Compare commits
272 Commits
v0.3.24
...
yoland68-p
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ade9a4e034 | ||
|
|
87f9130778 | ||
|
|
7e84bf5373 | ||
|
|
4f3b50ba51 | ||
|
|
e930a387d6 | ||
|
|
d8e5662822 | ||
|
|
3d44a09812 | ||
|
|
62690eddec | ||
|
|
05eb10b43a | ||
|
|
f5e4e976f4 | ||
|
|
aee2908d03 | ||
|
|
dc46db7aa4 | ||
|
|
7046983d95 | ||
|
|
1c2d45d2b5 | ||
|
|
c820ef950d | ||
|
|
6a2e4bb9e0 | ||
|
|
f1f9763b4c | ||
|
|
08368f8e00 | ||
|
|
f3ff5c40db | ||
|
|
98ff01e148 | ||
|
|
bab836d88d | ||
|
|
4a9014e201 | ||
|
|
8a7c894d54 | ||
|
|
a814f2e8cc | ||
|
|
481732a0ed | ||
|
|
2156ce9453 | ||
|
|
4136502b7a | ||
|
|
9ad287ff20 | ||
|
|
f5cacaeb14 | ||
|
|
b7ed5f57bd | ||
|
|
b4abca828e | ||
|
|
158419f3a0 | ||
|
|
640c47e7de | ||
|
|
31e9e36c94 | ||
|
|
577de83ca9 | ||
|
|
3535909eb8 | ||
|
|
235d3901fc | ||
|
|
d42613686f | ||
|
|
1b3bf0a5da | ||
|
|
ae60b150e5 | ||
|
|
42da274717 | ||
|
|
28f178a840 | ||
|
|
8ab15c863c | ||
|
|
924d771e18 | ||
|
|
02a1b01aad | ||
|
|
a692c3cca4 | ||
|
|
5d3cc85e13 | ||
|
|
c7c025b8d1 | ||
|
|
fd08e39588 | ||
|
|
56b6ee6754 | ||
|
|
cc33cd3422 | ||
|
|
b9980592c4 | ||
|
|
16417b40d9 | ||
|
|
271c9c5b9e | ||
|
|
a4e679765e | ||
|
|
0cf2e46b17 | ||
|
|
094e9ef126 | ||
|
|
1271c4ef9d | ||
|
|
d9c80a85e5 | ||
|
|
3e62c5513a | ||
|
|
cd18582578 | ||
|
|
80a44b97f5 | ||
|
|
9187a09483 | ||
|
|
3041e5c354 | ||
|
|
7689917113 | ||
|
|
486ad8fdc5 | ||
|
|
065d855f14 | ||
|
|
530494588d | ||
|
|
2ab9618732 | ||
|
|
d9a87c1e6a | ||
|
|
551fe8dcee | ||
|
|
ff99861650 | ||
|
|
8d0661d0ba | ||
|
|
6d32dc049e | ||
|
|
aa9d759df3 | ||
|
|
c6c19e9980 | ||
|
|
08ff5fa08a | ||
|
|
4ca3d84277 | ||
|
|
39c27a3705 | ||
|
|
b1c7291569 | ||
|
|
dbc726f80c | ||
|
|
7ee96455e2 | ||
|
|
0a66d4b0af | ||
|
|
5c5457a4ef | ||
|
|
45503f6499 | ||
|
|
005a91ce2b | ||
|
|
68f0d35296 | ||
|
|
83d04717b6 | ||
|
|
7d329771f9 | ||
|
|
c15909bb62 | ||
|
|
772b4c5945 | ||
|
|
5a50c3c7e5 | ||
|
|
30159a7fe6 | ||
|
|
cb9ac3db58 | ||
|
|
8115a7895b | ||
|
|
c8cd7ad795 | ||
|
|
542b4b36b6 | ||
|
|
ac10a0d69e | ||
|
|
0dcc75ca54 | ||
|
|
b685b8a4e0 | ||
|
|
23e39f2ba7 | ||
|
|
78992c4b25 | ||
|
|
f935d42d8e | ||
|
|
a97f2f850a | ||
|
|
5acb705857 | ||
|
|
5c80da31db | ||
|
|
e2eed9eb9b | ||
|
|
11b68ebd22 | ||
|
|
188b383c35 | ||
|
|
2c1d686ec6 | ||
|
|
e8ddc2be95 | ||
|
|
dea1c7474a | ||
|
|
154f2911aa | ||
|
|
3eaad0590e | ||
|
|
7eaff81be1 | ||
|
|
21a11ef817 | ||
|
|
552615235d | ||
|
|
0738e4ea5d | ||
|
|
92cdc692f4 | ||
|
|
2d6805ce57 | ||
|
|
a8f63c0d5b | ||
|
|
454a635c1b | ||
|
|
966c43ce26 | ||
|
|
3ab231f01f | ||
|
|
1f3fba2af5 | ||
|
|
5d0d4ee98a | ||
|
|
9d57b8afd8 | ||
|
|
5d51794607 | ||
|
|
ce22f687cc | ||
|
|
b6fd3ffd10 | ||
|
|
11b72c9c55 | ||
|
|
2c735c13b4 | ||
|
|
fd27494441 | ||
|
|
f43e1d7f41 | ||
|
|
4486b0d0ff | ||
|
|
636d4bfb89 | ||
|
|
dc300a4569 | ||
|
|
f3b09b9f2d | ||
|
|
7ecd5e9614 | ||
|
|
2383a39e3b | ||
|
|
34e06bf7ec | ||
|
|
55822faa05 | ||
|
|
880c205df1 | ||
|
|
3dc240d089 | ||
|
|
19373aee75 | ||
|
|
93292bc450 | ||
|
|
05d5a75cdc | ||
|
|
eba7a25e7a | ||
|
|
dbcfd092a2 | ||
|
|
c14429940f | ||
|
|
0d720e4367 | ||
|
|
1fc00ba4b6 | ||
|
|
9899d187b1 | ||
|
|
f00f340a56 | ||
|
|
cce1d9145e | ||
|
|
b4dc03ad76 | ||
|
|
9ad792f927 | ||
|
|
6fc5dbd52a | ||
|
|
3e8155f7a3 | ||
|
|
8a438115fb | ||
|
|
a14c2fc356 | ||
|
|
9ee6ca99d8 | ||
|
|
bb495cc9b8 | ||
|
|
e51d9ba5fc | ||
|
|
c87a06f934 | ||
|
|
1714a4c158 | ||
|
|
73ecb75a3d | ||
|
|
22ad513c72 | ||
|
|
ed945a1790 | ||
|
|
f9207c6936 | ||
|
|
8ad7477647 | ||
|
|
98bdca4cb2 | ||
|
|
a26da20a76 | ||
|
|
e346d8584e | ||
|
|
ab31b64412 | ||
|
|
fe29739c68 | ||
|
|
e8345a9b7b | ||
|
|
8c6b9f4481 | ||
|
|
cc7e023a4a | ||
|
|
2f7d8159c3 | ||
|
|
70d7242e57 | ||
|
|
49b732afd5 | ||
|
|
3bfe4e5276 | ||
|
|
89e4ea0175 | ||
|
|
3a100b9a55 | ||
|
|
721253cb05 | ||
|
|
3d2e3a6f29 | ||
|
|
2222cf67fd | ||
|
|
ab5413351e | ||
|
|
2b71aab299 | ||
|
|
301e26b131 | ||
|
|
548457bac4 | ||
|
|
0b4584c741 | ||
|
|
a3100c8452 | ||
|
|
832fc02330 | ||
|
|
2d17d8910c | ||
|
|
a40fcfc2d5 | ||
|
|
0a1f8869c9 | ||
|
|
3661c833bc | ||
|
|
84fdaf7b0e | ||
|
|
8edc1f44c1 | ||
|
|
eade1551bb | ||
|
|
581a9991ff | ||
|
|
e471c726e5 | ||
|
|
75c1c757d9 | ||
|
|
ce9b084279 | ||
|
|
2206246055 | ||
|
|
d9fa9d307f | ||
|
|
83e839a89b | ||
|
|
0cf2274699 | ||
|
|
0956107170 | ||
|
|
a4a956dbbd | ||
|
|
8b9ce4ed18 | ||
|
|
3872b43d4b | ||
|
|
32ca0805b7 | ||
|
|
11f1b41bab | ||
|
|
3b19fc76e3 | ||
|
|
50614f1b79 | ||
|
|
6dc7b0bfe3 | ||
|
|
e8e990d6b8 | ||
|
|
2e24a15905 | ||
|
|
fd5297131f | ||
|
|
55a1b09ddc | ||
|
|
3c3988df45 | ||
|
|
7ebd8087ff | ||
|
|
c624c29d66 | ||
|
|
a2448fc527 | ||
|
|
6a0daa79b6 | ||
|
|
9c98c6358b | ||
|
|
7aceb9f91c | ||
|
|
35504e2f93 | ||
|
|
299436cfed | ||
|
|
52e566d2bc | ||
|
|
9b6cd9b874 | ||
|
|
3fc688aebd | ||
|
|
f4411250f3 | ||
|
|
d2a0fb6bb0 | ||
|
|
01015bff16 | ||
|
|
2330754b0e | ||
|
|
bc219a6487 | ||
|
|
94689766ad | ||
|
|
cfbe4b49ca | ||
|
|
ca8efab79f | ||
|
|
65ea778a5e | ||
|
|
db9f2a34fc | ||
|
|
7946049794 | ||
|
|
6f6349b6a7 | ||
|
|
1f138dd382 | ||
|
|
b779349b55 | ||
|
|
35e2dcf5d7 | ||
|
|
67c7184b74 | ||
|
|
6f8e766509 | ||
|
|
e1da98a14a | ||
|
|
a73410aafa | ||
|
|
9aac21f894 | ||
|
|
528d1b3563 | ||
|
|
2bc4b5968f | ||
|
|
7395b0c0d1 | ||
|
|
0952569493 | ||
|
|
29832b3b61 | ||
|
|
be4e760648 | ||
|
|
c3d9cc4592 | ||
|
|
84cc9cb528 | ||
|
|
ebbb920163 | ||
|
|
d60fe0af4a | ||
|
|
5dbd250965 | ||
|
|
4ab1875283 | ||
|
|
11b1f27cb1 | ||
|
|
70e15fd743 | ||
|
|
e1474150de | ||
|
|
e62d72e8ca | ||
|
|
1650cda030 |
@@ -63,7 +63,12 @@ except:
|
||||
print("checking out master branch") # noqa: T201
|
||||
branch = repo.lookup_branch('master')
|
||||
if branch is None:
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
try:
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
except:
|
||||
print("pulling.") # noqa: T201
|
||||
pull(repo)
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
repo.checkout(ref)
|
||||
branch = repo.lookup_branch('master')
|
||||
if branch is None:
|
||||
|
||||
@@ -0,0 +1,2 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
|
||||
pause
|
||||
12
.github/workflows/stable-release.yml
vendored
12
.github/workflows/stable-release.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
description: 'CUDA version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
@@ -22,7 +22,7 @@ on:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "10"
|
||||
|
||||
|
||||
jobs:
|
||||
@@ -36,7 +36,7 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.git_tag }}
|
||||
fetch-depth: 0
|
||||
fetch-depth: 150
|
||||
persist-credentials: false
|
||||
- uses: actions/cache/restore@v4
|
||||
id: cache
|
||||
@@ -70,7 +70,7 @@ jobs:
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
@@ -85,12 +85,14 @@ jobs:
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
python_embeded/python.exe -s ./update/update.py ComfyUI/
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
|
||||
56
.github/workflows/test-ci.yml
vendored
56
.github/workflows/test-ci.yml
vendored
@@ -20,9 +20,9 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
os: [macos, linux]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
os: [macos, linux, windows]
|
||||
# os: [macos, linux]
|
||||
python_version: ["3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
@@ -32,9 +32,9 @@ jobs:
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
# - os: windows
|
||||
# runner_label: [self-hosted, Windows]
|
||||
# flags: ""
|
||||
- os: windows
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
@@ -46,28 +46,28 @@ jobs:
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
|
||||
# test-win-nightly:
|
||||
# strategy:
|
||||
# fail-fast: true
|
||||
# matrix:
|
||||
# os: [windows]
|
||||
# python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
# cuda_version: ["12.1"]
|
||||
# torch_version: ["nightly"]
|
||||
# include:
|
||||
# - os: windows
|
||||
# runner_label: [self-hosted, Windows]
|
||||
# flags: ""
|
||||
# runs-on: ${{ matrix.runner_label }}
|
||||
# steps:
|
||||
# - name: Test Workflows
|
||||
# uses: comfy-org/comfy-action@main
|
||||
# with:
|
||||
# os: ${{ matrix.os }}
|
||||
# python_version: ${{ matrix.python_version }}
|
||||
# torch_version: ${{ matrix.torch_version }}
|
||||
# google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
# comfyui_flags: ${{ matrix.flags }}
|
||||
test-win-nightly:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [windows]
|
||||
python_version: ["3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: windows
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
|
||||
test-unix-nightly:
|
||||
strategy:
|
||||
|
||||
2
.github/workflows/test-launch.yml
vendored
2
.github/workflows/test-launch.yml
vendored
@@ -17,7 +17,7 @@ jobs:
|
||||
path: "ComfyUI"
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.9'
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
|
||||
56
.github/workflows/update-api-stubs.yml
vendored
Normal file
56
.github/workflows/update-api-stubs.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
name: Generate Pydantic Stubs from api.comfy.org
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '0 0 * * 1'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
generate-models:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install 'datamodel-code-generator[http]'
|
||||
npm install @redocly/cli
|
||||
|
||||
- name: Download OpenAPI spec
|
||||
run: |
|
||||
curl -o openapi.yaml https://api.comfy.org/openapi
|
||||
|
||||
- name: Filter OpenAPI spec with Redocly
|
||||
run: |
|
||||
npx @redocly/cli bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
|
||||
|
||||
- name: Generate API models
|
||||
run: |
|
||||
datamodel-codegen --use-subclass-enum --input filtered-openapi.yaml --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
|
||||
|
||||
- name: Check for changes
|
||||
id: git-check
|
||||
run: |
|
||||
git diff --exit-code comfy_api_nodes/apis || echo "changes=true" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Create Pull Request
|
||||
if: steps.git-check.outputs.changes == 'true'
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
with:
|
||||
commit-message: 'chore: update API models from OpenAPI spec'
|
||||
title: 'Update API models from api.comfy.org'
|
||||
body: |
|
||||
This PR updates the API models based on the latest api.comfy.org OpenAPI specification.
|
||||
|
||||
Generated automatically by the a Github workflow.
|
||||
branch: update-api-stubs
|
||||
delete-branch: true
|
||||
base: master
|
||||
@@ -17,7 +17,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -29,7 +29,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "10"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
@@ -7,7 +7,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "1"
|
||||
default: "2"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -34,7 +34,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
fetch-depth: 30
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
@@ -56,7 +56,7 @@ jobs:
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable_nightly_pytorch
|
||||
mv python_embeded ComfyUI_windows_portable_nightly_pytorch
|
||||
@@ -74,7 +74,7 @@ jobs:
|
||||
pause" > ./update/update_comfyui_and_python_dependencies.bat
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
|
||||
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
|
||||
|
||||
cd ComfyUI_windows_portable_nightly_pytorch
|
||||
|
||||
12
.github/workflows/windows_release_package.yml
vendored
12
.github/workflows/windows_release_package.yml
vendored
@@ -7,7 +7,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "9"
|
||||
default: "10"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -50,7 +50,7 @@ jobs:
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
fetch-depth: 150
|
||||
persist-credentials: false
|
||||
- shell: bash
|
||||
run: |
|
||||
@@ -67,7 +67,7 @@ jobs:
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
@@ -82,12 +82,14 @@ jobs:
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
python_embeded/python.exe -s ./update/update.py ComfyUI/
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -21,3 +21,6 @@ venv/
|
||||
*.log
|
||||
web_custom_versions/
|
||||
.DS_Store
|
||||
openapi.yaml
|
||||
filtered-openapi.yaml
|
||||
uv.lock
|
||||
|
||||
27
CODEOWNERS
27
CODEOWNERS
@@ -5,19 +5,20 @@
|
||||
# Inlined the team members for now.
|
||||
|
||||
# Maintainers
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
|
||||
# Python web server
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
|
||||
# Extra nodes
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink
|
||||
# Node developers
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
|
||||
40
README.md
40
README.md
@@ -49,7 +49,6 @@ Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon,
|
||||
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
|
||||
|
||||
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Image Models
|
||||
@@ -62,6 +61,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
|
||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
|
||||
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
||||
- Video Models
|
||||
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
||||
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
||||
@@ -69,7 +69,11 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
|
||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- Audio Models
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- 3D Models
|
||||
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
||||
@@ -96,6 +100,22 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
|
||||
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
- Serves as the foundation for the desktop release
|
||||
|
||||
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
|
||||
- Builds a new release using the latest stable core version
|
||||
|
||||
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
|
||||
- Weekly frontend updates are merged into the core repository
|
||||
- Features are frozen for the upcoming core release
|
||||
- Development continues for the next release cycle
|
||||
|
||||
## Shortcuts
|
||||
|
||||
| Keybind | Explanation |
|
||||
@@ -146,8 +166,6 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
If you have a 50 series Blackwell card like a 5090 or 5080 see [this discussion thread](https://github.com/comfyanonymous/ComfyUI/discussions/6643)
|
||||
|
||||
#### How do I share models between another UI and ComfyUI?
|
||||
|
||||
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
@@ -179,11 +197,11 @@ Put your VAE in: models/vae
|
||||
### AMD GPUs (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.3 which might have some performance improvements:
|
||||
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
|
||||
|
||||
### Intel GPUs (Windows and Linux)
|
||||
|
||||
@@ -213,11 +231,11 @@ Additional discussion and help can be found [here](https://github.com/comfyanony
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements:
|
||||
This is the command to install pytorch nightly instead which might have performance improvements.
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
@@ -283,7 +301,7 @@ For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 pyt
|
||||
|
||||
### AMD ROCm Tips
|
||||
|
||||
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
|
||||
You can enable experimental memory efficient attention on recent pytorch in ComfyUI on some AMD GPUs using this command, it should already be enabled by default on RDNA3. If this improves speed for you on latest pytorch on your GPU please report it so that I can enable it by default.
|
||||
|
||||
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
|
||||
|
||||
|
||||
@@ -9,8 +9,14 @@ class AppSettings():
|
||||
self.user_manager = user_manager
|
||||
|
||||
def get_settings(self, request):
|
||||
file = self.user_manager.get_request_user_filepath(
|
||||
request, "comfy.settings.json")
|
||||
try:
|
||||
file = self.user_manager.get_request_user_filepath(
|
||||
request,
|
||||
"comfy.settings.json"
|
||||
)
|
||||
except KeyError as e:
|
||||
logging.error("User settings not found.")
|
||||
raise web.HTTPUnauthorized() from e
|
||||
if os.path.isfile(file):
|
||||
try:
|
||||
with open(file) as f:
|
||||
|
||||
@@ -93,16 +93,20 @@ class CustomNodeManager:
|
||||
|
||||
def add_routes(self, routes, webapp, loadedModules):
|
||||
|
||||
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
|
||||
|
||||
@routes.get("/workflow_templates")
|
||||
async def get_workflow_templates(request):
|
||||
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
|
||||
files = [
|
||||
file
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes")
|
||||
for file in glob.glob(
|
||||
os.path.join(folder, "*/example_workflows/*.json")
|
||||
)
|
||||
]
|
||||
|
||||
files = []
|
||||
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes"):
|
||||
for folder_name in example_workflow_folder_names:
|
||||
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
|
||||
matched_files = glob.glob(pattern)
|
||||
files.extend(matched_files)
|
||||
|
||||
workflow_templates_dict = (
|
||||
{}
|
||||
) # custom_nodes folder name -> example workflow names
|
||||
@@ -118,15 +122,22 @@ class CustomNodeManager:
|
||||
|
||||
# Serve workflow templates from custom nodes.
|
||||
for module_name, module_dir in loadedModules:
|
||||
workflows_dir = os.path.join(module_dir, "example_workflows")
|
||||
if os.path.exists(workflows_dir):
|
||||
webapp.add_routes(
|
||||
[
|
||||
web.static(
|
||||
"/api/workflow_templates/" + module_name, workflows_dir
|
||||
)
|
||||
]
|
||||
)
|
||||
for folder_name in example_workflow_folder_names:
|
||||
workflows_dir = os.path.join(module_dir, folder_name)
|
||||
|
||||
if os.path.exists(workflows_dir):
|
||||
if folder_name != "example_workflows":
|
||||
logging.debug(
|
||||
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
|
||||
folder_name, module_name)
|
||||
|
||||
webapp.add_routes(
|
||||
[
|
||||
web.static(
|
||||
"/api/workflow_templates/" + module_name, workflows_dir
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
@routes.get("/i18n")
|
||||
async def get_i18n(request):
|
||||
|
||||
@@ -11,20 +11,61 @@ from dataclasses import dataclass
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import TypedDict, Optional
|
||||
from importlib.metadata import version
|
||||
|
||||
import requests
|
||||
from typing_extensions import NotRequired
|
||||
|
||||
from comfy.cli_args import DEFAULT_VERSION_STRING
|
||||
import app.logger
|
||||
|
||||
# The path to the requirements.txt file
|
||||
req_path = Path(__file__).parents[1] / "requirements.txt"
|
||||
|
||||
|
||||
try:
|
||||
import comfyui_frontend_package
|
||||
except ImportError:
|
||||
# TODO: Remove the check after roll out of 0.3.16
|
||||
req_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'requirements.txt'))
|
||||
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. Please install the updated requirements.txt file by running:\n{sys.executable} -m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem\n********** ERROR **********\n")
|
||||
exit(-1)
|
||||
def frontend_install_warning_message():
|
||||
"""The warning message to display when the frontend version is not up to date."""
|
||||
|
||||
extra = ""
|
||||
if sys.flags.no_user_site:
|
||||
extra = "-s "
|
||||
return f"""
|
||||
Please install the updated requirements.txt file by running:
|
||||
{sys.executable} {extra}-m pip install -r {req_path}
|
||||
|
||||
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
|
||||
|
||||
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
|
||||
""".strip()
|
||||
|
||||
|
||||
def check_frontend_version():
|
||||
"""Check if the frontend version is up to date."""
|
||||
|
||||
def parse_version(version: str) -> tuple[int, int, int]:
|
||||
return tuple(map(int, version.split(".")))
|
||||
|
||||
try:
|
||||
frontend_version_str = version("comfyui-frontend-package")
|
||||
frontend_version = parse_version(frontend_version_str)
|
||||
with open(req_path, "r", encoding="utf-8") as f:
|
||||
required_frontend = parse_version(f.readline().split("=")[-1])
|
||||
if frontend_version < required_frontend:
|
||||
app.logger.log_startup_warning(
|
||||
f"""
|
||||
________________________________________________________________________
|
||||
WARNING WARNING WARNING WARNING WARNING
|
||||
|
||||
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
________________________________________________________________________
|
||||
""".strip()
|
||||
)
|
||||
else:
|
||||
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to check frontend version: {e}")
|
||||
|
||||
|
||||
REQUEST_TIMEOUT = 10 # seconds
|
||||
@@ -121,9 +162,49 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
||||
|
||||
|
||||
class FrontendManager:
|
||||
DEFAULT_FRONTEND_PATH = str(importlib.resources.files(comfyui_frontend_package) / "static")
|
||||
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
||||
|
||||
@classmethod
|
||||
def default_frontend_path(cls) -> str:
|
||||
try:
|
||||
import comfyui_frontend_package
|
||||
|
||||
return str(importlib.resources.files(comfyui_frontend_package) / "static")
|
||||
except ImportError:
|
||||
logging.error(
|
||||
f"""
|
||||
********** ERROR ***********
|
||||
|
||||
comfyui-frontend-package is not installed.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
|
||||
********** ERROR ***********
|
||||
""".strip()
|
||||
)
|
||||
sys.exit(-1)
|
||||
|
||||
@classmethod
|
||||
def templates_path(cls) -> str:
|
||||
try:
|
||||
import comfyui_workflow_templates
|
||||
|
||||
return str(
|
||||
importlib.resources.files(comfyui_workflow_templates) / "templates"
|
||||
)
|
||||
except ImportError:
|
||||
logging.error(
|
||||
f"""
|
||||
********** ERROR ***********
|
||||
|
||||
comfyui-workflow-templates is not installed.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
|
||||
********** ERROR ***********
|
||||
""".strip()
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
||||
"""
|
||||
@@ -144,7 +225,9 @@ class FrontendManager:
|
||||
return match_result.group(1), match_result.group(2), match_result.group(3)
|
||||
|
||||
@classmethod
|
||||
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
|
||||
def init_frontend_unsafe(
|
||||
cls, version_string: str, provider: Optional[FrontEndProvider] = None
|
||||
) -> str:
|
||||
"""
|
||||
Initializes the frontend for the specified version.
|
||||
|
||||
@@ -160,17 +243,26 @@ class FrontendManager:
|
||||
main error source might be request timeout or invalid URL.
|
||||
"""
|
||||
if version_string == DEFAULT_VERSION_STRING:
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
check_frontend_version()
|
||||
return cls.default_frontend_path()
|
||||
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
|
||||
if version.startswith("v"):
|
||||
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
|
||||
expected_path = str(
|
||||
Path(cls.CUSTOM_FRONTENDS_ROOT)
|
||||
/ f"{repo_owner}_{repo_name}"
|
||||
/ version.lstrip("v")
|
||||
)
|
||||
if os.path.exists(expected_path):
|
||||
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
|
||||
logging.info(
|
||||
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
|
||||
)
|
||||
return expected_path
|
||||
|
||||
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
|
||||
logging.info(
|
||||
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
|
||||
)
|
||||
|
||||
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
||||
release = provider.get_release(version)
|
||||
@@ -213,4 +305,5 @@ class FrontendManager:
|
||||
except Exception as e:
|
||||
logging.error("Failed to initialize frontend: %s", e)
|
||||
logging.info("Falling back to the default frontend.")
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
check_frontend_version()
|
||||
return cls.default_frontend_path()
|
||||
|
||||
@@ -82,3 +82,17 @@ def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool
|
||||
logger.addHandler(stdout_handler)
|
||||
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
STARTUP_WARNINGS = []
|
||||
|
||||
|
||||
def log_startup_warning(msg):
|
||||
logging.warning(msg)
|
||||
STARTUP_WARNINGS.append(msg)
|
||||
|
||||
|
||||
def print_startup_warnings():
|
||||
for s in STARTUP_WARNINGS:
|
||||
logging.warning(s)
|
||||
STARTUP_WARNINGS.clear()
|
||||
|
||||
@@ -197,6 +197,112 @@ class UserManager():
|
||||
|
||||
return web.json_response(results)
|
||||
|
||||
@routes.get("/v2/userdata")
|
||||
async def list_userdata_v2(request):
|
||||
"""
|
||||
List files and directories in a user's data directory.
|
||||
|
||||
This endpoint provides a structured listing of contents within a specified
|
||||
subdirectory of the user's data storage.
|
||||
|
||||
Query Parameters:
|
||||
- path (optional): The relative path within the user's data directory
|
||||
to list. Defaults to the root ('').
|
||||
|
||||
Returns:
|
||||
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
|
||||
- 404: If the requested path does not exist.
|
||||
- 403: If the user is invalid.
|
||||
- 500: If there is an error reading the directory contents.
|
||||
- 200: JSON response containing a list of file and directory objects.
|
||||
Each object includes:
|
||||
- name: The name of the file or directory.
|
||||
- type: 'file' or 'directory'.
|
||||
- path: The relative path from the user's data root.
|
||||
- size (for files): The size in bytes.
|
||||
- modified (for files): The last modified timestamp (Unix epoch).
|
||||
"""
|
||||
requested_rel_path = request.rel_url.query.get('path', '')
|
||||
|
||||
# URL-decode the path parameter
|
||||
try:
|
||||
requested_rel_path = parse.unquote(requested_rel_path)
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
|
||||
return web.Response(status=400, text="Invalid characters in path parameter")
|
||||
|
||||
|
||||
# Check user validity and get the absolute path for the requested directory
|
||||
try:
|
||||
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
|
||||
|
||||
if requested_rel_path:
|
||||
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
|
||||
else:
|
||||
target_abs_path = base_user_path
|
||||
|
||||
except KeyError as e:
|
||||
# Invalid user detected by get_request_user_id inside get_request_user_filepath
|
||||
logging.warning(f"Access denied for user: {e}")
|
||||
return web.Response(status=403, text="Invalid user specified in request")
|
||||
|
||||
|
||||
if not target_abs_path:
|
||||
# Path traversal or other issue detected by get_request_user_filepath
|
||||
return web.Response(status=400, text="Invalid path requested")
|
||||
|
||||
# Handle cases where the user directory or target path doesn't exist
|
||||
if not os.path.exists(target_abs_path):
|
||||
# Check if it's the base user directory that's missing (new user case)
|
||||
if target_abs_path == base_user_path:
|
||||
# It's okay if the base user directory doesn't exist yet, return empty list
|
||||
return web.json_response([])
|
||||
else:
|
||||
# A specific subdirectory was requested but doesn't exist
|
||||
return web.Response(status=404, text="Requested path not found")
|
||||
|
||||
if not os.path.isdir(target_abs_path):
|
||||
return web.Response(status=400, text="Requested path is not a directory")
|
||||
|
||||
results = []
|
||||
try:
|
||||
for root, dirs, files in os.walk(target_abs_path, topdown=True):
|
||||
# Process directories
|
||||
for dir_name in dirs:
|
||||
dir_path = os.path.join(root, dir_name)
|
||||
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
|
||||
results.append({
|
||||
"name": dir_name,
|
||||
"path": rel_path,
|
||||
"type": "directory"
|
||||
})
|
||||
|
||||
# Process files
|
||||
for file_name in files:
|
||||
file_path = os.path.join(root, file_name)
|
||||
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
|
||||
entry_info = {
|
||||
"name": file_name,
|
||||
"path": rel_path,
|
||||
"type": "file"
|
||||
}
|
||||
try:
|
||||
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
|
||||
entry_info["size"] = stats.st_size
|
||||
entry_info["modified"] = stats.st_mtime
|
||||
except OSError as stat_error:
|
||||
logging.warning(f"Could not stat file {file_path}: {stat_error}")
|
||||
pass # Include file with available info
|
||||
results.append(entry_info)
|
||||
except OSError as e:
|
||||
logging.error(f"Error listing directory {target_abs_path}: {e}")
|
||||
return web.Response(status=500, text="Error reading directory contents")
|
||||
|
||||
# Sort results alphabetically, directories first then files
|
||||
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
|
||||
|
||||
return web.json_response(results)
|
||||
|
||||
def get_user_data_path(request, check_exists = False, param = "file"):
|
||||
file = request.match_info.get(param, None)
|
||||
if not file:
|
||||
|
||||
@@ -66,6 +66,7 @@ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diff
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
||||
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
||||
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
||||
fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
|
||||
|
||||
fpvae_group = parser.add_mutually_exclusive_group()
|
||||
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
||||
@@ -79,6 +80,7 @@ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Stor
|
||||
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
||||
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
||||
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
||||
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
|
||||
|
||||
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
||||
|
||||
@@ -100,12 +102,14 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
||||
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
|
||||
|
||||
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
||||
|
||||
@@ -124,6 +128,7 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
|
||||
|
||||
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
||||
|
||||
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
@@ -133,8 +138,11 @@ parser.add_argument("--deterministic", action="store_true", help="Make pytorch u
|
||||
class PerformanceFeature(enum.Enum):
|
||||
Fp16Accumulation = "fp16_accumulation"
|
||||
Fp8MatrixMultiplication = "fp8_matrix_mult"
|
||||
CublasOps = "cublas_ops"
|
||||
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
|
||||
|
||||
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
@@ -142,6 +150,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
|
||||
|
||||
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
||||
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
||||
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
|
||||
@@ -186,6 +195,13 @@ parser.add_argument("--user-directory", type=is_valid_directory, default=None, h
|
||||
|
||||
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
|
||||
|
||||
parser.add_argument(
|
||||
"--comfy-api-base",
|
||||
type=str,
|
||||
default="https://api.comfy.org",
|
||||
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
|
||||
)
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
else:
|
||||
|
||||
@@ -9,6 +9,7 @@ import comfy.model_patcher
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
import comfy.clip_model
|
||||
import comfy.image_encoders.dino2
|
||||
|
||||
class Output:
|
||||
def __getitem__(self, key):
|
||||
@@ -17,6 +18,7 @@ class Output:
|
||||
setattr(self, key, item)
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
@@ -34,6 +36,12 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
|
||||
IMAGE_ENCODERS = {
|
||||
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
|
||||
}
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
with open(json_config) as f:
|
||||
@@ -42,10 +50,11 @@ class ClipVisionModel():
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
||||
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
||||
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
||||
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
||||
self.model.eval()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
@@ -102,15 +111,21 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
|
||||
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
||||
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
||||
if embed_shape == 729:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
||||
elif embed_shape == 1024:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
|
||||
elif embed_shape == 577:
|
||||
if "multi_modal_projector.linear_1.bias" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
elif "embeddings.patch_embeddings.projection.weight" in sd:
|
||||
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
13
comfy/clip_vision_siglip_512.json
Normal file
13
comfy/clip_vision_siglip_512.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"num_channels": 3,
|
||||
"hidden_act": "gelu_pytorch_tanh",
|
||||
"hidden_size": 1152,
|
||||
"image_size": 512,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "siglip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 16,
|
||||
"image_mean": [0.5, 0.5, 0.5],
|
||||
"image_std": [0.5, 0.5, 0.5]
|
||||
}
|
||||
@@ -1,7 +1,8 @@
|
||||
"""Comfy-specific type hinting"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Literal, TypedDict
|
||||
from typing import Literal, TypedDict, Optional
|
||||
from typing_extensions import NotRequired
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
|
||||
@@ -26,6 +27,7 @@ class IO(StrEnum):
|
||||
BOOLEAN = "BOOLEAN"
|
||||
INT = "INT"
|
||||
FLOAT = "FLOAT"
|
||||
COMBO = "COMBO"
|
||||
CONDITIONING = "CONDITIONING"
|
||||
SAMPLER = "SAMPLER"
|
||||
SIGMAS = "SIGMAS"
|
||||
@@ -46,6 +48,7 @@ class IO(StrEnum):
|
||||
FACE_ANALYSIS = "FACE_ANALYSIS"
|
||||
BBOX = "BBOX"
|
||||
SEGS = "SEGS"
|
||||
VIDEO = "VIDEO"
|
||||
|
||||
ANY = "*"
|
||||
"""Always matches any type, but at a price.
