
cond_shapes = collections.defaultdict(list)
cond_shapes_min = {}
for _, cs in conds.items():
for cond in cs:
for k, v in model.model.extra_conds_shapes(**cond).items():
cond_shapes[k].append(v)
if cond_shapes_min.get(k, None) is None:
cond_shapes_min[k] = [v]
elif math.prod(v) > math.prod(cond_shapes_min[k][0]):
cond_shapes_min[k] = [v]
memory_required = model.model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:]), cond_shapes=cond_shapes)
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
@@ -113,13 +173,13 @@ def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None
model.match_multigpu_clones()
preprocess_multigpu_conds(conds, model, model_options)
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
real_model = model.model
return real_model, conds, models
@@ -133,7 +193,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
'''
Registers hooks from conds.
'''
@@ -166,3 +226,18 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False)
return to_load_options
def prepare_model_patcher_multigpu_clones(model_patcher: ModelPatcher, loaded_models: list[ModelPatcher], model_options: dict):
'''
In case multigpu acceleration is enabled, prep ModelPatchers for each device.
'''
multigpu_patchers: list[ModelPatcher] = [x for x in loaded_models if x.is_multigpu_base_clone]
if len(multigpu_patchers) > 0:
multigpu_dict: dict[torch.device, ModelPatcher] = {}
multigpu_dict[model_patcher.load_device] = model_patcher
for x in multigpu_patchers:
x.hook_patches = comfy.model_patcher.create_hook_patches_clone(model_patcher.hook_patches, copy_tuples=True)
x.hook_mode = model_patcher.hook_mode # match main model's hook_mode
multigpu_dict[x.load_device] = x
model_options["multigpu_clones"] = multigpu_dict
return multigpu_patchers

View File

@@ -1,4 +1,6 @@
from __future__ import annotations
import comfy.model_management
from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc
from typing import TYPE_CHECKING, Callable, NamedTuple
@@ -18,6 +20,7 @@ import comfy.patcher_extension
import comfy.hooks
import scipy.stats
import numpy
import threading
def add_area_dims(area, num_dims):
@@ -140,7 +143,7 @@ def can_concat_cond(c1, c2):
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list):
def cond_cat(c_list, device=None):
temp = {}
for x in c_list:
for k in x:
@@ -152,6 +155,8 @@ def cond_cat(c_list):
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
if device is not None and hasattr(out[k], 'to'):
out[k] = out[k].to(device)
return out
@@ -205,7 +210,9 @@ def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Ten
)
return executor.execute(model, conds, x_in, timestep, model_options)
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
if 'multigpu_clones' in model_options:
return _calc_cond_batch_multigpu(model, conds, x_in, timestep, model_options)
out_conds = []
out_counts = []
# separate conds by matching hooks
@@ -237,7 +244,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep)
model.current_patcher.prepare_state(timestep, model_options)
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
@@ -256,7 +263,13 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
cond_shapes = collections.defaultdict(list)
for tt in batch_amount:
cond = {k: v.size() for k, v in to_run[tt][0].conditioning.items()}
for k, v in to_run[tt][0].conditioning.items():
cond_shapes[k].append(v.size())
if model.memory_required(input_shape, cond_shapes=cond_shapes) * 1.5 < free_memory:
to_batch = batch_amount
break
@@ -339,6 +352,190 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
return out_conds
def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
out_conds = []
out_counts = []
# separate conds by matching hooks
hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]] = {}
default_conds = []
has_default_conds = False
output_device = x_in.device
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
default_c = []
if cond is not None:
for x in cond:
if 'default' in x:
default_c.append(x)
has_default_conds = True
continue
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c)
if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep, model_options)
devices = [dev_m for dev_m in model_options['multigpu_clones'].keys()]
device_batched_hooked_to_run: dict[torch.device, list[tuple[comfy.hooks.HookGroup, tuple]]] = {}
total_conds = 0
for to_run in hooked_to_run.values():
total_conds += len(to_run)
conds_per_device = max(1, math.ceil(total_conds//len(devices)))
index_device = 0
current_device = devices[index_device]
# run every hooked_to_run separately
for hooks, to_run in hooked_to_run.items():
while len(to_run) > 0:
current_device = devices[index_device % len(devices)]
batched_to_run = device_batched_hooked_to_run.setdefault(current_device, [])
# keep track of conds currently scheduled onto this device
batched_to_run_length = 0
for btr in batched_to_run:
batched_to_run_length += len(btr[1])
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
# make sure not over conds_per_device limit when creating temp batch
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]) and len(to_batch_temp) < (conds_per_device - batched_to_run_length):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
conds_to_batch = []
for x in to_batch:
conds_to_batch.append(to_run.pop(x))
batched_to_run_length += len(conds_to_batch)
batched_to_run.append((hooks, conds_to_batch))
if batched_to_run_length >= conds_per_device:
index_device += 1
thread_result = collections.namedtuple('thread_result', ['output', 'mult', 'area', 'batch_chunks', 'cond_or_uncond'])
def _handle_batch(device: torch.device, batch_tuple: tuple[comfy.hooks.HookGroup, tuple], results: list[thread_result]):
model_current: BaseModel = model_options["multigpu_clones"][device].model
# run every hooked_to_run separately
with torch.no_grad():
for hooks, to_batch in batch_tuple:
input_x = []
mult = []
c = []
cond_or_uncond = []
uuids = []
area = []
control: ControlBase = None
patches = None
for x in to_batch:
o = x
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
uuids.append(p.uuid)
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x).to(device)
c = cond_cat(c, device=device)
timestep_ = torch.cat([timestep.to(device)] * batch_chunks)
transformer_options = model_current.current_patcher.apply_hooks(hooks=hooks)
if 'transformer_options' in model_options:
transformer_options = comfy.patcher_extension.merge_nested_dicts(transformer_options,
model_options['transformer_options'],
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device
cast_transformer_options(transformer_options, device=device)
c['transformer_options'] = transformer_options
if control is not None:
device_control = control.get_instance_for_device(device)
c['control'] = device_control.get_control(input_x, timestep_, c, len(cond_or_uncond), transformer_options)
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model_current.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).to(output_device).chunk(batch_chunks)
else:
output = model_current.apply_model(input_x, timestep_, **c).to(output_device).chunk(batch_chunks)
results.append(thread_result(output, mult, area, batch_chunks, cond_or_uncond))
results: list[thread_result] = []
threads: list[threading.Thread] = []
for device, batch_tuple in device_batched_hooked_to_run.items():
new_thread = threading.Thread(target=_handle_batch, args=(device, batch_tuple, results))
threads.append(new_thread)
new_thread.start()
for thread in threads:
thread.join()
for output, mult, area, batch_chunks, cond_or_uncond in results:
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)):
out_conds[i] /= out_counts[i]
return out_conds
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
@@ -636,6 +833,8 @@ def pre_run_control(model, conds):
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
if 'control' in x:
x['control'].pre_run(model, percent_to_timestep_function)
for device_cnet in x['control'].multigpu_clones.values():
device_cnet.pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []
@@ -878,7 +1077,9 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
to_load_options = model_options.get("to_load_options", None)
if to_load_options is None:
return
cast_transformer_options(to_load_options, device, dtype)
def cast_transformer_options(transformer_options: dict[str], device=None, dtype=None):
casts = []
if device is not None:
casts.append(device)
@@ -887,18 +1088,17 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
# if nothing to apply, do nothing
if len(casts) == 0:
return
# try to call .to on patches
if "patches" in to_load_options:
patches = to_load_options["patches"]
if "patches" in transformer_options:
patches = transformer_options["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
for cast in casts:
patch_list[i] = patch_list[i].to(cast)
if "patches_replace" in to_load_options:
patches = to_load_options["patches_replace"]
if "patches_replace" in transformer_options:
patches = transformer_options["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
@@ -908,8 +1108,8 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
# try to call .to on any wrappers/callbacks
wrappers_and_callbacks = ["wrappers", "callbacks"]
for wc_name in wrappers_and_callbacks:
if wc_name in to_load_options:
wc: dict[str, list] = to_load_options[wc_name]
if wc_name in transformer_options:
wc: dict[str, list] = transformer_options[wc_name]
for wc_dict in wc.values():
for wc_list in wc_dict.values():
for i in range(len(wc_list)):
@@ -917,7 +1117,6 @@ def cast_to_load_options(model_options: dict[str], device=None, dtype=None):
for cast in casts:
wc_list[i] = wc_list[i].to(cast)
class CFGGuider:
def __init__(self, model_patcher: ModelPatcher):
self.model_patcher = model_patcher
@@ -963,6 +1162,8 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device
multigpu_patchers = comfy.sampler_helpers.prepare_model_patcher_multigpu_clones(self.model_patcher, self.loaded_models, self.model_options)
if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
@@ -973,9 +1174,13 @@ class CFGGuider:
try:
self.model_patcher.pre_run()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
finally:
self.model_patcher.cleanup()
for multigpu_patcher in multigpu_patchers:
multigpu_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model

View File

@@ -1,25 +0,0 @@
{
"_name_or_path": "openai/clip-vit-large-patch14",
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 49407,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 248,
"model_type": "clip_text_model",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"projection_dim": 768,
"torch_dtype": "float32",
"transformers_version": "4.24.0",
"vocab_size": 49408
}

View File

@@ -0,0 +1,5 @@
from .torch_compile import set_torch_compile_wrapper
__all__ = [
"set_torch_compile_wrapper",
]

View File

@@ -0,0 +1,69 @@
from __future__ import annotations
import torch
import comfy.utils
from comfy.patcher_extension import WrappersMP
from typing import TYPE_CHECKING, Callable, Optional
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
from comfy.patcher_extension import WrapperExecutor
COMPILE_KEY = "torch.compile"
TORCH_COMPILE_KWARGS = "torch_compile_kwargs"
def apply_torch_compile_factory(compiled_module_dict: dict[str, Callable]) -> Callable:
'''
Create a wrapper that will refer to the compiled_diffusion_model.
'''
def apply_torch_compile_wrapper(executor: WrapperExecutor, *args, **kwargs):
try:
orig_modules = {}
for key, value in compiled_module_dict.items():
orig_modules[key] = comfy.utils.get_attr(executor.class_obj, key)
comfy.utils.set_attr(executor.class_obj, key, value)
return executor(*args, **kwargs)
finally:
for key, value in orig_modules.items():
comfy.utils.set_attr(executor.class_obj, key, value)
return apply_torch_compile_wrapper
def set_torch_compile_wrapper(model: ModelPatcher, backend: str, options: Optional[dict[str,str]]=None,
mode: Optional[str]=None, fullgraph=False, dynamic: Optional[bool]=None,
keys: list[str]=["diffusion_model"], *args, **kwargs):
'''
Perform torch.compile that will be applied at sample time for either the whole model or specific params of the BaseModel instance.
When keys is None, it will default to using ["diffusion_model"], compiling the whole diffusion_model.
When a list of keys is provided, it will perform torch.compile on only the selected modules.
'''
# clear out any other torch.compile wrappers
model.remove_wrappers_with_key(WrappersMP.APPLY_MODEL, COMPILE_KEY)
# if no keys, default to 'diffusion_model'
if not keys:
keys = ["diffusion_model"]
# create kwargs dict that can be referenced later
compile_kwargs = {
"backend": backend,
"options": options,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
# get a dict of compiled keys
compiled_modules = {}
for key in keys:
compiled_modules[key] = torch.compile(
model=model.get_model_object(key),
**compile_kwargs,
)
# add torch.compile wrapper
wrapper_func = apply_torch_compile_factory(
compiled_module_dict=compiled_modules,
)
# store wrapper to run on BaseModel's apply_model function
model.add_wrapper_with_key(WrappersMP.APPLY_MODEL, COMPILE_KEY, wrapper_func)
# keep compile kwargs for reference
model.model_options[TORCH_COMPILE_KWARGS] = compile_kwargs

View File

@@ -18,6 +18,8 @@ Follow the instructions [here](https://github.com/Comfy-Org/ComfyUI_frontend) to
python run main.py --comfy-api-base https://stagingapi.comfy.org
```
To authenticate to staging, please login and then ask one of Comfy Org team to whitelist you for access to staging.
API stubs are generated through automatic codegen tools from OpenAPI definitions. Since the Comfy Org OpenAPI definition contains many things from the Comfy Registry as well, we use redocly/cli to filter out only the paths relevant for API nodes.
### Redocly Instructions
@@ -28,7 +30,7 @@ When developing locally, use the `redocly-dev.yaml` file to generate pydantic mo
Before your API node PR merges, make sure to add the `Released` tag to the `openapi.yaml` file and test in staging.
```bash
# Download the OpenAPI file from prod server.
# Download the OpenAPI file from staging server.
curl -o openapi.yaml https://stagingapi.comfy.org/openapi
# Filter out unneeded API definitions.
@@ -39,3 +41,25 @@ redocly bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_no
datamodel-codegen --use-subclass-enum --field-constraints --strict-types bytes --input filtered-openapi.yaml --output comfy_api_nodes/apis/__init__.py --output-model-type pydantic_v2.BaseModel
```
# Merging to Master
Before merging to comfyanonymous/ComfyUI master, follow these steps:
1. Add the "Released" tag to the ComfyUI OpenAPI yaml file for each endpoint you are using in the nodes.
1. Make sure the ComfyUI API is deployed to prod with your changes.
1. Run the code generation again with `redocly.yaml` and the production OpenAPI yaml file.
```bash
# Download the OpenAPI file from prod server.
curl -o openapi.yaml https://api.comfy.org/openapi
# Filter out unneeded API definitions.
npm install -g @redocly/cli
redocly bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
# Generate the pydantic datamodels for validation.
datamodel-codegen --use-subclass-enum --field-constraints --strict-types bytes --input filtered-openapi.yaml --output comfy_api_nodes/apis/__init__.py --output-model-type pydantic_v2.BaseModel
```

View File

@@ -1,6 +1,7 @@
from __future__ import annotations
import io
import logging
import mimetypes
from typing import Optional, Union
from comfy.utils import common_upscale
from comfy_api.input_impl import VideoFromFile
@@ -214,6 +215,7 @@ def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor:
image_bytesio = download_url_to_bytesio(url, timeout)
return bytesio_to_image_tensor(image_bytesio)
def process_image_response(response: requests.Response) -> torch.Tensor:
"""Uses content from a Response object and converts it to a torch.Tensor"""
return bytesio_to_image_tensor(BytesIO(response.content))
@@ -318,11 +320,27 @@ def tensor_to_data_uri(
return f"data:{mime_type};base64,{base64_string}"
def text_filepath_to_base64_string(filepath: str) -> str:
"""Converts a text file to a base64 string."""
with open(filepath, "rb") as f:
file_content = f.read()
return base64.b64encode(file_content).decode("utf-8")
def text_filepath_to_data_uri(filepath: str) -> str:
"""Converts a text file to a data URI."""
base64_string = text_filepath_to_base64_string(filepath)
mime_type, _ = mimetypes.guess_type(filepath)
if mime_type is None:
mime_type = "application/octet-stream"
return f"data:{mime_type};base64,{base64_string}"
def upload_file_to_comfyapi(
file_bytes_io: BytesIO,
filename: str,
upload_mime_type: str,
auth_kwargs: Optional[dict[str,str]] = None,
auth_kwargs: Optional[dict[str, str]] = None,
) -> str:
"""
Uploads a single file to ComfyUI API and returns its download URL.
@@ -357,9 +375,33 @@ def upload_file_to_comfyapi(
return response.download_url
def video_to_base64_string(
video: VideoInput,
container_format: VideoContainer = None,
codec: VideoCodec = None
) -> str:
"""
Converts a video input to a base64 string.
