Compare commits

...

21 Commits

Author SHA1 Message Date
comfyanonymous
8e69e2ddfd Bump ComfyUI version to v0.3.17 2025-02-26 17:59:10 -05:00
comfyanonymous
0270a0b41c Reduce artifacts on Wan by doing the patch embedding in fp32. 2025-02-26 16:59:26 -05:00
comfyanonymous
26c7baf789 Bump ComfyUI version to v0.3.16 2025-02-26 14:30:32 -05:00
comfyanonymous
c37f15f98e Add fast preview support for Wan models. 2025-02-26 08:56:23 -05:00
comfyanonymous
4bca7367f3 Don't try to use clip_fea on t2v model. 2025-02-26 08:38:09 -05:00
comfyanonymous
b6fefe686b Better wan memory estimation. 2025-02-26 07:51:22 -05:00
comfyanonymous
fa62287f1f More code reuse in wan.
Fix bug when changing the compute dtype on wan.
2025-02-26 05:22:29 -05:00
comfyanonymous
0844998db3 Slightly better wan i2v mask implementation. 2025-02-26 03:49:50 -05:00
comfyanonymous
4ced06b879 WIP support for Wan I2V model. 2025-02-26 01:49:43 -05:00
comfyanonymous
cb06e9669b Wan seems to work with fp16. 2025-02-25 21:37:12 -05:00
comfyanonymous
0c32f82298 Fix missing frames in SaveWEBM node. 2025-02-25 20:21:03 -05:00
Yoland Yan
189da3726d Update README.md (#6960) 2025-02-25 17:17:18 -08:00
comfyanonymous
9a66bb972d Make wan work with all latent resolutions.
Cleanup some code.
2025-02-25 19:56:04 -05:00
comfyanonymous
ea0f939df3 Fix issue with wan and other attention implementations. 2025-02-25 19:13:39 -05:00
comfyanonymous
f37551c1d2 Change wan rope implementation to the flux one.
Should be more compatible.
2025-02-25 19:11:14 -05:00
comfyanonymous
63023011b9 WIP support for Wan t2v model. 2025-02-25 17:20:35 -05:00
comfyanonymous
f40076096e Cleanup some lumina te code. 2025-02-25 04:10:26 -05:00
comfyanonymous
96d891cb94 Speedup on some models by not upcasting bfloat16 to float32 on mac. 2025-02-24 05:41:32 -05:00
Robin Huang
4553891bbd Update installation documentation to include desktop + cli. (#6899)
* Update installation documentation.

* Add portable to description.

* Move cli further down.
2025-02-23 19:13:39 -05:00
comfyanonymous
ace899e71a Prioritize fp16 compute when using allow_fp16_accumulation 2025-02-23 04:45:54 -05:00
comfyanonymous
aff16532d4 Remove some useless code. 2025-02-22 04:45:14 -05:00
19 changed files with 1400 additions and 42 deletions

View File

@@ -1,7 +1,7 @@
<div align="center">
# ComfyUI
**The most powerful and modular diffusion model GUI and backend.**
**The most powerful and modular visual AI engine and application.**
[![Website][website-shield]][website-url]
@@ -31,10 +31,24 @@
![ComfyUI Screenshot](https://github.com/user-attachments/assets/7ccaf2c1-9b72-41ae-9a89-5688c94b7abe)
</div>
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
ComfyUI lets you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. Available on Windows, Linux, and macOS.
## Get Started
#### [Desktop Application](https://www.comfy.org/download)
- The easiest way to get started.
- Available on Windows & macOS.
#### [Windows Portable Package](#installing)
- Get the latest commits and completely portable.
- Available on Windows.
#### [Manual Install](#manual-install-windows-linux)
Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon, Ascend).
## Examples
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
### [Installing ComfyUI](#installing)
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
@@ -121,7 +135,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
# Installing
## Windows
## Windows Portable
There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases).
@@ -141,6 +155,15 @@ See the [Config file](extra_model_paths.yaml.example) to set the search paths fo
To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb)
## [comfy-cli](https://docs.comfy.org/comfy-cli/getting-started)
You can install and start ComfyUI using comfy-cli:
```bash
pip install comfy-cli
comfy install
```
## Manual Install (Windows, Linux)
python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet.