|
||||
@@ -66,6 +69,7 @@ class IO(StrEnum):
|
||||
b = frozenset(value.split(","))
|
||||
return not (b.issubset(a) or a.issubset(b))
|
||||
|
||||
|
||||
class RemoteInputOptions(TypedDict):
|
||||
route: str
|
||||
"""The route to the remote source."""
|
||||
@@ -80,6 +84,14 @@ class RemoteInputOptions(TypedDict):
|
||||
refresh: int
|
||||
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
|
||||
|
||||
|
||||
class MultiSelectOptions(TypedDict):
|
||||
placeholder: NotRequired[str]
|
||||
"""The placeholder text to display in the multi-select widget when no items are selected."""
|
||||
chip: NotRequired[bool]
|
||||
"""Specifies whether to use chips instead of comma separated values for the multi-select widget."""
|
||||
|
||||
|
||||
class InputTypeOptions(TypedDict):
|
||||
"""Provides type hinting for the return type of the INPUT_TYPES node function.
|
||||
|
||||
@@ -88,68 +100,94 @@ class InputTypeOptions(TypedDict):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
|
||||
"""
|
||||
|
||||
default: bool | str | float | int | list | tuple
|
||||
default: NotRequired[bool | str | float | int | list | tuple]
|
||||
"""The default value of the widget"""
|
||||
defaultInput: bool
|
||||
"""Defaults to an input slot rather than a widget"""
|
||||
forceInput: bool
|
||||
"""`defaultInput` and also don't allow converting to a widget"""
|
||||
lazy: bool
|
||||
defaultInput: NotRequired[bool]
|
||||
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
|
||||
- defaultInput on required inputs should be dropped.
|
||||
- defaultInput on optional inputs should be replaced with forceInput.
|
||||
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
|
||||
"""
|
||||
forceInput: NotRequired[bool]
|
||||
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
|
||||
lazy: NotRequired[bool]
|
||||
"""Declares that this input uses lazy evaluation"""
|
||||
rawLink: bool
|
||||
rawLink: NotRequired[bool]
|
||||
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
|
||||
tooltip: str
|
||||
tooltip: NotRequired[str]
|
||||
"""Tooltip for the input (or widget), shown on pointer hover"""
|
||||
socketless: NotRequired[bool]
|
||||
"""All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
|
||||
Available from frontend v1.17.5
|
||||
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
|
||||
"""
|
||||
widgetType: NotRequired[str]
|
||||
"""Specifies a type to be used for widget initialization if different from the input type.
|
||||
Available from frontend v1.18.0
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
|
||||
# class InputTypeNumber(InputTypeOptions):
|
||||
# default: float | int
|
||||
min: float
|
||||
min: NotRequired[float]
|
||||
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
|
||||
max: float
|
||||
max: NotRequired[float]
|
||||
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
|
||||
step: float
|
||||
step: NotRequired[float]
|
||||
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
|
||||
round: float
|
||||
round: NotRequired[float]
|
||||
"""Floats are rounded by this value (``FLOAT``)"""
|
||||
# class InputTypeBoolean(InputTypeOptions):
|
||||
# default: bool
|
||||
label_on: str
|
||||
label_on: NotRequired[str]
|
||||
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
||||
label_on: str
|
||||
label_off: NotRequired[str]
|
||||
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
||||
# class InputTypeString(InputTypeOptions):
|
||||
# default: str
|
||||
multiline: bool
|
||||
multiline: NotRequired[bool]
|
||||
"""Use a multiline text box (``STRING``)"""
|
||||
placeholder: str
|
||||
placeholder: NotRequired[str]
|
||||
"""Placeholder text to display in the UI when empty (``STRING``)"""
|
||||
# Deprecated:
|
||||
# defaultVal: str
|
||||
dynamicPrompts: bool
|
||||
dynamicPrompts: NotRequired[bool]
|
||||
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
|
||||
# class InputTypeCombo(InputTypeOptions):
|
||||
image_upload: bool
|
||||
image_upload: NotRequired[bool]
|
||||
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
|
||||
image_folder: Literal["input", "output", "temp"]
|
||||
image_folder: NotRequired[Literal["input", "output", "temp"]]
|
||||
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
|
||||
"""
|
||||
remote: RemoteInputOptions
|
||||
"""Specifies the configuration for a remote input."""
|
||||
control_after_generate: bool
|
||||
remote: NotRequired[RemoteInputOptions]
|
||||
"""Specifies the configuration for a remote input.
|
||||
Available after ComfyUI frontend v1.9.7
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
|
||||
control_after_generate: NotRequired[bool]
|
||||
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
|
||||
options: NotRequired[list[str | int | float]]
|
||||
"""COMBO type only. Specifies the selectable options for the combo widget.
|
||||
Prefer:
|
||||
["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
|
||||
Over:
|
||||
[["Option 1", "Option 2", "Option 3"]]
|
||||
"""
|
||||
multi_select: NotRequired[MultiSelectOptions]
|
||||
"""COMBO type only. Specifies the configuration for a multi-select widget.
|
||||
Available after ComfyUI frontend v1.13.4
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
|
||||
|
||||
|
||||
class HiddenInputTypeDict(TypedDict):
|
||||
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
|
||||
|
||||
node_id: Literal["UNIQUE_ID"]
|
||||
node_id: NotRequired[Literal["UNIQUE_ID"]]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
unique_id: Literal["UNIQUE_ID"]
|
||||
unique_id: NotRequired[Literal["UNIQUE_ID"]]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
prompt: Literal["PROMPT"]
|
||||
prompt: NotRequired[Literal["PROMPT"]]
|
||||
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
|
||||
extra_pnginfo: Literal["EXTRA_PNGINFO"]
|
||||
extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
|
||||
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
|
||||
dynprompt: Literal["DYNPROMPT"]
|
||||
dynprompt: NotRequired[Literal["DYNPROMPT"]]
|
||||
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
|
||||
|
||||
|
||||
@@ -159,11 +197,11 @@ class InputTypeDict(TypedDict):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
|
||||
"""
|
||||
|
||||
required: dict[str, tuple[IO, InputTypeOptions]]
|
||||
required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
|
||||
"""Describes all inputs that must be connected for the node to execute."""
|
||||
optional: dict[str, tuple[IO, InputTypeOptions]]
|
||||
optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
|
||||
"""Describes inputs which do not need to be connected."""
|
||||
hidden: HiddenInputTypeDict
|
||||
hidden: NotRequired[HiddenInputTypeDict]
|
||||
"""Offers advanced functionality and server-client communication.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
|
||||
@@ -196,6 +234,8 @@ class ComfyNodeABC(ABC):
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
DEPRECATED: bool
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
API_NODE: Optional[bool]
|
||||
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
@@ -234,7 +274,7 @@ class ComfyNodeABC(ABC):
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
|
||||
"""
|
||||
OUTPUT_IS_LIST: tuple[bool]
|
||||
OUTPUT_IS_LIST: tuple[bool, ...]
|
||||
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
||||
|
||||
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
||||
@@ -253,7 +293,7 @@ class ComfyNodeABC(ABC):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
|
||||
"""
|
||||
|
||||
RETURN_TYPES: tuple[IO]
|
||||
RETURN_TYPES: tuple[IO, ...]
|
||||
"""A tuple representing the outputs of this node.
|
||||
|
||||
Usage::
|
||||
@@ -262,12 +302,12 @@ class ComfyNodeABC(ABC):
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
|
||||
"""
|
||||
RETURN_NAMES: tuple[str]
|
||||
RETURN_NAMES: tuple[str, ...]
|
||||
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
|
||||
"""
|
||||
OUTPUT_TOOLTIPS: tuple[str]
|
||||
OUTPUT_TOOLTIPS: tuple[str, ...]
|
||||
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
||||
FUNCTION: str
|
||||
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
||||
|
||||
@@ -736,6 +736,7 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
return control
|
||||
|
||||
def load_controlnet(ckpt_path, model=None, model_options={}):
|
||||
model_options = model_options.copy()
|
||||
if "global_average_pooling" not in model_options:
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
|
||||
141
comfy/image_encoders/dino2.py
Normal file
141
comfy/image_encoders/dino2.py
Normal file
@@ -0,0 +1,141 @@
|
||||
import torch
|
||||
from comfy.text_encoders.bert import BertAttention
|
||||
import comfy.model_management
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
|
||||
|
||||
class Dino2AttentionOutput(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
return self.dense(x)
|
||||
|
||||
|
||||
class Dino2AttentionBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = BertAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
return self.output(self.attention(x, mask, optimized_attention))
|
||||
|
||||
|
||||
class LayerScale(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
|
||||
|
||||
def forward(self, x):
|
||||
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
|
||||
|
||||
|
||||
class SwiGLUFFN(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
in_features = out_features = dim
|
||||
hidden_features = int(dim * 4)
|
||||
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
||||
|
||||
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype)
|
||||
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.weights_in(x)
|
||||
x1, x2 = x.chunk(2, dim=-1)
|
||||
x = torch.nn.functional.silu(x1) * x2
|
||||
return self.weights_out(x)
|
||||
|
||||
|
||||
class Dino2Block(torch.nn.Module):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
|
||||
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
|
||||
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
|
||||
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
|
||||
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, optimized_attention):
|
||||
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention))
|
||||
x = x + self.layer_scale2(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class Dino2Encoder(torch.nn.Module):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
|
||||
|
||||
def forward(self, x, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layer) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layer):
|
||||
x = l(x, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
|
||||
class Dino2PatchEmbeddings(torch.nn.Module):
|
||||
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.projection = operations.Conv2d(
|
||||
in_channels=num_channels,
|
||||
out_channels=dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device
|
||||
)
|
||||
|
||||
def forward(self, pixel_values):
|
||||
return self.projection(pixel_values).flatten(2).transpose(1, 2)
|
||||
|
||||
|
||||
class Dino2Embeddings(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
patch_size = 14
|
||||
image_size = 518
|
||||
|
||||
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations)
|
||||
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device))
|
||||
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device))
|
||||
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, pixel_values):
|
||||
x = self.patch_embeddings(pixel_values)
|
||||
# TODO: mask_token?
|
||||
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
|
||||
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
|
||||
return x
|
||||
|
||||
|
||||
class Dinov2Model(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
num_layers = config_dict["num_hidden_layers"]
|
||||
dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
layer_norm_eps = config_dict["layer_norm_eps"]
|
||||
|
||||
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
|
||||
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
|
||||
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
||||
x = self.embeddings(pixel_values)
|
||||
x, i = self.encoder(x, intermediate_output=intermediate_output)
|
||||
x = self.layernorm(x)
|
||||
pooled_output = x[:, 0, :]
|
||||
return x, i, pooled_output, None
|
||||
21
comfy/image_encoders/dino2_giant.json
Normal file
21
comfy/image_encoders/dino2_giant.json
Normal file
@@ -0,0 +1,21 @@
|
||||
{
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"drop_path_rate": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"hidden_size": 1536,
|
||||
"image_size": 518,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_eps": 1e-06,
|
||||
"layerscale_value": 1.0,
|
||||
"mlp_ratio": 4,
|
||||
"model_type": "dinov2",
|
||||
"num_attention_heads": 24,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 40,
|
||||
"patch_size": 14,
|
||||
"qkv_bias": true,
|
||||
"use_swiglu_ffn": true,
|
||||
"image_mean": [0.485, 0.456, 0.406],
|
||||
"image_std": [0.229, 0.224, 0.225]
|
||||
}
|
||||
@@ -688,10 +688,10 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
@@ -762,10 +762,10 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
if solver_type not in {'heun', 'midpoint'}:
|
||||
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
old_denoised = None
|
||||
@@ -808,10 +808,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
denoised_1, denoised_2 = None, None
|
||||
@@ -858,7 +858,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||
@@ -867,7 +867,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
@@ -876,7 +876,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
||||
@@ -1277,6 +1277,7 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
phi1_fn = lambda t: torch.expm1(t) / t
|
||||
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
|
||||
|
||||
old_sigma_down = None
|
||||
old_denoised = None
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
@@ -1304,9 +1305,9 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Second order multistep method in https://arxiv.org/pdf/2308.02157
|
||||
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigma_down), t_fn(sigmas[i - 1])
|
||||
t, t_old, t_next, t_prev = t_fn(sigmas[i]), t_fn(old_sigma_down), t_fn(sigma_down), t_fn(sigmas[i - 1])
|
||||
h = t_next - t
|
||||
c2 = (t_prev - t) / h
|
||||
c2 = (t_prev - t_old) / h
|
||||
|
||||
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
|
||||
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
|
||||
@@ -1326,6 +1327,7 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
old_denoised = uncond_denoised
|
||||
else:
|
||||
old_denoised = denoised
|
||||
old_sigma_down = sigma_down
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -1345,24 +1347,202 @@ def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, cal
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
|
||||
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
old_d = None
|
||||
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
if cfg_pp:
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if cfg_pp:
|
||||
d = to_d(x, sigmas[i], uncond_denoised)
|
||||
else:
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
if i == 0:
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
if cfg_pp:
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
else:
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Gradient estimation
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
if cfg_pp:
|
||||
d_bar = (ge_gamma - 1) * (d - old_d)
|
||||
x = denoised + d * sigmas[i + 1] + d_bar * dt
|
||||
else:
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
old_d = d
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
|
||||
"""
|
||||
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
|
||||
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
def default_noise_scaler(sigma):
|
||||
return sigma * ((sigma ** 0.3).exp() + 10.0)
|
||||
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
|
||||
num_integration_points = 200.0
|
||||
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
|
||||
|
||||
old_denoised = None
|
||||
old_denoised_d = None
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
stage_used = min(max_stage, i + 1)
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
elif stage_used == 1:
|
||||
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
|
||||
x = r * x + (1 - r) * denoised
|
||||
else:
|
||||
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
|
||||
x = r * x + (1 - r) * denoised
|
||||
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
sigma_step_size = -dt / num_integration_points
|
||||
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
|
||||
scaled_pos = noise_scaler(sigma_pos)
|
||||
|
||||
# Stage 2
|
||||
s = torch.sum(1 / scaled_pos) * sigma_step_size
|
||||
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
|
||||
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
|
||||
|
||||
if stage_used >= 3:
|
||||
# Stage 3
|
||||
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
|
||||
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
|
||||
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
|
||||
old_denoised_d = denoised_d
|
||||
|
||||
if s_noise != 0 and sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
'''
|
||||
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
|
||||
Arxiv: https://arxiv.org/abs/2305.14267
|
||||
'''
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = t_next - t
|
||||
h_eta = h * (eta + 1)
|
||||
s = t + r * h
|
||||
fac = 1 / (2 * r)
|
||||
sigma_s = s.neg().exp()
|
||||
|
||||
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
|
||||
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
|
||||
'''
|
||||
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
|
||||
Arxiv: https://arxiv.org/abs/2305.14267
|
||||
'''
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = t_next - t
|
||||
h_eta = h * (eta + 1)
|
||||
s_1 = t + r_1 * h
|
||||
s_2 = t + r_2 * h
|
||||
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
|
||||
|
||||
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
|
||||
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
|
||||
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
|
||||
if inject_noise:
|
||||
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
|
||||
|
||||
# Step 3
|
||||
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
|
||||
return x
|
||||
|
||||
@@ -456,3 +456,17 @@ class Wan21(LatentFormat):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
||||
class Hunyuan3Dv2(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
scale_factor = 0.9990943042622529
|
||||
|
||||
class Hunyuan3Dv2mini(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
scale_factor = 1.0188137142395404
|
||||
|
||||
class ACEAudio(LatentFormat):
|
||||
latent_channels = 8
|
||||
latent_dimensions = 2
|
||||
|
||||
761
comfy/ldm/ace/attention.py
Normal file
761
comfy/ldm/ace/attention.py
Normal file
@@ -0,0 +1,761 @@
|
||||
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Tuple, Union, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
import comfy.model_management
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
heads: int = 8,
|
||||
kv_heads: Optional[int] = None,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
added_proj_bias: Optional[bool] = True,
|
||||
out_bias: bool = True,
|
||||
scale_qk: bool = True,
|
||||
only_cross_attention: bool = False,
|
||||
eps: float = 1e-5,
|
||||
rescale_output_factor: float = 1.0,
|
||||
residual_connection: bool = False,
|
||||
processor=None,
|
||||
out_dim: int = None,
|
||||
out_context_dim: int = None,
|
||||
context_pre_only=None,
|
||||
pre_only=False,
|
||||
elementwise_affine: bool = True,
|
||||
is_causal: bool = False,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
|
||||
self.query_dim = query_dim
|
||||
self.use_bias = bias
|
||||
self.is_cross_attention = cross_attention_dim is not None
|
||||
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
||||
self.rescale_output_factor = rescale_output_factor
|
||||
self.residual_connection = residual_connection
|
||||
self.dropout = dropout
|
||||
self.fused_projections = False
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
|
||||
self.context_pre_only = context_pre_only
|
||||
self.pre_only = pre_only
|
||||
self.is_causal = is_causal
|
||||
|
||||
self.scale_qk = scale_qk
|
||||
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
||||
|
||||
self.heads = out_dim // dim_head if out_dim is not None else heads
|
||||
# for slice_size > 0 the attention score computation
|
||||
# is split across the batch axis to save memory
|
||||
# You can set slice_size with `set_attention_slice`
|
||||
self.sliceable_head_dim = heads
|
||||
|
||||
self.added_kv_proj_dim = added_kv_proj_dim
|
||||
self.only_cross_attention = only_cross_attention
|
||||
|
||||
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
||||
raise ValueError(
|
||||
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
||||
)
|
||||
|
||||
self.group_norm = None
|
||||
self.spatial_norm = None
|
||||
|
||||
self.norm_q = None
|
||||
self.norm_k = None
|
||||
|
||||
self.norm_cross = None
|
||||
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
if not self.only_cross_attention:
|
||||
# only relevant for the `AddedKVProcessor` classes
|
||||
self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
else:
|
||||
self.to_k = None
|
||||
self.to_v = None
|
||||
|
||||
self.added_proj_bias = added_proj_bias
|
||||
if self.added_kv_proj_dim is not None:
|
||||
self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
|
||||
self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
|
||||
if self.context_pre_only is not None:
|
||||
self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
|
||||
else:
|
||||
self.add_q_proj = None
|
||||
self.add_k_proj = None
|
||||
self.add_v_proj = None
|
||||
|
||||
if not self.pre_only:
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
else:
|
||||
self.to_out = None
|
||||
|
||||
if self.context_pre_only is not None and not self.context_pre_only:
|
||||
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
|
||||
else:
|
||||
self.to_add_out = None
|
||||
|
||||
self.norm_added_q = None
|
||||
self.norm_added_k = None
|
||||
self.processor = processor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**cross_attention_kwargs,
|
||||
) -> torch.Tensor:
|
||||
return self.processor(
|
||||
self,
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
|
||||
|
||||
class CustomLiteLAProcessor2_0:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""
|
||||
|
||||
def __init__(self):
|
||||
self.kernel_func = nn.ReLU(inplace=False)
|
||||
self.eps = 1e-15
|
||||
self.pad_val = 1.0
|
||||
|
||||
def apply_rotary_emb(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
||||
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
||||
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
||||
tensors contain rotary embeddings and are returned as real tensors.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`):
|
||||
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
|
||||
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||
"""
|
||||
cos, sin = freqs_cis # [S, D]
|
||||
cos = cos[None, None]
|
||||
sin = sin[None, None]
|
||||
cos, sin = cos.to(x.device), sin.to(x.device)
|
||||
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
||||
|
||||
return out
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
hidden_states_len = hidden_states.shape[1]
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
if encoder_hidden_states is not None:
|
||||
context_input_ndim = encoder_hidden_states.ndim
|
||||
if context_input_ndim == 4:
|
||||
batch_size, channel, height, width = encoder_hidden_states.shape
|
||||
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size = hidden_states.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
dtype = hidden_states.dtype
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
# `context` projections.
|
||||
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
|
||||
if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
# attention
|
||||
if not attn.is_cross_attention:
|
||||
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
|
||||
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
|
||||
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
|
||||
else:
|
||||
query = hidden_states
|
||||
key = encoder_hidden_states
|
||||
value = encoder_hidden_states
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
|
||||
key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
|
||||
value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
|
||||
|
||||
# RoPE需要 [B, H, S, D] 输入
|
||||
# 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
|
||||
query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S])
|
||||
|
||||
# Apply query and key normalization if needed
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if rotary_freqs_cis is not None:
|
||||
query = self.apply_rotary_emb(query, rotary_freqs_cis)
|
||||
if not attn.is_cross_attention:
|
||||
key = self.apply_rotary_emb(key, rotary_freqs_cis)
|
||||
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
|
||||
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
|
||||
|
||||
# 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
|
||||
query = query.permute(0, 1, 3, 2) # [B, H, D, S]
|
||||
|
||||
if attention_mask is not None:
|
||||
# attention_mask: [B, S] -> [B, 1, S, 1]
|
||||
attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1]
|
||||
query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1]
|
||||
if not attn.is_cross_attention:
|
||||
key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
|
||||
value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S],那么需调整mask以匹配S维度
|
||||
|
||||
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
|
||||
encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1]
|
||||
# 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
|
||||
key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1]
|
||||
value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc]
|
||||
|
||||
query = self.kernel_func(query)
|
||||
key = self.kernel_func(key)
|
||||
|
||||
query, key, value = query.float(), key.float(), value.float()
|
||||
|
||||
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)
|
||||
|
||||
vk = torch.matmul(value, key)
|
||||
|
||||
hidden_states = torch.matmul(vk, query)
|
||||
|
||||
if hidden_states.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.float()
|
||||
|
||||
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
|
||||
|
||||
hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)
|
||||
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states = encoder_hidden_states.to(dtype)
|
||||
|
||||
# Split the attention outputs.
|
||||
if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
|
||||
hidden_states, encoder_hidden_states = (
|
||||
hidden_states[:, : hidden_states_len],
|
||||
hidden_states[:, hidden_states_len:],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
if encoder_hidden_states is not None and context_input_ndim == 4:
|
||||
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if torch.get_autocast_gpu_dtype() == torch.float16:
|
||||
hidden_states = hidden_states.clip(-65504, 65504)
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class CustomerAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def apply_rotary_emb(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
||||
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
||||
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
||||
tensors contain rotary embeddings and are returned as real tensors.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`):
|
||||
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
|
||||
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||
"""
|
||||
cos, sin = freqs_cis # [S, D]
|
||||
cos = cos[None, None]
|
||||
sin = sin[None, None]
|
||||
cos, sin = cos.to(x.device), sin.to(x.device)
|
||||
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
||||
|
||||
return out
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
|
||||
residual = hidden_states
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if rotary_freqs_cis is not None:
|
||||
query = self.apply_rotary_emb(query, rotary_freqs_cis)
|
||||
if not attn.is_cross_attention:
|
||||
key = self.apply_rotary_emb(key, rotary_freqs_cis)
|
||||
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
|
||||
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
|
||||
|
||||
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
|
||||
# attention_mask: N x S1
|
||||
# encoder_attention_mask: N x S2
|
||||
# cross attention 整合attention_mask和encoder_attention_mask
|
||||
combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
|
||||
attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
|
||||
attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)
|
||||
|
||||
elif not attn.is_cross_attention and attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
hidden_states = optimized_attention(
|
||||
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
|
||||
).to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
|
||||
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
|
||||
if isinstance(x, (list, tuple)):
|
||||
return list(x)
|
||||
return [x for _ in range(repeat_time)]
|
||||
|
||||
|
||||
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
|
||||
"""Return tuple with min_len by repeating element at idx_repeat."""
|
||||
# convert to list first
|
||||
x = val2list(x)
|
||||
|
||||
# repeat elements if necessary
|
||||
if len(x) > 0:
|
||||
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
|
||||
|
||||
return tuple(x)
|
||||
|
||||
|
||||
def t2i_modulate(x, shift, scale):
|
||||
return x * (1 + scale) + shift
|
||||
|
||||
|
||||
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
|
||||
if isinstance(kernel_size, tuple):
|
||||
return tuple([get_same_padding(ks) for ks in kernel_size])
|
||||
else:
|
||||
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
|
||||
return kernel_size // 2
|
||||
|
||||
class ConvLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_dim: int,
|
||||
out_dim: int,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
padding: Union[int, None] = None,
|
||||
use_bias=False,
|
||||
norm=None,
|
||||
act=None,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
if padding is None:
|
||||
padding = get_same_padding(kernel_size)
|
||||
padding *= dilation
|
||||
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.groups = groups
|
||||
self.padding = padding
|
||||
self.use_bias = use_bias
|
||||
|
||||
self.conv = operations.Conv1d(
|
||||
in_dim,
|
||||
out_dim,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
bias=use_bias,
|
||||
device=device,
|
||||
dtype=dtype
|
||||
)
|
||||
if norm is not None:
|
||||
self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
else:
|
||||
self.norm = None
|
||||
if act is not None:
|
||||
self.act = nn.SiLU(inplace=True)
|
||||
else:
|
||||
self.act = None
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.conv(x)
|
||||
if self.norm:
|
||||
x = self.norm(x)
|
||||
if self.act:
|
||||
x = self.act(x)
|
||||
return x
|
||||
|
||||
|
||||
class GLUMBConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: int,
|
||||
out_feature=None,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding: Union[int, None] = None,
|
||||
use_bias=False,
|
||||
norm=(None, None, None),
|
||||
act=("silu", "silu", None),
|
||||
dilation=1,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
out_feature = out_feature or in_features
|
||||
super().__init__()
|
||||
use_bias = val2tuple(use_bias, 3)
|
||||
norm = val2tuple(norm, 3)
|
||||
act = val2tuple(act, 3)
|
||||
|
||||
self.glu_act = nn.SiLU(inplace=False)
|
||||
self.inverted_conv = ConvLayer(
|
||||
in_features,
|
||||
hidden_features * 2,
|
||||
1,
|
||||
use_bias=use_bias[0],
|
||||
norm=norm[0],
|
||||
act=act[0],
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.depth_conv = ConvLayer(
|
||||
hidden_features * 2,
|
||||
hidden_features * 2,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
groups=hidden_features * 2,
|
||||
padding=padding,
|
||||
use_bias=use_bias[1],
|
||||
norm=norm[1],
|
||||
act=None,
|
||||
dilation=dilation,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.point_conv = ConvLayer(
|
||||
hidden_features,
|
||||
out_feature,
|
||||
1,
|
||||
use_bias=use_bias[2],
|
||||
norm=norm[2],
|
||||
act=act[2],
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.inverted_conv(x)
|
||||
x = self.depth_conv(x)
|
||||
|
||||
x, gate = torch.chunk(x, 2, dim=1)
|
||||
gate = self.glu_act(gate)
|
||||
x = x * gate
|
||||
|
||||
x = self.point_conv(x)
|
||||
x = x.transpose(1, 2)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class LinearTransformerBlock(nn.Module):
|
||||
"""
|
||||
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
use_adaln_single=True,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=None,
|
||||
context_pre_only=False,
|
||||
mlp_ratio=4.0,
|
||||
add_cross_attention=False,
|
||||
add_cross_attention_dim=None,
|
||||
qk_norm=None,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
added_kv_proj_dim=added_kv_proj_dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
qk_norm=qk_norm,
|
||||
processor=CustomLiteLAProcessor2_0(),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
self.add_cross_attention = add_cross_attention
|
||||
self.context_pre_only = context_pre_only
|
||||
|
||||
if add_cross_attention and add_cross_attention_dim is not None:
|
||||
self.cross_attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=add_cross_attention_dim,
|
||||
added_kv_proj_dim=add_cross_attention_dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
context_pre_only=context_pre_only,
|
||||
bias=True,
|
||||
qk_norm=qk_norm,
|
||||
processor=CustomerAttnProcessor2_0(),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)
|
||||
|
||||
self.ff = GLUMBConv(
|
||||
in_features=dim,
|
||||
hidden_features=int(dim * mlp_ratio),
|
||||
use_bias=(True, True, False),
|
||||
norm=(None, None, None),
|
||||
act=("silu", "silu", None),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.use_adaln_single = use_adaln_single
|
||||
if use_adaln_single:
|
||||
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: torch.FloatTensor = None,
|
||||
encoder_attention_mask: torch.FloatTensor = None,
|
||||
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
temb: torch.FloatTensor = None,
|
||||
):
|
||||
|
||||
N = hidden_states.shape[0]
|
||||
|
||||
# step 1: AdaLN single
|
||||
if self.use_adaln_single:
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
||||
comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
|
||||
).chunk(6, dim=1)
|
||||
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
if self.use_adaln_single:
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
||||
|
||||
# step 2: attention
|
||||
if not self.add_cross_attention:
|
||||
attn_output, encoder_hidden_states = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
|
||||
)
|
||||
else:
|
||||
attn_output, _ = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=None,
|
||||
)
|
||||
|
||||
if self.use_adaln_single:
|
||||
attn_output = gate_msa * attn_output
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
if self.add_cross_attention:
|
||||
attn_output = self.cross_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
|
||||
)
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
# step 3: add norm
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
if self.use_adaln_single:
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
||||
|
||||
# step 4: feed forward
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
if self.use_adaln_single:
|
||||
ff_output = gate_mlp * ff_output
|
||||
|
||||
hidden_states = hidden_states + ff_output
|
||||
|
||||
return hidden_states
|
||||
1067
comfy/ldm/ace/lyric_encoder.py
Normal file
1067
comfy/ldm/ace/lyric_encoder.py
Normal file
File diff suppressed because it is too large
Load Diff
385
comfy/ldm/ace/model.py
Normal file
385
comfy/ldm/ace/model.py
Normal file
@@ -0,0 +1,385 @@
|
||||
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py
|
||||
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Optional, List, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
import comfy.model_management
|
||||
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
from .attention import LinearTransformerBlock, t2i_modulate
|
||||
from .lyric_encoder import ConformerEncoder as LyricEncoder
|
||||
|
||||
|
||||
def cross_norm(hidden_states, controlnet_input):
|
||||
# input N x T x c
|
||||
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
|
||||
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
|
||||
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
|
||||
return controlnet_input
|
||||
|
||||
|
||||
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
|
||||
class Qwen2RotaryEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.base = base