Args:
video: The video input to convert
container_format: Optional container format to use (defaults to video.container if available)
codec: Optional codec to use (defaults to video.codec if available)
"""
video_bytes_io = io.BytesIO()
# Use provided format/codec if specified, otherwise use video's own if available
format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4)
codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264)
video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use)
video_bytes_io.seek(0)
return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8")
def upload_video_to_comfyapi(
video: VideoInput,
auth_kwargs: Optional[dict[str,str]] = None,
auth_kwargs: Optional[dict[str, str]] = None,
container: VideoContainer = VideoContainer.MP4,
codec: VideoCodec = VideoCodec.H264,
max_duration: Optional[int] = None,
@@ -461,7 +503,7 @@ def audio_ndarray_to_bytesio(
def upload_audio_to_comfyapi(
audio: AudioInput,
auth_kwargs: Optional[dict[str,str]] = None,
auth_kwargs: Optional[dict[str, str]] = None,
container_format: str = "mp4",
codec_name: str = "aac",
mime_type: str = "audio/mp4",
@@ -488,8 +530,25 @@ def upload_audio_to_comfyapi(
return upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs)
def audio_to_base64_string(
audio: AudioInput, container_format: str = "mp4", codec_name: str = "aac"
) -> str:
"""Converts an audio input to a base64 string."""
sample_rate: int = audio["sample_rate"]
waveform: torch.Tensor = audio["waveform"]
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
audio_bytes_io = audio_ndarray_to_bytesio(
audio_data_np, sample_rate, container_format, codec_name
)
audio_bytes = audio_bytes_io.getvalue()
return base64.b64encode(audio_bytes).decode("utf-8")
def upload_images_to_comfyapi(
image: torch.Tensor, max_images=8, auth_kwargs: Optional[dict[str,str]] = None, mime_type: Optional[str] = None
image: torch.Tensor,
max_images=8,
auth_kwargs: Optional[dict[str, str]] = None,
mime_type: Optional[str] = None,
) -> list[str]:
"""
Uploads images to ComfyUI API and returns download URLs.
@@ -554,17 +613,24 @@ def upload_images_to_comfyapi(
return download_urls
def resize_mask_to_image(mask: torch.Tensor, image: torch.Tensor,
upscale_method="nearest-exact", crop="disabled",
allow_gradient=True, add_channel_dim=False):
def resize_mask_to_image(
mask: torch.Tensor,
image: torch.Tensor,
upscale_method="nearest-exact",
crop="disabled",
allow_gradient=True,
add_channel_dim=False,
):
"""
Resize mask to be the same dimensions as an image, while maintaining proper format for API calls.
"""
_, H, W, _ = image.shape
mask = mask.unsqueeze(-1)
mask = mask.movedim(-1,1)
mask = common_upscale(mask, width=W, height=H, upscale_method=upscale_method, crop=crop)
mask = mask.movedim(1,-1)
mask = mask.movedim(-1, 1)
mask = common_upscale(
mask, width=W, height=H, upscale_method=upscale_method, crop=crop
)
mask = mask.movedim(1, -1)
if not add_channel_dim:
mask = mask.squeeze(-1)
if not allow_gradient:
@@ -572,12 +638,41 @@ def resize_mask_to_image(mask: torch.Tensor, image: torch.Tensor,
return mask
def validate_string(string: str, strip_whitespace=True, field_name="prompt", min_length=None, max_length=None):
def validate_string(
string: str,
strip_whitespace=True,
field_name="prompt",
min_length=None,
max_length=None,
):
if string is None:
raise Exception(f"Field '{field_name}' cannot be empty.")
if strip_whitespace:
string = string.strip()
if min_length and len(string) < min_length:
raise Exception(f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long.")
raise Exception(
f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long."
)
if max_length and len(string) > max_length:
raise Exception(f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long.")
if not string:
raise Exception(f"Field '{field_name}' cannot be empty.")
raise Exception(
f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long."
)
def image_tensor_pair_to_batch(
image1: torch.Tensor, image2: torch.Tensor
) -> torch.Tensor:
"""
Converts a pair of image tensors to a batch tensor.
If the images are not the same size, the smaller image is resized to
match the larger image.
"""
if image1.shape[1:] != image2.shape[1:]:
image2 = common_upscale(
image2.movedim(-1, 1),
image1.shape[2],
image1.shape[1],
"bilinear",
"center",
).movedim(1, -1)
return torch.cat((image1, image2), dim=0)

File diff suppressed because it is too large Load Diff

View File

@@ -108,6 +108,24 @@ class BFLFluxProGenerateRequest(BaseModel):
# )
class BFLFluxKontextProGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for what you wannt to edit.')
input_image: Optional[str] = Field(None, description='Image to edit in base64 format')
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
guidance: confloat(ge=0.1, le=99.0) = Field(..., description='Guidance strength for the image generation process')
steps: conint(ge=1, le=150) = Field(..., description='Number of steps for the image generation process')
safety_tolerance: Optional[conint(ge=0, le=2)] = Field(
2, description='Tolerance level for input and output moderation. Between 0 and 2, 0 being most strict, 6 being least strict. Defaults to 2.'
)
output_format: Optional[BFLOutputFormat] = Field(
BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png']
)
aspect_ratio: Optional[str] = Field(None, description='Aspect ratio of the image between 21:9 and 9:21.')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.'
)
class BFLFluxProUltraGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for image generation.')
prompt_upsampling: Optional[bool] = Field(

View File

@@ -139,7 +139,7 @@ class EmptyRequest(BaseModel):
class UploadRequest(BaseModel):
file_name: str = Field(..., description="Filename to upload")
content_type: str | None = Field(
content_type: Optional[str] = Field(
None,
description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.",
)
@@ -327,7 +327,9 @@ class ApiClient:
ApiServerError: If the API server is unreachable but internet is working
Exception: For other request failures
"""
url = urljoin(self.base_url, path)
# Use urljoin but ensure path is relative to avoid absolute path behavior
relative_path = path.lstrip('/')
url = urljoin(self.base_url, relative_path)
self.check_auth(self.auth_token, self.comfy_api_key)
# Combine default headers with any provided headers
request_headers = self.get_headers()

View File

@@ -0,0 +1,57 @@
from __future__ import annotations
from enum import Enum
from typing import Optional, List
from pydantic import BaseModel, Field
class Rodin3DGenerateRequest(BaseModel):
seed: int = Field(..., description="seed_")
tier: str = Field(..., description="Tier of generation.")
material: str = Field(..., description="The material type.")
quality: str = Field(..., description="The generation quality of the mesh.")
mesh_mode: str = Field(..., description="It controls the type of faces of generated models.")
class GenerateJobsData(BaseModel):
uuids: List[str] = Field(..., description="str LIST")
subscription_key: str = Field(..., description="subscription key")
class Rodin3DGenerateResponse(BaseModel):
message: Optional[str] = Field(None, description="Return message.")
prompt: Optional[str] = Field(None, description="Generated Prompt from image.")
submit_time: Optional[str] = Field(None, description="Submit Time")
uuid: Optional[str] = Field(None, description="Task str")
jobs: Optional[GenerateJobsData] = Field(None, description="Details of jobs")
class JobStatus(str, Enum):
"""
Status for jobs
"""
Done = "Done"
Failed = "Failed"
Generating = "Generating"
Waiting = "Waiting"
class Rodin3DCheckStatusRequest(BaseModel):
subscription_key: str = Field(..., description="subscription from generate endpoint")
class JobItem(BaseModel):
uuid: str = Field(..., description="uuid")
status: JobStatus = Field(...,description="Status Currently")
class Rodin3DCheckStatusResponse(BaseModel):
jobs: List[JobItem] = Field(..., description="Job status List")
class Rodin3DDownloadRequest(BaseModel):
task_uuid: str = Field(..., description="Task str")
class RodinResourceItem(BaseModel):
url: str = Field(..., description="Download Url")
name: str = Field(..., description="File name with ext")
class Rodin3DDownloadResponse(BaseModel):
list: List[RodinResourceItem] = Field(..., description="Source List")

View File

@@ -0,0 +1,275 @@
from __future__ import annotations
from comfy_api_nodes.apis import (
TripoModelVersion,
TripoTextureQuality,
)
from enum import Enum
from typing import Optional, List, Dict, Any, Union
from pydantic import BaseModel, Field, RootModel
class TripoStyle(str, Enum):
PERSON_TO_CARTOON = "person:person2cartoon"
ANIMAL_VENOM = "animal:venom"
OBJECT_CLAY = "object:clay"
OBJECT_STEAMPUNK = "object:steampunk"
OBJECT_CHRISTMAS = "object:christmas"
OBJECT_BARBIE = "object:barbie"
GOLD = "gold"
ANCIENT_BRONZE = "ancient_bronze"
NONE = "None"
class TripoTaskType(str, Enum):
TEXT_TO_MODEL = "text_to_model"
IMAGE_TO_MODEL = "image_to_model"
MULTIVIEW_TO_MODEL = "multiview_to_model"
TEXTURE_MODEL = "texture_model"
REFINE_MODEL = "refine_model"
ANIMATE_PRERIGCHECK = "animate_prerigcheck"
ANIMATE_RIG = "animate_rig"
ANIMATE_RETARGET = "animate_retarget"
STYLIZE_MODEL = "stylize_model"
CONVERT_MODEL = "convert_model"
class TripoTextureAlignment(str, Enum):
ORIGINAL_IMAGE = "original_image"
GEOMETRY = "geometry"
class TripoOrientation(str, Enum):
ALIGN_IMAGE = "align_image"
DEFAULT = "default"
class TripoOutFormat(str, Enum):
GLB = "glb"
FBX = "fbx"
class TripoTopology(str, Enum):
BIP = "bip"
QUAD = "quad"
class TripoSpec(str, Enum):
MIXAMO = "mixamo"
TRIPO = "tripo"
class TripoAnimation(str, Enum):
IDLE = "preset:idle"
WALK = "preset:walk"
CLIMB = "preset:climb"
JUMP = "preset:jump"
RUN = "preset:run"
SLASH = "preset:slash"
SHOOT = "preset:shoot"
HURT = "preset:hurt"
FALL = "preset:fall"
TURN = "preset:turn"
class TripoStylizeStyle(str, Enum):
LEGO = "lego"
VOXEL = "voxel"
VORONOI = "voronoi"
MINECRAFT = "minecraft"
class TripoConvertFormat(str, Enum):
GLTF = "GLTF"
USDZ = "USDZ"
FBX = "FBX"
OBJ = "OBJ"
STL = "STL"
_3MF = "3MF"
class TripoTextureFormat(str, Enum):
BMP = "BMP"
DPX = "DPX"
HDR = "HDR"
JPEG = "JPEG"
OPEN_EXR = "OPEN_EXR"
PNG = "PNG"
TARGA = "TARGA"
TIFF = "TIFF"
WEBP = "WEBP"
class TripoTaskStatus(str, Enum):
QUEUED = "queued"
RUNNING = "running"
SUCCESS = "success"
FAILED = "failed"
CANCELLED = "cancelled"
UNKNOWN = "unknown"
BANNED = "banned"
EXPIRED = "expired"
class TripoFileTokenReference(BaseModel):
type: Optional[str] = Field(None, description='The type of the reference')
file_token: str
class TripoUrlReference(BaseModel):
type: Optional[str] = Field(None, description='The type of the reference')
url: str
class TripoObjectStorage(BaseModel):
bucket: str
key: str
class TripoObjectReference(BaseModel):
type: str
object: TripoObjectStorage
class TripoFileEmptyReference(BaseModel):
pass
class TripoFileReference(RootModel):
root: Union[TripoFileTokenReference, TripoUrlReference, TripoObjectReference, TripoFileEmptyReference]
class TripoGetStsTokenRequest(BaseModel):
format: str = Field(..., description='The format of the image')
class TripoTextToModelRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.TEXT_TO_MODEL, description='Type of task')
prompt: str = Field(..., description='The text prompt describing the model to generate', max_length=1024)
negative_prompt: Optional[str] = Field(None, description='The negative text prompt', max_length=1024)
model_version: Optional[TripoModelVersion] = TripoModelVersion.V2_5
face_limit: Optional[int] = Field(None, description='The number of faces to limit the generation to')
texture: Optional[bool] = Field(True, description='Whether to apply texture to the generated model')
pbr: Optional[bool] = Field(True, description='Whether to apply PBR to the generated model')
image_seed: Optional[int] = Field(None, description='The seed for the text')
model_seed: Optional[int] = Field(None, description='The seed for the model')
texture_seed: Optional[int] = Field(None, description='The seed for the texture')
texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard
style: Optional[TripoStyle] = None
auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model')
quad: Optional[bool] = Field(False, description='Whether to apply quad to the generated model')
class TripoImageToModelRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.IMAGE_TO_MODEL, description='Type of task')
file: TripoFileReference = Field(..., description='The file reference to convert to a model')
model_version: Optional[TripoModelVersion] = Field(None, description='The model version to use for generation')
face_limit: Optional[int] = Field(None, description='The number of faces to limit the generation to')
texture: Optional[bool] = Field(True, description='Whether to apply texture to the generated model')
pbr: Optional[bool] = Field(True, description='Whether to apply PBR to the generated model')
model_seed: Optional[int] = Field(None, description='The seed for the model')
texture_seed: Optional[int] = Field(None, description='The seed for the texture')
texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard
texture_alignment: Optional[TripoTextureAlignment] = Field(TripoTextureAlignment.ORIGINAL_IMAGE, description='The texture alignment method')
style: Optional[TripoStyle] = Field(None, description='The style to apply to the generated model')
auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model')
orientation: Optional[TripoOrientation] = TripoOrientation.DEFAULT
quad: Optional[bool] = Field(False, description='Whether to apply quad to the generated model')
class TripoMultiviewToModelRequest(BaseModel):
type: TripoTaskType = TripoTaskType.MULTIVIEW_TO_MODEL
files: List[TripoFileReference] = Field(..., description='The file references to convert to a model')
model_version: Optional[TripoModelVersion] = Field(None, description='The model version to use for generation')
orthographic_projection: Optional[bool] = Field(False, description='Whether to use orthographic projection')
face_limit: Optional[int] = Field(None, description='The number of faces to limit the generation to')
texture: Optional[bool] = Field(True, description='Whether to apply texture to the generated model')
pbr: Optional[bool] = Field(True, description='Whether to apply PBR to the generated model')
model_seed: Optional[int] = Field(None, description='The seed for the model')
texture_seed: Optional[int] = Field(None, description='The seed for the texture')
texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard
texture_alignment: Optional[TripoTextureAlignment] = TripoTextureAlignment.ORIGINAL_IMAGE
auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model')
orientation: Optional[TripoOrientation] = Field(TripoOrientation.DEFAULT, description='The orientation for the model')
quad: Optional[bool] = Field(False, description='Whether to apply quad to the generated model')
class TripoTextureModelRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.TEXTURE_MODEL, description='Type of task')
original_model_task_id: str = Field(..., description='The task ID of the original model')
texture: Optional[bool] = Field(True, description='Whether to apply texture to the model')
pbr: Optional[bool] = Field(True, description='Whether to apply PBR to the model')
model_seed: Optional[int] = Field(None, description='The seed for the model')
texture_seed: Optional[int] = Field(None, description='The seed for the texture')
texture_quality: Optional[TripoTextureQuality] = Field(None, description='The quality of the texture')
texture_alignment: Optional[TripoTextureAlignment] = Field(TripoTextureAlignment.ORIGINAL_IMAGE, description='The texture alignment method')
class TripoRefineModelRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.REFINE_MODEL, description='Type of task')
draft_model_task_id: str = Field(..., description='The task ID of the draft model')
class TripoAnimatePrerigcheckRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.ANIMATE_PRERIGCHECK, description='Type of task')
original_model_task_id: str = Field(..., description='The task ID of the original model')
class TripoAnimateRigRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.ANIMATE_RIG, description='Type of task')
original_model_task_id: str = Field(..., description='The task ID of the original model')
out_format: Optional[TripoOutFormat] = Field(TripoOutFormat.GLB, description='The output format')
spec: Optional[TripoSpec] = Field(TripoSpec.TRIPO, description='The specification for rigging')
class TripoAnimateRetargetRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.ANIMATE_RETARGET, description='Type of task')
original_model_task_id: str = Field(..., description='The task ID of the original model')
animation: TripoAnimation = Field(..., description='The animation to apply')
out_format: Optional[TripoOutFormat] = Field(TripoOutFormat.GLB, description='The output format')
bake_animation: Optional[bool] = Field(True, description='Whether to bake the animation')
class TripoStylizeModelRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.STYLIZE_MODEL, description='Type of task')
style: TripoStylizeStyle = Field(..., description='The style to apply to the model')
original_model_task_id: str = Field(..., description='The task ID of the original model')
block_size: Optional[int] = Field(80, description='The block size for stylization')
class TripoConvertModelRequest(BaseModel):
type: TripoTaskType = Field(TripoTaskType.CONVERT_MODEL, description='Type of task')
format: TripoConvertFormat = Field(..., description='The format to convert to')
original_model_task_id: str = Field(..., description='The task ID of the original model')
quad: Optional[bool] = Field(False, description='Whether to apply quad to the model')
force_symmetry: Optional[bool] = Field(False, description='Whether to force symmetry')
face_limit: Optional[int] = Field(10000, description='The number of faces to limit the conversion to')
flatten_bottom: Optional[bool] = Field(False, description='Whether to flatten the bottom of the model')
flatten_bottom_threshold: Optional[float] = Field(0.01, description='The threshold for flattening the bottom')
texture_size: Optional[int] = Field(4096, description='The size of the texture')
texture_format: Optional[TripoTextureFormat] = Field(TripoTextureFormat.JPEG, description='The format of the texture')
pivot_to_center_bottom: Optional[bool] = Field(False, description='Whether to pivot to the center bottom')
class TripoTaskRequest(RootModel):
root: Union[
TripoTextToModelRequest,
TripoImageToModelRequest,
TripoMultiviewToModelRequest,
TripoTextureModelRequest,
TripoRefineModelRequest,
TripoAnimatePrerigcheckRequest,
TripoAnimateRigRequest,
TripoAnimateRetargetRequest,
TripoStylizeModelRequest,
TripoConvertModelRequest
]
class TripoTaskOutput(BaseModel):
model: Optional[str] = Field(None, description='URL to the model')
base_model: Optional[str] = Field(None, description='URL to the base model')
pbr_model: Optional[str] = Field(None, description='URL to the PBR model')
rendered_image: Optional[str] = Field(None, description='URL to the rendered image')
riggable: Optional[bool] = Field(None, description='Whether the model is riggable')
class TripoTask(BaseModel):
task_id: str = Field(..., description='The task ID')
type: Optional[str] = Field(None, description='The type of task')
status: Optional[TripoTaskStatus] = Field(None, description='The status of the task')
input: Optional[Dict[str, Any]] = Field(None, description='The input parameters for the task')
output: Optional[TripoTaskOutput] = Field(None, description='The output of the task')
progress: Optional[int] = Field(None, description='The progress of the task', ge=0, le=100)
create_time: Optional[int] = Field(None, description='The creation time of the task')
running_left_time: Optional[int] = Field(None, description='The estimated time left for the task')
queue_position: Optional[int] = Field(None, description='The position in the queue')
class TripoTaskResponse(BaseModel):
code: int = Field(0, description='The response code')
data: TripoTask = Field(..., description='The task data')
class TripoGeneralResponse(BaseModel):
code: int = Field(0, description='The response code')
data: Dict[str, str] = Field(..., description='The task ID data')
class TripoBalanceData(BaseModel):
balance: float = Field(..., description='The account balance')
frozen: float = Field(..., description='The frozen balance')
class TripoBalanceResponse(BaseModel):
code: int = Field(0, description='The response code')
data: TripoBalanceData = Field(..., description='The balance data')
class TripoErrorResponse(BaseModel):
code: int = Field(..., description='The error code')
message: str = Field(..., description='The error message')
suggestion: str = Field(..., description='The suggestion for fixing the error')

View File

@@ -1,6 +1,6 @@
import io
from inspect import cleandoc
from typing import Union
from typing import Union, Optional
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api_nodes.apis.bfl_api import (
BFLStatus,
@@ -9,6 +9,7 @@ from comfy_api_nodes.apis.bfl_api import (
BFLFluxCannyImageRequest,
BFLFluxDepthImageRequest,
BFLFluxProGenerateRequest,
BFLFluxKontextProGenerateRequest,
BFLFluxProUltraGenerateRequest,
BFLFluxProGenerateResponse,
)
@@ -269,6 +270,158 @@ class FluxProUltraImageNode(ComfyNodeABC):
return (output_image,)
class FluxKontextProImageNode(ComfyNodeABC):
"""
Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio.