View File

@@ -407,3 +407,52 @@ class Cosmos1CV8x8x8(LatentFormat):
]
latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
class Wan21(LatentFormat):
latent_channels = 16
latent_dimensions = 3
latent_rgb_factors = [
[-0.1299, -0.1692, 0.2932],
[ 0.0671, 0.0406, 0.0442],
[ 0.3568, 0.2548, 0.1747],
[ 0.0372, 0.2344, 0.1420],
[ 0.0313, 0.0189, -0.0328],
[ 0.0296, -0.0956, -0.0665],
[-0.3477, -0.4059, -0.2925],
[ 0.0166, 0.1902, 0.1975],
[-0.0412, 0.0267, -0.1364],
[-0.1293, 0.0740, 0.1636],
[ 0.0680, 0.3019, 0.1128],
[ 0.0032, 0.0581, 0.0639],
[-0.1251, 0.0927, 0.1699],
[ 0.0060, -0.0633, 0.0005],
[ 0.3477, 0.2275, 0.2950],
[ 0.1984, 0.0913, 0.1861]
]
latent_rgb_factors_bias = [-0.1835, -0.0868, -0.3360]
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean

View File

@@ -30,38 +30,24 @@ ops = comfy.ops.disable_weight_init
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
def get_attn_precision(attn_precision):
def get_attn_precision(attn_precision, current_dtype):
if args.dont_upcast_attention:
return None
if FORCE_UPCAST_ATTENTION_DTYPE is not None:
return FORCE_UPCAST_ATTENTION_DTYPE
if FORCE_UPCAST_ATTENTION_DTYPE is not None and current_dtype in FORCE_UPCAST_ATTENTION_DTYPE:
return FORCE_UPCAST_ATTENTION_DTYPE[current_dtype]
return attn_precision
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
@@ -96,7 +82,7 @@ def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision)
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
b, _, _, dim_head = q.shape
@@ -165,7 +151,7 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision)
attn_precision = get_attn_precision(attn_precision, query.dtype)
if skip_reshape:
b, _, _, dim_head = query.shape
@@ -235,7 +221,7 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision)
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
b, _, _, dim_head = q.shape

485
comfy/ldm/wan/model.py Normal file
View File

@@ -0,0 +1,485 @@
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import torch
import torch.nn as nn
from einops import repeat
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
import comfy.ldm.common_dit
import comfy.model_management
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float32)
# calculation
sinusoid = torch.outer(
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
class WanSelfAttention(nn.Module):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6, operation_settings={}):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
# layers
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n * d)
return q, k, v
q, k, v = qkv_fn(x)
q, k = apply_rope(q, k, freqs)
x = optimized_attention(
q.view(b, s, n * d),
k.view(b, s, n * d),
v,
heads=self.num_heads,
)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
# compute query, key, value
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(context))
v = self.v(context)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6, operation_settings={}):
super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings)
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
context_img = context[:, :257]
context = context[:, 257:]
# compute query, key, value
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(context))
v = self.v(context)
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
# output
x = x + img_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
't2v_cross_attn': WanT2VCrossAttention,
'i2v_cross_attn': WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6, operation_settings={}):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
eps, operation_settings=operation_settings)
self.norm3 = operation_settings.get("operations").LayerNorm(
dim, eps,
elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
num_heads,
(-1, -1),
qk_norm,
eps, operation_settings=operation_settings)
self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn = nn.Sequential(
operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
# modulation
self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
def forward(
self,
x,
e,
freqs,
context,
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
# assert e.dtype == torch.float32
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
self.norm1(x) * (1 + e[1]) + e[0],
freqs)
x = x + y * e[2]
# cross-attention & ffn function
def cross_attn_ffn(x, context, e):
x = x + self.cross_attn(self.norm3(x), context)
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
x = x + y * e[5]
return x
x = cross_attn_ffn(x, context, e)
return x
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# modulation
self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
# assert e.dtype == torch.float32
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim, operation_settings={}):
super().__init__()
self.proj = torch.nn.Sequential(
operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanModel(torch.nn.Module):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
image_model=None,
device=None,
dtype=None,
operations=None,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# embeddings
self.patch_embedding = operations.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32)
self.text_embedding = nn.Sequential(
operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
self.time_embedding = nn.Sequential(
operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
for _ in range(num_layers)
])
# head
self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings)
d = dim // num_heads
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
else:
self.img_emb = None
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
freqs=None,
):
r"""
Forward pass through the diffusion model
Args:
x (Tensor):
List of input video tensors with shape [B, C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [B, L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(torch.cat([context, context.new_zeros(context.size(0), self.text_len - context.size(1), context.size(2))], dim=1))
if clip_fea is not None and self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
freqs=freqs,
context=context)
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
# return [u.float() for u in x]
def forward(self, x, timestep, context, clip_fea=None, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8]
"""
c = self.out_dim
u = x
b = u.shape[0]
u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c)
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
return u