|
||||
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
|
||||
# Build here to make `torch.jit.trace` work.
|
||||
self._set_cos_sin_cache(
|
||||
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
||||
self.max_seq_len_cached = seq_len
|
||||
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
||||
|
||||
freqs = torch.outer(t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
||||
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
||||
|
||||
def forward(self, x, seq_len=None):
|
||||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||
if seq_len > self.max_seq_len_cached:
|
||||
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
||||
|
||||
return (
|
||||
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
||||
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
||||
)
|
||||
|
||||
|
||||
class T2IFinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of Sana.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
|
||||
self.out_channels = out_channels
|
||||
self.patch_size = patch_size
|
||||
|
||||
def unpatchfy(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
width: int,
|
||||
):
|
||||
# 4 unpatchify
|
||||
new_height, new_width = 1, hidden_states.size(1)
|
||||
hidden_states = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
|
||||
).contiguous()
|
||||
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
||||
output = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
|
||||
).contiguous()
|
||||
if width > new_width:
|
||||
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
|
||||
elif width < new_width:
|
||||
output = output[:, :, :, :width]
|
||||
return output
|
||||
|
||||
def forward(self, x, t, output_length):
|
||||
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
|
||||
x = t2i_modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
# unpatchify
|
||||
output = self.unpatchfy(x, output_length)
|
||||
return output
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""2D Image to Patch Embedding"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
height=16,
|
||||
width=4096,
|
||||
patch_size=(16, 1),
|
||||
in_channels=8,
|
||||
embed_dim=1152,
|
||||
bias=True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
patch_size_h, patch_size_w = patch_size
|
||||
self.early_conv_layers = nn.Sequential(
|
||||
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
|
||||
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
|
||||
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
|
||||
)
|
||||
self.patch_size = patch_size
|
||||
self.height, self.width = height // patch_size_h, width // patch_size_w
|
||||
self.base_size = self.width
|
||||
|
||||
def forward(self, latent):
|
||||
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
|
||||
latent = self.early_conv_layers(latent)
|
||||
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
|
||||
return latent
|
||||
|
||||
|
||||
class ACEStepTransformer2DModel(nn.Module):
|
||||
# _supports_gradient_checkpointing = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: Optional[int] = 8,
|
||||
num_layers: int = 28,
|
||||
inner_dim: int = 1536,
|
||||
attention_head_dim: int = 64,
|
||||
num_attention_heads: int = 24,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_channels: int = 8,
|
||||
max_position: int = 32768,
|
||||
rope_theta: float = 1000000.0,
|
||||
speaker_embedding_dim: int = 512,
|
||||
text_embedding_dim: int = 768,
|
||||
ssl_encoder_depths: List[int] = [9, 9],
|
||||
ssl_names: List[str] = ["mert", "m-hubert"],
|
||||
ssl_latent_dims: List[int] = [1024, 768],
|
||||
lyric_encoder_vocab_size: int = 6681,
|
||||
lyric_hidden_size: int = 1024,
|
||||
patch_size: List[int] = [16, 1],
|
||||
max_height: int = 16,
|
||||
max_width: int = 4096,
|
||||
audio_model=None,
|
||||
dtype=None, device=None, operations=None
|
||||
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.dtype = dtype
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
self.inner_dim = inner_dim
|
||||
self.out_channels = out_channels
|
||||
self.max_position = max_position
|
||||
self.patch_size = patch_size
|
||||
|
||||
self.rope_theta = rope_theta
|
||||
|
||||
self.rotary_emb = Qwen2RotaryEmbedding(
|
||||
dim=self.attention_head_dim,
|
||||
max_position_embeddings=self.max_position,
|
||||
base=self.rope_theta,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# 2. Define input layers
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.num_layers = num_layers
|
||||
# 3. Define transformers blocks
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
LinearTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
mlp_ratio=mlp_ratio,
|
||||
add_cross_attention=True,
|
||||
add_cross_attention_dim=self.inner_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))
|
||||
|
||||
# speaker
|
||||
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
|
||||
# genre
|
||||
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
|
||||
# lyric
|
||||
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
|
||||
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
|
||||
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)
|
||||
|
||||
projector_dim = 2 * self.inner_dim
|
||||
|
||||
self.projectors = nn.ModuleList([
|
||||
nn.Sequential(
|
||||
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
|
||||
) for ssl_dim in ssl_latent_dims
|
||||
])
|
||||
|
||||
self.proj_in = PatchEmbed(
|
||||
height=max_height,
|
||||
width=max_width,
|
||||
patch_size=patch_size,
|
||||
embed_dim=self.inner_dim,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_lyric_encoder(
|
||||
self,
|
||||
lyric_token_idx: Optional[torch.LongTensor] = None,
|
||||
lyric_mask: Optional[torch.LongTensor] = None,
|
||||
out_dtype=None,
|
||||
):
|
||||
# N x T x D
|
||||
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
|
||||
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
||||
prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
|
||||
return prompt_prenet_out
|
||||
|
||||
def encode(
|
||||
self,
|
||||
encoder_text_hidden_states: Optional[torch.Tensor] = None,
|
||||
text_attention_mask: Optional[torch.LongTensor] = None,
|
||||
speaker_embeds: Optional[torch.FloatTensor] = None,
|
||||
lyric_token_idx: Optional[torch.LongTensor] = None,
|
||||
lyric_mask: Optional[torch.LongTensor] = None,
|
||||
lyrics_strength=1.0,
|
||||
):
|
||||
|
||||
bs = encoder_text_hidden_states.shape[0]
|
||||
device = encoder_text_hidden_states.device
|
||||
|
||||
# speaker embedding
|
||||
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
|
||||
|
||||
# genre embedding
|
||||
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)
|
||||
|
||||
# lyric
|
||||
encoder_lyric_hidden_states = self.forward_lyric_encoder(
|
||||
lyric_token_idx=lyric_token_idx,
|
||||
lyric_mask=lyric_mask,
|
||||
out_dtype=encoder_text_hidden_states.dtype,
|
||||
)
|
||||
|
||||
encoder_lyric_hidden_states *= lyrics_strength
|
||||
|
||||
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
|
||||
|
||||
encoder_hidden_mask = None
|
||||
if text_attention_mask is not None:
|
||||
speaker_mask = torch.ones(bs, 1, device=device)
|
||||
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
|
||||
|
||||
return encoder_hidden_states, encoder_hidden_mask
|
||||
|
||||
def decode(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
encoder_hidden_mask: torch.Tensor,
|
||||
timestep: Optional[torch.Tensor],
|
||||
output_length: int = 0,
|
||||
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
|
||||
controlnet_scale: Union[float, torch.Tensor] = 1.0,
|
||||
):
|
||||
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
|
||||
temb = self.t_block(embedded_timestep)
|
||||
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
|
||||
# controlnet logic
|
||||
if block_controlnet_hidden_states is not None:
|
||||
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
|
||||
hidden_states = hidden_states + control_condi * controlnet_scale
|
||||
|
||||
# inner_hidden_states = []
|
||||
|
||||
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
|
||||
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])
|
||||
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_hidden_mask,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
|
||||
temb=temb,
|
||||
)
|
||||
|
||||
output = self.final_layer(hidden_states, embedded_timestep, output_length)
|
||||
return output
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timestep,
|
||||
attention_mask=None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
text_attention_mask: Optional[torch.LongTensor] = None,
|
||||
speaker_embeds: Optional[torch.FloatTensor] = None,
|
||||
lyric_token_idx: Optional[torch.LongTensor] = None,
|
||||
lyric_mask: Optional[torch.LongTensor] = None,
|
||||
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
|
||||
controlnet_scale: Union[float, torch.Tensor] = 1.0,
|
||||
lyrics_strength=1.0,
|
||||
**kwargs
|
||||
):
|
||||
hidden_states = x
|
||||
encoder_text_hidden_states = context
|
||||
encoder_hidden_states, encoder_hidden_mask = self.encode(
|
||||
encoder_text_hidden_states=encoder_text_hidden_states,
|
||||
text_attention_mask=text_attention_mask,
|
||||
speaker_embeds=speaker_embeds,
|
||||
lyric_token_idx=lyric_token_idx,
|
||||
lyric_mask=lyric_mask,
|
||||
lyrics_strength=lyrics_strength,
|
||||
)
|
||||
|
||||
output_length = hidden_states.shape[-1]
|
||||
|
||||
output = self.decode(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_mask=encoder_hidden_mask,
|
||||
timestep=timestep,
|
||||
output_length=output_length,
|
||||
block_controlnet_hidden_states=block_controlnet_hidden_states,
|
||||
controlnet_scale=controlnet_scale,
|
||||
)
|
||||
|
||||
return output
|
||||
644
comfy/ldm/ace/vae/autoencoder_dc.py
Normal file
644
comfy/ldm/ace/vae/autoencoder_dc.py
Normal file
@@ -0,0 +1,644 @@
|
||||
# Rewritten from diffusers
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Tuple, Union
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
class RMSNorm(ops.RMSNorm):
|
||||
def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False):
|
||||
super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine)
|
||||
if elementwise_affine:
|
||||
self.bias = nn.Parameter(torch.empty(dim)) if bias else None
|
||||
|
||||
def forward(self, x):
|
||||
x = super().forward(x)
|
||||
if self.elementwise_affine:
|
||||
if self.bias is not None:
|
||||
x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device)
|
||||
return x
|
||||
|
||||
|
||||
def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5):
|
||||
if norm_type == "batch_norm":
|
||||
return nn.BatchNorm2d(num_features)
|
||||
elif norm_type == "group_norm":
|
||||
return ops.GroupNorm(num_groups, num_features)
|
||||
elif norm_type == "layer_norm":
|
||||
return ops.LayerNorm(num_features)
|
||||
elif norm_type == "rms_norm":
|
||||
return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True)
|
||||
else:
|
||||
raise ValueError(f"Unknown normalization type: {norm_type}")
|
||||
|
||||
|
||||
def get_activation(activation_type):
|
||||
if activation_type == "relu":
|
||||
return nn.ReLU()
|
||||
elif activation_type == "relu6":
|
||||
return nn.ReLU6()
|
||||
elif activation_type == "silu":
|
||||
return nn.SiLU()
|
||||
elif activation_type == "leaky_relu":
|
||||
return nn.LeakyReLU(0.2)
|
||||
else:
|
||||
raise ValueError(f"Unknown activation type: {activation_type}")
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
norm_type: str = "batch_norm",
|
||||
act_fn: str = "relu6",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.norm_type = norm_type
|
||||
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
|
||||
self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1)
|
||||
self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
|
||||
self.norm = get_normalization(norm_type, out_channels)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
residual = hidden_states
|
||||
hidden_states = self.conv1(hidden_states)
|
||||
hidden_states = self.nonlinearity(hidden_states)
|
||||
hidden_states = self.conv2(hidden_states)
|
||||
|
||||
if self.norm_type == "rms_norm":
|
||||
# move channel to the last dimension so we apply RMSnorm across channel dimension
|
||||
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
||||
else:
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
return hidden_states + residual
|
||||
|
||||
class SanaMultiscaleAttentionProjection(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
num_attention_heads: int,
|
||||
kernel_size: int,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
channels = 3 * in_channels
|
||||
self.proj_in = ops.Conv2d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
groups=channels,
|
||||
bias=False,
|
||||
)
|
||||
self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
class SanaMultiscaleLinearAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
num_attention_heads: int = None,
|
||||
attention_head_dim: int = 8,
|
||||
mult: float = 1.0,
|
||||
norm_type: str = "batch_norm",
|
||||
kernel_sizes: tuple = (5,),
|
||||
eps: float = 1e-15,
|
||||
residual_connection: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.eps = eps
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.norm_type = norm_type
|
||||
self.residual_connection = residual_connection
|
||||
|
||||
num_attention_heads = (
|
||||
int(in_channels // attention_head_dim * mult)
|
||||
if num_attention_heads is None
|
||||
else num_attention_heads
|
||||
)
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.to_q = ops.Linear(in_channels, inner_dim, bias=False)
|
||||
self.to_k = ops.Linear(in_channels, inner_dim, bias=False)
|
||||
self.to_v = ops.Linear(in_channels, inner_dim, bias=False)
|
||||
|
||||
self.to_qkv_multiscale = nn.ModuleList()
|
||||
for kernel_size in kernel_sizes:
|
||||
self.to_qkv_multiscale.append(
|
||||
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
|
||||
)
|
||||
|
||||
self.nonlinearity = nn.ReLU()
|
||||
self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
|
||||
self.norm_out = get_normalization(norm_type, out_channels)
|
||||
|
||||
def apply_linear_attention(self, query, key, value):
|
||||
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1)
|
||||
scores = torch.matmul(value, key.transpose(-1, -2))
|
||||
hidden_states = torch.matmul(scores, query)
|
||||
|
||||
hidden_states = hidden_states.to(dtype=torch.float32)
|
||||
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
|
||||
return hidden_states
|
||||
|
||||
def apply_quadratic_attention(self, query, key, value):
|
||||
scores = torch.matmul(key.transpose(-1, -2), query)
|
||||
scores = scores.to(dtype=torch.float32)
|
||||
scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps)
|
||||
hidden_states = torch.matmul(value, scores.to(value.dtype))
|
||||
return hidden_states
|
||||
|
||||
def forward(self, hidden_states):
|
||||
height, width = hidden_states.shape[-2:]
|
||||
if height * width > self.attention_head_dim:
|
||||
use_linear_attention = True
|
||||
else:
|
||||
use_linear_attention = False
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
batch_size, _, height, width = list(hidden_states.size())
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
hidden_states = hidden_states.movedim(1, -1)
|
||||
query = self.to_q(hidden_states)
|
||||
key = self.to_k(hidden_states)
|
||||
value = self.to_v(hidden_states)
|
||||
hidden_states = torch.cat([query, key, value], dim=3)
|
||||
hidden_states = hidden_states.movedim(-1, 1)
|
||||
|
||||
multi_scale_qkv = [hidden_states]
|
||||
for block in self.to_qkv_multiscale:
|
||||
multi_scale_qkv.append(block(hidden_states))
|
||||
|
||||
hidden_states = torch.cat(multi_scale_qkv, dim=1)
|
||||
|
||||
if use_linear_attention:
|
||||
# for linear attention upcast hidden_states to float32
|
||||
hidden_states = hidden_states.to(dtype=torch.float32)
|
||||
|
||||
hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width)
|
||||
|
||||
query, key, value = hidden_states.chunk(3, dim=2)
|
||||
query = self.nonlinearity(query)
|
||||
key = self.nonlinearity(key)
|
||||
|
||||
if use_linear_attention:
|
||||
hidden_states = self.apply_linear_attention(query, key, value)
|
||||
hidden_states = hidden_states.to(dtype=original_dtype)
|
||||
else:
|
||||
hidden_states = self.apply_quadratic_attention(query, key, value)
|
||||
|
||||
hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width))
|
||||
hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
||||
|
||||
if self.norm_type == "rms_norm":
|
||||
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
||||
else:
|
||||
hidden_states = self.norm_out(hidden_states)
|
||||
|
||||
if self.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EfficientViTBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
mult: float = 1.0,
|
||||
attention_head_dim: int = 32,
|
||||
qkv_multiscales: tuple = (5,),
|
||||
norm_type: str = "batch_norm",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.attn = SanaMultiscaleLinearAttention(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
mult=mult,
|
||||
attention_head_dim=attention_head_dim,
|
||||
norm_type=norm_type,
|
||||
kernel_sizes=qkv_multiscales,
|
||||
residual_connection=True,
|
||||
)
|
||||
|
||||
self.conv_out = GLUMBConv(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
norm_type="rms_norm",
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.attn(x)
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class GLUMBConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
expand_ratio: float = 4,
|
||||
norm_type: str = None,
|
||||
residual_connection: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
hidden_channels = int(expand_ratio * in_channels)
|
||||
self.norm_type = norm_type
|
||||
self.residual_connection = residual_connection
|
||||
|
||||
self.nonlinearity = nn.SiLU()
|
||||
self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
|
||||
self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
|
||||
self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
|
||||
|
||||
self.norm = None
|
||||
if norm_type == "rms_norm":
|
||||
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
if self.residual_connection:
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.conv_inverted(hidden_states)
|
||||
hidden_states = self.nonlinearity(hidden_states)
|
||||
|
||||
hidden_states = self.conv_depth(hidden_states)
|
||||
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
|
||||
hidden_states = hidden_states * self.nonlinearity(gate)
|
||||
|
||||
hidden_states = self.conv_point(hidden_states)
|
||||
|
||||
if self.norm_type == "rms_norm":
|
||||
# move channel to the last dimension so we apply RMSnorm across channel dimension
|
||||
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
||||
|
||||
if self.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
def get_block(
|
||||
block_type: str,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
attention_head_dim: int,
|
||||
norm_type: str,
|
||||
act_fn: str,
|
||||
qkv_mutliscales: tuple = (),
|
||||
):
|
||||
if block_type == "ResBlock":
|
||||
block = ResBlock(in_channels, out_channels, norm_type, act_fn)
|
||||
elif block_type == "EfficientViTBlock":
|
||||
block = EfficientViTBlock(
|
||||
in_channels,
|
||||
attention_head_dim=attention_head_dim,
|
||||
norm_type=norm_type,
|
||||
qkv_multiscales=qkv_mutliscales
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Block with {block_type=} is not supported.")
|
||||
|
||||
return block
|
||||
|
||||
|
||||
class DCDownBlock2d(nn.Module):
|
||||
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.downsample = downsample
|
||||
self.factor = 2
|
||||
self.stride = 1 if downsample else 2
|
||||
self.group_size = in_channels * self.factor**2 // out_channels
|
||||
self.shortcut = shortcut
|
||||
|
||||
out_ratio = self.factor**2
|
||||
if downsample:
|
||||
assert out_channels % out_ratio == 0
|
||||
out_channels = out_channels // out_ratio
|
||||
|
||||
self.conv = ops.Conv2d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=self.stride,
|
||||
padding=1,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
x = self.conv(hidden_states)
|
||||
if self.downsample:
|
||||
x = F.pixel_unshuffle(x, self.factor)
|
||||
|
||||
if self.shortcut:
|
||||
y = F.pixel_unshuffle(hidden_states, self.factor)
|
||||
y = y.unflatten(1, (-1, self.group_size))
|
||||
y = y.mean(dim=2)
|
||||
hidden_states = x + y
|
||||
else:
|
||||
hidden_states = x
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DCUpBlock2d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
interpolate: bool = False,
|
||||
shortcut: bool = True,
|
||||
interpolation_mode: str = "nearest",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.interpolate = interpolate
|
||||
self.interpolation_mode = interpolation_mode
|
||||
self.shortcut = shortcut
|
||||
self.factor = 2
|
||||
self.repeats = out_channels * self.factor**2 // in_channels
|
||||
|
||||
out_ratio = self.factor**2
|
||||
if not interpolate:
|
||||
out_channels = out_channels * out_ratio
|
||||
|
||||
self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
if self.interpolate:
|
||||
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = self.conv(hidden_states)
|
||||
x = F.pixel_shuffle(x, self.factor)
|
||||
|
||||
if self.shortcut:
|
||||
y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats)
|
||||
y = F.pixel_shuffle(y, self.factor)
|
||||
hidden_states = x + y
|
||||
else:
|
||||
hidden_states = x
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
latent_channels: int,
|
||||
attention_head_dim: int = 32,
|
||||
block_type: str or tuple = "ResBlock",
|
||||
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
|
||||
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
|
||||
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
|
||||
downsample_block_type: str = "pixel_unshuffle",
|
||||
out_shortcut: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
num_blocks = len(block_out_channels)
|
||||
|
||||
if isinstance(block_type, str):
|
||||
block_type = (block_type,) * num_blocks
|
||||
|
||||
if layers_per_block[0] > 0:
|
||||
self.conv_in = ops.Conv2d(
|
||||
in_channels,
|
||||
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
)
|
||||
else:
|
||||
self.conv_in = DCDownBlock2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
|
||||
downsample=downsample_block_type == "pixel_unshuffle",
|
||||
shortcut=False,
|
||||
)
|
||||
|
||||
down_blocks = []
|
||||
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
|
||||
down_block_list = []
|
||||
|
||||
for _ in range(num_layers):
|
||||
block = get_block(
|
||||
block_type[i],
|
||||
out_channel,
|
||||
out_channel,
|
||||
attention_head_dim=attention_head_dim,
|
||||
norm_type="rms_norm",
|
||||
act_fn="silu",
|
||||
qkv_mutliscales=qkv_multiscales[i],
|
||||
)
|
||||
down_block_list.append(block)
|
||||
|
||||
if i < num_blocks - 1 and num_layers > 0:
|
||||
downsample_block = DCDownBlock2d(
|
||||
in_channels=out_channel,
|
||||
out_channels=block_out_channels[i + 1],
|
||||
downsample=downsample_block_type == "pixel_unshuffle",
|
||||
shortcut=True,
|
||||
)
|
||||
down_block_list.append(downsample_block)
|
||||
|
||||
down_blocks.append(nn.Sequential(*down_block_list))
|
||||
|
||||
self.down_blocks = nn.ModuleList(down_blocks)
|
||||
|
||||
self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
|
||||
|
||||
self.out_shortcut = out_shortcut
|
||||
if out_shortcut:
|
||||
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.conv_in(hidden_states)
|
||||
for down_block in self.down_blocks:
|
||||
hidden_states = down_block(hidden_states)
|
||||
|
||||
if self.out_shortcut:
|
||||
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
|
||||
x = x.mean(dim=2)
|
||||
hidden_states = self.conv_out(hidden_states) + x
|
||||
else:
|
||||
hidden_states = self.conv_out(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
latent_channels: int,
|
||||
attention_head_dim: int = 32,
|
||||
block_type: str or tuple = "ResBlock",
|
||||
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
|
||||
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
|
||||
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
|
||||
norm_type: str or tuple = "rms_norm",
|
||||
act_fn: str or tuple = "silu",
|
||||
upsample_block_type: str = "pixel_shuffle",
|
||||
in_shortcut: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
num_blocks = len(block_out_channels)
|
||||
|
||||
if isinstance(block_type, str):
|
||||
block_type = (block_type,) * num_blocks
|
||||
if isinstance(norm_type, str):
|
||||
norm_type = (norm_type,) * num_blocks
|
||||
if isinstance(act_fn, str):
|
||||
act_fn = (act_fn,) * num_blocks
|
||||
|
||||
self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
|
||||
|
||||
self.in_shortcut = in_shortcut
|
||||
if in_shortcut:
|
||||
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
|
||||
|
||||
up_blocks = []
|
||||
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
|
||||
up_block_list = []
|
||||
|
||||
if i < num_blocks - 1 and num_layers > 0:
|
||||
upsample_block = DCUpBlock2d(
|
||||
block_out_channels[i + 1],
|
||||
out_channel,
|
||||
interpolate=upsample_block_type == "interpolate",
|
||||
shortcut=True,
|
||||
)
|
||||
up_block_list.append(upsample_block)
|
||||
|
||||
for _ in range(num_layers):
|
||||
block = get_block(
|
||||
block_type[i],
|
||||
out_channel,
|
||||
out_channel,
|
||||
attention_head_dim=attention_head_dim,
|
||||
norm_type=norm_type[i],
|
||||
act_fn=act_fn[i],
|
||||
qkv_mutliscales=qkv_multiscales[i],
|
||||
)
|
||||
up_block_list.append(block)
|
||||
|
||||
up_blocks.insert(0, nn.Sequential(*up_block_list))
|
||||
|
||||
self.up_blocks = nn.ModuleList(up_blocks)
|
||||
|
||||
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
|
||||
|
||||
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
|
||||
self.conv_act = nn.ReLU()
|
||||
self.conv_out = None
|
||||
|
||||
if layers_per_block[0] > 0:
|
||||
self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1)
|
||||
else:
|
||||
self.conv_out = DCUpBlock2d(
|
||||
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
if self.in_shortcut:
|
||||
x = hidden_states.repeat_interleave(
|
||||
self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats
|
||||
)
|
||||
hidden_states = self.conv_in(hidden_states) + x
|
||||
else:
|
||||
hidden_states = self.conv_in(hidden_states)
|
||||
|
||||
for up_block in reversed(self.up_blocks):
|
||||
hidden_states = up_block(hidden_states)
|
||||
|
||||
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
||||
hidden_states = self.conv_act(hidden_states)
|
||||
hidden_states = self.conv_out(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AutoencoderDC(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 2,
|
||||
latent_channels: int = 8,
|
||||
attention_head_dim: int = 32,
|
||||
encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
|
||||
decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
|
||||
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
|
||||
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
|
||||
encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3),
|
||||
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3),
|
||||
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
|
||||
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
|
||||
upsample_block_type: str = "interpolate",
|
||||
downsample_block_type: str = "Conv",
|
||||
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
|
||||
decoder_act_fns: Union[str, Tuple[str]] = "silu",
|
||||
scaling_factor: float = 0.41407,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.encoder = Encoder(
|
||||
in_channels=in_channels,
|
||||
latent_channels=latent_channels,
|
||||
attention_head_dim=attention_head_dim,
|
||||
block_type=encoder_block_types,
|
||||
block_out_channels=encoder_block_out_channels,
|
||||
layers_per_block=encoder_layers_per_block,
|
||||
qkv_multiscales=encoder_qkv_multiscales,
|
||||
downsample_block_type=downsample_block_type,
|
||||
)
|
||||
|
||||
self.decoder = Decoder(
|
||||
in_channels=in_channels,
|
||||
latent_channels=latent_channels,
|
||||
attention_head_dim=attention_head_dim,
|
||||
block_type=decoder_block_types,
|
||||
block_out_channels=decoder_block_out_channels,
|
||||
layers_per_block=decoder_layers_per_block,
|
||||
qkv_multiscales=decoder_qkv_multiscales,
|
||||
norm_type=decoder_norm_types,
|
||||
act_fn=decoder_act_fns,
|
||||
upsample_block_type=upsample_block_type,
|
||||
)
|
||||
|
||||
self.scaling_factor = scaling_factor
|
||||
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
|
||||
|
||||
def encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Internal encoding function."""
|
||||
encoded = self.encoder(x)
|
||||
return encoded * self.scaling_factor
|
||||
|
||||
def decode(self, z: torch.Tensor) -> torch.Tensor:
|
||||
# Scale the latents back
|
||||
z = z / self.scaling_factor
|
||||
decoded = self.decoder(z)
|
||||
return decoded
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
z = self.encode(x)
|
||||
return self.decode(z)
|
||||
|
||||
109
comfy/ldm/ace/vae/music_dcae_pipeline.py
Normal file
109
comfy/ldm/ace/vae/music_dcae_pipeline.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_dcae_pipeline.py
|
||||
import torch
|
||||
from .autoencoder_dc import AutoencoderDC
|
||||
import logging
|
||||
try:
|
||||
import torchaudio
|
||||
except:
|
||||
logging.warning("torchaudio missing, ACE model will be broken")
|
||||
|
||||
import torchvision.transforms as transforms
|
||||
from .music_vocoder import ADaMoSHiFiGANV1
|
||||
|
||||
|
||||
class MusicDCAE(torch.nn.Module):
|
||||
def __init__(self, source_sample_rate=None, dcae_config={}, vocoder_config={}):
|
||||
super(MusicDCAE, self).__init__()
|
||||
|
||||
self.dcae = AutoencoderDC(**dcae_config)
|
||||
self.vocoder = ADaMoSHiFiGANV1(**vocoder_config)
|
||||
|
||||
if source_sample_rate is None:
|
||||
self.source_sample_rate = 48000
|
||||
else:
|
||||
self.source_sample_rate = source_sample_rate
|
||||
|
||||
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
|
||||
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Normalize(0.5, 0.5),
|
||||
])
|
||||
self.min_mel_value = -11.0
|
||||
self.max_mel_value = 3.0
|
||||
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000)))
|
||||
self.mel_chunk_size = 1024
|
||||
self.time_dimention_multiple = 8
|
||||
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple
|
||||
self.scale_factor = 0.1786
|
||||
self.shift_factor = -1.9091
|
||||
|
||||
def load_audio(self, audio_path):
|
||||
audio, sr = torchaudio.load(audio_path)
|
||||
return audio, sr
|
||||
|
||||
def forward_mel(self, audios):
|
||||
mels = []
|
||||
for i in range(len(audios)):
|
||||
image = self.vocoder.mel_transform(audios[i])
|
||||
mels.append(image)
|
||||
mels = torch.stack(mels)
|
||||
return mels
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, audios, audio_lengths=None, sr=None):
|
||||
if audio_lengths is None:
|
||||
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0])
|
||||
audio_lengths = audio_lengths.to(audios.device)
|
||||
|
||||
if sr is None:
|
||||
sr = self.source_sample_rate
|
||||
|
||||
if sr != 44100:
|
||||
audios = torchaudio.functional.resample(audios, sr, 44100)
|
||||
|
||||
max_audio_len = audios.shape[-1]
|
||||
if max_audio_len % (8 * 512) != 0:
|
||||
audios = torch.nn.functional.pad(audios, (0, 8 * 512 - max_audio_len % (8 * 512)))
|
||||
|
||||
mels = self.forward_mel(audios)
|
||||
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value)
|
||||
mels = self.transform(mels)
|
||||
latents = []
|
||||
for mel in mels:
|
||||
latent = self.dcae.encoder(mel.unsqueeze(0))
|
||||
latents.append(latent)
|
||||
latents = torch.cat(latents, dim=0)
|
||||
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
|
||||
latents = (latents - self.shift_factor) * self.scale_factor
|
||||
return latents
|
||||
# return latents, latent_lengths
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, latents, audio_lengths=None, sr=None):
|
||||
latents = latents / self.scale_factor + self.shift_factor
|
||||
|
||||
pred_wavs = []
|
||||
|
||||
for latent in latents:
|
||||
mels = self.dcae.decoder(latent.unsqueeze(0))
|
||||
mels = mels * 0.5 + 0.5
|
||||
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value
|
||||
wav = self.vocoder.decode(mels[0]).squeeze(1)
|
||||
|
||||
if sr is not None:
|
||||
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
|
||||
wav = torchaudio.functional.resample(wav, 44100, sr)
|
||||
# wav = resampler(wav)
|
||||
else:
|
||||
sr = 44100
|
||||
pred_wavs.append(wav)
|
||||
|
||||
if audio_lengths is not None:
|
||||
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
|
||||
return torch.stack(pred_wavs)
|
||||
# return sr, pred_wavs
|
||||
|
||||
def forward(self, audios, audio_lengths=None, sr=None):
|
||||
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
|
||||
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr)
|
||||
return sr, pred_wavs, latents, latent_lengths
|
||||
113
comfy/ldm/ace/vae/music_log_mel.py
Executable file
113
comfy/ldm/ace/vae/music_log_mel.py
Executable file
@@ -0,0 +1,113 @@
|
||||
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_log_mel.py
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
import logging
|
||||
try:
|
||||
from torchaudio.transforms import MelScale
|
||||
except:
|
||||
logging.warning("torchaudio missing, ACE model will be broken")
|
||||
|
||||
import comfy.model_management
|
||||
|
||||
class LinearSpectrogram(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_fft=2048,
|
||||
win_length=2048,
|
||||
hop_length=512,
|
||||
center=False,
|
||||
mode="pow2_sqrt",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.n_fft = n_fft
|
||||
self.win_length = win_length
|
||||
self.hop_length = hop_length
|
||||
self.center = center
|
||||
self.mode = mode
|
||||
|
||||
self.register_buffer("window", torch.hann_window(win_length))
|
||||
|
||||
def forward(self, y: Tensor) -> Tensor:
|
||||
if y.ndim == 3:
|
||||
y = y.squeeze(1)
|
||||
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(
|
||||
(self.win_length - self.hop_length) // 2,
|
||||
(self.win_length - self.hop_length + 1) // 2,
|
||||
),
|
||||
mode="reflect",
|
||||
).squeeze(1)
|
||||
dtype = y.dtype
|
||||
spec = torch.stft(
|
||||
y.float(),
|
||||
self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
win_length=self.win_length,
|
||||
window=comfy.model_management.cast_to(self.window, dtype=torch.float32, device=y.device),
|
||||
center=self.center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
spec = torch.view_as_real(spec)
|
||||
|
||||
if self.mode == "pow2_sqrt":
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
spec = spec.to(dtype)
|
||||
return spec
|
||||
|
||||
|
||||
class LogMelSpectrogram(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
sample_rate=44100,
|
||||
n_fft=2048,
|
||||
win_length=2048,
|
||||
hop_length=512,
|
||||
n_mels=128,
|
||||
center=False,
|
||||
f_min=0.0,
|
||||
f_max=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.sample_rate = sample_rate
|
||||
self.n_fft = n_fft
|
||||
self.win_length = win_length
|
||||
self.hop_length = hop_length
|
||||
self.center = center
|
||||
self.n_mels = n_mels
|
||||
self.f_min = f_min
|
||||
self.f_max = f_max or sample_rate // 2
|
||||
|
||||
self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)
|
||||
self.mel_scale = MelScale(
|
||||
self.n_mels,
|
||||
self.sample_rate,
|
||||
self.f_min,
|
||||
self.f_max,
|
||||
self.n_fft // 2 + 1,
|
||||
"slaney",
|
||||
"slaney",
|
||||
)
|
||||
|
||||
def compress(self, x: Tensor) -> Tensor:
|
||||
return torch.log(torch.clamp(x, min=1e-5))
|
||||
|
||||
def decompress(self, x: Tensor) -> Tensor:
|
||||
return torch.exp(x)
|
||||
|
||||
def forward(self, x: Tensor, return_linear: bool = False) -> Tensor:
|
||||
linear = self.spectrogram(x)
|
||||
x = self.mel_scale(linear)
|
||||
x = self.compress(x)
|
||||
# print(x.shape)
|
||||
if return_linear:
|
||||
return x, self.compress(linear)
|
||||
|
||||
return x
|
||||
538
comfy/ldm/ace/vae/music_vocoder.py
Executable file
538
comfy/ldm/ace/vae/music_vocoder.py
Executable file
@@ -0,0 +1,538 @@
|
||||
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_vocoder.py
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from functools import partial
|
||||
from math import prod
|
||||
from typing import Callable, Tuple, List
|
||||
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
|
||||
|
||||
from .music_log_mel import LogMelSpectrogram
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
def drop_path(
|
||||
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
||||
):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
if drop_prob == 0.0 or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (
|
||||
x.ndim - 1
|
||||
) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
|
||||
|
||||
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.scale_by_keep = scale_by_keep
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
||||
|
||||
def extra_repr(self):
|
||||
return f"drop_prob={round(self.drop_prob,3):0.3f}"
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
||||
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
||||
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
||||
with shape (batch_size, channels, height, width).