"""
MINIMUM_RATIO = 1 / 4
MAXIMUM_RATIO = 4 / 1
MINIMUM_RATIO_STR = "1:4"
MAXIMUM_RATIO_STR = "4:1"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation - specify what and how to edit.",
},
),
"aspect_ratio": (
IO.STRING,
{
"default": "16:9",
"tooltip": "Aspect ratio of image; must be between 1:4 and 4:1.",
},
),
"guidance": (
IO.FLOAT,
{
"default": 3.0,
"min": 0.1,
"max": 99.0,
"step": 0.1,
"tooltip": "Guidance strength for the image generation process"
},
),
"steps": (
IO.INT,
{
"default": 50,
"min": 1,
"max": 150,
"tooltip": "Number of steps for the image generation process"
},
),
"seed": (
IO.INT,
{
"default": 1234,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
"prompt_upsampling": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).",
},
),
},
"optional": {
"input_image": (IO.IMAGE,),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
@classmethod
def VALIDATE_INPUTS(cls, aspect_ratio: str):
try:
validate_aspect_ratio(
aspect_ratio,
minimum_ratio=cls.MINIMUM_RATIO,
maximum_ratio=cls.MAXIMUM_RATIO,
minimum_ratio_str=cls.MINIMUM_RATIO_STR,
maximum_ratio_str=cls.MAXIMUM_RATIO_STR,
)
except Exception as e:
return str(e)
return True
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/BFL"
BFL_PATH = "/proxy/bfl/flux-kontext-pro/generate"
def api_call(
self,
prompt: str,
aspect_ratio: str,
guidance: float,
steps: int,
input_image: Optional[torch.Tensor]=None,
seed=0,
prompt_upsampling=False,
unique_id: Union[str, None] = None,
**kwargs,
):
if input_image is None:
validate_string(prompt, strip_whitespace=False)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=self.BFL_PATH,
method=HttpMethod.POST,
request_model=BFLFluxKontextProGenerateRequest,
response_model=BFLFluxProGenerateResponse,
),
request=BFLFluxKontextProGenerateRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
guidance=round(guidance, 1),
steps=steps,
seed=seed,
aspect_ratio=validate_aspect_ratio(
aspect_ratio,
minimum_ratio=self.MINIMUM_RATIO,
maximum_ratio=self.MAXIMUM_RATIO,
minimum_ratio_str=self.MINIMUM_RATIO_STR,
maximum_ratio_str=self.MAXIMUM_RATIO_STR,
),
input_image=(
input_image
if input_image is None
else convert_image_to_base64(input_image)
)
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
class FluxKontextMaxImageNode(FluxKontextProImageNode):
"""
Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio.
"""
DESCRIPTION = cleandoc(__doc__ or "")
BFL_PATH = "/proxy/bfl/flux-kontext-max/generate"
class FluxProImageNode(ComfyNodeABC):
"""
@@ -914,6 +1067,8 @@ class FluxProDepthNode(ComfyNodeABC):
NODE_CLASS_MAPPINGS = {
"FluxProUltraImageNode": FluxProUltraImageNode,
# "FluxProImageNode": FluxProImageNode,
"FluxKontextProImageNode": FluxKontextProImageNode,
"FluxKontextMaxImageNode": FluxKontextMaxImageNode,
"FluxProExpandNode": FluxProExpandNode,
"FluxProFillNode": FluxProFillNode,
"FluxProCannyNode": FluxProCannyNode,
@@ -924,6 +1079,8 @@ NODE_CLASS_MAPPINGS = {
NODE_DISPLAY_NAME_MAPPINGS = {
"FluxProUltraImageNode": "Flux 1.1 [pro] Ultra Image",
# "FluxProImageNode": "Flux 1.1 [pro] Image",
"FluxKontextProImageNode": "Flux.1 Kontext [pro] Image",
"FluxKontextMaxImageNode": "Flux.1 Kontext [max] Image",
"FluxProExpandNode": "Flux.1 Expand Image",
"FluxProFillNode": "Flux.1 Fill Image",
"FluxProCannyNode": "Flux.1 Canny Control Image",

View File

@@ -0,0 +1,446 @@
"""
API Nodes for Gemini Multimodal LLM Usage via Remote API
See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
"""
import os
from enum import Enum
from typing import Optional, Literal
import torch
import folder_paths
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from server import PromptServer
from comfy_api_nodes.apis import (
GeminiContent,
GeminiGenerateContentRequest,
GeminiGenerateContentResponse,
GeminiInlineData,
GeminiPart,
GeminiMimeType,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
)
from comfy_api_nodes.apinode_utils import (
validate_string,
audio_to_base64_string,
video_to_base64_string,
tensor_to_base64_string,
)
GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini"
GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
class GeminiModel(str, Enum):
"""
Gemini Model Names allowed by comfy-api
"""
gemini_2_5_pro_preview_05_06 = "gemini-2.5-pro-preview-05-06"
gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17"
def get_gemini_endpoint(
model: GeminiModel,
) -> ApiEndpoint[GeminiGenerateContentRequest, GeminiGenerateContentResponse]:
"""
Get the API endpoint for a given Gemini model.
Args:
model: The Gemini model to use, either as enum or string value.
Returns:
ApiEndpoint configured for the specific Gemini model.
"""
if isinstance(model, str):
model = GeminiModel(model)
return ApiEndpoint(
path=f"{GEMINI_BASE_ENDPOINT}/{model.value}",
method=HttpMethod.POST,
request_model=GeminiGenerateContentRequest,
response_model=GeminiGenerateContentResponse,
)
class GeminiNode(ComfyNodeABC):
"""
Node to generate text responses from a Gemini model.
This node allows users to interact with Google's Gemini AI models, providing
multimodal inputs (text, images, audio, video, files) to generate coherent
text responses. The node works with the latest Gemini models, handling the
API communication and response parsing.
"""
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text inputs to the model, used to generate a response. You can include detailed instructions, questions, or context for the model.",
},
),
"model": (
IO.COMBO,
{
"tooltip": "The Gemini model to use for generating responses.",
"options": [model.value for model in GeminiModel],
"default": GeminiModel.gemini_2_5_pro_preview_05_06.value,
},
),
"seed": (
IO.INT,
{
"default": 42,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used.",
},
),
},
"optional": {
"images": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
},
),
"audio": (
IO.AUDIO,
{
"tooltip": "Optional audio to use as context for the model.",
"default": None,
},
),
"video": (
IO.VIDEO,
{
"tooltip": "Optional video to use as context for the model.",
"default": None,
},
),
"files": (
"GEMINI_INPUT_FILES",
{
"default": None,
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the Gemini Generate Content Input Files node.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
DESCRIPTION = "Generate text responses with Google's Gemini AI model. You can provide multiple types of inputs (text, images, audio, video) as context for generating more relevant and meaningful responses."
RETURN_TYPES = ("STRING",)
FUNCTION = "api_call"
CATEGORY = "api node/text/Gemini"
API_NODE = True
def get_parts_from_response(
self, response: GeminiGenerateContentResponse
) -> list[GeminiPart]:
"""
Extract all parts from the Gemini API response.
Args:
response: The API response from Gemini.
Returns:
List of response parts from the first candidate.
"""
return response.candidates[0].content.parts
def get_parts_by_type(
self, response: GeminiGenerateContentResponse, part_type: Literal["text"] | str
) -> list[GeminiPart]:
"""
Filter response parts by their type.
Args:
response: The API response from Gemini.
part_type: Type of parts to extract ("text" or a MIME type).
Returns:
List of response parts matching the requested type.
"""
parts = []
for part in self.get_parts_from_response(response):
if part_type == "text" and hasattr(part, "text") and part.text:
parts.append(part)
elif (
hasattr(part, "inlineData")
and part.inlineData
and part.inlineData.mimeType == part_type
):
parts.append(part)
# Skip parts that don't match the requested type
return parts
def get_text_from_response(self, response: GeminiGenerateContentResponse) -> str:
"""
Extract and concatenate all text parts from the response.
Args:
response: The API response from Gemini.
Returns:
Combined text from all text parts in the response.
"""
parts = self.get_parts_by_type(response, "text")
return "\n".join([part.text for part in parts])
def create_video_parts(self, video_input: IO.VIDEO, **kwargs) -> list[GeminiPart]:
"""
Convert video input to Gemini API compatible parts.
Args:
video_input: Video tensor from ComfyUI.
**kwargs: Additional arguments to pass to the conversion function.
Returns:
List of GeminiPart objects containing the encoded video.
"""
from comfy_api.util import VideoContainer, VideoCodec
base_64_string = video_to_base64_string(
video_input,
container_format=VideoContainer.MP4,
codec=VideoCodec.H264
)
return [
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.video_mp4,
data=base_64_string,
)
)
]
def create_audio_parts(self, audio_input: IO.AUDIO) -> list[GeminiPart]:
"""
Convert audio input to Gemini API compatible parts.
Args:
audio_input: Audio input from ComfyUI, containing waveform tensor and sample rate.
Returns:
List of GeminiPart objects containing the encoded audio.
"""
audio_parts: list[GeminiPart] = []
for batch_index in range(audio_input["waveform"].shape[0]):
# Recreate an IO.AUDIO object for the given batch dimension index
audio_at_index = {
"waveform": audio_input["waveform"][batch_index].unsqueeze(0),
"sample_rate": audio_input["sample_rate"],
}
# Convert to MP3 format for compatibility with Gemini API
audio_bytes = audio_to_base64_string(
audio_at_index,
container_format="mp3",
codec_name="libmp3lame",
)
audio_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.audio_mp3,
data=audio_bytes,
)
)
)
return audio_parts
def create_image_parts(self, image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(
image_input[image_index].unsqueeze(0)
)
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
)
)
)
return image_parts
def create_text_part(self, text: str) -> GeminiPart:
"""
Create a text part for the Gemini API request.
Args:
text: The text content to include in the request.
Returns:
A GeminiPart object with the text content.
"""
return GeminiPart(text=text)
def api_call(
self,
prompt: str,
model: GeminiModel,
images: Optional[IO.IMAGE] = None,
audio: Optional[IO.AUDIO] = None,
video: Optional[IO.VIDEO] = None,
files: Optional[list[GeminiPart]] = None,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[str]:
# Validate inputs
validate_string(prompt, strip_whitespace=False)
# Create parts list with text prompt as the first part
parts: list[GeminiPart] = [self.create_text_part(prompt)]
# Add other modal parts
if images is not None:
image_parts = self.create_image_parts(images)
parts.extend(image_parts)
if audio is not None:
parts.extend(self.create_audio_parts(audio))
if video is not None:
parts.extend(self.create_video_parts(video))
if files is not None:
parts.extend(files)
# Create response
response = SynchronousOperation(
endpoint=get_gemini_endpoint(model),
request=GeminiGenerateContentRequest(
contents=[
GeminiContent(
role="user",
parts=parts,
)
]
),
auth_kwargs=kwargs,
).execute()
# Get result output
output_text = self.get_text_from_response(response)
if unique_id and output_text:
PromptServer.instance.send_progress_text(output_text, node_id=unique_id)
return (output_text or "Empty response from Gemini model...",)
class GeminiInputFiles(ComfyNodeABC):
"""
Loads and formats input files for use with the Gemini API.
This node allows users to include text (.txt) and PDF (.pdf) files as input
context for the Gemini model. Files are converted to the appropriate format
required by the API and can be chained together to include multiple files
in a single request.