567
comfy/ldm/wan/vae.py Normal file
View File

@@ -0,0 +1,567 @@
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/vae.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from comfy.ldm.modules.diffusionmodules.model import vae_attention
import comfy.ops
ops = comfy.ops.disable_weight_init
CACHE_T = 2
class CausalConv3d(ops.Conv3d):
"""
Causal 3d convolusion.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = (self.padding[2], self.padding[2], self.padding[1],
self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
x = F.pad(x, padding)
return super().forward(x)
class RMS_norm(nn.Module):
def __init__(self, dim, channel_first=True, images=True, bias=False):
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else None
def forward(self, x):
return F.normalize(
x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma.to(x) + (self.bias.to(x) if self.bias is not None else 0)
class Upsample(nn.Upsample):
def forward(self, x):
"""
Fix bfloat16 support for nearest neighbor interpolation.
"""
return super().forward(x.float()).type_as(x)
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
'downsample3d')
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == 'upsample2d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
ops.Conv2d(dim, dim // 2, 3, padding=1))
elif mode == 'upsample3d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
ops.Conv2d(dim, dim // 2, 3, padding=1))
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == 'downsample2d':
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
elif mode == 'downsample3d':
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == 'upsample3d':
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = 'Rep'
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[
idx] is not None and feat_cache[idx] != 'Rep':
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
if cache_x.shape[2] < 2 and feat_cache[
idx] is not None and feat_cache[idx] == 'Rep':
cache_x = torch.cat([
torch.zeros_like(cache_x).to(cache_x.device),
cache_x
],
dim=2)
if feat_cache[idx] == 'Rep':
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.resample(x)
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
if self.mode == 'downsample3d':
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
# if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
# # cache last frame of last two chunk
# cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.time_conv(
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
def init_weight(self, conv):
conv_weight = conv.weight
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def init_weight2(self, conv):
conv_weight = conv.weight.data
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False), nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1))
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
h = self.shortcut(x)
for layer in self.residual:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x + h
class AttentionBlock(nn.Module):
"""
Causal self-attention with a single head.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = RMS_norm(dim)
self.to_qkv = ops.Conv2d(dim, dim * 3, 1)
self.proj = ops.Conv2d(dim, dim, 1)
self.optimized_attention = vae_attention()
def forward(self, x):
identity = x
b, c, t, h, w = x.size()
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.norm(x)
# compute query, key, value
q, k, v = self.to_qkv(x).chunk(3, dim=1)
x = self.optimized_attention(q, k, v)
# output
x = self.proj(x)
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
return x + identity
class Encoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
for _ in range(num_res_blocks):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
downsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# downsample block
if i != len(dim_mult) - 1:
mode = 'downsample3d' if temperal_downsample[
i] else 'downsample2d'
downsamples.append(Resample(out_dim, mode=mode))
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout))
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Decoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2**(len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout))
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i == 1 or i == 2 or i == 3:
in_dim = in_dim // 2
for _ in range(num_res_blocks + 1):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
upsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# upsample block
if i != len(dim_mult) - 1:
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
upsamples.append(Resample(out_dim, mode=mode))
scale *= 2.0
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, 3, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
def count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, CausalConv3d):
count += 1
return count
class WanVAE(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
attn_scales, self.temperal_downsample, dropout)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
attn_scales, self.temperal_upsample, dropout)
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_recon = self.decode(z)
return x_recon, mu, log_var
def encode(self, x):
self.clear_cache()
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
## 对encode输入的x按时间拆分为1、4、4、4....
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
self.clear_cache()
return mu
def decode(self, z):
self.clear_cache()
# z: [b,c,t,h,w]
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
else:
out_ = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
out = torch.cat([out, out_], 2)
self.clear_cache()
return out
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps * std + mu
def sample(self, imgs, deterministic=False):
mu, log_var = self.encode(imgs)
if deterministic:
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
#cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num

View File

@@ -35,6 +35,7 @@ import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.model_management
import comfy.patcher_extension
@@ -927,3 +928,47 @@ class Lumina2(BaseModel):
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class WAN21(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
self.image_to_video = image_to_video
def concat_cond(self, **kwargs):
if not self.image_to_video:
return None
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if image is None:
image = torch.zeros_like(noise)
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]
else:
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((mask, image), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
return out

View File

@@ -299,6 +299,27 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["axes_lens"] = [300, 512, 512]
return dit_config
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
dit_config = {}
dit_config["image_model"] = "wan2.1"
dim = state_dict['{}head.modulation'.format(key_prefix)].shape[-1]
dit_config["dim"] = dim
dit_config["num_heads"] = dim // 128
dit_config["ffn_dim"] = state_dict['{}blocks.0.ffn.0.weight'.format(key_prefix)].shape[0]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
dit_config["patch_size"] = (1, 2, 2)
dit_config["freq_dim"] = 256
dit_config["window_size"] = (-1, -1)
dit_config["qk_norm"] = True
dit_config["cross_attn_norm"] = True
dit_config["eps"] = 1e-6
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
else:
dit_config["model_type"] = "t2v"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@@ -256,9 +256,12 @@ if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other
try:
if is_nvidia() and args.fast:
torch.backends.cuda.matmul.allow_fp16_accumulation = True
PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance
except:
pass
@@ -681,6 +684,10 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
if model_params * 2 > free_model_memory:
return fp8_dtype
if PRIORITIZE_FP16:
if torch.float16 in supported_dtypes and should_use_fp16(device=device, model_params=model_params):
return torch.float16
for dt in supported_dtypes:
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
if torch.float16 in supported_dtypes:
@@ -947,7 +954,7 @@ def force_upcast_attention_dtype():
upcast = True
if upcast:
return torch.float32
return {torch.float16: torch.float32}
else:
return None