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||||
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
||||
self.eps = eps
|
||||
self.data_format = data_format
|
||||
if self.data_format not in ["channels_last", "channels_first"]:
|
||||
raise NotImplementedError
|
||||
self.normalized_shape = (normalized_shape,)
|
||||
|
||||
def forward(self, x):
|
||||
if self.data_format == "channels_last":
|
||||
return F.layer_norm(
|
||||
x, self.normalized_shape, comfy.model_management.cast_to(self.weight, dtype=x.dtype, device=x.device), comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device), self.eps
|
||||
)
|
||||
elif self.data_format == "channels_first":
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
x = comfy.model_management.cast_to(self.weight[:, None], dtype=x.dtype, device=x.device) * x + comfy.model_management.cast_to(self.bias[:, None], dtype=x.dtype, device=x.device)
|
||||
return x
|
||||
|
||||
|
||||
class ConvNeXtBlock(nn.Module):
|
||||
r"""ConvNeXt Block. There are two equivalent implementations:
|
||||
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
||||
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
||||
We use (2) as we find it slightly faster in PyTorch
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
drop_path (float): Stochastic depth rate. Default: 0.0
|
||||
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
|
||||
kernel_size (int): Kernel size for depthwise conv. Default: 7.
|
||||
dilation (int): Dilation for depthwise conv. Default: 1.
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
drop_path: float = 0.0,
|
||||
layer_scale_init_value: float = 1e-6,
|
||||
mlp_ratio: float = 4.0,
|
||||
kernel_size: int = 7,
|
||||
dilation: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.dwconv = ops.Conv1d(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size=kernel_size,
|
||||
padding=int(dilation * (kernel_size - 1) / 2),
|
||||
groups=dim,
|
||||
) # depthwise conv
|
||||
self.norm = LayerNorm(dim, eps=1e-6)
|
||||
self.pwconv1 = ops.Linear(
|
||||
dim, int(mlp_ratio * dim)
|
||||
) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.pwconv2 = ops.Linear(int(mlp_ratio * dim), dim)
|
||||
self.gamma = (
|
||||
nn.Parameter(torch.empty((dim)), requires_grad=False)
|
||||
if layer_scale_init_value > 0
|
||||
else None
|
||||
)
|
||||
self.drop_path = DropPath(
|
||||
drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
def forward(self, x, apply_residual: bool = True):
|
||||
input = x
|
||||
|
||||
x = self.dwconv(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x)
|
||||
|
||||
if self.gamma is not None:
|
||||
x = comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) * x
|
||||
|
||||
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
|
||||
x = self.drop_path(x)
|
||||
|
||||
if apply_residual:
|
||||
x = input + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class ParallelConvNeXtBlock(nn.Module):
|
||||
def __init__(self, kernel_sizes: List[int], *args, **kwargs):
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs)
|
||||
for kernel_size in kernel_sizes
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.stack(
|
||||
[block(x, apply_residual=False) for block in self.blocks] + [x],
|
||||
dim=1,
|
||||
).sum(dim=1)
|
||||
|
||||
|
||||
class ConvNeXtEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_channels=3,
|
||||
depths=[3, 3, 9, 3],
|
||||
dims=[96, 192, 384, 768],
|
||||
drop_path_rate=0.0,
|
||||
layer_scale_init_value=1e-6,
|
||||
kernel_sizes: Tuple[int] = (7,),
|
||||
):
|
||||
super().__init__()
|
||||
assert len(depths) == len(dims)
|
||||
|
||||
self.channel_layers = nn.ModuleList()
|
||||
stem = nn.Sequential(
|
||||
ops.Conv1d(
|
||||
input_channels,
|
||||
dims[0],
|
||||
kernel_size=7,
|
||||
padding=3,
|
||||
padding_mode="replicate",
|
||||
),
|
||||
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
|
||||
)
|
||||
self.channel_layers.append(stem)
|
||||
|
||||
for i in range(len(depths) - 1):
|
||||
mid_layer = nn.Sequential(
|
||||
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
||||
ops.Conv1d(dims[i], dims[i + 1], kernel_size=1),
|
||||
)
|
||||
self.channel_layers.append(mid_layer)
|
||||
|
||||
block_fn = (
|
||||
partial(ConvNeXtBlock, kernel_size=kernel_sizes[0])
|
||||
if len(kernel_sizes) == 1
|
||||
else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes)
|
||||
)
|
||||
|
||||
self.stages = nn.ModuleList()
|
||||
drop_path_rates = [
|
||||
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
||||
]
|
||||
|
||||
cur = 0
|
||||
for i in range(len(depths)):
|
||||
stage = nn.Sequential(
|
||||
*[
|
||||
block_fn(
|
||||
dim=dims[i],
|
||||
drop_path=drop_path_rates[cur + j],
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
)
|
||||
for j in range(depths[i])
|
||||
]
|
||||
)
|
||||
self.stages.append(stage)
|
||||
cur += depths[i]
|
||||
|
||||
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
for channel_layer, stage in zip(self.channel_layers, self.stages):
|
||||
x = channel_layer(x)
|
||||
x = stage(x)
|
||||
|
||||
return self.norm(x)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return (kernel_size * dilation - dilation) // 2
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super().__init__()
|
||||
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.silu(x)
|
||||
xt = c1(xt)
|
||||
xt = F.silu(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for conv in self.convs1:
|
||||
remove_weight_norm(conv)
|
||||
for conv in self.convs2:
|
||||
remove_weight_norm(conv)
|
||||
|
||||
|
||||
class HiFiGANGenerator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
hop_length: int = 512,
|
||||
upsample_rates: Tuple[int] = (8, 8, 2, 2, 2),
|
||||
upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2),
|
||||
resblock_kernel_sizes: Tuple[int] = (3, 7, 11),
|
||||
resblock_dilation_sizes: Tuple[Tuple[int]] = (
|
||||
(1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
||||
num_mels: int = 128,
|
||||
upsample_initial_channel: int = 512,
|
||||
use_template: bool = True,
|
||||
pre_conv_kernel_size: int = 7,
|
||||
post_conv_kernel_size: int = 7,
|
||||
post_activation: Callable = partial(nn.SiLU, inplace=True),
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert (
|
||||
prod(upsample_rates) == hop_length
|
||||
), f"hop_length must be {prod(upsample_rates)}"
|
||||
|
||||
self.conv_pre = torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
num_mels,
|
||||
upsample_initial_channel,
|
||||
pre_conv_kernel_size,
|
||||
1,
|
||||
padding=get_padding(pre_conv_kernel_size),
|
||||
)
|
||||
)
|
||||
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.use_template = use_template
|
||||
self.ups = nn.ModuleList()
|
||||
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||||
self.ups.append(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.ConvTranspose1d(
|
||||
upsample_initial_channel // (2**i),
|
||||
upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
if not use_template:
|
||||
continue
|
||||
|
||||
if i + 1 < len(upsample_rates):
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(
|
||||
ops.Conv1d(
|
||||
1,
|
||||
c_cur,
|
||||
kernel_size=stride_f0 * 2,
|
||||
stride=stride_f0,
|
||||
padding=stride_f0 // 2,
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.noise_convs.append(ops.Conv1d(1, c_cur, kernel_size=1))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
|
||||
self.resblocks.append(ResBlock1(ch, k, d))
|
||||
|
||||
self.activation_post = post_activation()
|
||||
self.conv_post = torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
ch,
|
||||
1,
|
||||
post_conv_kernel_size,
|
||||
1,
|
||||
padding=get_padding(post_conv_kernel_size),
|
||||
)
|
||||
)
|
||||
|
||||
def forward(self, x, template=None):
|
||||
x = self.conv_pre(x)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.silu(x, inplace=True)
|
||||
x = self.ups[i](x)
|
||||
|
||||
if self.use_template:
|
||||
x = x + self.noise_convs[i](template)
|
||||
|
||||
xs = None
|
||||
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
|
||||
x = xs / self.num_kernels
|
||||
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for up in self.ups:
|
||||
remove_weight_norm(up)
|
||||
for block in self.resblocks:
|
||||
block.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
class ADaMoSHiFiGANV1(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_channels: int = 128,
|
||||
depths: List[int] = [3, 3, 9, 3],
|
||||
dims: List[int] = [128, 256, 384, 512],
|
||||
drop_path_rate: float = 0.0,
|
||||
kernel_sizes: Tuple[int] = (7,),
|
||||
upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2),
|
||||
upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4),
|
||||
resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13),
|
||||
resblock_dilation_sizes: Tuple[Tuple[int]] = (
|
||||
(1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
||||
num_mels: int = 512,
|
||||
upsample_initial_channel: int = 1024,
|
||||
use_template: bool = False,
|
||||
pre_conv_kernel_size: int = 13,
|
||||
post_conv_kernel_size: int = 13,
|
||||
sampling_rate: int = 44100,
|
||||
n_fft: int = 2048,
|
||||
win_length: int = 2048,
|
||||
hop_length: int = 512,
|
||||
f_min: int = 40,
|
||||
f_max: int = 16000,
|
||||
n_mels: int = 128,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.backbone = ConvNeXtEncoder(
|
||||
input_channels=input_channels,
|
||||
depths=depths,
|
||||
dims=dims,
|
||||
drop_path_rate=drop_path_rate,
|
||||
kernel_sizes=kernel_sizes,
|
||||
)
|
||||
|
||||
self.head = HiFiGANGenerator(
|
||||
hop_length=hop_length,
|
||||
upsample_rates=upsample_rates,
|
||||
upsample_kernel_sizes=upsample_kernel_sizes,
|
||||
resblock_kernel_sizes=resblock_kernel_sizes,
|
||||
resblock_dilation_sizes=resblock_dilation_sizes,
|
||||
num_mels=num_mels,
|
||||
upsample_initial_channel=upsample_initial_channel,
|
||||
use_template=use_template,
|
||||
pre_conv_kernel_size=pre_conv_kernel_size,
|
||||
post_conv_kernel_size=post_conv_kernel_size,
|
||||
)
|
||||
self.sampling_rate = sampling_rate
|
||||
self.mel_transform = LogMelSpectrogram(
|
||||
sample_rate=sampling_rate,
|
||||
n_fft=n_fft,
|
||||
win_length=win_length,
|
||||
hop_length=hop_length,
|
||||
f_min=f_min,
|
||||
f_max=f_max,
|
||||
n_mels=n_mels,
|
||||
)
|
||||
self.eval()
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, mel):
|
||||
y = self.backbone(mel)
|
||||
y = self.head(y)
|
||||
return y
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, x):
|
||||
return self.mel_transform(x)
|
||||
|
||||
def forward(self, mel):
|
||||
y = self.backbone(mel)
|
||||
y = self.head(y)
|
||||
return y
|
||||
@@ -75,16 +75,10 @@ class SnakeBeta(nn.Module):
|
||||
return x
|
||||
|
||||
def WNConv1d(*args, **kwargs):
|
||||
try:
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
|
||||
except:
|
||||
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
|
||||
|
||||
def WNConvTranspose1d(*args, **kwargs):
|
||||
try:
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
|
||||
except:
|
||||
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
|
||||
|
||||
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
||||
if activation == "elu":
|
||||
|
||||
@@ -19,6 +19,10 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Function
|
||||
import comfy.ops
|
||||
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
class vector_quantize(Function):
|
||||
@staticmethod
|
||||
@@ -121,15 +125,15 @@ class ResBlock(nn.Module):
|
||||
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
||||
self.depthwise = nn.Sequential(
|
||||
nn.ReplicationPad2d(1),
|
||||
nn.Conv2d(c, c, kernel_size=3, groups=c)
|
||||
ops.Conv2d(c, c, kernel_size=3, groups=c)
|
||||
)
|
||||
|
||||
# channelwise
|
||||
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
||||
self.channelwise = nn.Sequential(
|
||||
nn.Linear(c, c_hidden),
|
||||
ops.Linear(c, c_hidden),
|
||||
nn.GELU(),
|
||||
nn.Linear(c_hidden, c),
|
||||
ops.Linear(c_hidden, c),
|
||||
)
|
||||
|
||||
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
||||
@@ -171,16 +175,16 @@ class StageA(nn.Module):
|
||||
# Encoder blocks
|
||||
self.in_block = nn.Sequential(
|
||||
nn.PixelUnshuffle(2),
|
||||
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
||||
ops.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
||||
)
|
||||
down_blocks = []
|
||||
for i in range(levels):
|
||||
if i > 0:
|
||||
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
||||
down_blocks.append(ops.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
||||
block = ResBlock(c_levels[i], c_levels[i] * 4)
|
||||
down_blocks.append(block)
|
||||
down_blocks.append(nn.Sequential(
|
||||
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
||||
ops.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
||||
))
|
||||
self.down_blocks = nn.Sequential(*down_blocks)
|
||||
@@ -191,7 +195,7 @@ class StageA(nn.Module):
|
||||
|
||||
# Decoder blocks
|
||||
up_blocks = [nn.Sequential(
|
||||
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
||||
ops.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
||||
)]
|
||||
for i in range(levels):
|
||||
for j in range(bottleneck_blocks if i == 0 else 1):
|
||||
@@ -199,11 +203,11 @@ class StageA(nn.Module):
|
||||
up_blocks.append(block)
|
||||
if i < levels - 1:
|
||||
up_blocks.append(
|
||||
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
||||
ops.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
||||
padding=1))
|
||||
self.up_blocks = nn.Sequential(*up_blocks)
|
||||
self.out_block = nn.Sequential(
|
||||
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
||||
ops.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
||||
nn.PixelShuffle(2),
|
||||
)
|
||||
|
||||
@@ -232,17 +236,17 @@ class Discriminator(nn.Module):
|
||||
super().__init__()
|
||||
d = max(depth - 3, 3)
|
||||
layers = [
|
||||
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
||||
nn.utils.spectral_norm(ops.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
||||
nn.LeakyReLU(0.2),
|
||||
]
|
||||
for i in range(depth - 1):
|
||||
c_in = c_hidden // (2 ** max((d - i), 0))
|
||||
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
|
||||
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
||||
layers.append(nn.utils.spectral_norm(ops.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
||||
layers.append(nn.InstanceNorm2d(c_out))
|
||||
layers.append(nn.LeakyReLU(0.2))
|
||||
self.encoder = nn.Sequential(*layers)
|
||||
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
||||
self.shuffle = ops.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
||||
self.logits = nn.Sigmoid()
|
||||
|
||||
def forward(self, x, cond=None):
|
||||
|
||||
@@ -19,6 +19,9 @@ import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
|
||||
import comfy.ops
|
||||
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
# EfficientNet
|
||||
class EfficientNetEncoder(nn.Module):
|
||||
@@ -26,7 +29,7 @@ class EfficientNetEncoder(nn.Module):
|
||||
super().__init__()
|
||||
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
||||
self.mapper = nn.Sequential(
|
||||
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
||||
ops.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
||||
)
|
||||
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
|
||||
@@ -34,7 +37,7 @@ class EfficientNetEncoder(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 0.5 + 0.5
|
||||
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
|
||||
x = (x - self.mean.view([3,1,1]).to(device=x.device, dtype=x.dtype)) / self.std.view([3,1,1]).to(device=x.device, dtype=x.dtype)
|
||||
o = self.mapper(self.backbone(x))
|
||||
return o
|
||||
|
||||
@@ -44,39 +47,39 @@ class Previewer(nn.Module):
|
||||
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
||||
super().__init__()
|
||||
self.blocks = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
||||
ops.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden),
|
||||
|
||||
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
||||
ops.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 2),
|
||||
|
||||
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 2),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
||||
ops.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
||||
ops.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
||||
ops.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
183
comfy/ldm/chroma/layers.py
Normal file
183
comfy/ldm/chroma/layers.py
Normal file
@@ -0,0 +1,183 @@
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.math import attention
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
QKNorm,
|
||||
SelfAttention,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
|
||||
|
||||
class ChromaModulationOut(ModulationOut):
|
||||
@classmethod
|
||||
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
|
||||
return cls(
|
||||
shift=tensor[:, offset : offset + 1, :],
|
||||
scale=tensor[:, offset + 1 : offset + 2, :],
|
||||
gate=tensor[:, offset + 2 : offset + 3, :],
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
class Approximator(nn.Module):
|
||||
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
# Get the device of the module (assumes all parameters are on the same device)
|
||||
return next(self.parameters()).device
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = self.in_proj(x)
|
||||
|
||||
for layer, norms in zip(self.layers, self.norms):
|
||||
x = x + layer(norms(x))
|
||||
|
||||
x = self.out_proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = vec
|
||||
shift = shift.squeeze(1)
|
||||
scale = scale.squeeze(1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
271
comfy/ldm/chroma/model.py
Normal file
271
comfy/ldm/chroma/model.py
Normal file
@@ -0,0 +1,271 @@
|
||||
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
EmbedND,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
LastLayer,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
ChromaModulationOut,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChromaParams:
|
||||
in_channels: int
|
||||
out_channels: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
patch_size: int
|
||||
qkv_bias: bool
|
||||
in_dim: int
|
||||
out_dim: int
|
||||
hidden_dim: int
|
||||
n_layers: int
|
||||
|
||||
|
||||
|
||||
|
||||
class Chroma(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = ChromaParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = params.out_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.in_dim = params.in_dim
|
||||
self.out_dim = params.out_dim
|
||||
self.hidden_dim = params.hidden_dim
|
||||
self.n_layers = params.n_layers
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
# set as nn identity for now, will overwrite it later.
|
||||
self.distilled_guidance_layer = Approximator(
|
||||
in_dim=self.in_dim,
|
||||
hidden_dim=self.hidden_dim,
|
||||
out_dim=self.out_dim,
|
||||
n_layers=self.n_layers,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.skip_mmdit = []
|
||||
self.skip_dit = []
|
||||
self.lite = False
|
||||
|
||||
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
|
||||
# This function slices up the modulations tensor which has the following layout:
|
||||
# single : num_single_blocks * 3 elements
|
||||
# double_img : num_double_blocks * 6 elements
|
||||
# double_txt : num_double_blocks * 6 elements
|
||||
# final : 2 elements
|
||||
if block_type == "final":
|
||||
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
|
||||
single_block_count = self.params.depth_single_blocks
|
||||
double_block_count = self.params.depth
|
||||
offset = 3 * idx
|
||||
if block_type == "single":
|
||||
return ChromaModulationOut.from_offset(tensor, offset)
|
||||
# Double block modulations are 6 elements so we double 3 * idx.
|
||||
offset *= 2
|
||||
if block_type in {"double_img", "double_txt"}:
|
||||
# Advance past the single block modulations.
|
||||
offset += 3 * single_block_count
|
||||
if block_type == "double_txt":
|
||||
# Advance past the double block img modulations.
|
||||
offset += 6 * double_block_count
|
||||
return (
|
||||
ChromaModulationOut.from_offset(tensor, offset),
|
||||
ChromaModulationOut.from_offset(tensor, offset + 3),
|
||||
)
|
||||
raise ValueError("Bad block_type")
|
||||
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control = None,
|
||||
transformer_options={},
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
# distilled vector guidance
|
||||
mod_index_length = 344
|
||||
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
|
||||
# guidance = guidance *
|
||||
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
|
||||
|
||||
# get all modulation index
|
||||
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
|
||||
# we need to broadcast the modulation index here so each batch has all of the index
|
||||
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
|
||||
# and we need to broadcast timestep and guidance along too
|
||||
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
|
||||
# then and only then we could concatenate it together
|
||||
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
|
||||
|
||||
mod_vectors = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
if i not in self.skip_mmdit:
|
||||
double_mod = (
|
||||
self.get_modulations(mod_vectors, "double_img", idx=i),
|
||||
self.get_modulations(mod_vectors, "double_txt", idx=i),
|
||||
)
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"],
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": double_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img,
|
||||
txt=txt,
|
||||
vec=double_mod,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
if i not in self.skip_dit:
|
||||
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": single_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
final_mod = self.get_modulations(mod_vectors, "final")
|
||||
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
import comfy.rmsnorm
|
||||
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
@@ -11,20 +12,5 @@ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
|
||||
return torch.nn.functional.pad(img, pad, mode=padding_mode)
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
if weight is None:
|
||||
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
||||
else:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
if weight is None:
|
||||
return r
|
||||
else:
|
||||
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
rms_norm = comfy.rmsnorm.rms_norm
|
||||
|
||||
@@ -23,7 +23,6 @@ from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
from torch import nn
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
@@ -37,11 +36,11 @@ def apply_rotary_pos_emb(
|
||||
return t_out
|
||||
|
||||
|
||||
def get_normalization(name: str, channels: int, weight_args={}):
|
||||
def get_normalization(name: str, channels: int, weight_args={}, operations=None):
|
||||
if name == "I":
|
||||
return nn.Identity()
|
||||
elif name == "R":
|
||||
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
|
||||
return operations.RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
|
||||
else:
|
||||
raise ValueError(f"Normalization {name} not found")
|
||||
|
||||
@@ -120,15 +119,15 @@ class Attention(nn.Module):
|
||||
|
||||
self.to_q = nn.Sequential(
|
||||
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
|
||||
get_normalization(qkv_norm[0], norm_dim),
|
||||
get_normalization(qkv_norm[0], norm_dim, weight_args=weight_args, operations=operations),
|
||||
)
|
||||
self.to_k = nn.Sequential(
|
||||
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
|
||||
get_normalization(qkv_norm[1], norm_dim),
|
||||
get_normalization(qkv_norm[1], norm_dim, weight_args=weight_args, operations=operations),
|
||||
)
|
||||
self.to_v = nn.Sequential(
|
||||
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
|
||||
get_normalization(qkv_norm[2], norm_dim),
|
||||
get_normalization(qkv_norm[2], norm_dim, weight_args=weight_args, operations=operations),
|
||||
)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
|
||||
@@ -27,8 +27,6 @@ from torchvision import transforms
|
||||
from enum import Enum
|
||||
import logging
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
||||
|
||||
from .blocks import (
|
||||
FinalLayer,
|
||||
GeneralDITTransformerBlock,
|
||||
@@ -195,7 +193,7 @@ class GeneralDIT(nn.Module):
|
||||
|
||||
if self.affline_emb_norm:
|
||||
logging.debug("Building affine embedding normalization layer")
|
||||
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
|
||||
self.affline_norm = operations.RMSNorm(model_channels, elementwise_affine=True, eps=1e-6, device=device, dtype=dtype)
|
||||
else:
|
||||
self.affline_norm = nn.Identity()
|
||||
|
||||
|
||||
@@ -105,7 +105,9 @@ class Modulation(nn.Module):
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
if vec.ndim == 2:
|
||||
vec = vec[:, None, :]
|
||||
out = self.lin(nn.functional.silu(vec)).chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
ModulationOut(*out[:3]),
|
||||
@@ -113,6 +115,20 @@ class Modulation(nn.Module):
|
||||
)
|
||||
|
||||
|
||||
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
||||
if modulation_dims is None:
|
||||
if m_add is not None:
|
||||
return tensor * m_mult + m_add
|
||||
else:
|
||||
return tensor * m_mult
|
||||
else:
|
||||
for d in modulation_dims:
|
||||
tensor[:, d[0]:d[1]] *= m_mult[:, d[2]]
|
||||
if m_add is not None:
|
||||
tensor[:, d[0]:d[1]] += m_add[:, d[2]]
|
||||
return tensor
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
@@ -143,20 +159,20 @@ class DoubleStreamBlock(nn.Module):
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
@@ -179,12 +195,12 @@ class DoubleStreamBlock(nn.Module):
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
|
||||
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
@@ -228,9 +244,9 @@ class SingleStreamBlock(nn.Module):
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor:
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
qkv, mlp = torch.split(self.linear1((1 + mod.scale) * self.pre_norm(x) + mod.shift), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
@@ -239,7 +255,7 @@ class SingleStreamBlock(nn.Module):
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
x += apply_mod(output, mod.gate, None, modulation_dims)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
@@ -252,8 +268,11 @@ class LastLayer(nn.Module):
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
|
||||
if vec.ndim == 2:
|
||||
vec = vec[:, None, :]
|
||||
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=-1)
|
||||
x = apply_mod(self.norm_final(x), (1 + scale), shift, modulation_dims)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
@@ -10,10 +10,11 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
|
||||
q_shape = q.shape
|
||||
k_shape = k.shape
|
||||
|
||||
q = q.float().reshape(*q.shape[:-1], -1, 1, 2)
|
||||
k = k.float().reshape(*k.shape[:-1], -1, 1, 2)
|
||||
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
if pe is not None:
|
||||
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
|
||||
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
|
||||
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
|
||||
@@ -36,8 +37,8 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
|
||||
@@ -115,8 +115,11 @@ class Flux(nn.Module):
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
if img_ids is not None:
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
else:
|
||||
pe = None
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
|
||||
@@ -13,7 +13,6 @@ from comfy.ldm.modules.attention import optimized_attention
|
||||
from .layers import (
|
||||
FeedForward,
|
||||
PatchEmbed,
|
||||
RMSNorm,
|
||||
TimestepEmbedder,
|
||||
)
|
||||
|
||||
@@ -90,10 +89,10 @@ class AsymmetricAttention(nn.Module):
|
||||
|
||||
# Query and key normalization for stability.
|
||||
assert qk_norm
|
||||
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.q_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