"""
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
"""
For details about the supported file input types, see:
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
"""
input_dir = folder_paths.get_input_directory()
input_files = [
f
for f in os.scandir(input_dir)
if f.is_file()
and (f.name.endswith(".txt") or f.name.endswith(".pdf"))
and f.stat().st_size < GEMINI_MAX_INPUT_FILE_SIZE
]
input_files = sorted(input_files, key=lambda x: x.name)
input_files = [f.name for f in input_files]
return {
"required": {
"file": (
IO.COMBO,
{
"tooltip": "Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.",
"options": input_files,
"default": input_files[0] if input_files else None,
},
),
},
"optional": {
"GEMINI_INPUT_FILES": (
"GEMINI_INPUT_FILES",
{
"tooltip": "An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.",
"default": None,
},
),
},
}
DESCRIPTION = "Loads and prepares input files to include as inputs for Gemini LLM nodes. The files will be read by the Gemini model when generating a response. The contents of the text file count toward the token limit. 🛈 TIP: Can be chained together with other Gemini Input File nodes."
RETURN_TYPES = ("GEMINI_INPUT_FILES",)
FUNCTION = "prepare_files"
CATEGORY = "api node/text/Gemini"
def create_file_part(self, file_path: str) -> GeminiPart:
mime_type = (
GeminiMimeType.pdf
if file_path.endswith(".pdf")
else GeminiMimeType.text_plain
)
# Use base64 string directly, not the data URI
with open(file_path, "rb") as f:
file_content = f.read()
import base64
base64_str = base64.b64encode(file_content).decode("utf-8")
return GeminiPart(
inlineData=GeminiInlineData(
mimeType=mime_type,
data=base64_str,
)
)
def prepare_files(
self, file: str, GEMINI_INPUT_FILES: list[GeminiPart] = []
) -> tuple[list[GeminiPart]]:
"""
Loads and formats input files for Gemini API.
"""
file_path = folder_paths.get_annotated_filepath(file)
input_file_content = self.create_file_part(file_path)
files = [input_file_content] + GEMINI_INPUT_FILES
return (files,)
NODE_CLASS_MAPPINGS = {
"GeminiNode": GeminiNode,
"GeminiInputFiles": GeminiInputFiles,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"GeminiNode": "Google Gemini",
"GeminiInputFiles": "Gemini Input Files",
}

View File

@@ -1,29 +1,86 @@
import io
from typing import TypedDict, Optional
import json
import os
import time
import re
import uuid
from enum import Enum
from inspect import cleandoc
import numpy as np
import torch
from PIL import Image
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from server import PromptServer
import folder_paths
from comfy_api_nodes.apis import (
OpenAIImageGenerationRequest,
OpenAIImageEditRequest,
OpenAIImageGenerationResponse,
OpenAICreateResponse,
OpenAIResponse,
CreateModelResponseProperties,
Item,
Includable,
OutputContent,
InputImageContent,
Detail,
InputTextContent,
InputMessage,
InputMessageContentList,
InputContent,
InputFileContent,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
validate_and_cast_response,
validate_string,
tensor_to_base64_string,
text_filepath_to_data_uri,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
RESPONSES_ENDPOINT = "/proxy/openai/v1/responses"
STARTING_POINT_ID_PATTERN = r"<starting_point_id:(.*)>"
class HistoryEntry(TypedDict):
"""Type definition for a single history entry in the chat."""
prompt: str
response: str
response_id: str
timestamp: float
class ChatHistory(TypedDict):
"""Type definition for the chat history dictionary."""
__annotations__: dict[str, list[HistoryEntry]]
class SupportedOpenAIModel(str, Enum):
o4_mini = "o4-mini"
o1 = "o1"
o3 = "o3"
o1_pro = "o1-pro"
gpt_4o = "gpt-4o"
gpt_4_1 = "gpt-4.1"
gpt_4_1_mini = "gpt-4.1-mini"
gpt_4_1_nano = "gpt-4.1-nano"
class OpenAIDalle2(ComfyNodeABC):
"""
@@ -115,7 +172,7 @@ class OpenAIDalle2(ComfyNodeABC):
n=1,
size="1024x1024",
unique_id=None,
**kwargs
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
model = "dall-e-2"
@@ -262,7 +319,7 @@ class OpenAIDalle3(ComfyNodeABC):
quality="standard",
size="1024x1024",
unique_id=None,
**kwargs
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
model = "dall-e-3"
@@ -400,12 +457,12 @@ class OpenAIGPTImage1(ComfyNodeABC):
n=1,
size="1024x1024",
unique_id=None,
**kwargs
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
model = "gpt-image-1"
path = "/proxy/openai/images/generations"
content_type="application/json"
content_type = "application/json"
request_class = OpenAIImageGenerationRequest
img_binaries = []
mask_binary = None
@@ -414,7 +471,7 @@ class OpenAIGPTImage1(ComfyNodeABC):
if image is not None:
path = "/proxy/openai/images/edits"
request_class = OpenAIImageEditRequest
content_type ="multipart/form-data"
content_type = "multipart/form-data"
batch_size = image.shape[0]
@@ -486,17 +543,466 @@ class OpenAIGPTImage1(ComfyNodeABC):
return (img_tensor,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
class OpenAITextNode(ComfyNodeABC):
"""
Base class for OpenAI text generation nodes.
"""
RETURN_TYPES = (IO.STRING,)
FUNCTION = "api_call"
CATEGORY = "api node/text/OpenAI"
API_NODE = True
class OpenAIChatNode(OpenAITextNode):
"""
Node to generate text responses from an OpenAI model.
"""
def __init__(self) -> None:
"""Initialize the chat node with a new session ID and empty history."""
self.current_session_id: str = str(uuid.uuid4())
self.history: dict[str, list[HistoryEntry]] = {}
self.previous_response_id: Optional[str] = None
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text inputs to the model, used to generate a response.",
},
),
"persist_context": (
IO.BOOLEAN,
{
"default": True,
"tooltip": "Persist chat context between calls (multi-turn conversation)",
},
),
"model": model_field_to_node_input(
IO.COMBO,
OpenAICreateResponse,
"model",
enum_type=SupportedOpenAIModel,
),
},
"optional": {
"images": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
},
),
"files": (
"OPENAI_INPUT_FILES",
{
"default": None,
"tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the OpenAI Chat Input Files node.",
},
),
"advanced_options": (
"OPENAI_CHAT_CONFIG",
{
"default": None,
"tooltip": "Optional configuration for the model. Accepts inputs from the OpenAI Chat Advanced Options node.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
DESCRIPTION = "Generate text responses from an OpenAI model."
def get_result_response(
self,
response_id: str,
include: Optional[list[Includable]] = None,
auth_kwargs: Optional[dict[str, str]] = None,
) -> OpenAIResponse:
"""
Retrieve a model response with the given ID from the OpenAI API.
Args:
response_id (str): The ID of the response to retrieve.
include (Optional[List[Includable]]): Additional fields to include
in the response. See the `include` parameter for Response
creation above for more information.
"""
return PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"{RESPONSES_ENDPOINT}/{response_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=OpenAIResponse,
query_params={"include": include},
),
completed_statuses=["completed"],
failed_statuses=["failed"],
status_extractor=lambda response: response.status,
auth_kwargs=auth_kwargs,
).execute()
def get_message_content_from_response(
self, response: OpenAIResponse
) -> list[OutputContent]:
"""Extract message content from the API response."""
for output in response.output:
if output.root.type == "message":
return output.root.content
raise TypeError("No output message found in response")
def get_text_from_message_content(
self, message_content: list[OutputContent]
) -> str:
"""Extract text content from message content."""
for content_item in message_content:
if content_item.root.type == "output_text":
return str(content_item.root.text)
return "No text output found in response"
def get_history_text(self, session_id: str) -> str:
"""Convert the entire history for a given session to JSON string."""
return json.dumps(self.history[session_id])
def display_history_on_node(self, session_id: str, node_id: str) -> None:
"""Display formatted chat history on the node UI."""
render_spec = {
"node_id": node_id,
"component": "ChatHistoryWidget",
"props": {
"history": self.get_history_text(session_id),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
def add_to_history(
self, session_id: str, prompt: str, output_text: str, response_id: str
) -> None:
"""Add a new entry to the chat history."""
if session_id not in self.history:
self.history[session_id] = []
self.history[session_id].append(
{
"prompt": prompt,
"response": output_text,
"response_id": response_id,
"timestamp": time.time(),
}
)
def parse_output_text_from_response(self, response: OpenAIResponse) -> str:
"""Extract text output from the API response."""
message_contents = self.get_message_content_from_response(response)
return self.get_text_from_message_content(message_contents)
def generate_new_session_id(self) -> str:
"""Generate a new unique session ID."""
return str(uuid.uuid4())
def get_session_id(self, persist_context: bool) -> str:
"""Get the current or generate a new session ID based on context persistence."""
return (
self.current_session_id
if persist_context
else self.generate_new_session_id()
)
def tensor_to_input_image_content(
self, image: torch.Tensor, detail_level: Detail = "auto"
) -> InputImageContent:
"""Convert a tensor to an input image content object."""
return InputImageContent(
detail=detail_level,
image_url=f"data:image/png;base64,{tensor_to_base64_string(image)}",
type="input_image",
)
def create_input_message_contents(
self,
prompt: str,
image: Optional[torch.Tensor] = None,
files: Optional[list[InputFileContent]] = None,
) -> InputMessageContentList:
"""Create a list of input message contents from prompt and optional image."""
content_list: list[InputContent] = [
InputTextContent(text=prompt, type="input_text"),
]
if image is not None:
for i in range(image.shape[0]):
content_list.append(
self.tensor_to_input_image_content(image[i].unsqueeze(0))
)
if files is not None:
content_list.extend(files)
return InputMessageContentList(
root=content_list,
)
def parse_response_id_from_prompt(self, prompt: str) -> Optional[str]:
"""Extract response ID from prompt if it exists."""
parsed_id = re.search(STARTING_POINT_ID_PATTERN, prompt)
return parsed_id.group(1) if parsed_id else None
def strip_response_tag_from_prompt(self, prompt: str) -> str:
"""Remove the response ID tag from the prompt."""
return re.sub(STARTING_POINT_ID_PATTERN, "", prompt.strip())
def delete_history_after_response_id(
self, new_start_id: str, session_id: str
) -> None:
"""Delete history entries after a specific response ID."""
if session_id not in self.history:
return
new_history = []
i = 0
while (
i < len(self.history[session_id])
and self.history[session_id][i]["response_id"] != new_start_id
):
new_history.append(self.history[session_id][i])
i += 1
# Since it's the new starting point (not the response being edited), we include it as well
if i < len(self.history[session_id]):
new_history.append(self.history[session_id][i])
self.history[session_id] = new_history
def api_call(
self,
prompt: str,
persist_context: bool,
model: SupportedOpenAIModel,
unique_id: Optional[str] = None,
images: Optional[torch.Tensor] = None,
files: Optional[list[InputFileContent]] = None,
advanced_options: Optional[CreateModelResponseProperties] = None,
**kwargs,
) -> tuple[str]:
# Validate inputs
validate_string(prompt, strip_whitespace=False)
session_id = self.get_session_id(persist_context)
response_id_override = self.parse_response_id_from_prompt(prompt)
if response_id_override:
is_starting_from_beginning = response_id_override == "start"
if is_starting_from_beginning:
self.history[session_id] = []
previous_response_id = None
else:
previous_response_id = response_id_override
self.delete_history_after_response_id(response_id_override, session_id)
prompt = self.strip_response_tag_from_prompt(prompt)
elif persist_context:
previous_response_id = self.previous_response_id
else:
previous_response_id = None
# Create response
create_response = SynchronousOperation(
endpoint=ApiEndpoint(
path=RESPONSES_ENDPOINT,
method=HttpMethod.POST,
request_model=OpenAICreateResponse,
response_model=OpenAIResponse,
),
request=OpenAICreateResponse(
input=[
Item(
root=InputMessage(
content=self.create_input_message_contents(
prompt, images, files
),
role="user",
)
),
],
store=True,
stream=False,
model=model,
previous_response_id=previous_response_id,
**(
advanced_options.model_dump(exclude_none=True)
if advanced_options
else {}
),
),
auth_kwargs=kwargs,
).execute()
response_id = create_response.id
# Get result output
result_response = self.get_result_response(response_id, auth_kwargs=kwargs)
output_text = self.parse_output_text_from_response(result_response)
# Update history
self.add_to_history(session_id, prompt, output_text, response_id)
self.display_history_on_node(session_id, unique_id)
self.previous_response_id = response_id
return (output_text,)
class OpenAIInputFiles(ComfyNodeABC):
"""
Loads and formats input files for OpenAI API.
"""
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
"""
For details about the supported file input types, see:
https://platform.openai.com/docs/guides/pdf-files?api-mode=responses
"""
input_dir = folder_paths.get_input_directory()
input_files = [
f
for f in os.scandir(input_dir)
if f.is_file()
and (f.name.endswith(".txt") or f.name.endswith(".pdf"))
and f.stat().st_size < 32 * 1024 * 1024
]
input_files = sorted(input_files, key=lambda x: x.name)
input_files = [f.name for f in input_files]
return {
"required": {
"file": (
IO.COMBO,
{
"tooltip": "Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.",
"options": input_files,
"default": input_files[0] if input_files else None,
},
),
},
"optional": {
"OPENAI_INPUT_FILES": (
"OPENAI_INPUT_FILES",
{
"tooltip": "An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.",
"default": None,
},
),
},
}
DESCRIPTION = "Loads and prepares input files (text, pdf, etc.) to include as inputs for the OpenAI Chat Node. The files will be read by the OpenAI model when generating a response. 🛈 TIP: Can be chained together with other OpenAI Input File nodes."
RETURN_TYPES = ("OPENAI_INPUT_FILES",)
FUNCTION = "prepare_files"
CATEGORY = "api node/text/OpenAI"
def create_input_file_content(self, file_path: str) -> InputFileContent:
return InputFileContent(
file_data=text_filepath_to_data_uri(file_path),
filename=os.path.basename(file_path),
type="input_file",
)
def prepare_files(
self, file: str, OPENAI_INPUT_FILES: list[InputFileContent] = []
) -> tuple[list[InputFileContent]]:
"""
Loads and formats input files for OpenAI API.
"""
file_path = folder_paths.get_annotated_filepath(file)
input_file_content = self.create_input_file_content(file_path)
files = [input_file_content] + OPENAI_INPUT_FILES
return (files,)
class OpenAIChatConfig(ComfyNodeABC):
"""Allows setting additional configuration for the OpenAI Chat Node."""
RETURN_TYPES = ("OPENAI_CHAT_CONFIG",)
FUNCTION = "configure"
DESCRIPTION = (
"Allows specifying advanced configuration options for the OpenAI Chat Nodes."
)
CATEGORY = "api node/text/OpenAI"
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"truncation": (
IO.COMBO,
{
"options": ["auto", "disabled"],
"default": "auto",
"tooltip": "The truncation strategy to use for the model response. auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.disabled: If a model response will exceed the context window size for a model, the request will fail with a 400 error",
},
),
},
"optional": {
"max_output_tokens": model_field_to_node_input(
IO.INT,
OpenAICreateResponse,
"max_output_tokens",
min=16,
default=4096,
max=16384,
tooltip="An upper bound for the number of tokens that can be generated for a response, including visible output tokens",
),
"instructions": model_field_to_node_input(
IO.STRING, OpenAICreateResponse, "instructions", multiline=True
),
},
}
def configure(
self,
truncation: bool,
instructions: Optional[str] = None,
max_output_tokens: Optional[int] = None,
) -> tuple[CreateModelResponseProperties]:
"""
Configure advanced options for the OpenAI Chat Node.
Note:
While `top_p` and `temperature` are listed as properties in the
spec, they are not supported for all models (e.g., o4-mini).
They are not exposed as inputs at all to avoid having to manually
remove depending on model choice.