View File

@@ -639,7 +639,7 @@ class ModelPatcher:
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
if cast_weight:
if cast_weight and hasattr(m, "comfy_cast_weights"):
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True

View File

@@ -12,6 +12,7 @@ from .ldm.audio.autoencoder import AudioOobleckVAE
import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae
import yaml
import math
@@ -37,6 +38,7 @@ import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.model_patcher
import comfy.lora
@@ -392,6 +394,18 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (50 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.middle.0.residual.0.gamma" in sd:
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -659,6 +673,7 @@ class CLIPType(Enum):
PIXART = 10
COSMOS = 11
LUMINA2 = 12
WAN = 13
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@@ -763,6 +778,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.PIXART:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN:
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer

View File

@@ -16,6 +16,7 @@ import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
from . import supported_models_base
from . import latent_formats
@@ -895,6 +896,49 @@ class Lumina2(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2]
class WAN21_T2V(supported_models_base.BASE):
unet_config = {
"image_model": "wan2.1",
"model_type": "t2v",
}
sampling_settings = {
"shift": 8.0,
}
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = self.unet_config.get("dim", 2000) / 2000
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}umt5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.wan.WanT5Tokenizer, comfy.text_encoders.wan.te(**t5_detect))
class WAN21_I2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V]
models += [SVD_img2vid]

View File

@@ -19,11 +19,6 @@ class LuminaTokenizer(sd1_clip.SD1Tokenizer):
class Gemma2_2BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@@ -35,10 +30,10 @@ class LuminaModel(sd1_clip.SD1ClipModel):
def te(dtype_llama=None, llama_scaled_fp8=None):
class LuminaTEModel_(LuminaModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return LuminaTEModel_

View File

@@ -0,0 +1,22 @@
{
"d_ff": 10240,
"d_kv": 64,
"d_model": 4096,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "gelu_pytorch_tanh",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "umt5",
"num_decoder_layers": 24,
"num_heads": 64,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 256384
}

View File

@@ -0,0 +1,37 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.t5
import os
class UMT5XXlModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True, model_options=model_options)
class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class WanT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="umt5xxl", tokenizer=UMT5XXlTokenizer)
class WanT5Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
class WanTEModel(WanT5Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
if dtype_t5 is not None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return WanTEModel

View File

@@ -59,6 +59,7 @@ class SaveWEBM:
frame = av.VideoFrame.from_ndarray(torch.clamp(frame[..., :3] * 255, min=0, max=255).to(device=torch.device("cpu"), dtype=torch.uint8).numpy(), format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
container.mux(stream.encode())
container.close()
results = [{

54
comfy_extras/nodes_wan.py Normal file
View File

@@ -0,0 +1,54 @@
import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.utils
class WanImageToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 720, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"start_image": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None):
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5
image[:start_image.shape[0]] = start_image
concat_latent_image = vae.encode(image[:, :, :, :3])
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
NODE_CLASS_MAPPINGS = {
"WanImageToVideo": WanImageToVideo,
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.15"
__version__ = "0.3.17"

View File

@@ -914,7 +914,7 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2"], ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),
@@ -924,7 +924,7 @@ class CLIPLoader:
CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5\ncosmos: old t5 xxl\nlumina2: gemma 2 2B"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 xxl/ clip-g / clip-l\nstable_audio: t5 base\nmochi: t5 xxl\ncosmos: old t5 xxl\nlumina2: gemma 2 2B\nwan: umt5 xxl"
def load_clip(self, clip_name, type="stable_diffusion", device="default"):
if type == "stable_cascade":
@@ -943,6 +943,8 @@ class CLIPLoader:
clip_type = comfy.sd.CLIPType.COSMOS
elif type == "lumina2":
clip_type = comfy.sd.CLIPType.LUMINA2
elif type == "wan":
clip_type = comfy.sd.CLIPType.WAN
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
@@ -2267,6 +2269,7 @@ def init_builtin_extra_nodes():
"nodes_cosmos.py",
"nodes_video.py",
"nodes_lumina2.py",
"nodes_wan.py",
]
import_failed = []

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.15"
version = "0.3.17"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"