self.k_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
self.q_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
self.k_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
|
||||
|
||||
# Output layers. y features go back down from dim_x -> dim_y.
|
||||
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
|
||||
|
||||
@@ -151,14 +151,3 @@ class PatchEmbed(nn.Module):
|
||||
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
def forward(self, x):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
|
||||
802
comfy/ldm/hidream/model.py
Normal file
802
comfy/ldm/hidream/model.py
Normal file
@@ -0,0 +1,802 @@
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import einops
|
||||
from einops import repeat
|
||||
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
import torch.nn.functional as F
|
||||
|
||||
from comfy.ldm.flux.math import apply_rope, rope
|
||||
from comfy.ldm.flux.layers import LastLayer
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, theta: int, axes_dim: List[int]):
|
||||
super().__init__()
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
return emb.unsqueeze(2)
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
out_channels=1024,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.out_channels = out_channels
|
||||
self.proj = operations.Linear(in_channels * patch_size * patch_size, out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, latent):
|
||||
latent = self.proj(latent)
|
||||
return latent
|
||||
|
||||
|
||||
class PooledEmbed(nn.Module):
|
||||
def __init__(self, text_emb_dim, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, pooled_embed):
|
||||
return self.pooled_embedder(pooled_embed)
|
||||
|
||||
|
||||
class TimestepEmbed(nn.Module):
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, timesteps, wdtype):
|
||||
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
|
||||
t_emb = self.timestep_embedder(t_emb)
|
||||
return t_emb
|
||||
|
||||
|
||||
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
|
||||
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
|
||||
|
||||
|
||||
class HiDreamAttnProcessor_flashattn:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
dtype = image_tokens.dtype
|
||||
batch_size = image_tokens.shape[0]
|
||||
|
||||
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
|
||||
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
|
||||
value_i = attn.to_v(image_tokens)
|
||||
|
||||
inner_dim = key_i.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
if image_tokens_masks is not None:
|
||||
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
|
||||
|
||||
if not attn.single:
|
||||
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
|
||||
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
|
||||
value_t = attn.to_v_t(text_tokens)
|
||||
|
||||
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
|
||||
num_image_tokens = query_i.shape[1]
|
||||
num_text_tokens = query_t.shape[1]
|
||||
query = torch.cat([query_i, query_t], dim=1)
|
||||
key = torch.cat([key_i, key_t], dim=1)
|
||||
value = torch.cat([value_i, value_t], dim=1)
|
||||
else:
|
||||
query = query_i
|
||||
key = key_i
|
||||
value = value_i
|
||||
|
||||
if query.shape[-1] == rope.shape[-3] * 2:
|
||||
query, key = apply_rope(query, key, rope)
|
||||
else:
|
||||
query_1, query_2 = query.chunk(2, dim=-1)
|
||||
key_1, key_2 = key.chunk(2, dim=-1)
|
||||
query_1, key_1 = apply_rope(query_1, key_1, rope)
|
||||
query = torch.cat([query_1, query_2], dim=-1)
|
||||
key = torch.cat([key_1, key_2], dim=-1)
|
||||
|
||||
hidden_states = attention(query, key, value)
|
||||
|
||||
if not attn.single:
|
||||
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
||||
hidden_states_i = attn.to_out(hidden_states_i)
|
||||
hidden_states_t = attn.to_out_t(hidden_states_t)
|
||||
return hidden_states_i, hidden_states_t
|
||||
else:
|
||||
hidden_states = attn.to_out(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
class HiDreamAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
upcast_attention: bool = False,
|
||||
upcast_softmax: bool = False,
|
||||
scale_qk: bool = True,
|
||||
eps: float = 1e-5,
|
||||
processor = None,
|
||||
out_dim: int = None,
|
||||
single: bool = False,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
# super(Attention, self).__init__()
|
||||
super().__init__()
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.query_dim = query_dim
|
||||
self.upcast_attention = upcast_attention
|
||||
self.upcast_softmax = upcast_softmax
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
|
||||
self.scale_qk = scale_qk
|
||||
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
||||
|
||||
self.heads = out_dim // dim_head if out_dim is not None else heads
|
||||
self.sliceable_head_dim = heads
|
||||
self.single = single
|
||||
|
||||
linear_cls = operations.Linear
|
||||
self.linear_cls = linear_cls
|
||||
self.to_q = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_k = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_v = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_out = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
|
||||
self.q_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
self.k_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
|
||||
if not single:
|
||||
self.to_q_t = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
self.to_out_t = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
|
||||
self.q_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
self.k_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
|
||||
|
||||
self.processor = processor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
norm_image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: torch.FloatTensor = None,
|
||||
norm_text_tokens: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.Tensor:
|
||||
return self.processor(
|
||||
self,
|
||||
image_tokens = norm_image_tokens,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = norm_text_tokens,
|
||||
rope = rope,
|
||||
)
|
||||
|
||||
|
||||
class FeedForwardSwiGLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
multiple_of: int = 256,
|
||||
ffn_dim_multiplier: Optional[float] = None,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
hidden_dim = int(2 * hidden_dim / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
||||
hidden_dim = multiple_of * (
|
||||
(hidden_dim + multiple_of - 1) // multiple_of
|
||||
)
|
||||
|
||||
self.w1 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
|
||||
self.w2 = operations.Linear(hidden_dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w3 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
|
||||
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
||||
class MoEGate(nn.Module):
|
||||
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.top_k = num_activated_experts
|
||||
self.n_routed_experts = num_routed_experts
|
||||
|
||||
self.scoring_func = 'softmax'
|
||||
self.alpha = aux_loss_alpha
|
||||
self.seq_aux = False
|
||||
|
||||
# topk selection algorithm
|
||||
self.norm_topk_prob = False
|
||||
self.gating_dim = embed_dim
|
||||
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), dtype=dtype, device=device))
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
pass
|
||||
# import torch.nn.init as init
|
||||
# init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||||
|
||||
def forward(self, hidden_states):
|
||||
bsz, seq_len, h = hidden_states.shape
|
||||
|
||||
### compute gating score
|
||||
hidden_states = hidden_states.view(-1, h)
|
||||
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), None)
|
||||
if self.scoring_func == 'softmax':
|
||||
scores = logits.softmax(dim=-1)
|
||||
else:
|
||||
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
||||
|
||||
### select top-k experts
|
||||
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
||||
|
||||
### norm gate to sum 1
|
||||
if self.top_k > 1 and self.norm_topk_prob:
|
||||
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
||||
topk_weight = topk_weight / denominator
|
||||
|
||||
aux_loss = None
|
||||
return topk_idx, topk_weight, aux_loss
|
||||
|
||||
|
||||
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
||||
class MOEFeedForwardSwiGLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
num_routed_experts: int,
|
||||
num_activated_experts: int,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2, dtype=dtype, device=device, operations=operations)
|
||||
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim, dtype=dtype, device=device, operations=operations) for i in range(num_routed_experts)])
|
||||
self.gate = MoEGate(
|
||||
embed_dim = dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.num_activated_experts = num_activated_experts
|
||||
|
||||
def forward(self, x):
|
||||
wtype = x.dtype
|
||||
identity = x
|
||||
orig_shape = x.shape
|
||||
topk_idx, topk_weight, aux_loss = self.gate(x)
|
||||
x = x.view(-1, x.shape[-1])
|
||||
flat_topk_idx = topk_idx.view(-1)
|
||||
if True: # self.training: # TODO: check which branch performs faster
|
||||
x = x.repeat_interleave(self.num_activated_experts, dim=0)
|
||||
y = torch.empty_like(x, dtype=wtype)
|
||||
for i, expert in enumerate(self.experts):
|
||||
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
|
||||
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
||||
y = y.view(*orig_shape).to(dtype=wtype)
|
||||
#y = AddAuxiliaryLoss.apply(y, aux_loss)
|
||||
else:
|
||||
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
||||
y = y + self.shared_experts(identity)
|
||||
return y
|
||||
|
||||
@torch.no_grad()
|
||||
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
||||
expert_cache = torch.zeros_like(x)
|
||||
idxs = flat_expert_indices.argsort()
|
||||
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
||||
token_idxs = idxs // self.num_activated_experts
|
||||
for i, end_idx in enumerate(tokens_per_expert):
|
||||
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
|
||||
if start_idx == end_idx:
|
||||
continue
|
||||
expert = self.experts[i]
|
||||
exp_token_idx = token_idxs[start_idx:end_idx]
|
||||
expert_tokens = x[exp_token_idx]
|
||||
expert_out = expert(expert_tokens)
|
||||
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
||||
|
||||
# for fp16 and other dtype
|
||||
expert_cache = expert_cache.to(expert_out.dtype)
|
||||
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
|
||||
return expert_cache
|
||||
|
||||
|
||||
class TextProjection(nn.Module):
|
||||
def __init__(self, in_features, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear = operations.Linear(in_features=in_features, out_features=hidden_size, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, caption):
|
||||
hidden_states = self.linear(caption)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BlockType:
|
||||
TransformerBlock = 1
|
||||
SingleTransformerBlock = 2
|
||||
|
||||
|
||||
class HiDreamImageSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
# 1. Attention
|
||||
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
self.attn1 = HiDreamAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
processor = HiDreamAttnProcessor_flashattn(),
|
||||
single = True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
if num_routed_experts > 0:
|
||||
self.ff_i = MOEFeedForwardSwiGLU(
|
||||
dim = dim,
|
||||
hidden_dim = 4 * dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
||||
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
|
||||
|
||||
# 1. MM-Attention
|
||||
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
||||
attn_output_i = self.attn1(
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
rope = rope,
|
||||
)
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
|
||||
# 2. Feed-forward
|
||||
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
||||
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
|
||||
image_tokens = ff_output_i + image_tokens
|
||||
return image_tokens
|
||||
|
||||
|
||||
class HiDreamImageTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 12 * dim, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
# nn.init.zeros_(self.adaLN_modulation[1].weight)
|
||||
# nn.init.zeros_(self.adaLN_modulation[1].bias)
|
||||
|
||||
# 1. Attention
|
||||
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
self.norm1_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
self.attn1 = HiDreamAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
processor = HiDreamAttnProcessor_flashattn(),
|
||||
single = False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
|
||||
if num_routed_experts > 0:
|
||||
self.ff_i = MOEFeedForwardSwiGLU(
|
||||
dim = dim,
|
||||
hidden_dim = 4 * dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
|
||||
self.norm3_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
||||
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
|
||||
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
|
||||
|
||||
# 1. MM-Attention
|
||||
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
||||
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
|
||||
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
|
||||
|
||||
attn_output_i, attn_output_t = self.attn1(
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
norm_text_tokens,
|
||||
rope = rope,
|
||||
)
|
||||
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
text_tokens = gate_msa_t * attn_output_t + text_tokens
|
||||
|
||||
# 2. Feed-forward
|
||||
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
||||
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
|
||||
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
|
||||
|
||||
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
|
||||
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
|
||||
image_tokens = ff_output_i + image_tokens
|
||||
text_tokens = ff_output_t + text_tokens
|
||||
return image_tokens, text_tokens
|
||||
|
||||
|
||||
class HiDreamImageBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
block_type: BlockType = BlockType.TransformerBlock,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
block_classes = {
|
||||
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
|
||||
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
|
||||
}
|
||||
self.block = block_classes[block_type](
|
||||
dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
num_routed_experts,
|
||||
num_activated_experts,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.FloatTensor:
|
||||
return self.block(
|
||||
image_tokens,
|
||||
image_tokens_masks,
|
||||
text_tokens,
|
||||
adaln_input,
|
||||
rope,
|
||||
)
|
||||
|
||||
|
||||
class HiDreamImageTransformer2DModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: Optional[int] = None,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 16,
|
||||
num_single_layers: int = 32,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 20,
|
||||
caption_channels: List[int] = None,
|
||||
text_emb_dim: int = 2048,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
axes_dims_rope: Tuple[int, int] = (32, 32),
|
||||
max_resolution: Tuple[int, int] = (128, 128),
|
||||
llama_layers: List[int] = None,
|
||||
image_model=None,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
self.patch_size = patch_size
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.num_layers = num_layers
|
||||
self.num_single_layers = num_single_layers
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = self.num_attention_heads * self.attention_head_dim
|
||||
self.llama_layers = llama_layers
|
||||
|
||||
self.t_embedder = TimestepEmbed(self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size = patch_size,
|
||||
in_channels = in_channels,
|
||||
out_channels = self.inner_dim,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
||||
|
||||
self.double_stream_blocks = nn.ModuleList(
|
||||
[
|
||||
HiDreamImageBlock(
|
||||
dim = self.inner_dim,
|
||||
num_attention_heads = self.num_attention_heads,
|
||||
attention_head_dim = self.attention_head_dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
block_type = BlockType.TransformerBlock,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for i in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_stream_blocks = nn.ModuleList(
|
||||
[
|
||||
HiDreamImageBlock(
|
||||
dim = self.inner_dim,
|
||||
num_attention_heads = self.num_attention_heads,
|
||||
attention_head_dim = self.attention_head_dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
block_type = BlockType.SingleTransformerBlock,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for i in range(self.num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
||||
caption_projection = []
|
||||
for caption_channel in caption_channels:
|
||||
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations))
|
||||
self.caption_projection = nn.ModuleList(caption_projection)
|
||||
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
||||
|
||||
def expand_timesteps(self, timesteps, batch_size, device):
|
||||
if not torch.is_tensor(timesteps):
|
||||
is_mps = device.type == "mps"
|
||||
if isinstance(timesteps, float):
|
||||
dtype = torch.float32 if is_mps else torch.float64
|
||||
else:
|
||||
dtype = torch.int32 if is_mps else torch.int64
|
||||
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
||||
elif len(timesteps.shape) == 0:
|
||||
timesteps = timesteps[None].to(device)
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timesteps = timesteps.expand(batch_size)
|
||||
return timesteps
|
||||
|
||||
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]]) -> List[torch.Tensor]:
|
||||
x_arr = []
|
||||
for i, img_size in enumerate(img_sizes):
|
||||
pH, pW = img_size
|
||||
x_arr.append(
|
||||
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
|
||||
p1=self.patch_size, p2=self.patch_size)
|
||||
)
|
||||
x = torch.cat(x_arr, dim=0)
|
||||
return x
|
||||
|
||||
def patchify(self, x, max_seq, img_sizes=None):
|
||||
pz2 = self.patch_size * self.patch_size
|
||||
if isinstance(x, torch.Tensor):
|
||||
B = x.shape[0]
|
||||
device = x.device
|
||||
dtype = x.dtype
|
||||
else:
|
||||
B = len(x)
|
||||
device = x[0].device
|
||||
dtype = x[0].dtype
|
||||
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
||||
|
||||
if img_sizes is not None:
|
||||
for i, img_size in enumerate(img_sizes):
|
||||
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
||||
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
||||
elif isinstance(x, torch.Tensor):
|
||||
pH, pW = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
|
||||
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.patch_size, p2=self.patch_size)
|
||||
img_sizes = [[pH, pW]] * B
|
||||
x_masks = None
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return x, x_masks, img_sizes
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states_llama3=None,
|
||||
image_cond=None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
) -> torch.Tensor:
|
||||
bs, c, h, w = x.shape
|
||||
if image_cond is not None:
|
||||
x = torch.cat([x, image_cond], dim=-1)
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
timesteps = t
|
||||
pooled_embeds = y
|
||||
T5_encoder_hidden_states = context
|
||||
|
||||
img_sizes = None
|
||||
|
||||
# spatial forward
|
||||
batch_size = hidden_states.shape[0]
|
||||
hidden_states_type = hidden_states.dtype
|
||||
|
||||
# 0. time
|
||||
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
||||
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
||||
p_embedder = self.p_embedder(pooled_embeds)
|
||||
adaln_input = timesteps + p_embedder
|
||||
|
||||
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
||||
if image_tokens_masks is None:
|
||||
pH, pW = img_sizes[0]
|
||||
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
# T5_encoder_hidden_states = encoder_hidden_states[0]
|
||||
encoder_hidden_states = encoder_hidden_states_llama3.movedim(1, 0)
|
||||
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
||||
|
||||
if self.caption_projection is not None:
|
||||
new_encoder_hidden_states = []
|
||||
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
||||
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
||||
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
||||
new_encoder_hidden_states.append(enc_hidden_state)
|
||||
encoder_hidden_states = new_encoder_hidden_states
|
||||
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
||||
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
||||
encoder_hidden_states.append(T5_encoder_hidden_states)
|
||||
|
||||
txt_ids = torch.zeros(
|
||||
batch_size,
|
||||
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
||||
3,
|
||||
device=img_ids.device, dtype=img_ids.dtype
|
||||
)
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
rope = self.pe_embedder(ids)
|
||||
|
||||
# 2. Blocks
|
||||
block_id = 0
|
||||
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
||||
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
||||
for bid, block in enumerate(self.double_stream_blocks):
|
||||
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
||||
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
||||
hidden_states, initial_encoder_hidden_states = block(
|
||||
image_tokens = hidden_states,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = cur_encoder_hidden_states,
|
||||
adaln_input = adaln_input,
|
||||
rope = rope,
|
||||
)
|
||||
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
image_tokens_seq_len = hidden_states.shape[1]
|
||||
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
||||
hidden_states_seq_len = hidden_states.shape[1]
|
||||
if image_tokens_masks is not None:
|
||||
encoder_attention_mask_ones = torch.ones(
|
||||
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
||||
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
|
||||
)
|
||||
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
|
||||
|
||||
for bid, block in enumerate(self.single_stream_blocks):
|
||||
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
||||
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
||||
hidden_states = block(
|
||||
image_tokens=hidden_states,
|
||||
image_tokens_masks=image_tokens_masks,
|
||||
text_tokens=None,
|
||||
adaln_input=adaln_input,
|
||||
rope=rope,
|
||||
)
|
||||
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
||||
output = self.final_layer(hidden_states, adaln_input)
|
||||
output = self.unpatchify(output, img_sizes)
|
||||
return -output[:, :, :h, :w]
|
||||
135
comfy/ldm/hunyuan3d/model.py
Normal file
135
comfy/ldm/hunyuan3d/model.py
Normal file
@@ -0,0 +1,135 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from comfy.ldm.flux.layers import (
|
||||
DoubleStreamBlock,
|
||||
LastLayer,
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
|
||||
class Hunyuan3Dv2(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels=64,
|
||||
context_in_dim=1536,
|
||||
hidden_size=1024,
|
||||
mlp_ratio=4.0,
|
||||
num_heads=16,
|
||||
depth=16,
|
||||
depth_single_blocks=32,
|
||||
qkv_bias=True,
|
||||
guidance_embed=False,
|
||||
image_model=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
|
||||
if hidden_size % num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
|
||||
)
|
||||
|
||||
self.max_period = 1000 # While reimplementing the model I noticed that they messed up. This 1000 value was meant to be the time_factor but they set the max_period instead
|
||||
self.latent_in = operations.Linear(in_channels, hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) if guidance_embed else None
|
||||
)
|
||||
self.cond_in = operations.Linear(context_in_dim, hidden_size, dtype=dtype, device=device)
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
hidden_size,
|
||||
num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(depth)
|
||||
]
|
||||
)
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(
|
||||
hidden_size,
|
||||
num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(depth_single_blocks)
|
||||
]
|
||||
)
|
||||
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
|
||||
x = x.movedim(-1, -2)
|
||||
timestep = 1.0 - timestep
|
||||
txt = context
|
||||
img = self.latent_in(x)
|
||||
|
||||
vec = self.time_in(timestep_embedding(timestep, 256, self.max_period).to(dtype=img.dtype))
|
||||
if self.guidance_in is not None:
|
||||
if guidance is not None:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256, self.max_period).to(img.dtype))
|
||||
|
||||
txt = self.cond_in(txt)
|
||||
pe = None
|
||||
attn_mask = None
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"],
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img,
|
||||
txt=txt,
|
||||
vec=vec,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
img = img[:, txt.shape[1]:, ...]
|
||||
img = self.final_layer(img, vec)
|
||||
return img.movedim(-2, -1) * (-1.0)
|
||||
587
comfy/ldm/hunyuan3d/vae.py
Normal file
587
comfy/ldm/hunyuan3d/vae.py
Normal file
@@ -0,0 +1,587 @@
|
||||
# Original: https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/models/autoencoders/model.py
|
||||
# Since the header on their VAE source file was a bit confusing we asked for permission to use this code from tencent under the GPL license used in ComfyUI.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
from typing import Union, Tuple, List, Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
from einops import repeat, rearrange
|
||||
from tqdm import tqdm
|
||||
import logging
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def generate_dense_grid_points(
|
||||
bbox_min: np.ndarray,
|
||||
bbox_max: np.ndarray,
|
||||
octree_resolution: int,
|
||||
indexing: str = "ij",
|
||||
):
|
||||
length = bbox_max - bbox_min
|
||||
num_cells = octree_resolution
|
||||
|
||||
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
||||
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
||||
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
||||
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
||||
xyz = np.stack((xs, ys, zs), axis=-1)
|
||||
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
||||
|
||||
return xyz, grid_size, length
|
||||
|
||||
|
||||
class VanillaVolumeDecoder:
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
latents: torch.FloatTensor,
|
||||
geo_decoder: Callable,
|
||||
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
||||
num_chunks: int = 10000,
|
||||
octree_resolution: int = None,
|
||||
enable_pbar: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
device = latents.device
|
||||
dtype = latents.dtype
|
||||
batch_size = latents.shape[0]
|
||||
|
||||
# 1. generate query points
|
||||
if isinstance(bounds, float):
|
||||
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||||
|
||||
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
|
||||
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||||
bbox_min=bbox_min,
|
||||
bbox_max=bbox_max,
|
||||
octree_resolution=octree_resolution,
|
||||
indexing="ij"
|
||||
)
|
||||
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
|
||||
|
||||
# 2. latents to 3d volume
|
||||
batch_logits = []
|
||||
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
|
||||
disable=not enable_pbar):
|
||||
chunk_queries = xyz_samples[start: start + num_chunks, :]
|
||||
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
|
||||
logits = geo_decoder(queries=chunk_queries, latents=latents)
|
||||
batch_logits.append(logits)
|
||||
|
||||
grid_logits = torch.cat(batch_logits, dim=1)
|
||||
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
|
||||
|
||||
return grid_logits
|
||||
|
||||
|
||||
class FourierEmbedder(nn.Module):
|
||||
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
|
||||
each feature dimension of `x[..., i]` into:
|
||||
[
|
||||
sin(x[..., i]),
|
||||
sin(f_1*x[..., i]),
|
||||
sin(f_2*x[..., i]),
|
||||
...
|
||||
sin(f_N * x[..., i]),
|
||||
cos(x[..., i]),
|
||||
cos(f_1*x[..., i]),
|
||||
cos(f_2*x[..., i]),
|
||||
...
|
||||
cos(f_N * x[..., i]),
|
||||
x[..., i] # only present if include_input is True.
|
||||
], here f_i is the frequency.
|
||||
|
||||
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
|
||||
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
|
||||
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
|
||||
|
||||
Args:
|
||||
num_freqs (int): the number of frequencies, default is 6;
|
||||
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
||||
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
|
||||
input_dim (int): the input dimension, default is 3;
|
||||
include_input (bool): include the input tensor or not, default is True.
|
||||
|
||||
Attributes:
|
||||
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
|
||||
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
|
||||
|
||||
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
|
||||
otherwise, it is input_dim * num_freqs * 2.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_freqs: int = 6,
|
||||
logspace: bool = True,
|
||||
input_dim: int = 3,
|
||||
include_input: bool = True,
|
||||
include_pi: bool = True) -> None:
|
||||
|
||||
"""The initialization"""
|
||||
|
||||
super().__init__()
|
||||
|
||||
if logspace:
|
||||
frequencies = 2.0 ** torch.arange(
|
||||
num_freqs,
|
||||
dtype=torch.float32
|
||||
)
|
||||
else:
|
||||
frequencies = torch.linspace(
|
||||
1.0,
|
||||
2.0 ** (num_freqs - 1),
|
||||
num_freqs,
|
||||
dtype=torch.float32
|
||||
)
|
||||
|
||||
if include_pi:
|
||||
frequencies *= torch.pi
|
||||
|
||||
self.register_buffer("frequencies", frequencies, persistent=False)
|
||||
self.include_input = include_input
|
||||
self.num_freqs = num_freqs
|
||||
|
||||
self.out_dim = self.get_dims(input_dim)
|
||||
|
||||
def get_dims(self, input_dim):
|
||||
temp = 1 if self.include_input or self.num_freqs == 0 else 0
|
||||
out_dim = input_dim * (self.num_freqs * 2 + temp)
|
||||
|
||||
return out_dim
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
""" Forward process.
|
||||
|
||||
Args:
|
||||
x: tensor of shape [..., dim]
|
||||
|
||||
Returns:
|
||||
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
|
||||
where temp is 1 if include_input is True and 0 otherwise.
|
||||
"""
|
||||
|
||||
if self.num_freqs > 0:
|
||||
embed = (x[..., None].contiguous() * self.frequencies.to(device=x.device, dtype=x.dtype)).view(*x.shape[:-1], -1)
|
||||
if self.include_input:
|
||||
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
|
||||
else:
|
||||
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class CrossAttentionProcessor:
|
||||
def __call__(self, attn, q, k, v):
|
||||
out = F.scaled_dot_product_attention(q, k, v)
|
||||
return out
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
||||
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.scale_by_keep = scale_by_keep
|
||||
|
||||
def forward(self, x):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
|
||||
"""
|
||||
if self.drop_prob == 0. or not self.training:
|
||||
return x
|
||||
keep_prob = 1 - self.drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and self.scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
def extra_repr(self):
|
||||
return f'drop_prob={round(self.drop_prob, 3):0.3f}'
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self, *,
|
||||
width: int,
|
||||
expand_ratio: int = 4,
|
||||
output_width: int = None,
|
||||
drop_path_rate: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.c_fc = ops.Linear(width, width * expand_ratio)
|
||||
self.c_proj = ops.Linear(width * expand_ratio, output_width if output_width is not None else width)
|
||||
self.gelu = nn.GELU()
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
|
||||
|
||||
|
||||
class QKVMultiheadCrossAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
heads: int,
|
||||
width=None,
|
||||
qk_norm=False,
|
||||
norm_layer=ops.LayerNorm
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
|
||||
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
|
||||
|
||||
self.attn_processor = CrossAttentionProcessor()
|
||||
|
||||
def forward(self, q, kv):
|
||||
_, n_ctx, _ = q.shape
|
||||
bs, n_data, width = kv.shape
|
||||
attn_ch = width // self.heads // 2
|
||||
q = q.view(bs, n_ctx, self.heads, -1)
|
||||
kv = kv.view(bs, n_data, self.heads, -1)
|
||||
k, v = torch.split(kv, attn_ch, dim=-1)
|
||||
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
|
||||
out = self.attn_processor(self, q, k, v)
|
||||
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
|
||||
return out
|
||||
|
||||
|
||||
class MultiheadCrossAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
width: int,
|
||||
heads: int,
|
||||
qkv_bias: bool = True,
|
||||
data_width: Optional[int] = None,
|
||||
norm_layer=ops.LayerNorm,
|
||||
qk_norm: bool = False,
|
||||
kv_cache: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
self.data_width = width if data_width is None else data_width
|
||||
self.c_q = ops.Linear(width, width, bias=qkv_bias)
|
||||
self.c_kv = ops.Linear(self.data_width, width * 2, bias=qkv_bias)
|
||||
self.c_proj = ops.Linear(width, width)
|
||||
self.attention = QKVMultiheadCrossAttention(
|
||||
heads=heads,
|
||||
width=width,
|
||||
norm_layer=norm_layer,
|
||||
qk_norm=qk_norm
|
||||
)
|
||||
self.kv_cache = kv_cache
|
||||
self.data = None
|
||||
|
||||
def forward(self, x, data):
|
||||
x = self.c_q(x)
|
||||
if self.kv_cache:
|
||||
if self.data is None:
|
||||
self.data = self.c_kv(data)
|
||||
logging.info('Save kv cache,this should be called only once for one mesh')
|
||||
data = self.data
|
||||
else:
|
||||
data = self.c_kv(data)
|
||||
x = self.attention(x, data)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCrossAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
width: int,
|
||||
heads: int,
|
||||
mlp_expand_ratio: int = 4,
|
||||
data_width: Optional[int] = None,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer=ops.LayerNorm,
|
||||
qk_norm: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if data_width is None:
|
||||
data_width = width
|
||||
|
||||
self.attn = MultiheadCrossAttention(
|
||||
width=width,
|
||||
heads=heads,
|
||||
data_width=data_width,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
qk_norm=qk_norm
|
||||
)
|
||||
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
|
||||
self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6)
|
||||
self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6)
|
||||
self.mlp = MLP(width=width, expand_ratio=mlp_expand_ratio)
|
||||
|
||||
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
||||
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
||||
x = x + self.mlp(self.ln_3(x))
|
||||
return x
|
||||
|
||||
|
||||
class QKVMultiheadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
heads: int,
|
||||
width=None,
|
||||
qk_norm=False,
|
||||
norm_layer=ops.LayerNorm
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
|
||||
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, qkv):
|
||||
bs, n_ctx, width = qkv.shape
|
||||
attn_ch = width // self.heads // 3
|
||||
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
||||
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
||||
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
|
||||
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
|
||||
return out
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
width: int,
|
||||
heads: int,
|
||||
qkv_bias: bool,
|
||||
norm_layer=ops.LayerNorm,
|
||||
qk_norm: bool = False,
|
||||
drop_path_rate: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
|
||||
self.c_proj = ops.Linear(width, width)
|
||||
self.attention = QKVMultiheadAttention(
|
||||
heads=heads,
|
||||
width=width,
|
||||
norm_layer=norm_layer,
|
||||
qk_norm=qk_norm
|
||||
)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.c_qkv(x)
|
||||
x = self.attention(x)
|
||||
x = self.drop_path(self.c_proj(x))
|
||||
return x
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
width: int,
|
||||
heads: int,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer=ops.LayerNorm,
|
||||
qk_norm: bool = False,
|
||||
drop_path_rate: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.attn = MultiheadAttention(
|
||||
width=width,
|
||||
heads=heads,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
qk_norm=qk_norm,
|
||||
drop_path_rate=drop_path_rate
|
||||
)
|
||||
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6)
|
||||
self.mlp = MLP(width=width, drop_path_rate=drop_path_rate)
|
||||
self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x + self.attn(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
width: int,
|
||||
layers: int,
|
||||
heads: int,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer=ops.LayerNorm,
|
||||
qk_norm: bool = False,
|
||||
drop_path_rate: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.resblocks = nn.ModuleList(
|
||||
[
|
||||
ResidualAttentionBlock(
|
||||
width=width,
|
||||
heads=heads,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
qk_norm=qk_norm,
|
||||
drop_path_rate=drop_path_rate
|
||||
)
|
||||
for _ in range(layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
for block in self.resblocks:
|
||||
x = block(x)
|
||||
return x
|
||||
|
||||
|
||||
class CrossAttentionDecoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
out_channels: int,
|
||||
fourier_embedder: FourierEmbedder,
|
||||
width: int,
|
||||
heads: int,
|
||||
mlp_expand_ratio: int = 4,
|
||||
downsample_ratio: int = 1,
|
||||
enable_ln_post: bool = True,
|
||||
qkv_bias: bool = True,
|
||||
qk_norm: bool = False,
|
||||
label_type: str = "binary"
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.enable_ln_post = enable_ln_post
|
||||
self.fourier_embedder = fourier_embedder
|
||||
self.downsample_ratio = downsample_ratio
|
||||
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
|
||||
if self.downsample_ratio != 1:
|
||||
self.latents_proj = ops.Linear(width * downsample_ratio, width)
|
||||
if self.enable_ln_post == False:
|
||||
qk_norm = False
|
||||
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
||||
width=width,
|
||||
mlp_expand_ratio=mlp_expand_ratio,
|
||||
heads=heads,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_norm=qk_norm
|
||||
)
|
||||
|
||||
if self.enable_ln_post:
|
||||
self.ln_post = ops.LayerNorm(width)
|
||||
self.output_proj = ops.Linear(width, out_channels)
|
||||
self.label_type = label_type
|
||||
self.count = 0
|
||||
|
||||
def forward(self, queries=None, query_embeddings=None, latents=None):
|
||||
if query_embeddings is None:
|
||||
query_embeddings = self.query_proj(self.fourier_embedder(queries).to(latents.dtype))
|
||||
self.count += query_embeddings.shape[1]
|
||||
if self.downsample_ratio != 1:
|
||||
latents = self.latents_proj(latents)
|
||||
x = self.cross_attn_decoder(query_embeddings, latents)
|
||||
if self.enable_ln_post:
|
||||
x = self.ln_post(x)
|
||||
occ = self.output_proj(x)
|
||||
return occ
|
||||
|
||||
|
||||
class ShapeVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
embed_dim: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
num_decoder_layers: int,
|
||||
geo_decoder_downsample_ratio: int = 1,
|
||||
geo_decoder_mlp_expand_ratio: int = 4,
|
||||
geo_decoder_ln_post: bool = True,
|
||||
num_freqs: int = 8,
|
||||