"""
return (
CreateModelResponseProperties(
instructions=instructions,
truncation=truncation,
max_output_tokens=max_output_tokens,
),
)
NODE_CLASS_MAPPINGS = {
"OpenAIDalle2": OpenAIDalle2,
"OpenAIDalle3": OpenAIDalle3,
"OpenAIGPTImage1": OpenAIGPTImage1,
"OpenAIChatNode": OpenAIChatNode,
"OpenAIInputFiles": OpenAIInputFiles,
"OpenAIChatConfig": OpenAIChatConfig,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"OpenAIDalle2": "OpenAI DALL·E 2",
"OpenAIDalle3": "OpenAI DALL·E 3",
"OpenAIGPTImage1": "OpenAI GPT Image 1",
"OpenAIChatNode": "OpenAI Chat",
"OpenAIInputFiles": "OpenAI Chat Input Files",
"OpenAIChatConfig": "OpenAI Chat Advanced Options",
}

View File

@@ -6,40 +6,42 @@ Pika API docs: https://pika-827374fb.mintlify.app/api-reference
from __future__ import annotations
import io
from typing import Optional, TypeVar
import logging
import torch
from typing import Optional, TypeVar
import numpy as np
import torch
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeOptions
from comfy_api.input_impl import VideoFromFile
from comfy_api.input_impl.video_types import VideoCodec, VideoContainer, VideoInput
from comfy_api_nodes.apinode_utils import (
download_url_to_video_output,
tensor_to_bytesio,
)
from comfy_api_nodes.apis import (
PikaBodyGenerate22T2vGenerate22T2vPost,
PikaGenerateResponse,
PikaBodyGenerate22I2vGenerate22I2vPost,
PikaVideoResponse,
PikaBodyGenerate22C2vGenerate22PikascenesPost,
IngredientsMode,
PikaDurationEnum,
PikaResolutionEnum,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
PikaBodyGenerate22C2vGenerate22PikascenesPost,
PikaBodyGenerate22I2vGenerate22I2vPost,
PikaBodyGenerate22KeyframeGenerate22PikaframesPost,
PikaBodyGenerate22T2vGenerate22T2vPost,
PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
PikaDurationEnum,
Pikaffect,
PikaGenerateResponse,
PikaResolutionEnum,
PikaVideoResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
tensor_to_bytesio,
download_url_to_video_output,
HttpMethod,
PollingOperation,
SynchronousOperation,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input_impl.video_types import VideoInput, VideoContainer, VideoCodec
from comfy_api.input_impl import VideoFromFile
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeOptions
R = TypeVar("R")
@@ -204,6 +206,7 @@ class PikaImageToVideoV2_2(PikaNodeBase):
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
@@ -457,7 +460,7 @@ class PikAdditionsNode(PikaNodeBase):
},
}
DESCRIPTION = "Add any object or image into your video. Upload a video and specify what youd like to add to create a seamlessly integrated result."
DESCRIPTION = "Add any object or image into your video. Upload a video and specify what you'd like to add to create a seamlessly integrated result."
def api_call(
self,

View File

@@ -0,0 +1,462 @@
"""
ComfyUI X Rodin3D(Deemos) API Nodes
Rodin API docs: https://developer.hyper3d.ai/
"""
from __future__ import annotations
from inspect import cleandoc
from comfy.comfy_types.node_typing import IO
import folder_paths as comfy_paths
import requests
import os
import datetime
import shutil
import time
import io
import logging
import math
from PIL import Image
from comfy_api_nodes.apis.rodin_api import (
Rodin3DGenerateRequest,
Rodin3DGenerateResponse,
Rodin3DCheckStatusRequest,
Rodin3DCheckStatusResponse,
Rodin3DDownloadRequest,
Rodin3DDownloadResponse,
JobStatus,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
)
COMMON_PARAMETERS = {
"Seed": (
IO.INT,
{
"default":0,
"min":0,
"max":65535,
"display":"number"
}
),
"Material_Type": (
IO.COMBO,
{
"options": ["PBR", "Shaded"],
"default": "PBR"
}
),
"Polygon_count": (
IO.COMBO,
{
"options": ["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "200K-Triangle"],
"default": "18K-Quad"
}
)
}
def create_task_error(response: Rodin3DGenerateResponse):
"""Check if the response has error"""
return hasattr(response, "error")
class Rodin3DAPI:
"""
Generate 3D Assets using Rodin API
"""
RETURN_TYPES = (IO.STRING,)
RETURN_NAMES = ("3D Model Path",)
CATEGORY = "api node/3d/Rodin"
DESCRIPTION = cleandoc(__doc__ or "")
FUNCTION = "api_call"
API_NODE = True
def tensor_to_filelike(self, tensor, max_pixels: int = 2048*2048):
"""
Converts a PyTorch tensor to a file-like object.
Args:
- tensor (torch.Tensor): A tensor representing an image of shape (H, W, C)
where C is the number of channels (3 for RGB), H is height, and W is width.
Returns:
- io.BytesIO: A file-like object containing the image data.
"""
array = tensor.cpu().numpy()
array = (array * 255).astype('uint8')
image = Image.fromarray(array, 'RGB')
original_width, original_height = image.size
original_pixels = original_width * original_height
if original_pixels > max_pixels:
scale = math.sqrt(max_pixels / original_pixels)
new_width = int(original_width * scale)
new_height = int(original_height * scale)
else:
new_width, new_height = original_width, original_height
if new_width != original_width or new_height != original_height:
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG') # PNG is used for lossless compression
img_byte_arr.seek(0)
return img_byte_arr
def check_rodin_status(self, response: Rodin3DCheckStatusResponse) -> str:
has_failed = any(job.status == JobStatus.Failed for job in response.jobs)
all_done = all(job.status == JobStatus.Done for job in response.jobs)
status_list = [str(job.status) for job in response.jobs]
logging.info(f"[ Rodin3D API - CheckStatus ] Generate Status: {status_list}")
if has_failed:
logging.error(f"[ Rodin3D API - CheckStatus ] Generate Failed: {status_list}, Please try again.")
raise Exception("[ Rodin3D API ] Generate Failed, Please Try again.")
elif all_done:
return "DONE"
else:
return "Generating"
def CreateGenerateTask(self, images=None, seed=1, material="PBR", quality="medium", tier="Regular", mesh_mode="Quad", **kwargs):
if images == None:
raise Exception("Rodin 3D generate requires at least 1 image.")
if len(images) >= 5:
raise Exception("Rodin 3D generate requires up to 5 image.")
path = "/proxy/rodin/api/v2/rodin"
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=Rodin3DGenerateRequest,
response_model=Rodin3DGenerateResponse,
),
request=Rodin3DGenerateRequest(
seed=seed,
tier=tier,
material=material,
quality=quality,
mesh_mode=mesh_mode
),
files=[
(
"images",
open(image, "rb") if isinstance(image, str) else self.tensor_to_filelike(image)
)
for image in images if image is not None
],
content_type = "multipart/form-data",
auth_kwargs=kwargs,
)
response = operation.execute()
if create_task_error(response):
error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}"
logging.error(error_message)
raise Exception(error_message)
logging.info("[ Rodin3D API - Submit Jobs ] Submit Generate Task Success!")
subscription_key = response.jobs.subscription_key
task_uuid = response.uuid
logging.info(f"[ Rodin3D API - Submit Jobs ] UUID: {task_uuid}")
return task_uuid, subscription_key
def poll_for_task_status(self, subscription_key, **kwargs) -> Rodin3DCheckStatusResponse:
path = "/proxy/rodin/api/v2/status"
poll_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path = path,
method=HttpMethod.POST,
request_model=Rodin3DCheckStatusRequest,
response_model=Rodin3DCheckStatusResponse,
),
request=Rodin3DCheckStatusRequest(
subscription_key = subscription_key
),
completed_statuses=["DONE"],
failed_statuses=["FAILED"],
status_extractor=self.check_rodin_status,
poll_interval=3.0,
auth_kwargs=kwargs,
)
logging.info("[ Rodin3D API - CheckStatus ] Generate Start!")
return poll_operation.execute()
def GetRodinDownloadList(self, uuid, **kwargs) -> Rodin3DDownloadResponse:
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
path = "/proxy/rodin/api/v2/download"
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=Rodin3DDownloadRequest,
response_model=Rodin3DDownloadResponse,
),
request=Rodin3DDownloadRequest(
task_uuid=uuid
),
auth_kwargs=kwargs
)
return operation.execute()
def GetQualityAndMode(self, PolyCount):
if PolyCount == "200K-Triangle":
mesh_mode = "Raw"
quality = "medium"
else:
mesh_mode = "Quad"
if PolyCount == "4K-Quad":
quality = "extra-low"
elif PolyCount == "8K-Quad":
quality = "low"
elif PolyCount == "18K-Quad":
quality = "medium"
elif PolyCount == "50K-Quad":
quality = "high"
else:
quality = "medium"
return mesh_mode, quality
def DownLoadFiles(self, Url_List):
Save_path = os.path.join(comfy_paths.get_output_directory(), "Rodin3D", datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
os.makedirs(Save_path, exist_ok=True)
model_file_path = None
for Item in Url_List.list:
url = Item.url
file_name = Item.name
file_path = os.path.join(Save_path, file_name)
if file_path.endswith(".glb"):
model_file_path = file_path
logging.info(f"[ Rodin3D API - download_files ] Downloading file: {file_path}")
max_retries = 5
for attempt in range(max_retries):
try:
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(file_path, "wb") as f:
shutil.copyfileobj(r.raw, f)
break
except Exception as e:
logging.info(f"[ Rodin3D API - download_files ] Error downloading {file_path}:{e}")
if attempt < max_retries - 1:
logging.info("Retrying...")
time.sleep(2)
else:
logging.info(f"[ Rodin3D API - download_files ] Failed to download {file_path} after {max_retries} attempts.")
return model_file_path
class Rodin3D_Regular(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"Images":
(
IO.IMAGE,
{
"forceInput":True,
}
)
},
"optional": {
**COMMON_PARAMETERS
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
def api_call(
self,
Images,
Seed,
Material_Type,
Polygon_count,
**kwargs
):
tier = "Regular"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality = self.GetQualityAndMode(Polygon_count)
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=Material_Type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
return (model,)
class Rodin3D_Detail(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"Images":
(
IO.IMAGE,
{
"forceInput":True,
}
)
},
"optional": {
**COMMON_PARAMETERS
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
def api_call(
self,
Images,
Seed,
Material_Type,
Polygon_count,
**kwargs
):
tier = "Detail"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality = self.GetQualityAndMode(Polygon_count)
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=Material_Type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
return (model,)
class Rodin3D_Smooth(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"Images":
(
IO.IMAGE,
{
"forceInput":True,
}
)
},
"optional": {
**COMMON_PARAMETERS
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
def api_call(
self,
Images,
Seed,
Material_Type,
Polygon_count,
**kwargs
):
tier = "Smooth"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality = self.GetQualityAndMode(Polygon_count)
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=Material_Type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
return (model,)
class Rodin3D_Sketch(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"Images":
(
IO.IMAGE,
{
"forceInput":True,
}
)
},
"optional": {
"Seed":
(
IO.INT,
{
"default":0,
"min":0,
"max":65535,
"display":"number"
}
)
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
def api_call(
self,
Images,
Seed,
**kwargs
):
tier = "Sketch"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
material_type = "PBR"
quality = "medium"
mesh_mode = "Quad"
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=material_type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
return (model,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"Rodin3D_Regular": Rodin3D_Regular,
"Rodin3D_Detail": Rodin3D_Detail,
"Rodin3D_Smooth": Rodin3D_Smooth,
"Rodin3D_Sketch": Rodin3D_Sketch,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"Rodin3D_Regular": "Rodin 3D Generate - Regular Generate",
"Rodin3D_Detail": "Rodin 3D Generate - Detail Generate",
"Rodin3D_Smooth": "Rodin 3D Generate - Smooth Generate",
"Rodin3D_Sketch": "Rodin 3D Generate - Sketch Generate",
}

View File

@@ -0,0 +1,635 @@
"""Runway API Nodes
API Docs:
- https://docs.dev.runwayml.com/api/#tag/Task-management/paths/~1v1~1tasks~1%7Bid%7D/delete
User Guides:
- https://help.runwayml.com/hc/en-us/sections/30265301423635-Gen-3-Alpha
- https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video
- https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo
- https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3
"""
from typing import Union, Optional, Any
from enum import Enum
import torch
from comfy_api_nodes.apis import (
RunwayImageToVideoRequest,
RunwayImageToVideoResponse,
RunwayTaskStatusResponse as TaskStatusResponse,
RunwayTaskStatusEnum as TaskStatus,
RunwayModelEnum as Model,
RunwayDurationEnum as Duration,
RunwayAspectRatioEnum as AspectRatio,
RunwayPromptImageObject,
RunwayPromptImageDetailedObject,
RunwayTextToImageRequest,
RunwayTextToImageResponse,
Model4,
ReferenceImage,
RunwayTextToImageAspectRatioEnum,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
upload_images_to_comfyapi,
download_url_to_video_output,
image_tensor_pair_to_batch,
validate_string,
download_url_to_image_tensor,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input_impl import VideoFromFile
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video"
PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image"
PATH_GET_TASK_STATUS = "/proxy/runway/tasks"
AVERAGE_DURATION_I2V_SECONDS = 64
AVERAGE_DURATION_FLF_SECONDS = 256
AVERAGE_DURATION_T2I_SECONDS = 41
class RunwayApiError(Exception):
"""Base exception for Runway API errors."""
pass
class RunwayGen4TurboAspectRatio(str, Enum):
"""Aspect ratios supported for Image to Video API when using gen4_turbo model."""
field_1280_720 = "1280:720"
field_720_1280 = "720:1280"
field_1104_832 = "1104:832"
field_832_1104 = "832:1104"
field_960_960 = "960:960"
field_1584_672 = "1584:672"
class RunwayGen3aAspectRatio(str, Enum):
"""Aspect ratios supported for Image to Video API when using gen3a_turbo model."""
field_768_1280 = "768:1280"
field_1280_768 = "1280:768"
def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
"""Returns the video URL from the task status response if it exists."""
if response.output and len(response.output) > 0:
return response.output[0]
return None
# TODO: replace with updated image validation utils (upstream)
def validate_input_image(image: torch.Tensor) -> bool:
"""
Validate the input image is within the size limits for the Runway API.
See: https://docs.dev.runwayml.com/assets/inputs/#common-error-reasons
"""
return image.shape[2] < 8000 and image.shape[1] < 8000
def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, TaskStatusResponse],
estimated_duration: Optional[int] = None,
node_id: Optional[str] = None,
) -> TaskStatusResponse:
"""Polls the Runway API endpoint until the task reaches a terminal state, then returns the response."""
return PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[
TaskStatus.SUCCEEDED.value,
],
failed_statuses=[
TaskStatus.FAILED.value,
TaskStatus.CANCELLED.value,
],
status_extractor=lambda response: (response.status.value),
auth_kwargs=auth_kwargs,
result_url_extractor=get_video_url_from_task_status,
estimated_duration=estimated_duration,
node_id=node_id,
progress_extractor=extract_progress_from_task_status,
).execute()
def extract_progress_from_task_status(
response: TaskStatusResponse,
) -> Union[float, None]:
if hasattr(response, "progress") and response.progress is not None:
return response.progress * 100
return None
def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
"""Returns the image URL from the task status response if it exists."""
if response.output and len(response.output) > 0:
return response.output[0]
return None
class RunwayVideoGenNode(ComfyNodeABC):
"""Runway Video Node Base."""
RETURN_TYPES = ("VIDEO",)
FUNCTION = "api_call"
CATEGORY = "api node/video/Runway"
API_NODE = True
def validate_task_created(self, response: RunwayImageToVideoResponse) -> bool:
"""
Validate the task creation response from the Runway API matches
expected format.
"""
if not bool(response.id):
raise RunwayApiError("Invalid initial response from Runway API.")
return True
def validate_response(self, response: RunwayImageToVideoResponse) -> bool:
"""
Validate the successful task status response from the Runway API
matches expected format.
"""
if not response.output or len(response.output) == 0:
raise RunwayApiError(
"Runway task succeeded but no video data found in response."