include_pi: bool = True,
|
||||
qkv_bias: bool = True,
|
||||
qk_norm: bool = False,
|
||||
label_type: str = "binary",
|
||||
drop_path_rate: float = 0.0,
|
||||
scale_factor: float = 1.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.geo_decoder_ln_post = geo_decoder_ln_post
|
||||
|
||||
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
||||
|
||||
self.post_kl = ops.Linear(embed_dim, width)
|
||||
|
||||
self.transformer = Transformer(
|
||||
width=width,
|
||||
layers=num_decoder_layers,
|
||||
heads=heads,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_norm=qk_norm,
|
||||
drop_path_rate=drop_path_rate
|
||||
)
|
||||
|
||||
self.geo_decoder = CrossAttentionDecoder(
|
||||
fourier_embedder=self.fourier_embedder,
|
||||
out_channels=1,
|
||||
mlp_expand_ratio=geo_decoder_mlp_expand_ratio,
|
||||
downsample_ratio=geo_decoder_downsample_ratio,
|
||||
enable_ln_post=self.geo_decoder_ln_post,
|
||||
width=width // geo_decoder_downsample_ratio,
|
||||
heads=heads // geo_decoder_downsample_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_norm=qk_norm,
|
||||
label_type=label_type,
|
||||
)
|
||||
|
||||
self.volume_decoder = VanillaVolumeDecoder()
|
||||
self.scale_factor = scale_factor
|
||||
|
||||
def decode(self, latents, **kwargs):
|
||||
latents = self.post_kl(latents.movedim(-2, -1))
|
||||
latents = self.transformer(latents)
|
||||
|
||||
bounds = kwargs.get("bounds", 1.01)
|
||||
num_chunks = kwargs.get("num_chunks", 8000)
|
||||
octree_resolution = kwargs.get("octree_resolution", 256)
|
||||
enable_pbar = kwargs.get("enable_pbar", True)
|
||||
|
||||
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
|
||||
return grid_logits.movedim(-2, -1)
|
||||
|
||||
def encode(self, x):
|
||||
return None
|
||||
@@ -227,6 +227,8 @@ class HunyuanVideo(nn.Module):
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
guiding_frame_index=None,
|
||||
ref_latent=None,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
) -> Tensor:
|
||||
@@ -237,7 +239,25 @@ class HunyuanVideo(nn.Module):
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
if ref_latent is not None:
|
||||
ref_latent_ids = self.img_ids(ref_latent)
|
||||
ref_latent = self.img_in(ref_latent)
|
||||
img = torch.cat([ref_latent, img], dim=-2)
|
||||
ref_latent_ids[..., 0] = -1
|
||||
ref_latent_ids[..., 2] += (initial_shape[-1] // self.patch_size[-1])
|
||||
img_ids = torch.cat([ref_latent_ids, img_ids], dim=-2)
|
||||
|
||||
if guiding_frame_index is not None:
|
||||
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
|
||||
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
|
||||
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
|
||||
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
|
||||
modulation_dims_txt = [(0, None, 1)]
|
||||
else:
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
modulation_dims = None
|
||||
modulation_dims_txt = None
|
||||
|
||||
if self.params.guidance_embed:
|
||||
if guidance is not None:
|
||||
@@ -264,14 +284,14 @@ class HunyuanVideo(nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
|
||||
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
@@ -286,13 +306,13 @@ class HunyuanVideo(nn.Module):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
|
||||
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
@@ -302,8 +322,10 @@ class HunyuanVideo(nn.Module):
|
||||
img[:, : img_len] += add
|
||||
|
||||
img = img[:, : img_len]
|
||||
if ref_latent is not None:
|
||||
img = img[:, ref_latent.shape[1]:]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
|
||||
|
||||
shape = initial_shape[-3:]
|
||||
for i in range(len(shape)):
|
||||
@@ -313,7 +335,7 @@ class HunyuanVideo(nn.Module):
|
||||
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs):
|
||||
def img_ids(self, x):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
@@ -323,7 +345,11 @@ class HunyuanVideo(nn.Module):
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
img_ids = self.img_ids(x)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
|
||||
return out
|
||||
|
||||
@@ -3,7 +3,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from torch.utils import checkpoint
|
||||
|
||||
@@ -51,7 +51,7 @@ class HunYuanDiTBlock(nn.Module):
|
||||
if norm_type == "layer":
|
||||
norm_layer = operations.LayerNorm
|
||||
elif norm_type == "rms":
|
||||
norm_layer = RMSNorm
|
||||
norm_layer = operations.RMSNorm
|
||||
else:
|
||||
raise ValueError(f"Unknown norm_type: {norm_type}")
|
||||
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import comfy.ldm.modules.attention
|
||||
from comfy.ldm.genmo.joint_model.layers import RMSNorm
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
import math
|
||||
@@ -262,8 +261,8 @@ class CrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.q_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
@@ -8,7 +8,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
|
||||
@@ -64,8 +64,8 @@ class JointAttention(nn.Module):
|
||||
)
|
||||
|
||||
if qk_norm:
|
||||
self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
|
||||
self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
|
||||
self.q_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.k_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
else:
|
||||
self.q_norm = self.k_norm = nn.Identity()
|
||||
|
||||
@@ -242,11 +242,11 @@ class JointTransformerBlock(nn.Module):
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
self.layer_id = layer_id
|
||||
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.attention_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.ffn_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.attention_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.ffn_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
self.modulation = modulation
|
||||
if modulation:
|
||||
@@ -431,7 +431,7 @@ class NextDiT(nn.Module):
|
||||
|
||||
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
|
||||
self.cap_embedder = nn.Sequential(
|
||||
RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
|
||||
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").Linear(
|
||||
cap_feat_dim,
|
||||
dim,
|
||||
@@ -457,7 +457,7 @@ class NextDiT(nn.Module):
|
||||
for layer_id in range(n_layers)
|
||||
]
|
||||
)
|
||||
self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
|
||||
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
|
||||
|
||||
assert (dim // n_heads) == sum(axes_dims)
|
||||
|
||||
@@ -24,6 +24,13 @@ if model_management.sage_attention_enabled():
|
||||
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
|
||||
exit(-1)
|
||||
|
||||
if model_management.flash_attention_enabled():
|
||||
try:
|
||||
from flash_attn import flash_attn_func
|
||||
except ModuleNotFoundError:
|
||||
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
|
||||
exit(-1)
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
@@ -464,7 +471,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
tensor_layout="HND"
|
||||
tensor_layout = "HND"
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
@@ -472,7 +479,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
lambda t: t.view(b, -1, heads, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
tensor_layout="NHD"
|
||||
tensor_layout = "NHD"
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
@@ -482,7 +489,17 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
try:
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
except Exception as e:
|
||||
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
|
||||
if tensor_layout == "NHD":
|
||||
q, k, v = map(
|
||||
lambda t: t.transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
|
||||
|
||||
if tensor_layout == "HND":
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
@@ -496,6 +513,63 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
return out
|
||||
|
||||
|
||||
try:
|
||||
@torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
|
||||
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
|
||||
return flash_attn_func(q, k, v, dropout_p=dropout_p, causal=causal)
|
||||
|
||||
|
||||
@flash_attn_wrapper.register_fake
|
||||
def flash_attn_fake(q, k, v, dropout_p=0.0, causal=False):
|
||||
# Output shape is the same as q
|
||||
return q.new_empty(q.shape)
|
||||
except AttributeError as error:
|
||||
FLASH_ATTN_ERROR = error
|
||||
|
||||
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
|
||||
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
|
||||
|
||||
|
||||
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
# add a heads dimension if there isn't already one
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
try:
|
||||
assert mask is None
|
||||
out = flash_attn_wrapper(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
dropout_p=0.0,
|
||||
causal=False,
|
||||
).transpose(1, 2)
|
||||
except Exception as e:
|
||||
logging.warning(f"Flash Attention failed, using default SDPA: {e}")
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
optimized_attention = attention_basic
|
||||
|
||||
if model_management.sage_attention_enabled():
|
||||
@@ -504,6 +578,9 @@ if model_management.sage_attention_enabled():
|
||||
elif model_management.xformers_enabled():
|
||||
logging.info("Using xformers attention")
|
||||
optimized_attention = attention_xformers
|
||||
elif model_management.flash_attention_enabled():
|
||||
logging.info("Using Flash Attention")
|
||||
optimized_attention = attention_flash
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
logging.info("Using pytorch attention")
|
||||
optimized_attention = attention_pytorch
|
||||
@@ -770,6 +847,7 @@ class SpatialTransformer(nn.Module):
|
||||
if not isinstance(context, list):
|
||||
context = [context] * len(self.transformer_blocks)
|
||||
b, c, h, w = x.shape
|
||||
transformer_options["activations_shape"] = list(x.shape)
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
@@ -885,6 +963,7 @@ class SpatialVideoTransformer(SpatialTransformer):
|
||||
transformer_options={}
|
||||
) -> torch.Tensor:
|
||||
_, _, h, w = x.shape
|
||||
transformer_options["activations_shape"] = list(x.shape)
|
||||
x_in = x
|
||||
spatial_context = None
|
||||
if exists(context):
|
||||
|
||||
@@ -9,7 +9,6 @@ from einops import repeat
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
from comfy.ldm.flux.math import apply_rope
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.model_management
|
||||
|
||||
@@ -49,8 +48,8 @@ class WanSelfAttention(nn.Module):
|
||||
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, x, freqs):
|
||||
r"""
|
||||
@@ -83,7 +82,7 @@ class WanSelfAttention(nn.Module):
|
||||
|
||||
class WanT2VCrossAttention(WanSelfAttention):
|
||||
|
||||
def forward(self, x, context):
|
||||
def forward(self, x, context, **kwargs):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
@@ -114,16 +113,16 @@ class WanI2VCrossAttention(WanSelfAttention):
|
||||
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
||||
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, x, context):
|
||||
def forward(self, x, context, context_img_len):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
context(Tensor): Shape [B, L2, C]
|
||||
"""
|
||||
context_img = context[:, :257]
|
||||
context = context[:, 257:]
|
||||
context_img = context[:, :context_img_len]
|
||||
context = context[:, context_img_len:]
|
||||
|
||||
# compute query, key, value
|
||||
q = self.norm_q(self.q(x))
|
||||
@@ -193,6 +192,7 @@ class WanAttentionBlock(nn.Module):
|
||||
e,
|
||||
freqs,
|
||||
context,
|
||||
context_img_len=257,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@@ -213,12 +213,94 @@ class WanAttentionBlock(nn.Module):
|
||||
x = x + y * e[2]
|
||||
|
||||
# cross-attention & ffn
|
||||
x = x + self.cross_attn(self.norm3(x), context)
|
||||
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
|
||||
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
|
||||
x = x + y * e[5]
|
||||
return x
|
||||
|
||||
|
||||
class VaceWanAttentionBlock(WanAttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=0,
|
||||
operation_settings={}
|
||||
):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
|
||||
self.block_id = block_id
|
||||
if block_id == 0:
|
||||
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, c, x, **kwargs):
|
||||
if self.block_id == 0:
|
||||
c = self.before_proj(c) + x
|
||||
c = super().forward(c, **kwargs)
|
||||
c_skip = self.after_proj(c)
|
||||
return c_skip, c
|
||||
|
||||
|
||||
class WanCamAdapter(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}):
|
||||
super(WanCamAdapter, self).__init__()
|
||||
|
||||
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
|
||||
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
|
||||
|
||||
# Convolution: reduce spatial dimensions by a factor
|
||||
# of 2 (without overlap)
|
||||
self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
# Residual blocks for feature extraction
|
||||
self.residual_blocks = nn.Sequential(
|
||||
*[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)]
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# Reshape to merge the frame dimension into batch
|
||||
bs, c, f, h, w = x.size()
|
||||
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
|
||||
|
||||
# Pixel Unshuffle operation
|
||||
x_unshuffled = self.pixel_unshuffle(x)
|
||||
|
||||
# Convolution operation
|
||||
x_conv = self.conv(x_unshuffled)
|
||||
|
||||
# Feature extraction with residual blocks
|
||||
out = self.residual_blocks(x_conv)
|
||||
|
||||
# Reshape to restore original bf dimension
|
||||
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
|
||||
|
||||
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class WanCamResidualBlock(nn.Module):
|
||||
def __init__(self, dim, operation_settings={}):
|
||||
super(WanCamResidualBlock, self).__init__()
|
||||
self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
out = self.relu(self.conv1(x))
|
||||
out = self.conv2(out)
|
||||
out += residual
|
||||
return out
|
||||
|
||||
|
||||
class Head(nn.Module):
|
||||
|
||||
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
|
||||
@@ -250,7 +332,7 @@ class Head(nn.Module):
|
||||
|
||||
class MLPProj(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_dim, out_dim, operation_settings={}):
|
||||
def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}):
|
||||
super().__init__()
|
||||
|
||||
self.proj = torch.nn.Sequential(
|
||||
@@ -258,7 +340,15 @@ class MLPProj(torch.nn.Module):
|
||||
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
if flf_pos_embed_token_number is not None:
|
||||
self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
else:
|
||||
self.emb_pos = None
|
||||
|
||||
def forward(self, image_embeds):
|
||||
if self.emb_pos is not None:
|
||||
image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device)
|
||||
|
||||
clip_extra_context_tokens = self.proj(image_embeds)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
@@ -284,6 +374,7 @@ class WanModel(torch.nn.Module):
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
@@ -373,7 +464,7 @@ class WanModel(torch.nn.Module):
|
||||
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
|
||||
|
||||
if model_type == 'i2v':
|
||||
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
|
||||
self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings)
|
||||
else:
|
||||
self.img_emb = None
|
||||
|
||||
@@ -384,6 +475,8 @@ class WanModel(torch.nn.Module):
|
||||
context,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
@@ -419,18 +512,25 @@ class WanModel(torch.nn.Module):
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
if clip_fea is not None and self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
freqs=freqs,
|
||||
context=context)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
@@ -439,7 +539,7 @@ class WanModel(torch.nn.Module):
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
def forward(self, x, timestep, context, clip_fea=None, **kwargs):
|
||||
def forward(self, x, timestep, context, clip_fea=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
||||
patch_size = self.patch_size
|
||||
@@ -453,7 +553,7 @@ class WanModel(torch.nn.Module):
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w]
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
r"""
|
||||
@@ -478,3 +578,205 @@ class WanModel(torch.nn.Module):
|
||||
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
|
||||
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
|
||||
return u
|
||||
|
||||
|
||||
class VaceWanModel(WanModel):
|
||||
r"""
|
||||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_type='vace',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
image_model=None,
|
||||
vace_layers=None,
|
||||
vace_in_dim=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
# Vace
|
||||
if vace_layers is not None:
|
||||
self.vace_layers = vace_layers
|
||||
self.vace_in_dim = vace_in_dim
|
||||
# vace blocks
|
||||
self.vace_blocks = nn.ModuleList([
|
||||
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings)
|
||||
for i in range(self.vace_layers)
|
||||
])
|
||||
|
||||
self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))}
|
||||
# vace patch embeddings
|
||||
self.vace_patch_embedding = operations.Conv3d(
|
||||
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
vace_context,
|
||||
vace_strength=1.0,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
# embeddings
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
grid_sizes = x.shape[2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
|
||||
c = c.flatten(2).transpose(1, 2)
|
||||
|
||||
# arguments
|
||||
x_orig = x
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
|
||||
ii = self.vace_layers_mapping.get(i, None)
|
||||
if ii is not None:
|
||||
c_skip, c = self.vace_blocks[ii](c, x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
x += c_skip * vace_strength
|
||||
del c_skip
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
class CameraWanModel(WanModel):
|
||||
r"""
|
||||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_type='camera',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
image_model=None,
|
||||
in_dim_control_adapter=24,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
|
||||
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
camera_conditions = None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
# embeddings
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
if self.control_adapter is not None and camera_conditions is not None:
|
||||
x_camera = self.control_adapter(camera_conditions).to(x.dtype)
|
||||
x = x + x_camera
|
||||
grid_sizes = x.shape[2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
334
comfy/lora.py
334
comfy/lora.py
@@ -20,6 +20,7 @@ from __future__ import annotations
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_base
|
||||
import comfy.weight_adapter as weight_adapter
|
||||
import logging
|
||||
import torch
|
||||
|
||||
@@ -49,139 +50,12 @@ def load_lora(lora, to_load, log_missing=True):
|
||||
dora_scale = lora[dora_scale_name]
|
||||
loaded_keys.add(dora_scale_name)
|
||||
|
||||
reshape_name = "{}.reshape_weight".format(x)
|
||||
reshape = None
|
||||
if reshape_name in lora.keys():
|
||||
try:
|
||||
reshape = lora[reshape_name].tolist()
|
||||
loaded_keys.add(reshape_name)
|
||||
except:
|
||||
pass
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif mochi_lora in lora.keys():
|
||||
A_name = mochi_lora
|
||||
B_name = "{}.lora_A".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
|
||||
|
||||
#glora
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
for adapter_cls in weight_adapter.adapters:
|
||||
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
|
||||
if adapter is not None:
|
||||
patch_dict[to_load[x]] = adapter
|
||||
loaded_keys.update(adapter.loaded_keys)
|
||||
continue
|
||||
|
||||
w_norm_name = "{}.w_norm".format(x)
|
||||
b_norm_name = "{}.b_norm".format(x)
|
||||
@@ -405,29 +279,22 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
key_map["diffusion_model.{}".format(key_lora)] = k # Old loras
|
||||
|
||||
if isinstance(model, comfy.model_base.HiDream):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model."):
|
||||
if k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lycoris_{}".format(key_lora)] = k #SimpleTuner lycoris format
|
||||
|
||||
if isinstance(model, comfy.model_base.ACEStep):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
@@ -482,6 +349,16 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
|
||||
if isinstance(v, list):
|
||||
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
|
||||
if isinstance(v, weight_adapter.WeightAdapterBase):
|
||||
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
|
||||
if output is None:
|
||||
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
|
||||
else:
|
||||
weight = output
|
||||
if old_weight is not None:
|
||||
weight = old_weight
|
||||
continue
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
elif len(v) == 2:
|
||||
@@ -508,157 +385,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
|
||||
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
|
||||
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
|
||||
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
dora_scale = v[4]
|
||||
reshape = v[5]
|
||||
|
||||
if reshape is not None:
|
||||
weight = pad_tensor_to_shape(weight, reshape)
|
||||
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import comfy.utils
|
||||
|
||||
|
||||
def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
@@ -11,7 +12,13 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
return sd_out
|
||||
|
||||
|
||||
def convert_lora_wan_fun(sd): #Wan Fun loras
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
|
||||
|
||||
|
||||
def convert_lora(sd):
|
||||
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
|
||||
return convert_lora_bfl_control(sd)
|
||||
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
|
||||
return convert_lora_wan_fun(sd)
|
||||
return sd
|
||||
|
||||
@@ -36,6 +36,10 @@ import comfy.ldm.hunyuan_video.model
|
||||
import comfy.ldm.cosmos.model
|
||||
import comfy.ldm.lumina.model
|
||||
import comfy.ldm.wan.model
|
||||
import comfy.ldm.hunyuan3d.model
|
||||
import comfy.ldm.hidream.model
|
||||
import comfy.ldm.chroma.model
|
||||
import comfy.ldm.ace.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@@ -58,6 +62,7 @@ class ModelType(Enum):
|
||||
FLOW = 6
|
||||
V_PREDICTION_CONTINUOUS = 7
|
||||
FLUX = 8
|
||||
IMG_TO_IMG = 9
|
||||
|
||||
|
||||
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
|
||||
@@ -88,6 +93,8 @@ def model_sampling(model_config, model_type):
|
||||
elif model_type == ModelType.FLUX:
|
||||
c = comfy.model_sampling.CONST
|
||||
s = comfy.model_sampling.ModelSamplingFlux
|
||||
elif model_type == ModelType.IMG_TO_IMG:
|
||||
c = comfy.model_sampling.IMG_TO_IMG
|
||||
|
||||
class ModelSampling(s, c):
|
||||
pass
|
||||
@@ -108,7 +115,7 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
|
||||
fp8 = model_config.optimizations.get("fp8", False)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
@@ -139,6 +146,7 @@ class BaseModel(torch.nn.Module):
|
||||
def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([xc] + [c_concat], dim=1)
|
||||
|
||||
@@ -600,6 +608,19 @@ class SDXL_instructpix2pix(IP2P, SDXL):
|
||||
else:
|
||||
self.process_ip2p_image_in = lambda image: image #diffusers ip2p
|
||||
|
||||
class Lotus(BaseModel):
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
||||
device = kwargs["device"]
|
||||
task_emb = torch.tensor([1, 0]).float().to(device)
|
||||
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)]).unsqueeze(0)
|
||||
out['y'] = comfy.conds.CONDRegular(task_emb)
|
||||
return out
|
||||
|
||||
def __init__(self, model_config, model_type=ModelType.IMG_TO_IMG, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
|
||||
class StableCascade_C(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
@@ -767,8 +788,8 @@ class PixArt(BaseModel):
|
||||
return out
|
||||
|
||||
class Flux(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
try:
|
||||
@@ -898,20 +919,35 @@ class HunyuanVideo(BaseModel):
|
||||
guidance = kwargs.get("guidance", 6.0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
|
||||
guiding_frame_index = kwargs.get("guiding_frame_index", None)
|
||||
if guiding_frame_index is not None:
|
||||
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
|
||||
|
||||
ref_latent = kwargs.get("ref_latent", None)
|
||||
if ref_latent is not None:
|
||||
out['ref_latent'] = comfy.conds.CONDRegular(self.process_latent_in(ref_latent))
|
||||
|
||||
return out
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
return latent_image
|
||||
|
||||
class HunyuanVideoI2V(HunyuanVideo):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.concat_keys = ("concat_image", "mask_inverted")
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
|
||||
|
||||
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.concat_keys = ("concat_image",)
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
|
||||
|
||||
class CosmosVideo(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None):
|
||||
@@ -962,29 +998,42 @@ class WAN21(BaseModel):
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
if not self.image_to_video:
|
||||
noise = kwargs.get("noise", None)
|
||||
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
|
||||
if extra_channels == 0:
|
||||
return None
|
||||
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)
|
||||
shape_image = list(noise.shape)
|
||||
shape_image[1] = extra_channels
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
for i in range(0, image.shape[1], 16):
|
||||
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
image = self.process_latent_in(image)
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
|
||||
if image.shape[1] > (extra_channels - 4):
|
||||
image = image[:, :(extra_channels - 4)]
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :4]
|
||||
else:
|
||||
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
|
||||
if mask.shape[1] != 4:
|
||||
mask = torch.mean(mask, dim=1, keepdim=True)
|
||||
mask = 1.0 - mask
|
||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
if mask.shape[-3] < noise.shape[-3]:
|
||||
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
if mask.shape[1] == 1:
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((mask, image), dim=1)
|
||||
@@ -999,3 +1048,111 @@ class WAN21(BaseModel):
|
||||
if clip_vision_output is not None:
|
||||
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
|
||||
return out
|
||||
|
||||
|
||||
class WAN21_Vace(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.VaceWanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
noise = kwargs.get("noise", None)
|
||||
noise_shape = list(noise.shape)
|
||||
vace_frames = kwargs.get("vace_frames", None)
|
||||
if vace_frames is None:
|
||||
noise_shape[1] = 32
|
||||
vace_frames = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
|
||||
for i in range(0, vace_frames.shape[1], 16):
|
||||
vace_frames = vace_frames.clone()
|
||||
vace_frames[:, i:i + 16] = self.process_latent_in(vace_frames[:, i:i + 16])
|
||||
|
||||
mask = kwargs.get("vace_mask", None)
|
||||
if mask is None:
|
||||
noise_shape[1] = 64
|
||||
mask = torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
|
||||
out['vace_context'] = comfy.conds.CONDRegular(torch.cat([vace_frames.to(noise), mask.to(noise)], dim=1))
|
||||
|
||||
vace_strength = kwargs.get("vace_strength", 1.0)
|
||||
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
|
||||
return out
|
||||
|
||||
class WAN21_Camera(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.CameraWanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
camera_conditions = kwargs.get("camera_conditions", None)
|
||||
if camera_conditions is not None:
|
||||
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3d.model.Hunyuan3Dv2)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
guidance = kwargs.get("guidance", 5.0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
class HiDream(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
|
||||
if conditioning_llama3 is not None:
|
||||
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
|
||||
image_cond = kwargs.get("concat_latent_image", None)
|
||||
if image_cond is not None:
|
||||
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
|
||||
return out
|
||||
|
||||
class Chroma(Flux):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
|
||||
guidance = kwargs.get("guidance", 0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
class ACEStep(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
noise = kwargs.get("noise", None)
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
|
||||
if cross_attn is not None:
|
||||
out['lyric_token_idx'] = comfy.conds.CONDRegular(conditioning_lyrics)
|
||||
out['speaker_embeds'] = comfy.conds.CONDRegular(torch.zeros(noise.shape[0], 512, device=noise.device, dtype=noise.dtype))
|
||||
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
|
||||
return out
|
||||
|
||||
@@ -154,7 +154,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["guidance_embed"] = len(guidance_keys) > 0
|
||||
return dit_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "flux"
|
||||
dit_config["in_channels"] = 16
|
||||
@@ -164,7 +164,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
if in_key in state_dict_keys:
|
||||
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["vec_in_dim"] = 768
|
||||
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
|
||||
if vec_in_key in state_dict_keys:
|
||||
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
@@ -174,7 +176,16 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["qkv_bias"] = True
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
dit_config["image_model"] = "chroma"
|
||||
dit_config["in_channels"] = 64
|
||||
dit_config["out_channels"] = 64
|
||||
dit_config["in_dim"] = 64
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
|
||||
@@ -211,10 +222,39 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "ltxv"
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape
|
||||
dit_config["attention_head_dim"] = shape[0] // 32
|
||||
dit_config["cross_attention_dim"] = shape[1]
|
||||
if metadata is not None and "config" in metadata:
|
||||
dit_config.update(json.loads(metadata["config"]).get("transformer", {}))
|
||||
return dit_config
|
||||
|
||||
if '{}genre_embedder.weight'.format(key_prefix) in state_dict_keys: #ACE-Step model
|
||||
dit_config = {}
|
||||
dit_config["audio_model"] = "ace"
|
||||
dit_config["attention_head_dim"] = 128
|
||||
dit_config["in_channels"] = 8
|
||||
dit_config["inner_dim"] = 2560
|
||||
dit_config["max_height"] = 16
|
||||
dit_config["max_position"] = 32768
|
||||
dit_config["max_width"] = 32768
|
||||
dit_config["mlp_ratio"] = 2.5
|
||||
dit_config["num_attention_heads"] = 20
|
||||
dit_config["num_layers"] = 24
|
||||
dit_config["out_channels"] = 8
|
||||
dit_config["patch_size"] = [16, 1]
|
||||
dit_config["rope_theta"] = 1000000.0
|
||||
dit_config["speaker_embedding_dim"] = 512
|
||||
dit_config["text_embedding_dim"] = 768
|
||||
|
||||
dit_config["ssl_encoder_depths"] = [8, 8]
|
||||
dit_config["ssl_latent_dims"] = [1024, 768]
|
||||
dit_config["ssl_names"] = ["mert", "m-hubert"]
|
||||
dit_config["lyric_encoder_vocab_size"] = 6693
|
||||
dit_config["lyric_hidden_size"] = 1024
|
||||
return dit_config
|
||||
|
||||
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
|
||||
patch_size = 2
|
||||
dit_config = {}
|
||||
@@ -317,10 +357,54 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["cross_attn_norm"] = True
|
||||
dit_config["eps"] = 1e-6
|
||||
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
if '{}vace_patch_embedding.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "vace"
|
||||
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
|
||||
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "camera"
|
||||
else:
|
||||
dit_config["model_type"] = "t2v"
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
else:
|
||||
dit_config["model_type"] = "t2v"
|
||||
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
|
||||
if flf_weight is not None:
|
||||
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
|
||||
return dit_config
|
||||
|
||||
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
|
||||
in_shape = state_dict['{}latent_in.weight'.format(key_prefix)].shape
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "hunyuan3d2"
|
||||
dit_config["in_channels"] = in_shape[1]
|
||||
dit_config["context_in_dim"] = state_dict['{}cond_in.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["hidden_size"] = in_shape[0]
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["num_heads"] = 16
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["qkv_bias"] = True
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "hidream"
|
||||
dit_config["attention_head_dim"] = 128
|
||||
dit_config["axes_dims_rope"] = [64, 32, 32]
|
||||
dit_config["caption_channels"] = [4096, 4096]
|
||||
dit_config["max_resolution"] = [128, 128]
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["llama_layers"] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
|
||||
dit_config["num_attention_heads"] = 20
|
||||
dit_config["num_routed_experts"] = 4
|
||||
dit_config["num_activated_experts"] = 2
|
||||
dit_config["num_layers"] = 16
|
||||
dit_config["num_single_layers"] = 32
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["patch_size"] = 2
|
||||
dit_config["text_emb_dim"] = 2048
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
@@ -471,6 +555,10 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
|
||||
model_config.scaled_fp8 = scaled_fp8_weight.dtype
|
||||
if model_config.scaled_fp8 == torch.float32:
|
||||
model_config.scaled_fp8 = torch.float8_e4m3fn
|
||||
if scaled_fp8_weight.nelement() == 2:
|
||||
model_config.optimizations["fp8"] = False
|
||||
else:
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
return model_config
|
||||
|
||||
@@ -663,8 +751,13 @@ def unet_config_from_diffusers_unet(state_dict, dtype=None):
|
||||
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
LotusD = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': 4,
|
||||
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_heads': 8,
|
||||
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
|
||||
supported_models = [LotusD, SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
|
||||
|
||||
for unet_config in supported_models:
|
||||
matches = True
|
||||
|
||||
@@ -46,6 +46,32 @@ cpu_state = CPUState.GPU
|
||||
|
||||
total_vram = 0
|
||||
|
||||
def get_supported_float8_types():
|
||||
float8_types = []
|
||||
try:
|
||||
float8_types.append(torch.float8_e4m3fn)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e4m3fnuz)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e5m2)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e5m2fnuz)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e8m0fnu)
|
||||
except:
|
||||
pass
|
||||
return float8_types
|
||||
|
||||
FLOAT8_TYPES = get_supported_float8_types()
|
||||
|
||||
xpu_available = False
|
||||
torch_version = ""
|
||||
try:
|
||||
@@ -186,12 +212,21 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
else:
|
||||
return mem_total
|
||||
|
||||
def mac_version():
|
||||
try:
|
||||
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
||||
except:
|
||||
return None
|
||||
|
||||
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
||||
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
||||
|
||||
try:
|
||||
logging.info("pytorch version: {}".format(torch_version))
|
||||
mac_ver = mac_version()
|
||||
if mac_ver is not None:
|
||||
logging.info("Mac Version {}".format(mac_ver))
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -581,7 +616,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
loaded_memory = loaded_model.model_loaded_memory()
|
||||
current_free_mem = get_free_memory(torch_dev) + loaded_memory
|
||||
|
||||
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
@@ -690,13 +725,12 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
return torch.float8_e4m3fn
|
||||
if args.fp8_e5m2_unet:
|
||||
return torch.float8_e5m2
|
||||
if args.fp8_e8m0fnu_unet:
|
||||
return torch.float8_e8m0fnu
|
||||
|
||||
fp8_dtype = None
|
||||
try:
|
||||
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
fp8_dtype = weight_dtype
|
||||
except:
|
||||
pass
|
||||
if weight_dtype in FLOAT8_TYPES:
|
||||
fp8_dtype = weight_dtype
|
||||
|
||||
if fp8_dtype is not None:
|
||||
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
||||
@@ -791,6 +825,8 @@ def text_encoder_dtype(device=None):
|
||||
return torch.float8_e5m2
|
||||
elif args.fp16_text_enc:
|
||||
return torch.float16
|
||||
elif args.bf16_text_enc:
|
||||
return torch.bfloat16
|
||||
elif args.fp32_text_enc:
|
||||
return torch.float32
|
||||
|
||||
@@ -903,15 +939,61 @@ def force_channels_last():
|
||||
#TODO
|
||||
return False
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
||||
|
||||
STREAMS = {}
|
||||
NUM_STREAMS = 1
|
||||
if args.async_offload:
|
||||
NUM_STREAMS = 2
|
||||
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
|
||||
|
||||
stream_counters = {}
|
||||
def get_offload_stream(device):
|
||||
stream_counter = stream_counters.get(device, 0)
|
||||
if NUM_STREAMS <= 1:
|
||||
return None
|
||||
|
||||
if device in STREAMS:
|
||||
ss = STREAMS[device]
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_cuda(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.cuda.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
def sync_stream(device, stream):
|
||||
if stream is None:
|
||||
return
|
||||
if is_device_cuda(device):
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
|
||||
if device is None or weight.device == device:
|
||||
if not copy:
|
||||
if dtype is None or weight.dtype == dtype:
|
||||
return weight
|
||||
if stream is not None:
|
||||
with stream:
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
if stream is not None:
|
||||
with stream:
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
else:
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
return r
|
||||
|
||||
def cast_to_device(tensor, device, dtype, copy=False):
|
||||
@@ -921,6 +1003,9 @@ def cast_to_device(tensor, device, dtype, copy=False):
|
||||
def sage_attention_enabled():
|
||||
return args.use_sage_attention
|
||||
|
||||
def flash_attention_enabled():
|
||||
return args.use_flash_attention
|
||||
|
||||
def xformers_enabled():
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
@@ -969,12 +1054,6 @@ def pytorch_attention_flash_attention():
|
||||
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
|
||||
return False
|
||||
|
||||
def mac_version():
|
||||
try:
|
||||
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
||||
except:
|
||||
return None
|
||||
|
||||
def force_upcast_attention_dtype():
|
||||
upcast = args.force_upcast_attention
|
||||
|
||||
@@ -1206,6 +1285,8 @@ def soft_empty_cache(force=False):
|
||||
torch.xpu.empty_cache()
|
||||
elif is_ascend_npu():
|
||||
torch.npu.empty_cache()
|
||||
elif is_mlu():
|
||||
torch.mlu.empty_cache()
|
||||
elif torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
@@ -747,6 +747,7 @@ class ModelPatcher:
|
||||
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
with self.use_ejected():
|
||||
hooks_unpatched = False
|
||||
memory_freed = 0
|
||||
patch_counter = 0
|
||||
unload_list = self._load_list()
|
||||
@@ -770,6 +771,10 @@ class ModelPatcher:
|
||||
move_weight = False
|
||||
break
|
||||
|
||||
if not hooks_unpatched:
|
||||
self.unpatch_hooks()
|
||||
hooks_unpatched = True
|
||||
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
||||
else:
|
||||
@@ -1089,7 +1094,6 @@ class ModelPatcher:
|
||||
|
||||
def patch_hooks(self, hooks: comfy.hooks.HookGroup):
|
||||
with self.use_ejected():
|
||||
self.unpatch_hooks()
|
||||
if hooks is not None:
|
||||
model_sd_keys = list(self.model_state_dict().keys())
|
||||
memory_counter = None
|
||||
@@ -1100,12 +1104,16 @@ class ModelPatcher:
|
||||
# if have cached weights for hooks, use it
|
||||
cached_weights = self.cached_hook_patches.get(hooks, None)
|
||||
if cached_weights is not None:
|
||||
model_sd_keys_set = set(model_sd_keys)
|
||||
for key in cached_weights:
|
||||
if key not in model_sd_keys:
|
||||
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
|
||||
continue
|
||||
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
|
||||
model_sd_keys_set.remove(key)
|
||||
self.unpatch_hooks(model_sd_keys_set)
|
||||
else:
|
||||
self.unpatch_hooks()
|
||||
relevant_patches = self.get_combined_hook_patches(hooks=hooks)
|
||||
original_weights = None
|
||||
if len(relevant_patches) > 0:
|
||||
@@ -1116,6 +1124,8 @@ class ModelPatcher:
|
||||
continue
|
||||
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
|
||||
memory_counter=memory_counter)
|
||||
else:
|
||||
self.unpatch_hooks()
|
||||
self.current_hooks = hooks
|
||||
|
||||
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
|
||||
@@ -1172,17 +1182,23 @@ class ModelPatcher:
|
||||
del out_weight
|
||||
del weight
|
||||
|
||||
def unpatch_hooks(self) -> None:
|
||||
def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None:
|
||||
with self.use_ejected():
|
||||
if len(self.hook_backup) == 0:
|
||||
self.current_hooks = None
|
||||
return
|
||||
keys = list(self.hook_backup.keys())
|
||||
for k in keys:
|
||||
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
|
||||
if whitelist_keys_set:
|
||||
for k in keys:
|
||||
if k in whitelist_keys_set:
|
||||
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
|
||||
self.hook_backup.pop(k)
|
||||
else:
|
||||
for k in keys:
|
||||
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
|
||||
|
||||
self.hook_backup.clear()
|
||||
self.current_hooks = None
|
||||
self.hook_backup.clear()
|
||||
self.current_hooks = None
|
||||
|
||||
def clean_hooks(self):
|
||||
self.unpatch_hooks()
|
||||
|
||||
@@ -69,6 +69,15 @@ class CONST:
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1))
|
||||
return latent / (1.0 - sigma)
|
||||
|
||||
class X0(EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
return model_output
|
||||
|
||||
class IMG_TO_IMG(X0):
|
||||
def calculate_input(self, sigma, noise):
|
||||
return noise
|
||||
|
||||
|
||||
class ModelSamplingDiscrete(torch.nn.Module):
|
||||
def __init__(self, model_config=None, zsnr=None):
|
||||
super().__init__()
|
||||
@@ -102,13 +111,14 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
self.zsnr = zsnr
|
||||
|
||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||
if zsnr:
|
||||
if self.zsnr:
|
||||
sigmas = rescale_zero_terminal_snr_sigmas(sigmas)
|
||||
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
83
comfy/ops.py
83
comfy/ops.py
@@ -17,9 +17,12 @@
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
@@ -35,20 +38,31 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
if offload_stream is not None:
|
||||
wf_context = offload_stream
|
||||
else:
|
||||
wf_context = contextlib.nullcontext()
|
||||
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
has_function = len(s.bias_function) > 0
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
|
||||
if has_function:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
has_function = len(s.weight_function) > 0
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
if has_function:
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
with wf_context:
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
return weight, bias
|
||||
|
||||
class CastWeightBiasOp:
|
||||
@@ -145,6 +159,25 @@ class disable_weight_init:
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
self.bias = None
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
else:
|
||||
weight = None
|
||||
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
||||
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
@@ -242,6 +275,9 @@ class manual_cast(disable_weight_init):
|
||||
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class RMSNorm(disable_weight_init.RMSNorm):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Embedding(disable_weight_init.Embedding):
|
||||
comfy_cast_weights = True
|
||||
|
||||
@@ -272,10 +308,10 @@ def fp8_linear(self, input):
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input = input.reshape(-1, input_shape[2]).to(dtype)
|
||||
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
else:
|
||||
scale_input = scale_input.to(input.device)
|
||||
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype)
|
||||
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
@@ -308,6 +344,7 @@ class fp8_ops(manual_cast):
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
|
||||
class scaled_fp8_op(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
@@ -355,10 +392,29 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
|
||||
|
||||
return scaled_fp8_op
|
||||
|
||||
CUBLAS_IS_AVAILABLE = False
|
||||
try:
|
||||
from cublas_ops import CublasLinear
|
||||
CUBLAS_IS_AVAILABLE = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if CUBLAS_IS_AVAILABLE:
|
||||
class cublas_ops(disable_weight_init):
|
||||
class Linear(CublasLinear, disable_weight_init.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
return super().forward(input)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
|
||||
|
||||
if (
|
||||
fp8_compute and
|
||||
@@ -367,6 +423,15 @@ def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_
|
||||
):
|
||||
return fp8_ops
|
||||
|
||||
if (
|
||||
PerformanceFeature.CublasOps in args.fast and
|
||||
CUBLAS_IS_AVAILABLE and
|
||||
weight_dtype == torch.float16 and
|
||||
(compute_dtype == torch.float16 or compute_dtype is None)
|
||||
):
|
||||
logging.info("Using cublas ops")
|
||||
return cublas_ops
|
||||
|
||||
if compute_dtype is None or weight_dtype == compute_dtype:
|
||||
return disable_weight_init
|
||||
|
||||
|
||||
@@ -48,6 +48,7 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
|
||||
|
||||
class WrappersMP:
|
||||
OUTER_SAMPLE = "outer_sample"
|
||||
PREPARE_SAMPLING = "prepare_sampling"
|
||||
SAMPLER_SAMPLE = "sampler_sample"
|
||||
CALC_COND_BATCH = "calc_cond_batch"
|
||||
APPLY_MODEL = "apply_model"
|
||||
|
||||
55
comfy/rmsnorm.py
Normal file
55
comfy/rmsnorm.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import numbers
|
||||
|
||||
RMSNorm = None
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
RMSNorm = torch.nn.RMSNorm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
if weight is None:
|
||||
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
||||
else:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
if weight is None:
|
||||
return r
|
||||
else:
|
||||
return r * comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
if RMSNorm is None:
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape,
|
||||
eps=1e-6,
|
||||
elementwise_affine=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = torch.nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.bias = None
|
||||
|
||||
def forward(self, x):
|
||||
return rms_norm(x, self.weight, self.eps)
|
||||
@@ -106,6 +106,13 @@ def cleanup_additional_models(models):
|
||||
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_prepare_sampling,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options)
|
||||
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
real_model: BaseModel = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
|
||||
@@ -710,7 +710,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation"]
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
||||
152
comfy/sd.py
152
comfy/sd.py
@@ -14,6 +14,8 @@ import comfy.ldm.genmo.vae.model
|
||||
import comfy.ldm.lightricks.vae.causal_video_autoencoder
|
||||
import comfy.ldm.cosmos.vae
|
||||
import comfy.ldm.wan.vae
|
||||
import comfy.ldm.hunyuan3d.vae
|
||||
import comfy.ldm.ace.vae.music_dcae_pipeline
|
||||
import yaml
|
||||
import math
|
||||
|
||||
@@ -40,6 +42,8 @@ import comfy.text_encoders.hunyuan_video
|
||||
import comfy.text_encoders.cosmos
|
||||
import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.hidream
|
||||
import comfy.text_encoders.ace
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@@ -118,6 +122,7 @@ class CLIP:
|
||||
self.layer_idx = None
|
||||
self.use_clip_schedule = False
|
||||
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
|
||||
self.tokenizer_options = {}
|
||||
|
||||
def clone(self):
|
||||
n = CLIP(no_init=True)
|
||||
@@ -125,6 +130,7 @@ class CLIP:
|
||||
n.cond_stage_model = self.cond_stage_model
|
||||
n.tokenizer = self.tokenizer
|
||||
n.layer_idx = self.layer_idx
|
||||
n.tokenizer_options = self.tokenizer_options.copy()
|
||||
n.use_clip_schedule = self.use_clip_schedule
|
||||
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
||||
return n
|
||||
@@ -132,10 +138,18 @@ class CLIP:
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
def set_tokenizer_option(self, option_name, value):
|
||||
self.tokenizer_options[option_name] = value
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
def tokenize(self, text, return_word_ids=False, **kwargs):
|
||||
tokenizer_options = kwargs.get("tokenizer_options", {})
|
||||
if len(self.tokenizer_options) > 0:
|
||||
tokenizer_options = {**self.tokenizer_options, **tokenizer_options}
|
||||
if len(tokenizer_options) > 0:
|
||||
kwargs["tokenizer_options"] = tokenizer_options
|
||||
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
|
||||
def add_hooks_to_dict(self, pooled_dict: dict[str]):
|
||||
@@ -264,9 +278,11 @@ class VAE:
|
||||
self.process_input = lambda image: image * 2.0 - 1.0
|
||||
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
self.disable_offload = False
|
||||
|
||||
self.downscale_index_formula = None
|
||||
self.upscale_index_formula = None
|
||||
self.extra_1d_channel = None
|
||||
|
||||
if config is None:
|
||||
if "decoder.mid.block_1.mix_factor" in sd:
|
||||
@@ -336,6 +352,7 @@ class VAE:
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.disable_offload = True
|
||||
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
|
||||
if "blocks.2.blocks.3.stack.5.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
|
||||
@@ -412,6 +429,31 @@ class VAE:
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
|
||||
self.latent_dim = 1
|
||||
ln_post = "geo_decoder.ln_post.weight" in sd
|
||||
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
|
||||
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
|
||||
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
|
||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
|
||||
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
|
||||
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
|
||||
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
|
||||
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
|
||||
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
|
||||
self.latent_channels = 8
|
||||
self.output_channels = 2
|
||||
self.upscale_ratio = 4096
|
||||
self.downscale_ratio = 4096
|
||||
self.latent_dim = 2
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.disable_offload = True
|
||||
self.extra_1d_channel = 16
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
@@ -440,6 +482,10 @@ class VAE:
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||
|
||||
def throw_exception_if_invalid(self):
|
||||
if self.first_stage_model is None:
|
||||
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
|
||||
|
||||
def vae_encode_crop_pixels(self, pixels):
|
||||
downscale_ratio = self.spacial_compression_encode()
|
||||
|
||||
@@ -466,7 +512,13 @@ class VAE:
|
||||
return output
|
||||
|
||||
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
|
||||
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
||||
if samples.ndim == 3:
|
||||
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
||||
else:
|
||||
og_shape = samples.shape
|
||||
samples = samples.reshape((og_shape[0], og_shape[1] * og_shape[2], -1))
|
||||
decode_fn = lambda a: self.first_stage_model.decode(a.reshape((-1, og_shape[1], og_shape[2], a.shape[-1])).to(self.vae_dtype).to(self.device)).float()
|
||||
|
||||
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
|
||||
|
||||
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
|
||||
@@ -486,33 +538,49 @@ class VAE:
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
|
||||
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
||||
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
|
||||
def encode_tiled_1d(self, samples, tile_x=256 * 2048, overlap=64 * 2048):
|
||||
if self.latent_dim == 1:
|
||||
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
||||
out_channels = self.latent_channels
|
||||
upscale_amount = 1 / self.downscale_ratio
|
||||
else:
|
||||
extra_channel_size = self.extra_1d_channel
|
||||
out_channels = self.latent_channels * extra_channel_size
|
||||
tile_x = tile_x // extra_channel_size
|
||||
overlap = overlap // extra_channel_size
|
||||
upscale_amount = 1 / self.downscale_ratio
|
||||
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).reshape(1, out_channels, -1).float()
|
||||
|
||||
out = comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=self.output_device)
|
||||
if self.latent_dim == 1:
|
||||
return out
|
||||
else:
|
||||
return out.reshape(samples.shape[0], self.latent_channels, extra_channel_size, -1)
|
||||
|
||||
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
|
||||
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
||||
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
|
||||
|
||||
def decode(self, samples_in):
|
||||
def decode(self, samples_in, vae_options={}):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = None
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
|
||||
for x in range(0, samples_in.shape[0], batch_number):
|
||||
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
||||
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
|
||||
out = self.process_output(self.first_stage_model.decode(samples, **vae_options).to(self.output_device).float())
|
||||
if pixel_samples is None:
|
||||
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
||||
pixel_samples[x:x+batch_number] = out
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
dims = samples_in.ndim - 2
|
||||
if dims == 1:
|
||||
if dims == 1 or self.extra_1d_channel is not None:
|
||||
pixel_samples = self.decode_tiled_1d(samples_in)
|
||||
elif dims == 2:
|
||||
pixel_samples = self.decode_tiled_(samples_in)
|
||||
@@ -525,8 +593,9 @@ class VAE:
|
||||
return pixel_samples
|
||||
|
||||
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
||||
self.throw_exception_if_invalid()
|
||||
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
dims = samples.ndim - 2
|
||||
args = {}
|
||||
if tile_x is not None:
|
||||
@@ -553,13 +622,14 @@ class VAE:
|
||||
return output.movedim(1, -1)
|
||||
|
||||
def encode(self, pixel_samples):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
if self.latent_dim == 3 and pixel_samples.ndim < 5:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
try:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / max(1, memory_used))
|
||||
batch_number = max(1, batch_number)
|
||||
@@ -577,7 +647,7 @@ class VAE:
|
||||
tile = 256
|
||||
overlap = tile // 4
|
||||
samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
|
||||
elif self.latent_dim == 1:
|
||||
elif self.latent_dim == 1 or self.extra_1d_channel is not None:
|
||||
samples = self.encode_tiled_1d(pixel_samples)
|
||||
else:
|
||||
samples = self.encode_tiled_(pixel_samples)
|
||||
@@ -585,6 +655,7 @@ class VAE:
|
||||
return samples
|
||||
|
||||
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
dims = self.latent_dim
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
@@ -592,7 +663,7 @@ class VAE:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
|
||||
args = {}
|
||||
if tile_x is not None:
|
||||
@@ -680,6 +751,9 @@ class CLIPType(Enum):
|
||||
COSMOS = 11
|
||||
LUMINA2 = 12
|
||||
WAN = 13
|
||||
HIDREAM = 14
|
||||
CHROMA = 15
|
||||
ACE = 16
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@@ -768,6 +842,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
@@ -781,13 +858,17 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.LTXV:
|
||||
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
|
||||
elif clip_type == CLIPType.PIXART:
|
||||
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
|
||||
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
|
||||
elif clip_type == CLIPType.WAN:
|
||||
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else: #CLIPType.MOCHI
|
||||
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
|
||||
@@ -798,16 +879,29 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
||||
elif te_model == TEModel.T5_BASE:
|
||||
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
||||
if clip_type == CLIPType.ACE or "spiece_model" in clip_data[0]:
|
||||
clip_target.clip = comfy.text_encoders.ace.AceT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.ace.AceT5Tokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
else:
|
||||
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
||||
elif te_model == TEModel.GEMMA_2_2B:
|
||||
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif te_model == TEModel.LLAMA3_8:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
# clip_l
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
@@ -825,12 +919,33 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.HUNYUAN_VIDEO:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
# Detect
|
||||
hidream_dualclip_classes = []
|
||||
for hidream_te in clip_data:
|
||||
te_model = detect_te_model(hidream_te)
|
||||
hidream_dualclip_classes.append(te_model)
|
||||
|
||||
clip_l = TEModel.CLIP_L in hidream_dualclip_classes
|
||||
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
|
||||
t5 = TEModel.T5_XXL in hidream_dualclip_classes
|
||||
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
|
||||
|
||||
# Initialize t5xxl_detect and llama_detect kwargs if needed
|
||||
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
|
||||
llama_kwargs = llama_detect(clip_data) if llama else {}
|
||||
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif len(clip_data) == 3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif len(clip_data) == 4:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), **llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
|
||||
parameters = 0
|
||||
for c in clip_data:
|
||||
@@ -899,7 +1014,12 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
|
||||
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
|
||||
if model_config is None:
|
||||
return None
|
||||
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
|
||||
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
|
||||
if diffusion_model is None:
|
||||
return None
|
||||
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
|
||||
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if model_config.scaled_fp8 is not None:
|
||||
|
||||
@@ -82,7 +82,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
LAYERS = [
|
||||
"last",
|
||||
"pooled",
|
||||
"hidden"
|
||||
"hidden",
|
||||
"all"
|
||||
]
|
||||
def __init__(self, device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
|
||||
@@ -93,6 +94,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
if textmodel_json_config is None:
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
if "model_name" not in model_options:
|
||||
model_options = {**model_options, "model_name": "clip_l"}
|
||||
|
||||
if isinstance(textmodel_json_config, dict):
|
||||
config = textmodel_json_config
|
||||
@@ -100,6 +103,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
with open(textmodel_json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
|
||||
for k, v in te_model_options.items():
|
||||
config[k] = v
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
scaled_fp8 = None
|
||||
|
||||
@@ -147,7 +154,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
def set_clip_options(self, options):
|
||||
layer_idx = options.get("layer", self.layer_idx)
|
||||
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
||||
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
if self.layer == "all":
|
||||
pass
|
||||
elif layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
self.layer = "last"
|
||||
else:
|
||||
self.layer = "hidden"
|
||||
@@ -244,7 +253,12 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
if self.enable_attention_masks:
|
||||
attention_mask_model = attention_mask
|
||||
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
if self.layer == "all":
|
||||
intermediate_output = "all"
|
||||
else:
|
||||
intermediate_output = self.layer_idx
|
||||
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
|
||||
if self.layer == "last":
|
||||
z = outputs[0].float()
|
||||
@@ -443,13 +457,14 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||
self.max_length = max_length
|
||||
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
|
||||
self.min_length = min_length
|
||||
self.end_token = None
|
||||
self.min_padding = min_padding
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.tokenizer_adds_end_token = has_end_token
|
||||
@@ -504,13 +519,15 @@ class SDTokenizer:
|
||||
return (embed, leftover)
|
||||
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
|
||||
'''
|
||||
Takes a prompt and converts it to a list of (token, weight, word id) elements.
|
||||
Tokens can both be integer tokens and pre computed CLIP tensors.
|
||||
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
|
||||
Returned list has the dimensions NxM where M is the input size of CLIP
|
||||
'''
|
||||
min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length)
|
||||
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
|
||||
|
||||
text = escape_important(text)
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
@@ -589,10 +606,12 @@ class SDTokenizer:
|
||||
#fill last batch
|
||||
if self.end_token is not None:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
if min_padding is not None:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
|
||||
if self.pad_to_max_length and len(batch) < self.max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
if self.min_length is not None and len(batch) < self.min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
|
||||
if min_length is not None and len(batch) < min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
||||
@@ -620,7 +639,7 @@ class SD1Tokenizer:
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
|
||||
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -645,6 +664,7 @@ class SD1ClipModel(torch.nn.Module):
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
|
||||
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
|
||||
model_options = {**model_options, "model_name": self.clip}
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
|
||||
|
||||
self.dtypes = set()
|
||||
|
||||
@@ -9,6 +9,7 @@ class SDXLClipG(sd1_clip.SDClipModel):
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
model_options = {**model_options, "model_name": "clip_g"}
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
@@ -17,19 +18,18 @@ class SDXLClipG(sd1_clip.SDClipModel):
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class SDXLTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -41,8 +41,7 @@ class SDXLTokenizer:
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes = set([dtype])
|
||||
|
||||
@@ -75,7 +74,7 @@ class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
|
||||
|
||||
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
|
||||
|
||||
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
@@ -84,6 +83,7 @@ class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||||
class StableCascadeClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
model_options = {**model_options, "model_name": "clip_g"}
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
|
||||
@@ -17,6 +17,7 @@ import comfy.text_encoders.hunyuan_video
|
||||
import comfy.text_encoders.cosmos
|
||||
import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.ace
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
@@ -506,6 +507,22 @@ class SDXL_instructpix2pix(SDXL):
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
|
||||
class LotusD(SD20):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"use_temporal_attention": False,
|
||||
"adm_in_channels": 4,
|
||||
"in_channels": 4,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"num_classes": 'sequential'
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.Lotus(self, device=device)
|
||||
|
||||
class SD3(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"in_channels": 16,
|
||||
@@ -769,6 +786,10 @@ class LTXV(supported_models_base.BASE):
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = (unet_config.get("cross_attention_dim", 2048) / 2048) * 5.5
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.LTXV(self, device=device)
|
||||
return out
|
||||
@@ -931,7 +952,7 @@ class WAN21_T2V(supported_models_base.BASE):
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
@@ -953,12 +974,171 @@ class WAN21_I2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "i2v",
|
||||
"in_dim": 36,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
|
||||
class WAN21_FunControl2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "i2v",
|
||||
"in_dim": 48,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_Camera(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "camera",
|
||||
"in_dim": 32,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
|
||||
return out
|
||||
class WAN21_Vace(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "vace",
|
||||
}
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = 1.2 * self.memory_usage_factor
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2",
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 1.0,
|
||||
}
|
||||
|
||||
memory_usage_factor = 3.5
|
||||
|
||||
clip_vision_prefix = "conditioner.main_image_encoder.model."
|
||||
vae_key_prefix = ["vae."]
|
||||
|
||||
latent_format = latent_formats.Hunyuan3Dv2
|
||||
|
||||
def process_unet_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": "model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Hunyuan3Dv2(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return None
|
||||
|
||||
class Hunyuan3Dv2mini(Hunyuan3Dv2):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2",
|
||||
"depth": 8,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.Hunyuan3Dv2mini
|
||||
|
||||
class HiDream(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hidream",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
}
|
||||
|
||||
# memory_usage_factor = 1.2 # TODO
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HiDream(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return None # TODO
|
||||
|
||||
class Chroma(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "chroma",
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
}
|
||||
|
||||
latent_format = comfy.latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 3.2
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Chroma(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
|
||||
|
||||
class ACEStep(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"audio_model": "ace",
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
latent_format = comfy.latent_formats.ACEAudio
|
||||
|
||||
memory_usage_factor = 0.5
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.ACEStep(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.ace.AceT5Tokenizer, comfy.text_encoders.ace.AceT5Model)
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
153
comfy/text_encoders/ace.py
Normal file
153
comfy/text_encoders/ace.py
Normal file
@@ -0,0 +1,153 @@
|
||||
from comfy import sd1_clip
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
import logging
|
||||
|
||||
from tokenizers import Tokenizer
|
||||
from .ace_text_cleaners import multilingual_cleaners, japanese_to_romaji
|
||||
|
||||
SUPPORT_LANGUAGES = {
|
||||
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
|
||||
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
|
||||
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
|
||||
"ko": 6152, "hi": 6680
|
||||
}
|
||||
|
||||
structure_pattern = re.compile(r"\[.*?\]")
|
||||
|
||||
DEFAULT_VOCAB_FILE = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
|
||||
|
||||
|
||||
class VoiceBpeTokenizer:
|
||||
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE):
|
||||
self.tokenizer = None
|
||||
if vocab_file is not None:
|
||||
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||||
|
||||
def preprocess_text(self, txt, lang):
|
||||
txt = multilingual_cleaners(txt, lang)
|
||||
return txt
|
||||
|
||||
def encode(self, txt, lang='en'):
|
||||
# lang = lang.split("-")[0] # remove the region
|
||||
# self.check_input_length(txt, lang)
|
||||
txt = self.preprocess_text(txt, lang)
|
||||
lang = "zh-cn" if lang == "zh" else lang
|
||||
txt = f"[{lang}]{txt}"
|
||||
txt = txt.replace(" ", "[SPACE]")
|
||||
return self.tokenizer.encode(txt).ids
|
||||
|
||||
def get_lang(self, line):
|
||||
if line.startswith("[") and line[3:4] == ']':
|
||||
lang = line[1:3].lower()
|
||||
if lang in SUPPORT_LANGUAGES:
|
||||
return lang, line[4:]
|
||||
return "en", line
|
||||
|
||||
def __call__(self, string):
|
||||
lines = string.split("\n")
|
||||
lyric_token_idx = [261]
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
lyric_token_idx += [2]
|
||||
continue
|
||||
|
||||
lang, line = self.get_lang(line)
|
||||
|
||||
if lang not in SUPPORT_LANGUAGES:
|
||||
lang = "en"
|
||||
if "zh" in lang:
|
||||
lang = "zh"
|
||||
if "spa" in lang:
|
||||
lang = "es"
|
||||
|
||||
try:
|
||||
line_out = japanese_to_romaji(line)
|
||||
if line_out != line:
|
||||
lang = "ja"
|
||||
line = line_out
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
if structure_pattern.match(line):
|
||||
token_idx = self.encode(line, "en")
|
||||
else:
|
||||
token_idx = self.encode(line, lang)
|
||||
lyric_token_idx = lyric_token_idx + token_idx + [2]
|
||||
except Exception as e:
|
||||
logging.warning("tokenize error {} for line {} major_language {}".format(e, line, lang))
|
||||
return {"input_ids": lyric_token_idx}
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(path, **kwargs):
|
||||
return VoiceBpeTokenizer(path, **kwargs)
|
||||
|
||||
def get_vocab(self):
|
||||
return {}
|
||||
|
||||
|
||||
class UMT5BaseModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_base.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=False, model_options=model_options)
|
||||
|
||||
class UMT5BaseTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=768, embedding_key='umt5base', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class LyricsTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='lyrics', tokenizer_class=VoiceBpeTokenizer, has_start_token=True, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=2, has_end_token=False, tokenizer_data=tokenizer_data)
|
||||
|
||||
class AceT5Tokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.voicebpe = LyricsTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.umt5base = UMT5BaseTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["lyrics"] = self.voicebpe.tokenize_with_weights(kwargs.get("lyrics", ""), return_word_ids, **kwargs)
|
||||
out["umt5base"] = self.umt5base.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.umt5base.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return self.umt5base.state_dict()
|
||||
|
||||
class AceT5Model(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__()
|
||||
self.umt5base = UMT5BaseModel(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes = set()
|
||||
if dtype is not None:
|
||||
self.dtypes.add(dtype)
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.umt5base.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.umt5base.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_umt5base = token_weight_pairs["umt5base"]
|
||||
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
|
||||
|
||||
t5_out, t5_pooled = self.umt5base.encode_token_weights(token_weight_pairs_umt5base)
|
||||
|
||||
lyrics_embeds = torch.tensor(list(map(lambda a: a[0], token_weight_pairs_lyrics[0]))).unsqueeze(0)
|
||||
return t5_out, None, {"conditioning_lyrics": lyrics_embeds}
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.umt5base.load_sd(sd)
|
||||
15535
comfy/text_encoders/ace_lyrics_tokenizer/vocab.json
Normal file
15535
comfy/text_encoders/ace_lyrics_tokenizer/vocab.json
Normal file
File diff suppressed because it is too large
Load Diff
395
comfy/text_encoders/ace_text_cleaners.py
Normal file
395
comfy/text_encoders/ace_text_cleaners.py
Normal file
@@ -0,0 +1,395 @@
|
||||
# basic text cleaners for the ACE step model
|
||||
# I didn't copy the ones from the reference code because I didn't want to deal with the dependencies
|
||||
# TODO: more languages than english?
|
||||
|
||||
import re
|
||||
|
||||
def japanese_to_romaji(japanese_text):
|
||||
"""
|
||||
Convert Japanese hiragana and katakana to romaji (Latin alphabet representation).
|
||||
|
||||
Args:
|
||||
japanese_text (str): Text containing hiragana and/or katakana characters
|
||||
|
||||
Returns:
|
||||
str: The romaji (Latin alphabet) equivalent
|
||||
"""
|
||||
# Dictionary mapping kana characters to their romaji equivalents
|
||||
kana_map = {
|
||||
# Katakana characters
|
||||
'ア': 'a', 'イ': 'i', 'ウ': 'u', 'エ': 'e', 'オ': 'o',
|
||||
'カ': 'ka', 'キ': 'ki', 'ク': 'ku', 'ケ': 'ke', 'コ': 'ko',
|
||||
'サ': 'sa', 'シ': 'shi', 'ス': 'su', 'セ': 'se', 'ソ': 'so',
|
||||
'タ': 'ta', 'チ': 'chi', 'ツ': 'tsu', 'テ': 'te', 'ト': 'to',
|
||||
'ナ': 'na', 'ニ': 'ni', 'ヌ': 'nu', 'ネ': 'ne', 'ノ': 'no',
|
||||
'ハ': 'ha', 'ヒ': 'hi', 'フ': 'fu', 'ヘ': 'he', 'ホ': 'ho',
|
||||
'マ': 'ma', 'ミ': 'mi', 'ム': 'mu', 'メ': 'me', 'モ': 'mo',
|
||||
'ヤ': 'ya', 'ユ': 'yu', 'ヨ': 'yo',
|
||||
'ラ': 'ra', 'リ': 'ri', 'ル': 'ru', 'レ': 're', 'ロ': 'ro',
|
||||
'ワ': 'wa', 'ヲ': 'wo', 'ン': 'n',
|
||||
|
||||
# Katakana voiced consonants
|
||||
'ガ': 'ga', 'ギ': 'gi', 'グ': 'gu', 'ゲ': 'ge', 'ゴ': 'go',
|
||||
'ザ': 'za', 'ジ': 'ji', 'ズ': 'zu', 'ゼ': 'ze', 'ゾ': 'zo',
|
||||
'ダ': 'da', 'ヂ': 'ji', 'ヅ': 'zu', 'デ': 'de', 'ド': 'do',
|
||||
'バ': 'ba', 'ビ': 'bi', 'ブ': 'bu', 'ベ': 'be', 'ボ': 'bo',
|
||||
'パ': 'pa', 'ピ': 'pi', 'プ': 'pu', 'ペ': 'pe', 'ポ': 'po',
|
||||
|
||||
# Katakana combinations
|
||||
'キャ': 'kya', 'キュ': 'kyu', 'キョ': 'kyo',
|
||||
'シャ': 'sha', 'シュ': 'shu', 'ショ': 'sho',
|
||||
'チャ': 'cha', 'チュ': 'chu', 'チョ': 'cho',
|
||||
'ニャ': 'nya', 'ニュ': 'nyu', 'ニョ': 'nyo',
|
||||
'ヒャ': 'hya', 'ヒュ': 'hyu', 'ヒョ': 'hyo',
|
||||
'ミャ': 'mya', 'ミュ': 'myu', 'ミョ': 'myo',
|
||||
'リャ': 'rya', 'リュ': 'ryu', 'リョ': 'ryo',
|
||||
'ギャ': 'gya', 'ギュ': 'gyu', 'ギョ': 'gyo',
|
||||
'ジャ': 'ja', 'ジュ': 'ju', 'ジョ': 'jo',
|
||||
'ビャ': 'bya', 'ビュ': 'byu', 'ビョ': 'byo',
|
||||
'ピャ': 'pya', 'ピュ': 'pyu', 'ピョ': 'pyo',
|
||||
|
||||
# Katakana small characters and special cases
|
||||
'ッ': '', # Small tsu (doubles the following consonant)
|
||||
'ャ': 'ya', 'ュ': 'yu', 'ョ': 'yo',
|
||||
|
||||
# Katakana extras
|
||||
'ヴ': 'vu', 'ファ': 'fa', 'フィ': 'fi', 'フェ': 'fe', 'フォ': 'fo',
|
||||
'ウィ': 'wi', 'ウェ': 'we', 'ウォ': 'wo',
|
||||
|
||||
# Hiragana characters
|
||||
'あ': 'a', 'い': 'i', 'う': 'u', 'え': 'e', 'お': 'o',
|
||||
'か': 'ka', 'き': 'ki', 'く': 'ku', 'け': 'ke', 'こ': 'ko',
|
||||
'さ': 'sa', 'し': 'shi', 'す': 'su', 'せ': 'se', 'そ': 'so',
|
||||
'た': 'ta', 'ち': 'chi', 'つ': 'tsu', 'て': 'te', 'と': 'to',
|
||||
'な': 'na', 'に': 'ni', 'ぬ': 'nu', 'ね': 'ne', 'の': 'no',
|
||||
'は': 'ha', 'ひ': 'hi', 'ふ': 'fu', 'へ': 'he', 'ほ': 'ho',
|
||||
'ま': 'ma', 'み': 'mi', 'む': 'mu', 'め': 'me', 'も': 'mo',
|
||||
'や': 'ya', 'ゆ': 'yu', 'よ': 'yo',
|
||||
'ら': 'ra', 'り': 'ri', 'る': 'ru', 'れ': 're', 'ろ': 'ro',
|
||||
'わ': 'wa', 'を': 'wo', 'ん': 'n',
|
||||
|
||||
# Hiragana voiced consonants
|
||||
'が': 'ga', 'ぎ': 'gi', 'ぐ': 'gu', 'げ': 'ge', 'ご': 'go',
|
||||
'ざ': 'za', 'じ': 'ji', 'ず': 'zu', 'ぜ': 'ze', 'ぞ': 'zo',
|
||||
'だ': 'da', 'ぢ': 'ji', 'づ': 'zu', 'で': 'de', 'ど': 'do',
|
||||
'ば': 'ba', 'び': 'bi', 'ぶ': 'bu', 'べ': 'be', 'ぼ': 'bo',
|
||||
'ぱ': 'pa', 'ぴ': 'pi', 'ぷ': 'pu', 'ぺ': 'pe', 'ぽ': 'po',
|
||||
|
||||
# Hiragana combinations
|
||||
'きゃ': 'kya', 'きゅ': 'kyu', 'きょ': 'kyo',
|
||||
'しゃ': 'sha', 'しゅ': 'shu', 'しょ': 'sho',
|
||||
'ちゃ': 'cha', 'ちゅ': 'chu', 'ちょ': 'cho',
|
||||
'にゃ': 'nya', 'にゅ': 'nyu', 'にょ': 'nyo',
|
||||
'ひゃ': 'hya', 'ひゅ': 'hyu', 'ひょ': 'hyo',
|
||||
'みゃ': 'mya', 'みゅ': 'myu', 'みょ': 'myo',
|
||||
'りゃ': 'rya', 'りゅ': 'ryu', 'りょ': 'ryo',
|
||||
'ぎゃ': 'gya', 'ぎゅ': 'gyu', 'ぎょ': 'gyo',
|
||||
'じゃ': 'ja', 'じゅ': 'ju', 'じょ': 'jo',
|
||||
'びゃ': 'bya', 'びゅ': 'byu', 'びょ': 'byo',
|
||||
'ぴゃ': 'pya', 'ぴゅ': 'pyu', 'ぴょ': 'pyo',
|
||||
|
||||
# Hiragana small characters and special cases
|
||||
'っ': '', # Small tsu (doubles the following consonant)
|
||||
'ゃ': 'ya', 'ゅ': 'yu', 'ょ': 'yo',
|
||||
|
||||
# Common punctuation and spaces
|
||||
' ': ' ', # Japanese space
|
||||
'、': ', ', '。': '. ',
|
||||
}
|
||||
|
||||
result = []
|
||||
i = 0
|
||||
|
||||
while i < len(japanese_text):
|
||||
# Check for small tsu (doubling the following consonant)
|
||||
if i < len(japanese_text) - 1 and (japanese_text[i] == 'っ' or japanese_text[i] == 'ッ'):
|
||||
if i < len(japanese_text) - 1 and japanese_text[i+1] in kana_map:
|
||||
next_romaji = kana_map[japanese_text[i+1]]
|
||||
if next_romaji and next_romaji[0] not in 'aiueon':
|
||||
result.append(next_romaji[0]) # Double the consonant
|
||||
i += 1
|
||||
continue
|
||||
|
||||
# Check for combinations with small ya, yu, yo
|
||||
if i < len(japanese_text) - 1 and japanese_text[i+1] in ('ゃ', 'ゅ', 'ょ', 'ャ', 'ュ', 'ョ'):
|
||||
combo = japanese_text[i:i+2]
|
||||
if combo in kana_map:
|
||||
result.append(kana_map[combo])
|
||||
i += 2
|
||||
continue
|
||||
|
||||
# Regular character
|
||||
if japanese_text[i] in kana_map:
|
||||
result.append(kana_map[japanese_text[i]])
|
||||
else:
|
||||
# If it's not in our map, keep it as is (might be kanji, romaji, etc.)
|
||||
result.append(japanese_text[i])
|
||||
|
||||
i += 1
|
||||
|
||||
return ''.join(result)
|
||||
|
||||
def number_to_text(num, ordinal=False):
|
||||
"""
|
||||
Convert a number (int or float) to its text representation.