)
return True
def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> RunwayImageToVideoResponse:
"""Poll the task status until it is finished then get the response."""
return poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
node_id=node_id,
)
def generate_video(
self,
request: RunwayImageToVideoRequest,
auth_kwargs: dict[str, str],
node_id: Optional[str] = None,
) -> tuple[VideoFromFile]:
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_IMAGE_TO_VIDEO,
method=HttpMethod.POST,
request_model=RunwayImageToVideoRequest,
response_model=RunwayImageToVideoResponse,
),
request=request,
auth_kwargs=auth_kwargs,
)
initial_response = initial_operation.execute()
self.validate_task_created(initial_response)
task_id = initial_response.id
final_response = self.get_response(task_id, auth_kwargs, node_id)
self.validate_response(final_response)
video_url = get_video_url_from_task_status(final_response)
return (download_url_to_video_output(video_url),)
class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
"""Runway Image to Video Node using Gen3a Turbo model."""
DESCRIPTION = "Generate a video from a single starting frame using Gen3a Turbo model. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo."
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
),
"start_frame": (
IO.IMAGE,
{"tooltip": "Start frame to be used for the video"},
),
"duration": model_field_to_node_input(
IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayImageToVideoRequest,
"ratio",
enum_type=RunwayGen3aAspectRatio,
),
"seed": model_field_to_node_input(
IO.INT,
RunwayImageToVideoRequest,
"seed",
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[VideoFromFile]:
# Validate inputs
validate_string(prompt, min_length=1)
validate_input_image(start_frame)
# Upload image
download_urls = upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
auth_kwargs=kwargs,
)
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen3a_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
)
]
),
),
auth_kwargs=kwargs,
node_id=unique_id,
)
class RunwayImageToVideoNodeGen4(RunwayVideoGenNode):
"""Runway Image to Video Node using Gen4 Turbo model."""
DESCRIPTION = "Generate a video from a single starting frame using Gen4 Turbo model. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video."
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
),
"start_frame": (
IO.IMAGE,
{"tooltip": "Start frame to be used for the video"},
),
"duration": model_field_to_node_input(
IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayImageToVideoRequest,
"ratio",
enum_type=RunwayGen4TurboAspectRatio,
),
"seed": model_field_to_node_input(
IO.INT,
RunwayImageToVideoRequest,
"seed",
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[VideoFromFile]:
# Validate inputs
validate_string(prompt, min_length=1)
validate_input_image(start_frame)
# Upload image
download_urls = upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
auth_kwargs=kwargs,
)
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen4_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
)
]
),
),
auth_kwargs=kwargs,
node_id=unique_id,
)
class RunwayFirstLastFrameNode(RunwayVideoGenNode):
"""Runway First-Last Frame Node."""
DESCRIPTION = "Upload first and last keyframes, draft a prompt, and generate a video. More complex transitions, such as cases where the Last frame is completely different from the First frame, may benefit from the longer 10s duration. This would give the generation more time to smoothly transition between the two inputs. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3."
def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> RunwayImageToVideoResponse:
return poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=AVERAGE_DURATION_FLF_SECONDS,
node_id=node_id,
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayImageToVideoRequest, "promptText", multiline=True
),
"start_frame": (
IO.IMAGE,
{"tooltip": "Start frame to be used for the video"},
),
"end_frame": (
IO.IMAGE,
{
"tooltip": "End frame to be used for the video. Supported for gen3a_turbo only."
},
),
"duration": model_field_to_node_input(
IO.COMBO, RunwayImageToVideoRequest, "duration", enum_type=Duration
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayImageToVideoRequest,
"ratio",
enum_type=RunwayGen3aAspectRatio,
),
"seed": model_field_to_node_input(
IO.INT,
RunwayImageToVideoRequest,
"seed",
control_after_generate=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"unique_id": "UNIQUE_ID",
"comfy_api_key": "API_KEY_COMFY_ORG",
},
}
def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
end_frame: torch.Tensor,
duration: str,
ratio: str,
seed: int,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[VideoFromFile]:
# Validate inputs
validate_string(prompt, min_length=1)
validate_input_image(start_frame)
validate_input_image(end_frame)
# Upload images
stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame)
download_urls = upload_images_to_comfyapi(
stacked_input_images,
max_images=2,
mime_type="image/png",
auth_kwargs=kwargs,
)
if len(download_urls) != 2:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
model=Model("gen3a_turbo"),
duration=Duration(duration),
ratio=AspectRatio(ratio),
promptImage=RunwayPromptImageObject(
root=[
RunwayPromptImageDetailedObject(
uri=str(download_urls[0]), position="first"
),
RunwayPromptImageDetailedObject(
uri=str(download_urls[1]), position="last"
),
]
),
),
auth_kwargs=kwargs,
node_id=unique_id,
)
class RunwayTextToImageNode(ComfyNodeABC):
"""Runway Text to Image Node."""
RETURN_TYPES = ("IMAGE",)
FUNCTION = "api_call"
CATEGORY = "api node/image/Runway"
API_NODE = True
DESCRIPTION = "Generate an image from a text prompt using Runway's Gen 4 model. You can also include reference images to guide the generation."
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, RunwayTextToImageRequest, "promptText", multiline=True
),
"ratio": model_field_to_node_input(
IO.COMBO,
RunwayTextToImageRequest,
"ratio",
enum_type=RunwayTextToImageAspectRatioEnum,
),
},
"optional": {
"reference_image": (
IO.IMAGE,
{"tooltip": "Optional reference image to guide the generation"},
)
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
def validate_task_created(self, response: RunwayTextToImageResponse) -> bool:
"""
Validate the task creation response from the Runway API matches
expected format.
"""
if not bool(response.id):
raise RunwayApiError("Invalid initial response from Runway API.")
return True
def validate_response(self, response: TaskStatusResponse) -> bool:
"""
Validate the successful task status response from the Runway API
matches expected format.
"""
if not response.output or len(response.output) == 0:
raise RunwayApiError(
"Runway task succeeded but no image data found in response."
)
return True
def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> TaskStatusResponse:
"""Poll the task status until it is finished then get the response."""
return poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
estimated_duration=AVERAGE_DURATION_T2I_SECONDS,
node_id=node_id,
)
def api_call(
self,
prompt: str,
ratio: str,
reference_image: Optional[torch.Tensor] = None,
unique_id: Optional[str] = None,
**kwargs,
) -> tuple[torch.Tensor]:
# Validate inputs
validate_string(prompt, min_length=1)
# Prepare reference images if provided
reference_images = None
if reference_image is not None:
validate_input_image(reference_image)
download_urls = upload_images_to_comfyapi(
reference_image,
max_images=1,
mime_type="image/png",
auth_kwargs=kwargs,
)
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload reference image to comfy api.")
reference_images = [ReferenceImage(uri=str(download_urls[0]))]
# Create request
request = RunwayTextToImageRequest(
promptText=prompt,
model=Model4.gen4_image,
ratio=ratio,
referenceImages=reference_images,
)
# Execute initial request
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_TEXT_TO_IMAGE,
method=HttpMethod.POST,
request_model=RunwayTextToImageRequest,
response_model=RunwayTextToImageResponse,
),
request=request,
auth_kwargs=kwargs,
)
initial_response = initial_operation.execute()
self.validate_task_created(initial_response)
task_id = initial_response.id
# Poll for completion
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
self.validate_response(final_response)
# Download and return image
image_url = get_image_url_from_task_status(final_response)
return (download_url_to_image_tensor(image_url),)
NODE_CLASS_MAPPINGS = {
"RunwayFirstLastFrameNode": RunwayFirstLastFrameNode,
"RunwayImageToVideoNodeGen3a": RunwayImageToVideoNodeGen3a,
"RunwayImageToVideoNodeGen4": RunwayImageToVideoNodeGen4,
"RunwayTextToImageNode": RunwayTextToImageNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"RunwayFirstLastFrameNode": "Runway First-Last-Frame to Video",
"RunwayImageToVideoNodeGen3a": "Runway Image to Video (Gen3a Turbo)",
"RunwayImageToVideoNodeGen4": "Runway Image to Video (Gen4 Turbo)",
"RunwayTextToImageNode": "Runway Text to Image",
}

View File

@@ -0,0 +1,574 @@
import os
from folder_paths import get_output_directory
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy.comfy_types.node_typing import IO
from comfy_api_nodes.apis import (
TripoOrientation,
TripoModelVersion,
)
from comfy_api_nodes.apis.tripo_api import (
TripoTaskType,
TripoStyle,
TripoFileReference,
TripoFileEmptyReference,
TripoUrlReference,
TripoTaskResponse,
TripoTaskStatus,
TripoTextToModelRequest,
TripoImageToModelRequest,
TripoMultiviewToModelRequest,
TripoTextureModelRequest,
TripoRefineModelRequest,
TripoAnimateRigRequest,
TripoAnimateRetargetRequest,
TripoConvertModelRequest,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
upload_images_to_comfyapi,
download_url_to_bytesio,
)
def upload_image_to_tripo(image, **kwargs):
urls = upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs)
return TripoFileReference(TripoUrlReference(url=urls[0], type="jpeg"))
def get_model_url_from_response(response: TripoTaskResponse) -> str:
if response.data is not None:
for key in ["pbr_model", "model", "base_model"]:
if getattr(response.data.output, key, None) is not None:
return getattr(response.data.output, key)
raise RuntimeError(f"Failed to get model url from response: {response}")
def poll_until_finished(
kwargs: dict[str, str],
response: TripoTaskResponse,
) -> tuple[str, str]:
"""Polls the Tripo API endpoint until the task reaches a terminal state, then returns the response."""
if response.code != 0:
raise RuntimeError(f"Failed to generate mesh: {response.error}")
task_id = response.data.task_id
response_poll = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/tripo/v2/openapi/task/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TripoTaskResponse,
),
completed_statuses=[TripoTaskStatus.SUCCESS],
failed_statuses=[
TripoTaskStatus.FAILED,
TripoTaskStatus.CANCELLED,
TripoTaskStatus.UNKNOWN,
TripoTaskStatus.BANNED,
TripoTaskStatus.EXPIRED,
],
status_extractor=lambda x: x.data.status,
auth_kwargs=kwargs,
node_id=kwargs["unique_id"],
result_url_extractor=get_model_url_from_response,
progress_extractor=lambda x: x.data.progress,
).execute()
if response_poll.data.status == TripoTaskStatus.SUCCESS:
url = get_model_url_from_response(response_poll)
bytesio = download_url_to_bytesio(url)
# Save the downloaded model file
model_file = f"tripo_model_{task_id}.glb"
with open(os.path.join(get_output_directory(), model_file), "wb") as f:
f.write(bytesio.getvalue())
return model_file, task_id
raise RuntimeError(f"Failed to generate mesh: {response_poll}")
class TripoTextToModelNode:
"""
Generates 3D models synchronously based on a text prompt using Tripo's API.
"""
AVERAGE_DURATION = 80
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": ("STRING", {"multiline": True}),
},
"optional": {
"negative_prompt": ("STRING", {"multiline": True}),
"model_version": model_field_to_node_input(IO.COMBO, TripoTextToModelRequest, "model_version", enum_type=TripoModelVersion),
"style": model_field_to_node_input(IO.COMBO, TripoTextToModelRequest, "style", enum_type=TripoStyle, default="None"),
"texture": ("BOOLEAN", {"default": True}),
"pbr": ("BOOLEAN", {"default": True}),
"image_seed": ("INT", {"default": 42}),
"model_seed": ("INT", {"default": 42}),
"texture_seed": ("INT", {"default": 42}),
"texture_quality": (["standard", "detailed"], {"default": "standard"}),
"face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}),
"quad": ("BOOLEAN", {"default": False})
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("STRING", "MODEL_TASK_ID",)
RETURN_NAMES = ("model_file", "model task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
def generate_mesh(self, prompt, negative_prompt=None, model_version=None, style=None, texture=None, pbr=None, image_seed=None, model_seed=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs):
style_enum = None if style == "None" else style
if not prompt:
raise RuntimeError("Prompt is required")
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoTextToModelRequest,
response_model=TripoTaskResponse,
),
request=TripoTextToModelRequest(
type=TripoTaskType.TEXT_TO_MODEL,
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
model_version=model_version,
style=style_enum,
texture=texture,
pbr=pbr,
image_seed=image_seed,
model_seed=model_seed,
texture_seed=texture_seed,
texture_quality=texture_quality,
face_limit=face_limit,
auto_size=True,
quad=quad
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoImageToModelNode:
"""
Generates 3D models synchronously based on a single image using Tripo's API.
"""
AVERAGE_DURATION = 80
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
"optional": {
"model_version": model_field_to_node_input(IO.COMBO, TripoImageToModelRequest, "model_version", enum_type=TripoModelVersion),
"style": model_field_to_node_input(IO.COMBO, TripoTextToModelRequest, "style", enum_type=TripoStyle, default="None"),
"texture": ("BOOLEAN", {"default": True}),
"pbr": ("BOOLEAN", {"default": True}),
"model_seed": ("INT", {"default": 42}),
"orientation": model_field_to_node_input(IO.COMBO, TripoImageToModelRequest, "orientation", enum_type=TripoOrientation),
"texture_seed": ("INT", {"default": 42}),
"texture_quality": (["standard", "detailed"], {"default": "standard"}),
"texture_alignment": (["original_image", "geometry"], {"default": "original_image"}),
"face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}),
"quad": ("BOOLEAN", {"default": False})
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("STRING", "MODEL_TASK_ID",)
RETURN_NAMES = ("model_file", "model task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
def generate_mesh(self, image, model_version=None, style=None, texture=None, pbr=None, model_seed=None, orientation=None, texture_alignment=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs):
style_enum = None if style == "None" else style
if image is None:
raise RuntimeError("Image is required")
tripo_file = upload_image_to_tripo(image, **kwargs)
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoImageToModelRequest,
response_model=TripoTaskResponse,
),
request=TripoImageToModelRequest(
type=TripoTaskType.IMAGE_TO_MODEL,
file=tripo_file,
model_version=model_version,
style=style_enum,
texture=texture,
pbr=pbr,
model_seed=model_seed,
orientation=orientation,
texture_alignment=texture_alignment,
texture_seed=texture_seed,
texture_quality=texture_quality,
face_limit=face_limit,
auto_size=True,
quad=quad
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoMultiviewToModelNode:
"""
Generates 3D models synchronously based on up to four images (front, left, back, right) using Tripo's API.
"""
AVERAGE_DURATION = 80
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
"optional": {
"image_left": ("IMAGE",),
"image_back": ("IMAGE",),
"image_right": ("IMAGE",),
"model_version": model_field_to_node_input(IO.COMBO, TripoMultiviewToModelRequest, "model_version", enum_type=TripoModelVersion),
"orientation": model_field_to_node_input(IO.COMBO, TripoImageToModelRequest, "orientation", enum_type=TripoOrientation),
"texture": ("BOOLEAN", {"default": True}),
"pbr": ("BOOLEAN", {"default": True}),
"model_seed": ("INT", {"default": 42}),
"texture_seed": ("INT", {"default": 42}),
"texture_quality": (["standard", "detailed"], {"default": "standard"}),
"texture_alignment": (["original_image", "geometry"], {"default": "original_image"}),
"face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}),
"quad": ("BOOLEAN", {"default": False})
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("STRING", "MODEL_TASK_ID",)
RETURN_NAMES = ("model_file", "model task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
def generate_mesh(self, image, image_left=None, image_back=None, image_right=None, model_version=None, orientation=None, texture=None, pbr=None, model_seed=None, texture_seed=None, texture_quality=None, texture_alignment=None, face_limit=None, quad=None, **kwargs):
if image is None:
raise RuntimeError("front image for multiview is required")
images = []
image_dict = {
"image": image,
"image_left": image_left,
"image_back": image_back,
"image_right": image_right
}
if image_left is None and image_back is None and image_right is None:
raise RuntimeError("At least one of left, back, or right image must be provided for multiview")
for image_name in ["image", "image_left", "image_back", "image_right"]:
image_ = image_dict[image_name]
if image_ is not None:
tripo_file = upload_image_to_tripo(image_, **kwargs)
images.append(tripo_file)
else:
images.append(TripoFileEmptyReference())
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoMultiviewToModelRequest,
response_model=TripoTaskResponse,
),
request=TripoMultiviewToModelRequest(
type=TripoTaskType.MULTIVIEW_TO_MODEL,
files=images,
model_version=model_version,
orientation=orientation,
texture=texture,
pbr=pbr,
model_seed=model_seed,
texture_seed=texture_seed,
texture_quality=texture_quality,
texture_alignment=texture_alignment,
face_limit=face_limit,
quad=quad,
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoTextureNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_task_id": ("MODEL_TASK_ID",),
},
"optional": {
"texture": ("BOOLEAN", {"default": True}),
"pbr": ("BOOLEAN", {"default": True}),
"texture_seed": ("INT", {"default": 42}),
"texture_quality": (["standard", "detailed"], {"default": "standard"}),
"texture_alignment": (["original_image", "geometry"], {"default": "original_image"}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("STRING", "MODEL_TASK_ID",)
RETURN_NAMES = ("model_file", "model task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
AVERAGE_DURATION = 80
def generate_mesh(self, model_task_id, texture=None, pbr=None, texture_seed=None, texture_quality=None, texture_alignment=None, **kwargs):
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoTextureModelRequest,
response_model=TripoTaskResponse,
),
request=TripoTextureModelRequest(
original_model_task_id=model_task_id,
texture=texture,
pbr=pbr,
texture_seed=texture_seed,
texture_quality=texture_quality,
texture_alignment=texture_alignment
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoRefineNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_task_id": ("MODEL_TASK_ID", {
"tooltip": "Must be a v1.4 Tripo model"
}),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
DESCRIPTION = "Refine a draft model created by v1.4 Tripo models only."
RETURN_TYPES = ("STRING", "MODEL_TASK_ID",)
RETURN_NAMES = ("model_file", "model task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
AVERAGE_DURATION = 240
def generate_mesh(self, model_task_id, **kwargs):
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoRefineModelRequest,
response_model=TripoTaskResponse,
),
request=TripoRefineModelRequest(
draft_model_task_id=model_task_id
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoRigNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_model_task_id": ("MODEL_TASK_ID",),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("STRING", "RIG_TASK_ID")
RETURN_NAMES = ("model_file", "rig task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
AVERAGE_DURATION = 180
def generate_mesh(self, original_model_task_id, **kwargs):
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoAnimateRigRequest,
response_model=TripoTaskResponse,
),
request=TripoAnimateRigRequest(
original_model_task_id=original_model_task_id,
out_format="glb",
spec="tripo"
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoRetargetNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_model_task_id": ("RIG_TASK_ID",),
"animation": ([
"preset:idle",
"preset:walk",
"preset:climb",
"preset:jump",
"preset:slash",
"preset:shoot",
"preset:hurt",
"preset:fall",
"preset:turn",
],),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("STRING", "RETARGET_TASK_ID")
RETURN_NAMES = ("model_file", "retarget task_id")
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
AVERAGE_DURATION = 30
def generate_mesh(self, animation, original_model_task_id, **kwargs):
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoAnimateRetargetRequest,
response_model=TripoTaskResponse,
),
request=TripoAnimateRetargetRequest(
original_model_task_id=original_model_task_id,
animation=animation,
out_format="glb",
bake_animation=True
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
class TripoConversionNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_model_task_id": ("MODEL_TASK_ID,RIG_TASK_ID,RETARGET_TASK_ID",),
"format": (["GLTF", "USDZ", "FBX", "OBJ", "STL", "3MF"],),
},
"optional": {
"quad": ("BOOLEAN", {"default": False}),
"face_limit": ("INT", {"min": -1, "max": 500000, "default": -1}),
"texture_size": ("INT", {"min": 128, "max": 4096, "default": 4096}),
"texture_format": (["BMP", "DPX", "HDR", "JPEG", "OPEN_EXR", "PNG", "TARGA", "TIFF", "WEBP"], {"default": "JPEG"})
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
@classmethod
def VALIDATE_INPUTS(cls, input_types):
# The min and max of input1 and input2 are still validated because
# we didn't take `input1` or `input2` as arguments
if input_types["original_model_task_id"] not in ("MODEL_TASK_ID", "RIG_TASK_ID", "RETARGET_TASK_ID"):
return "original_model_task_id must be MODEL_TASK_ID, RIG_TASK_ID or RETARGET_TASK_ID type"
return True
RETURN_TYPES = ()
FUNCTION = "generate_mesh"
CATEGORY = "api node/3d/Tripo"
API_NODE = True
OUTPUT_NODE = True
AVERAGE_DURATION = 30
def generate_mesh(self, original_model_task_id, format, quad, face_limit, texture_size, texture_format, **kwargs):
if not original_model_task_id:
raise RuntimeError("original_model_task_id is required")
response = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
request_model=TripoConvertModelRequest,
response_model=TripoTaskResponse,
),
request=TripoConvertModelRequest(
original_model_task_id=original_model_task_id,
format=format,
quad=quad if quad else None,
face_limit=face_limit if face_limit != -1 else None,
texture_size=texture_size if texture_size != 4096 else None,
texture_format=texture_format if texture_format != "JPEG" else None
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
NODE_CLASS_MAPPINGS = {
"TripoTextToModelNode": TripoTextToModelNode,
"TripoImageToModelNode": TripoImageToModelNode,
"TripoMultiviewToModelNode": TripoMultiviewToModelNode,
"TripoTextureNode": TripoTextureNode,
"TripoRefineNode": TripoRefineNode,
"TripoRigNode": TripoRigNode,
"TripoRetargetNode": TripoRetargetNode,
"TripoConversionNode": TripoConversionNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"TripoTextToModelNode": "Tripo: Text to Model",
"TripoImageToModelNode": "Tripo: Image to Model",
"TripoMultiviewToModelNode": "Tripo: Multiview to Model",
"TripoTextureNode": "Tripo: Texture model",
"TripoRefineNode": "Tripo: Refine Draft model",
"TripoRigNode": "Tripo: Rig model",
"TripoRetargetNode": "Tripo: Retarget rigged model",
"TripoConversionNode": "Tripo: Convert model",
}

View File

@@ -14,6 +14,7 @@ import re
from io import BytesIO
from inspect import cleandoc
import torch
import comfy.utils
from comfy.comfy_types import FileLocator
@@ -229,6 +230,186 @@ class SVG:
all_svgs_list.extend(svg_item.data)
return SVG(all_svgs_list)
class ImageStitch:
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"direction": (["right", "down", "left", "up"], {"default": "right"}),
"match_image_size": ("BOOLEAN", {"default": True}),
"spacing_width": (
"INT",
{"default": 0, "min": 0, "max": 1024, "step": 2},
),
"spacing_color": (
["white", "black", "red", "green", "blue"],
{"default": "white"},
),
},
"optional": {
"image2": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stitch"
CATEGORY = "image/transform"
DESCRIPTION = """
Stitches image2 to image1 in the specified direction.
If image2 is not provided, returns image1 unchanged.
Optional spacing can be added between images.
"""
def stitch(
self,
image1,
direction,
match_image_size,
spacing_width,
spacing_color,
image2=None,
):
if image2 is None:
return (image1,)
# Handle batch size differences
if image1.shape[0] != image2.shape[0]:
max_batch = max(image1.shape[0], image2.shape[0])
if image1.shape[0] < max_batch:
image1 = torch.cat(
[image1, image1[-1:].repeat(max_batch - image1.shape[0], 1, 1, 1)]
)
if image2.shape[0] < max_batch:
image2 = torch.cat(
[image2, image2[-1:].repeat(max_batch - image2.shape[0], 1, 1, 1)]
)
# Match image sizes if requested
if match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
aspect_ratio = w2 / h2
if direction in ["left", "right"]:
target_h, target_w = h1, int(h1 * aspect_ratio)
else: # up, down
target_w, target_h = w1, int(w1 / aspect_ratio)
image2 = comfy.utils.common_upscale(
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled"
).movedim(1, -1)
# When not matching sizes, pad to align non-concat dimensions
if not match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
if direction in ["left", "right"]:
# For horizontal concat, pad heights to match
if h1 != h2:
target_h = max(h1, h2)
if h1 < target_h:
pad_h = target_h - h1
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image1 = torch.nn.functional.pad(image1, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=0.0)
if h2 < target_h:
pad_h = target_h - h2
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image2 = torch.nn.functional.pad(image2, (0, 0, 0, 0, pad_top, pad_bottom), mode='constant', value=0.0)
else: # up, down
# For vertical concat, pad widths to match
if w1 != w2:
target_w = max(w1, w2)
if w1 < target_w:
pad_w = target_w - w1
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image1 = torch.nn.functional.pad(image1, (0, 0, pad_left, pad_right), mode='constant', value=0.0)
if w2 < target_w:
pad_w = target_w - w2
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image2 = torch.nn.functional.pad(image2, (0, 0, pad_left, pad_right), mode='constant', value=0.0)
# Ensure same number of channels
if image1.shape[-1] != image2.shape[-1]:
max_channels = max(image1.shape[-1], image2.shape[-1])
if image1.shape[-1] < max_channels:
image1 = torch.cat(
[
image1,
torch.ones(
*image1.shape[:-1],
max_channels - image1.shape[-1],
device=image1.device,
),
],
dim=-1,
)
if image2.shape[-1] < max_channels:
image2 = torch.cat(
[
image2,
torch.ones(
*image2.shape[:-1],
max_channels - image2.shape[-1],
device=image2.device,
),
],
dim=-1,
)
# Add spacing if specified
if spacing_width > 0:
spacing_width = spacing_width + (spacing_width % 2) # Ensure even
color_map = {
"white": 1.0,
"black": 0.0,
"red": (1.0, 0.0, 0.0),
"green": (0.0, 1.0, 0.0),
"blue": (0.0, 0.0, 1.0),
}
color_val = color_map[spacing_color]
if direction in ["left", "right"]:
spacing_shape = (
image1.shape[0],
max(image1.shape[1], image2.shape[1]),
spacing_width,
image1.shape[-1],
)
else:
spacing_shape = (
image1.shape[0],
spacing_width,
max(image1.shape[2], image2.shape[2]),
image1.shape[-1],
)
spacing = torch.full(spacing_shape, 0.0, device=image1.device)
if isinstance(color_val, tuple):
for i, c in enumerate(color_val):
if i < spacing.shape[-1]:
spacing[..., i] = c
if spacing.shape[-1] == 4: # Add alpha
spacing[..., 3] = 1.0
else:
spacing[..., : min(3, spacing.shape[-1])] = color_val
if spacing.shape[-1] == 4:
spacing[..., 3] = 1.0
# Concatenate images
images = [image2, image1] if direction in ["left", "up"] else [image1, image2]
if spacing_width > 0:
images.insert(1, spacing)
concat_dim = 2 if direction in ["left", "right"] else 1
return (torch.cat(images, dim=concat_dim),)
class SaveSVGNode:
"""
Save SVG files on disk.
@@ -318,4 +499,5 @@ NODE_CLASS_MAPPINGS = {
"SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG,
"SaveSVGNode": SaveSVGNode,
"ImageStitch": ImageStitch,
}

View File

@@ -16,7 +16,7 @@ class Load3D():
os.makedirs(input_dir, exist_ok=True)
files = [normalize_path(os.path.join("3d", f)) for f in os.listdir(input_dir) if f.endswith(('.gltf', '.glb', '.obj', '.mtl', '.fbx', '.stl'))]
files = [normalize_path(os.path.join("3d", f)) for f in os.listdir(input_dir) if f.endswith(('.gltf', '.glb', '.obj', '.fbx', '.stl'))]
return {"required": {
"model_file": (sorted(files), {"file_upload": True}),

View File

@@ -0,0 +1,86 @@
from __future__ import annotations
from inspect import cleandoc
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
import comfy.multigpu
class MultiGPUWorkUnitsNode:
"""
Prepares model to have sampling accelerated via splitting work units.
Should be placed after nodes that modify the model object itself, such as compile or attention-switch nodes.
Other than those exceptions, this node can be placed in any order.
"""
NodeId = "MultiGPU_WorkUnits"
NodeName = "MultiGPU Work Units"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"max_gpus" : ("INT", {"default": 8, "min": 1, "step": 1}),
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "init_multigpu"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def init_multigpu(self, model: ModelPatcher, max_gpus: int, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
model = comfy.multigpu.create_multigpu_deepclones(model, max_gpus, gpu_options, reuse_loaded=True)
return (model,)
class MultiGPUOptionsNode:
"""
Select the relative speed of GPUs in the special case they have significantly different performance from one another.
"""
NodeId = "MultiGPU_Options"
NodeName = "MultiGPU Options"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"device_index": ("INT", {"default": 0, "min": 0, "max": 64}),
"relative_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01})
},
"optional": {
"gpu_options": ("GPU_OPTIONS",)
}
}
RETURN_TYPES = ("GPU_OPTIONS",)
FUNCTION = "create_gpu_options"
CATEGORY = "advanced/multigpu"
DESCRIPTION = cleandoc(__doc__)
def create_gpu_options(self, device_index: int, relative_speed: float, gpu_options: comfy.multigpu.GPUOptionsGroup=None):
if not gpu_options:
gpu_options = comfy.multigpu.GPUOptionsGroup()
gpu_options.clone()
opt = comfy.multigpu.GPUOptions(device_index=device_index, relative_speed=relative_speed)
gpu_options.add(opt)
return (gpu_options,)
node_list = [
MultiGPUWorkUnitsNode,
MultiGPUOptionsNode
]
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
for node in node_list:
NODE_CLASS_MAPPINGS[node.NodeId] = node
NODE_DISPLAY_NAME_MAPPINGS[node.NodeId] = node.NodeName

View File

@@ -296,6 +296,41 @@ class RegexExtract():
return result,
class RegexReplace():
DESCRIPTION = "Find and replace text using regex patterns."