|
||||
|
||||
Args:
|
||||
num: The number to convert
|
||||
|
||||
Returns:
|
||||
str: Text representation of the number
|
||||
"""
|
||||
|
||||
if not isinstance(num, (int, float)):
|
||||
return "Input must be a number"
|
||||
|
||||
# Handle special case of zero
|
||||
if num == 0:
|
||||
return "zero"
|
||||
|
||||
# Handle negative numbers
|
||||
negative = num < 0
|
||||
num = abs(num)
|
||||
|
||||
# Handle floats
|
||||
if isinstance(num, float):
|
||||
# Split into integer and decimal parts
|
||||
int_part = int(num)
|
||||
|
||||
# Convert both parts
|
||||
int_text = _int_to_text(int_part)
|
||||
|
||||
# Handle decimal part (convert to string and remove '0.')
|
||||
decimal_str = str(num).split('.')[1]
|
||||
decimal_text = " point " + " ".join(_digit_to_text(int(digit)) for digit in decimal_str)
|
||||
|
||||
result = int_text + decimal_text
|
||||
else:
|
||||
# Handle integers
|
||||
result = _int_to_text(num)
|
||||
|
||||
# Add 'negative' prefix for negative numbers
|
||||
if negative:
|
||||
result = "negative " + result
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def _int_to_text(num):
|
||||
"""Helper function to convert an integer to text"""
|
||||
|
||||
ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine",
|
||||
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen",
|
||||
"seventeen", "eighteen", "nineteen"]
|
||||
|
||||
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
|
||||
|
||||
if num < 20:
|
||||
return ones[num]
|
||||
|
||||
if num < 100:
|
||||
return tens[num // 10] + (" " + ones[num % 10] if num % 10 != 0 else "")
|
||||
|
||||
if num < 1000:
|
||||
return ones[num // 100] + " hundred" + (" " + _int_to_text(num % 100) if num % 100 != 0 else "")
|
||||
|
||||
if num < 1000000:
|
||||
return _int_to_text(num // 1000) + " thousand" + (" " + _int_to_text(num % 1000) if num % 1000 != 0 else "")
|
||||
|
||||
if num < 1000000000:
|
||||
return _int_to_text(num // 1000000) + " million" + (" " + _int_to_text(num % 1000000) if num % 1000000 != 0 else "")
|
||||
|
||||
return _int_to_text(num // 1000000000) + " billion" + (" " + _int_to_text(num % 1000000000) if num % 1000000000 != 0 else "")
|
||||
|
||||
|
||||
def _digit_to_text(digit):
|
||||
"""Convert a single digit to text"""
|
||||
digits = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
||||
return digits[digit]
|
||||
|
||||
|
||||
_whitespace_re = re.compile(r"\s+")
|
||||
|
||||
|
||||
# List of (regular expression, replacement) pairs for abbreviations:
|
||||
_abbreviations = {
|
||||
"en": [
|
||||
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
("mrs", "misess"),
|
||||
("mr", "mister"),
|
||||
("dr", "doctor"),
|
||||
("st", "saint"),
|
||||
("co", "company"),
|
||||
("jr", "junior"),
|
||||
("maj", "major"),
|
||||
("gen", "general"),
|
||||
("drs", "doctors"),
|
||||
("rev", "reverend"),
|
||||
("lt", "lieutenant"),
|
||||
("hon", "honorable"),
|
||||
("sgt", "sergeant"),
|
||||
("capt", "captain"),
|
||||
("esq", "esquire"),
|
||||
("ltd", "limited"),
|
||||
("col", "colonel"),
|
||||
("ft", "fort"),
|
||||
]
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def expand_abbreviations_multilingual(text, lang="en"):
|
||||
for regex, replacement in _abbreviations[lang]:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
_symbols_multilingual = {
|
||||
"en": [
|
||||
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
("&", " and "),
|
||||
("@", " at "),
|
||||
("%", " percent "),
|
||||
("#", " hash "),
|
||||
("$", " dollar "),
|
||||
("£", " pound "),
|
||||
("°", " degree "),
|
||||
]
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
def expand_symbols_multilingual(text, lang="en"):
|
||||
for regex, replacement in _symbols_multilingual[lang]:
|
||||
text = re.sub(regex, replacement, text)
|
||||
text = text.replace(" ", " ") # Ensure there are no double spaces
|
||||
return text.strip()
|
||||
|
||||
|
||||
_ordinal_re = {
|
||||
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
|
||||
}
|
||||
_number_re = re.compile(r"[0-9]+")
|
||||
_currency_re = {
|
||||
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
|
||||
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
|
||||
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
|
||||
}
|
||||
|
||||
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
|
||||
_dot_number_re = re.compile(r"\b\d{1,3}(.\d{3})*(\,\d+)?\b")
|
||||
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
|
||||
|
||||
|
||||
def _remove_commas(m):
|
||||
text = m.group(0)
|
||||
if "," in text:
|
||||
text = text.replace(",", "")
|
||||
return text
|
||||
|
||||
|
||||
def _remove_dots(m):
|
||||
text = m.group(0)
|
||||
if "." in text:
|
||||
text = text.replace(".", "")
|
||||
return text
|
||||
|
||||
|
||||
def _expand_decimal_point(m, lang="en"):
|
||||
amount = m.group(1).replace(",", ".")
|
||||
return number_to_text(float(amount))
|
||||
|
||||
|
||||
def _expand_currency(m, lang="en", currency="USD"):
|
||||
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
|
||||
full_amount = number_to_text(amount)
|
||||
|
||||
and_equivalents = {
|
||||
"en": ", ",
|
||||
"es": " con ",
|
||||
"fr": " et ",
|
||||
"de": " und ",
|
||||
"pt": " e ",
|
||||
"it": " e ",
|
||||
"pl": ", ",
|
||||
"cs": ", ",
|
||||
"ru": ", ",
|
||||
"nl": ", ",
|
||||
"ar": ", ",
|
||||
"tr": ", ",
|
||||
"hu": ", ",
|
||||
"ko": ", ",
|
||||
}
|
||||
|
||||
if amount.is_integer():
|
||||
last_and = full_amount.rfind(and_equivalents[lang])
|
||||
if last_and != -1:
|
||||
full_amount = full_amount[:last_and]
|
||||
|
||||
return full_amount
|
||||
|
||||
|
||||
def _expand_ordinal(m, lang="en"):
|
||||
return number_to_text(int(m.group(1)), ordinal=True)
|
||||
|
||||
|
||||
def _expand_number(m, lang="en"):
|
||||
return number_to_text(int(m.group(0)))
|
||||
|
||||
|
||||
def expand_numbers_multilingual(text, lang="en"):
|
||||
if lang in ["en", "ru"]:
|
||||
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||
else:
|
||||
text = re.sub(_dot_number_re, _remove_dots, text)
|
||||
try:
|
||||
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
|
||||
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
|
||||
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
|
||||
except:
|
||||
pass
|
||||
|
||||
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
|
||||
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
|
||||
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
|
||||
return text
|
||||
|
||||
|
||||
def lowercase(text):
|
||||
return text.lower()
|
||||
|
||||
|
||||
def collapse_whitespace(text):
|
||||
return re.sub(_whitespace_re, " ", text)
|
||||
|
||||
|
||||
def multilingual_cleaners(text, lang):
|
||||
text = text.replace('"', "")
|
||||
if lang == "tr":
|
||||
text = text.replace("İ", "i")
|
||||
text = text.replace("Ö", "ö")
|
||||
text = text.replace("Ü", "ü")
|
||||
text = lowercase(text)
|
||||
try:
|
||||
text = expand_numbers_multilingual(text, lang)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
text = expand_abbreviations_multilingual(text, lang)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
text = expand_symbols_multilingual(text, lang=lang)
|
||||
except:
|
||||
pass
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def basic_cleaners(text):
|
||||
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
||||
text = lowercase(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
@@ -11,7 +11,7 @@ class PT5XlModel(sd1_clip.SDClipModel):
|
||||
class PT5XlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data)
|
||||
|
||||
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -22,7 +22,7 @@ class CosmosT5XXL(sd1_clip.SD1ClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
@@ -9,19 +9,18 @@ import os
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class FluxTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -35,8 +34,7 @@ class FluxClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_t5])
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ class MochiT5XXL(sd1_clip.SD1ClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
155
comfy/text_encoders/hidream.py
Normal file
155
comfy/text_encoders/hidream.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from . import hunyuan_video
|
||||
from . import sd3_clip
|
||||
from comfy import sd1_clip
|
||||
from comfy import sdxl_clip
|
||||
import comfy.model_management
|
||||
import torch
|
||||
import logging
|
||||
|
||||
|
||||
class HiDreamTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
|
||||
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
|
||||
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
|
||||
class HiDreamTEModel(torch.nn.Module):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=True, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_l = None
|
||||
|
||||
if clip_g:
|
||||
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_g = None
|
||||
|
||||
if t5:
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
self.t5xxl = sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=True)
|
||||
self.dtypes.add(dtype_t5)
|
||||
else:
|
||||
self.t5xxl = None
|
||||
|
||||
if llama:
|
||||
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
|
||||
if "vocab_size" not in model_options:
|
||||
model_options["vocab_size"] = 128256
|
||||
self.llama = hunyuan_video.LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None, special_tokens={"start": 128000, "pad": 128009})
|
||||
self.dtypes.add(dtype_llama)
|
||||
else:
|
||||
self.llama = None
|
||||
|
||||
logging.debug("Created HiDream text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}, llama {}:{}".format(clip_l, clip_g, t5, dtype_t5, llama, dtype_llama))
|
||||
|
||||
def set_clip_options(self, options):
|
||||
if self.clip_l is not None:
|
||||
self.clip_l.set_clip_options(options)
|
||||
if self.clip_g is not None:
|
||||
self.clip_g.set_clip_options(options)
|
||||
if self.t5xxl is not None:
|
||||
self.t5xxl.set_clip_options(options)
|
||||
if self.llama is not None:
|
||||
self.llama.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
if self.clip_l is not None:
|
||||
self.clip_l.reset_clip_options()
|
||||
if self.clip_g is not None:
|
||||
self.clip_g.reset_clip_options()
|
||||
if self.t5xxl is not None:
|
||||
self.t5xxl.reset_clip_options()
|
||||
if self.llama is not None:
|
||||
self.llama.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
|
||||
token_weight_pairs_llama = token_weight_pairs["llama"]
|
||||
lg_out = None
|
||||
pooled = None
|
||||
extra = {}
|
||||
|
||||
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
|
||||
if self.clip_l is not None:
|
||||
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
else:
|
||||
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
|
||||
|
||||
if self.clip_g is not None:
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
else:
|
||||
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
|
||||
|
||||
if self.t5xxl is not None:
|
||||
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_out, t5_pooled = t5_output[:2]
|
||||
else:
|
||||
t5_out = None
|
||||
|
||||
if self.llama is not None:
|
||||
ll_output = self.llama.encode_token_weights(token_weight_pairs_llama)
|
||||
ll_out, ll_pooled = ll_output[:2]
|
||||
ll_out = ll_out[:, 1:]
|
||||
else:
|
||||
ll_out = None
|
||||
|
||||
if t5_out is None:
|
||||
t5_out = torch.zeros((1, 128, 4096), device=comfy.model_management.intermediate_device())
|
||||
|
||||
if ll_out is None:
|
||||
ll_out = torch.zeros((1, 32, 1, 4096), device=comfy.model_management.intermediate_device())
|
||||
|
||||
if pooled is None:
|
||||
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
extra["conditioning_llama3"] = ll_out
|
||||
return t5_out, pooled, extra
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
return self.clip_g.load_sd(sd)
|
||||
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
return self.clip_l.load_sd(sd)
|
||||
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
else:
|
||||
return self.llama.load_sd(sd)
|
||||
|
||||
|
||||
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
|
||||
class HiDreamTEModel_(HiDreamTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
return HiDreamTEModel_
|
||||
@@ -21,42 +21,47 @@ def llama_detect(state_dict, prefix=""):
|
||||
|
||||
|
||||
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256, pad_token=128258):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=pad_token, min_length=min_length, tokenizer_data=tokenizer_data)
|
||||
|
||||
class LLAMAModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
|
||||
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
textmodel_json_config = {}
|
||||
vocab_size = model_options.get("vocab_size", None)
|
||||
if vocab_size is not None:
|
||||
textmodel_json_config["vocab_size"] = vocab_size
|
||||
|
||||
model_options = {**model_options, "model_name": "llama"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens=special_tokens, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class HunyuanVideoTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
|
||||
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
|
||||
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, **kwargs):
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
|
||||
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids, **kwargs)
|
||||
embed_count = 0
|
||||
for r in llama_text_tokens:
|
||||
for i in range(len(r)):
|
||||
if r[i][0] == 128257:
|
||||
if image_embeds is not None and embed_count < image_embeds.shape[0]:
|
||||
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:]
|
||||
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image", "image_interleave": image_interleave},) + r[i][1:]
|
||||
embed_count += 1
|
||||
out["llama"] = llama_text_tokens
|
||||
return out
|
||||
@@ -72,8 +77,7 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_llama])
|
||||
|
||||
@@ -92,10 +96,10 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
|
||||
|
||||
template_end = 0
|
||||
image_start = None
|
||||
image_end = None
|
||||
extra_template_end = 0
|
||||
extra_sizes = 0
|
||||
user_end = 9999999999999
|
||||
images = []
|
||||
|
||||
tok_pairs = token_weight_pairs_llama[0]
|
||||
for i, v in enumerate(tok_pairs):
|
||||
@@ -112,22 +116,28 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
else:
|
||||
if elem.get("original_type") == "image":
|
||||
elem_size = elem.get("data").shape[0]
|
||||
if image_start is None:
|
||||
if template_end > 0:
|
||||
if user_end == -1:
|
||||
extra_template_end += elem_size - 1
|
||||
else:
|
||||
image_start = i + extra_sizes
|
||||
image_end = i + elem_size + extra_sizes
|
||||
extra_sizes += elem_size - 1
|
||||
images.append((image_start, image_end, elem.get("image_interleave", 1)))
|
||||
extra_sizes += elem_size - 1
|
||||
|
||||
if llama_out.shape[1] > (template_end + 2):
|
||||
if tok_pairs[template_end + 1][0] == 271:
|
||||
template_end += 2
|
||||
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes]
|
||||
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes]
|
||||
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
|
||||
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
|
||||
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
|
||||
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
|
||||
|
||||
if image_start is not None:
|
||||
image_output = llama_out[:, image_start: image_end]
|
||||
llama_output = torch.cat([image_output[:, ::2], llama_output], dim=1)
|
||||
if len(images) > 0:
|
||||
out = []
|
||||
for i in images:
|
||||
out.append(llama_out[:, i[0]: i[1]: i[2]])
|
||||
llama_output = torch.cat(out + [llama_output], dim=1)
|
||||
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
return llama_output, l_pooled, llama_extra_out
|
||||
|
||||
@@ -9,24 +9,26 @@ import torch
|
||||
class HyditBertModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
|
||||
model_options = {**model_options, "model_name": "hydit_clip"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class MT5XLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
|
||||
model_options = {**model_options, "model_name": "mt5xl"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
@@ -35,12 +37,12 @@ class HyditTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
|
||||
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
|
||||
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||||
self.mt5xl = MT5XLTokenizer(tokenizer_data={**tokenizer_data, "spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
|
||||
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
|
||||
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
|
||||
@@ -268,11 +268,17 @@ class Llama2_(nn.Module):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
intermediate = None
|
||||
all_intermediate = None
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
if intermediate_output == "all":
|
||||
all_intermediate = []
|
||||
intermediate_output = None
|
||||
elif intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
x = layer(
|
||||
x=x,
|
||||
attention_mask=mask,
|
||||
@@ -283,6 +289,12 @@ class Llama2_(nn.Module):
|
||||
intermediate = x.clone()
|
||||
|
||||
x = self.norm(x)
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
|
||||
if all_intermediate is not None:
|
||||
intermediate = torch.cat(all_intermediate, dim=1)
|
||||
|
||||
if intermediate is not None and final_layer_norm_intermediate:
|
||||
intermediate = self.norm(intermediate)
|
||||
|
||||
|
||||
@@ -1,30 +1,27 @@
|
||||
from comfy import sd1_clip
|
||||
import os
|
||||
|
||||
class LongClipTokenizer_(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
class LongClipModel_(sd1_clip.SDClipModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
|
||||
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
|
||||
|
||||
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
|
||||
|
||||
class LongClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
|
||||
|
||||
def model_options_long_clip(sd, tokenizer_data, model_options):
|
||||
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
|
||||
if w is None:
|
||||
w = sd.get("clip_g.text_model.embeddings.position_embedding.weight", None)
|
||||
else:
|
||||
model_name = "clip_g"
|
||||
|
||||
if w is None:
|
||||
w = sd.get("text_model.embeddings.position_embedding.weight", None)
|
||||
if w is not None and w.shape[0] == 248:
|
||||
if w is not None:
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
model_name = "clip_g"
|
||||
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
model_name = "clip_l"
|
||||
else:
|
||||
model_name = "clip_l"
|
||||
|
||||
if w is not None:
|
||||
tokenizer_data = tokenizer_data.copy()
|
||||
model_options = model_options.copy()
|
||||
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
|
||||
model_options["clip_l_class"] = LongClipModel_
|
||||
model_config = model_options.get("model_config", {})
|
||||
model_config["max_position_embeddings"] = w.shape[0]
|
||||
model_options["{}_model_config".format(model_name)] = model_config
|
||||
tokenizer_data["{}_max_length".format(model_name)] = w.shape[0]
|
||||
return tokenizer_data, model_options
|
||||
|
||||
@@ -6,7 +6,7 @@ import comfy.text_encoders.genmo
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128?
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128?
|
||||
|
||||
|
||||
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
@@ -6,7 +6,7 @@ import comfy.text_encoders.llama
|
||||
class Gemma2BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False})
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
@@ -24,7 +24,7 @@ class PixArtT5XXL(sd1_clip.SD1ClipModel):
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
|
||||
|
||||
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -11,7 +11,7 @@ class T5BaseModel(sd1_clip.SDClipModel):
|
||||
class T5BaseTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data)
|
||||
|
||||
class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -12,7 +12,7 @@ class SD2ClipHModel(sd1_clip.SDClipModel):
|
||||
|
||||
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='clip_h', tokenizer_data=tokenizer_data)
|
||||
|
||||
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
|
||||
@@ -15,6 +15,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
|
||||
model_options = {**model_options, "model_name": "t5xxl"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
@@ -31,23 +32,22 @@ def t5_xxl_detect(state_dict, prefix=""):
|
||||
return out
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77, max_length=99999999):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=max_length, min_length=min_length, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class SD3Tokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
@@ -61,8 +61,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_l = None
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import os
|
||||
|
||||
class SPieceTokenizer:
|
||||
@staticmethod
|
||||
@@ -15,6 +16,8 @@ class SPieceTokenizer:
|
||||
if isinstance(tokenizer_path, bytes):
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
|
||||
else:
|
||||
if not os.path.isfile(tokenizer_path):
|
||||
raise ValueError("invalid tokenizer")
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
|
||||
|
||||
def get_vocab(self):
|
||||
|
||||
22
comfy/text_encoders/umt5_config_base.json
Normal file
22
comfy/text_encoders/umt5_config_base.json
Normal file
@@ -0,0 +1,22 @@
|
||||
{
|
||||
"d_ff": 2048,
|
||||
"d_kv": 64,
|
||||
"d_model": 768,
|
||||
"decoder_start_token_id": 0,
|
||||
"dropout_rate": 0.1,
|
||||
"eos_token_id": 1,
|
||||
"dense_act_fn": "gelu_pytorch_tanh",
|
||||
"initializer_factor": 1.0,
|
||||
"is_encoder_decoder": true,
|
||||
"is_gated_act": true,
|
||||
"layer_norm_epsilon": 1e-06,
|
||||
"model_type": "umt5",
|
||||
"num_decoder_layers": 12,
|
||||
"num_heads": 12,
|
||||
"num_layers": 12,
|
||||
"output_past": true,
|
||||
"pad_token_id": 0,
|
||||
"relative_attention_num_buckets": 32,
|
||||
"tie_word_embeddings": false,
|
||||
"vocab_size": 256384
|
||||
}
|
||||
@@ -11,7 +11,7 @@ class UMT5XXlModel(sd1_clip.SDClipModel):
|
||||
class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
@@ -28,6 +28,9 @@ import logging
|
||||
import itertools
|
||||
from torch.nn.functional import interpolate
|
||||
from einops import rearrange
|
||||
from comfy.cli_args import args
|
||||
|
||||
MMAP_TORCH_FILES = args.mmap_torch_files
|
||||
|
||||
ALWAYS_SAFE_LOAD = False
|
||||
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
|
||||
@@ -67,12 +70,14 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
|
||||
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt/incomplete. Check the file size and make sure you have copied/downloaded it correctly.".format(message, ckpt))
|
||||
raise e
|
||||
else:
|
||||
torch_args = {}
|
||||
if MMAP_TORCH_FILES:
|
||||
torch_args["mmap"] = True
|
||||
|
||||
if safe_load or ALWAYS_SAFE_LOAD:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
|
||||
else:
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
|
||||
if "global_step" in pl_sd:
|
||||
logging.debug(f"Global Step: {pl_sd['global_step']}")
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
|
||||
17
comfy/weight_adapter/__init__.py
Normal file
17
comfy/weight_adapter/__init__.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from .base import WeightAdapterBase
|
||||
from .lora import LoRAAdapter
|
||||
from .loha import LoHaAdapter
|
||||
from .lokr import LoKrAdapter
|
||||
from .glora import GLoRAAdapter
|
||||
from .oft import OFTAdapter
|
||||
from .boft import BOFTAdapter
|
||||
|
||||
|
||||
adapters: list[type[WeightAdapterBase]] = [
|
||||
LoRAAdapter,
|
||||
LoHaAdapter,
|
||||
LoKrAdapter,
|
||||
GLoRAAdapter,
|
||||
OFTAdapter,
|
||||
BOFTAdapter,
|
||||
]
|
||||
104
comfy/weight_adapter/base.py
Normal file
104
comfy/weight_adapter/base.py
Normal file
@@ -0,0 +1,104 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.model_management
|
||||
|
||||
|
||||
class WeightAdapterBase:
|
||||
name: str
|
||||
loaded_keys: set[str]
|
||||
weights: list[torch.Tensor]
|
||||
|
||||
@classmethod
|
||||
def load(cls, x: str, lora: dict[str, torch.Tensor]) -> Optional["WeightAdapterBase"]:
|
||||
raise NotImplementedError
|
||||
|
||||
def to_train(self) -> "WeightAdapterTrainBase":
|
||||
raise NotImplementedError
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class WeightAdapterTrainBase(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
# [TODO] Collaborate with LoRA training PR #7032
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
|
||||
wd_on_output_axis = dora_scale.shape[0] == weight_calc.shape[0]
|
||||
if wd_on_output_axis:
|
||||
weight_norm = (
|
||||
weight.reshape(weight.shape[0], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight.shape[0], *[1] * (weight.dim() - 1))
|
||||
)
|
||||
else:
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
weight_norm = weight_norm + torch.finfo(weight.dtype).eps
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): The original tensor to be padded.
|
||||
new_shape (List[int]): The desired shape of the padded tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A new tensor padded with zeros to the specified shape.
|
||||
|
||||
Note:
|
||||
If the new shape is smaller than the original tensor in any dimension,
|
||||
the original tensor will be truncated in that dimension.
|
||||
"""
|
||||
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
|
||||
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
|
||||
|
||||
if len(new_shape) != len(tensor.shape):
|
||||
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
|
||||
|
||||
# Create a new tensor filled with zeros
|
||||
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
|
||||
|
||||
# Create slicing tuples for both tensors
|
||||
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
|
||||
# Copy the original tensor into the new tensor
|
||||
padded_tensor[new_slices] = tensor[orig_slices]
|
||||
|
||||
return padded_tensor
|
||||
115
comfy/weight_adapter/boft.py
Normal file
115
comfy/weight_adapter/boft.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class BOFTAdapter(WeightAdapterBase):
|
||||
name = "boft"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["BOFTAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
blocks_name = "{}.oft_blocks".format(x)
|
||||
rescale_name = "{}.rescale".format(x)
|
||||
|
||||
blocks = None
|
||||
if blocks_name in lora.keys():
|
||||
blocks = lora[blocks_name]
|
||||
if blocks.ndim == 4:
|
||||
loaded_keys.add(blocks_name)
|
||||
else:
|
||||
blocks = None
|
||||
if blocks is None:
|
||||
return None
|
||||
|
||||
rescale = None
|
||||
if rescale_name in lora.keys():
|
||||
rescale = lora[rescale_name]
|
||||
loaded_keys.add(rescale_name)
|
||||
|
||||
weights = (blocks, rescale, alpha, dora_scale)
|
||||
return cls(loaded_keys, weights)
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
blocks = v[0]
|
||||
rescale = v[1]
|
||||
alpha = v[2]
|
||||
dora_scale = v[3]
|
||||
|
||||
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
|
||||
if rescale is not None:
|
||||
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype)
|
||||
|
||||
boft_m, block_num, boft_b, *_ = blocks.shape
|
||||
|
||||
try:
|
||||
# Get r
|
||||
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype)
|
||||
# for Q = -Q^T
|
||||
q = blocks - blocks.transpose(-1, -2)
|
||||
normed_q = q
|
||||
if alpha > 0: # alpha in boft/bboft is for constraint
|
||||
q_norm = torch.norm(q) + 1e-8
|
||||
if q_norm > alpha:
|
||||
normed_q = q * alpha / q_norm
|
||||
# use float() to prevent unsupported type in .inverse()
|
||||
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
||||
r = r.to(weight)
|
||||
inp = org = weight
|
||||
|
||||
r_b = boft_b//2
|
||||
for i in range(boft_m):
|
||||
bi = r[i]
|
||||
g = 2
|
||||
k = 2**i * r_b
|
||||
if strength != 1:
|
||||
bi = bi * strength + (1-strength) * I
|
||||
inp = (
|
||||
inp.unflatten(0, (-1, g, k))
|
||||
.transpose(1, 2)
|
||||
.flatten(0, 2)
|
||||
.unflatten(0, (-1, boft_b))
|
||||
)
|
||||
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp)
|
||||
inp = (
|
||||
inp.flatten(0, 1).unflatten(0, (-1, k, g)).transpose(1, 2).flatten(0, 2)
|
||||
)
|
||||
|
||||
if rescale is not None:
|
||||
inp = inp * rescale
|
||||
|
||||
lora_diff = inp - org
|
||||
lora_diff = comfy.model_management.cast_to_device(lora_diff, weight.device, intermediate_dtype)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function((strength * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
93
comfy/weight_adapter/glora.py
Normal file
93
comfy/weight_adapter/glora.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class GLoRAAdapter(WeightAdapterBase):
|
||||
name = "glora"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["GLoRAAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
weights = (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
100
comfy/weight_adapter/loha.py
Normal file
100
comfy/weight_adapter/loha.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class LoHaAdapter(WeightAdapterBase):
|
||||
name = "loha"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["LoHaAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
133
comfy/weight_adapter/lokr.py
Normal file
133
comfy/weight_adapter/lokr.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
|
||||
|
||||
class LoKrAdapter(WeightAdapterBase):
|
||||
name = "lokr"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["LoKrAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
weights = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
142
comfy/weight_adapter/lora.py
Normal file
142
comfy/weight_adapter/lora.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose, pad_tensor_to_shape
|
||||
|
||||
|
||||
class LoRAAdapter(WeightAdapterBase):
|
||||
name = "lora"
|
||||
|
||||
def __init__(self, loaded_keys, weights):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
x: str,
|
||||
lora: dict[str, torch.Tensor],
|
||||
alpha: float,
|
||||
dora_scale: torch.Tensor,
|
||||
loaded_keys: set[str] = None,
|
||||
) -> Optional["LoRAAdapter"]:
|
||||
if loaded_keys is None:
|
||||
loaded_keys = set()
|
||||
|
||||
reshape_name = "{}.reshape_weight".format(x)
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif mochi_lora in lora.keys():
|
||||
A_name = mochi_lora
|
||||
B_name = "{}.lora_A".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name = "{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
reshape = None
|
||||
if reshape_name in lora.keys():
|
||||
try:
|
||||
reshape = lora[reshape_name].tolist()
|
||||
loaded_keys.add(reshape_name)
|
||||
except:
|
||||
pass
|
||||
weights = (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape)
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
return cls(loaded_keys, weights)
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
key,
|
||||
strength,
|
||||
strength_model,
|
||||
offset,
|
||||
function,
|
||||
intermediate_dtype=torch.float32,
|
||||
original_weight=None,
|
||||
):
|
||||
v = self.weights
|
||||
mat1 = comfy.model_management.cast_to_device(
|
||||
v[0], weight.device, intermediate_dtype
|
||||
)
|
||||
mat2 = comfy.model_management.cast_to_device(
|
||||
v[1], weight.device, intermediate_dtype
|
||||
)
|
||||
dora_scale = v[4]
|
||||
reshape = v[5]
|
||||
|
||||
if reshape is not None:
|
||||
weight = pad_tensor_to_shape(weight, reshape)
|
||||
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
# locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(
|
||||
v[3], weight.device, intermediate_dtype
|
||||
)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = (
|
||||
torch.mm(
|
||||
mat2.transpose(0, 1).flatten(start_dim=1),
|
||||
mat3.transpose(0, 1).flatten(start_dim=1),
|
||||
)
|
||||
.reshape(final_shape)
|
||||
.transpose(0, 1)
|
||||
)
|
||||
try:
|
||||
lora_diff = torch.mm(
|
||||
mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)
|
||||
).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(
|
||||
dora_scale,
|
||||
weight,
|
||||
lora_diff,
|
||||
alpha,
|
||||
strength,
|
||||
intermediate_dtype,
|
||||
function,
|
||||
)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||
return weight
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user