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"regex_pattern": (IO.STRING, {"multiline": True}),
"replace": (IO.STRING, {"multiline": True}),
},
"optional": {
"case_insensitive": (IO.BOOLEAN, {"default": True}),
"multiline": (IO.BOOLEAN, {"default": False}),
"dotall": (IO.BOOLEAN, {"default": False, "tooltip": "When enabled, the dot (.) character will match any character including newline characters. When disabled, dots won't match newlines."}),
"count": (IO.INT, {"default": 0, "min": 0, "max": 100, "tooltip": "Maximum number of replacements to make. Set to 0 to replace all occurrences (default). Set to 1 to replace only the first match, 2 for the first two matches, etc."}),
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, regex_pattern, replace, case_insensitive=True, multiline=False, dotall=False, count=0, **kwargs):
flags = 0
if case_insensitive:
flags |= re.IGNORECASE
if multiline:
flags |= re.MULTILINE
if dotall:
flags |= re.DOTALL
result = re.sub(regex_pattern, replace, string, count=count, flags=flags)
return result,
NODE_CLASS_MAPPINGS = {
"StringConcatenate": StringConcatenate,
"StringSubstring": StringSubstring,
@@ -306,7 +341,8 @@ NODE_CLASS_MAPPINGS = {
"StringContains": StringContains,
"StringCompare": StringCompare,
"RegexMatch": RegexMatch,
"RegexExtract": RegexExtract
"RegexExtract": RegexExtract,
"RegexReplace": RegexReplace,
}
NODE_DISPLAY_NAME_MAPPINGS = {
@@ -319,5 +355,6 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"StringContains": "Contains",
"StringCompare": "Compare",
"RegexMatch": "Regex Match",
"RegexExtract": "Regex Extract"
"RegexExtract": "Regex Extract",
"RegexReplace": "Regex Replace",
}

View File

@@ -1,4 +1,5 @@
import torch
from comfy_api.torch_helpers import set_torch_compile_wrapper
class TorchCompileModel:
@classmethod
@@ -14,7 +15,7 @@ class TorchCompileModel:
def patch(self, model, backend):
m = model.clone()
m.add_object_patch("diffusion_model", torch.compile(model=m.get_model_object("diffusion_model"), backend=backend))
set_torch_compile_wrapper(model=m, backend=backend)
return (m, )
NODE_CLASS_MAPPINGS = {

View File

@@ -268,8 +268,9 @@ class WanVaceToVideo:
trim_latent = reference_image.shape[2]
mask = mask.unsqueeze(0)
positive = node_helpers.conditioning_set_values(positive, {"vace_frames": control_video_latent, "vace_mask": mask, "vace_strength": strength})
negative = node_helpers.conditioning_set_values(negative, {"vace_frames": control_video_latent, "vace_mask": mask, "vace_strength": strength})
positive = node_helpers.conditioning_set_values(positive, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True)
latent = torch.zeros([batch_size, 16, latent_length, height // 8, width // 8], device=comfy.model_management.intermediate_device())
out_latent = {}
@@ -344,6 +345,44 @@ class WanCameraImageToVideo:
out_latent["samples"] = latent
return (positive, negative, out_latent)
class WanPhantomSubjectToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"images": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative_text", "negative_img_text", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, images):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
cond2 = negative
if images is not None:
images = comfy.utils.common_upscale(images[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
latent_images = []
for i in images:
latent_images += [vae.encode(i.unsqueeze(0)[:, :, :, :3])]
concat_latent_image = torch.cat(latent_images, dim=2)
positive = node_helpers.conditioning_set_values(positive, {"time_dim_concat": concat_latent_image})
cond2 = node_helpers.conditioning_set_values(negative, {"time_dim_concat": concat_latent_image})
negative = node_helpers.conditioning_set_values(negative, {"time_dim_concat": comfy.latent_formats.Wan21().process_out(torch.zeros_like(concat_latent_image))})
out_latent = {}
out_latent["samples"] = latent
return (positive, cond2, negative, out_latent)
NODE_CLASS_MAPPINGS = {
"WanImageToVideo": WanImageToVideo,
"WanFunControlToVideo": WanFunControlToVideo,
@@ -352,4 +391,5 @@ NODE_CLASS_MAPPINGS = {
"WanVaceToVideo": WanVaceToVideo,
"TrimVideoLatent": TrimVideoLatent,
"WanCameraImageToVideo": WanCameraImageToVideo,
"WanPhantomSubjectToVideo": WanPhantomSubjectToVideo,
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.35"
__version__ = "0.3.39"

View File

@@ -909,7 +909,6 @@ class PromptQueue:
self.currently_running = {}
self.history = {}
self.flags = {}
server.prompt_queue = self
def put(self, item):
with self.mutex:
@@ -954,6 +953,7 @@ class PromptQueue:
self.history[prompt[1]].update(history_result)
self.server.queue_updated()
# Note: slow
def get_current_queue(self):
with self.mutex:
out = []
@@ -961,6 +961,13 @@ class PromptQueue:
out += [x]
return (out, copy.deepcopy(self.queue))
# read-safe as long as queue items are immutable
def get_current_queue_volatile(self):
with self.mutex:
running = [x for x in self.currently_running.values()]
queued = copy.copy(self.queue)
return (running, queued)
def get_tasks_remaining(self):
with self.mutex:
return len(self.queue) + len(self.currently_running)

View File

@@ -260,7 +260,6 @@ def start_comfyui(asyncio_loop=None):
asyncio_loop = asyncio.new_event_loop()
asyncio.set_event_loop(asyncio_loop)
prompt_server = server.PromptServer(asyncio_loop)
q = execution.PromptQueue(prompt_server)
hook_breaker_ac10a0.save_functions()
nodes.init_extra_nodes(init_custom_nodes=not args.disable_all_custom_nodes, init_api_nodes=not args.disable_api_nodes)
@@ -271,7 +270,7 @@ def start_comfyui(asyncio_loop=None):
prompt_server.add_routes()
hijack_progress(prompt_server)
threading.Thread(target=prompt_worker, daemon=True, args=(q, prompt_server,)).start()
threading.Thread(target=prompt_worker, daemon=True, args=(prompt_server.prompt_queue, prompt_server,)).start()
if args.quick_test_for_ci:
exit(0)

View File

@@ -5,12 +5,18 @@ from comfy.cli_args import args
from PIL import ImageFile, UnidentifiedImageError
def conditioning_set_values(conditioning, values={}):
def conditioning_set_values(conditioning, values={}, append=False):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
for k in values:
n[1][k] = values[k]
val = values[k]
if append:
old_val = n[1].get(k, None)
if old_val is not None:
val = old_val + val
n[1][k] = val
c.append(n)
return c

View File

@@ -1103,16 +1103,7 @@ class unCLIPConditioning:
if strength == 0:
return (conditioning, )
c = []
for t in conditioning:
o = t[1].copy()
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
if "unclip_conditioning" in o:
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
else:
o["unclip_conditioning"] = [x]
n = [t[0], o]
c.append(n)
c = node_helpers.conditioning_set_values(conditioning, {"unclip_conditioning": [{"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}]}, append=True)
return (c, )
class GLIGENLoader:
@@ -2070,6 +2061,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"ImagePadForOutpaint": "Pad Image for Outpainting",
"ImageBatch": "Batch Images",
"ImageCrop": "Image Crop",
"ImageStitch": "Image Stitch",
"ImageBlend": "Image Blend",
"ImageBlur": "Image Blur",
"ImageQuantize": "Image Quantize",
@@ -2249,6 +2241,7 @@ def init_builtin_extra_nodes():
"nodes_mahiro.py",
"nodes_lt.py",
"nodes_hooks.py",
"nodes_multigpu.py",
"nodes_load_3d.py",
"nodes_cosmos.py",
"nodes_video.py",
@@ -2290,6 +2283,10 @@ def init_builtin_api_nodes():
"nodes_pixverse.py",
"nodes_stability.py",
"nodes_pika.py",
"nodes_runway.py",
"nodes_tripo.py",
"nodes_rodin.py",
"nodes_gemini.py",
]
if not load_custom_node(os.path.join(api_nodes_dir, "canary.py"), module_parent="comfy_api_nodes"):

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.35"
version = "0.3.39"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,5 +1,6 @@
comfyui-frontend-package==1.19.9
comfyui-workflow-templates==0.1.14
comfyui-frontend-package==1.21.3
comfyui-workflow-templates==0.1.23
comfyui-embedded-docs==0.2.0
torch
torchsde
torchvision

View File

@@ -29,6 +29,7 @@ import comfy.model_management
import node_helpers
from comfyui_version import __version__
from app.frontend_management import FrontendManager
from app.user_manager import UserManager
from app.model_manager import ModelFileManager
from app.custom_node_manager import CustomNodeManager
@@ -159,7 +160,7 @@ class PromptServer():
self.custom_node_manager = CustomNodeManager()
self.internal_routes = InternalRoutes(self)
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = None
self.prompt_queue = execution.PromptQueue(self)
self.loop = loop
self.messages = asyncio.Queue()
self.client_session:Optional[aiohttp.ClientSession] = None
@@ -226,7 +227,7 @@ class PromptServer():
return response
@routes.get("/embeddings")
def get_embeddings(self):
def get_embeddings(request):
embeddings = folder_paths.get_filename_list("embeddings")
return web.json_response(list(map(lambda a: os.path.splitext(a)[0], embeddings)))
@@ -282,7 +283,6 @@ class PromptServer():
a.update(f.read())
b.update(image.file.read())
image.file.seek(0)
f.close()
return a.hexdigest() == b.hexdigest()
return False
@@ -621,7 +621,7 @@ class PromptServer():
@routes.get("/queue")
async def get_queue(request):
queue_info = {}
current_queue = self.prompt_queue.get_current_queue()
current_queue = self.prompt_queue.get_current_queue_volatile()
queue_info['queue_running'] = current_queue[0]
queue_info['queue_pending'] = current_queue[1]
return web.json_response(queue_info)
@@ -746,6 +746,13 @@ class PromptServer():
web.static('/templates', workflow_templates_path)
])
# Serve embedded documentation from the package
embedded_docs_path = FrontendManager.embedded_docs_path()
if embedded_docs_path:
self.app.add_routes([
web.static('/docs', embedded_docs_path)
])
self.app.add_routes([
web.static('/', self.web_root),
])

View File

View File

@@ -0,0 +1,240 @@
import torch
from unittest.mock import patch, MagicMock
# Mock nodes module to prevent CUDA initialization during import
mock_nodes = MagicMock()
mock_nodes.MAX_RESOLUTION = 16384
with patch.dict('sys.modules', {'nodes': mock_nodes}):
from comfy_extras.nodes_images import ImageStitch
class TestImageStitch:
def create_test_image(self, batch_size=1, height=64, width=64, channels=3):
"""Helper to create test images with specific dimensions"""
return torch.rand(batch_size, height, width, channels)
def test_no_image2_passthrough(self):
"""Test that when image2 is None, image1 is returned unchanged"""
node = ImageStitch()
image1 = self.create_test_image()
result = node.stitch(image1, "right", True, 0, "white", image2=None)
assert len(result) == 1
assert torch.equal(result[0], image1)
def test_basic_horizontal_stitch_right(self):
"""Test basic horizontal stitching to the right"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=24)
result = node.stitch(image1, "right", False, 0, "white", image2)
assert result[0].shape == (1, 32, 56, 3) # 32 + 24 width
def test_basic_horizontal_stitch_left(self):
"""Test basic horizontal stitching to the left"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=24)
result = node.stitch(image1, "left", False, 0, "white", image2)
assert result[0].shape == (1, 32, 56, 3) # 24 + 32 width
def test_basic_vertical_stitch_down(self):
"""Test basic vertical stitching downward"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=24, width=32)
result = node.stitch(image1, "down", False, 0, "white", image2)
assert result[0].shape == (1, 56, 32, 3) # 32 + 24 height
def test_basic_vertical_stitch_up(self):
"""Test basic vertical stitching upward"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=24, width=32)
result = node.stitch(image1, "up", False, 0, "white", image2)
assert result[0].shape == (1, 56, 32, 3) # 24 + 32 height
def test_size_matching_horizontal(self):
"""Test size matching for horizontal concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=64, width=64)
image2 = self.create_test_image(height=32, width=32) # Different aspect ratio
result = node.stitch(image1, "right", True, 0, "white", image2)
# image2 should be resized to match image1's height (64) with preserved aspect ratio
expected_width = 64 + 64 # original + resized (32*64/32 = 64)
assert result[0].shape == (1, 64, expected_width, 3)
def test_size_matching_vertical(self):
"""Test size matching for vertical concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=64, width=64)
image2 = self.create_test_image(height=32, width=32)
result = node.stitch(image1, "down", True, 0, "white", image2)
# image2 should be resized to match image1's width (64) with preserved aspect ratio
expected_height = 64 + 64 # original + resized (32*64/32 = 64)
assert result[0].shape == (1, expected_height, 64, 3)
def test_padding_for_mismatched_heights_horizontal(self):
"""Test padding when heights don't match in horizontal concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=64, width=32)
image2 = self.create_test_image(height=48, width=24) # Shorter height
result = node.stitch(image1, "right", False, 0, "white", image2)
# Both images should be padded to height 64
assert result[0].shape == (1, 64, 56, 3) # 32 + 24 width, max(64,48) height
def test_padding_for_mismatched_widths_vertical(self):
"""Test padding when widths don't match in vertical concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=64)
image2 = self.create_test_image(height=24, width=48) # Narrower width
result = node.stitch(image1, "down", False, 0, "white", image2)
# Both images should be padded to width 64
assert result[0].shape == (1, 56, 64, 3) # 32 + 24 height, max(64,48) width
def test_spacing_horizontal(self):
"""Test spacing addition in horizontal concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=24)
spacing_width = 16
result = node.stitch(image1, "right", False, spacing_width, "white", image2)
# Expected width: 32 + 16 (spacing) + 24 = 72
assert result[0].shape == (1, 32, 72, 3)
def test_spacing_vertical(self):
"""Test spacing addition in vertical concatenation"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=24, width=32)
spacing_width = 16
result = node.stitch(image1, "down", False, spacing_width, "white", image2)
# Expected height: 32 + 16 (spacing) + 24 = 72
assert result[0].shape == (1, 72, 32, 3)
def test_spacing_color_values(self):
"""Test that spacing colors are applied correctly"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
# Test white spacing
result_white = node.stitch(image1, "right", False, 16, "white", image2)
# Check that spacing region contains white values (close to 1.0)
spacing_region = result_white[0][:, :, 32:48, :] # Middle 16 pixels
assert torch.all(spacing_region >= 0.9) # Should be close to white
# Test black spacing
result_black = node.stitch(image1, "right", False, 16, "black", image2)
spacing_region = result_black[0][:, :, 32:48, :]
assert torch.all(spacing_region <= 0.1) # Should be close to black
def test_odd_spacing_width_made_even(self):
"""Test that odd spacing widths are made even"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
# Use odd spacing width
result = node.stitch(image1, "right", False, 15, "white", image2)
# Should be made even (16), so total width = 32 + 16 + 32 = 80
assert result[0].shape == (1, 32, 80, 3)
def test_batch_size_matching(self):
"""Test that different batch sizes are handled correctly"""
node = ImageStitch()
image1 = self.create_test_image(batch_size=2, height=32, width=32)
image2 = self.create_test_image(batch_size=1, height=32, width=32)
result = node.stitch(image1, "right", False, 0, "white", image2)
# Should match larger batch size
assert result[0].shape == (2, 32, 64, 3)
def test_channel_matching_rgb_to_rgba(self):
"""Test that channel differences are handled (RGB + alpha)"""
node = ImageStitch()
image1 = self.create_test_image(channels=3) # RGB
image2 = self.create_test_image(channels=4) # RGBA
result = node.stitch(image1, "right", False, 0, "white", image2)
# Should have 4 channels (RGBA)
assert result[0].shape[-1] == 4
def test_channel_matching_rgba_to_rgb(self):
"""Test that channel differences are handled (RGBA + RGB)"""
node = ImageStitch()
image1 = self.create_test_image(channels=4) # RGBA
image2 = self.create_test_image(channels=3) # RGB
result = node.stitch(image1, "right", False, 0, "white", image2)
# Should have 4 channels (RGBA)
assert result[0].shape[-1] == 4
def test_all_color_options(self):
"""Test all available color options"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
colors = ["white", "black", "red", "green", "blue"]
for color in colors:
result = node.stitch(image1, "right", False, 16, color, image2)
assert result[0].shape == (1, 32, 80, 3) # Basic shape check
def test_all_directions(self):
"""Test all direction options"""
node = ImageStitch()
image1 = self.create_test_image(height=32, width=32)
image2 = self.create_test_image(height=32, width=32)
directions = ["right", "left", "up", "down"]
for direction in directions:
result = node.stitch(image1, direction, False, 0, "white", image2)
assert result[0].shape == (1, 32, 64, 3) if direction in ["right", "left"] else (1, 64, 32, 3)
def test_batch_size_channel_spacing_integration(self):
"""Test integration of batch matching, channel matching, size matching, and spacings"""
node = ImageStitch()
image1 = self.create_test_image(batch_size=2, height=64, width=48, channels=3)
image2 = self.create_test_image(batch_size=1, height=32, width=32, channels=4)
result = node.stitch(image1, "right", True, 8, "red", image2)
# Should handle: batch matching, size matching, channel matching, spacing
assert result[0].shape[0] == 2 # Batch size matched
assert result[0].shape[-1] == 4 # Channels matched to max
assert result[0].shape[1] == 64 # Height from image1 (size matching)
# Width should be: 48 + 8 (spacing) + resized_image2_width
expected_image2_width = int(64 * (32/32)) # Resized to height 64
expected_total_width = 48 + 8 + expected_image2_width
assert result[0].shape[2] == expected_total_width