Compare commits

...

48 Commits

Author SHA1 Message Date
comfyanonymous
b50ab153f9 Bump ComfyUI version to v0.3.15 2025-02-21 20:28:28 -05:00
comfyanonymous
072db3bea6 Assume the mac black image bug won't be fixed before v16. 2025-02-21 20:24:07 -05:00
comfyanonymous
a6deca6d9a Latest mac still has the black image bug. 2025-02-21 20:14:30 -05:00
comfyanonymous
41c30e92e7 Let all model memory be offloaded on nvidia. 2025-02-21 06:32:21 -05:00
filtered
f579a740dd Update frontend release schedule in README. (#6908)
Changes release schedule from weekly to fortnightly.
2025-02-21 05:58:12 -05:00
Robin Huang
d37272532c Add discord channel to support section. (#6900) 2025-02-20 18:26:16 -05:00
comfyanonymous
12da6ef581 Apparently directml supports fp16. 2025-02-20 09:30:24 -05:00
Robin Huang
29d4384a75 Normalize extra_model_config.yaml paths to prevent duplicates. (#6885)
* Normalize extra_model_config.yaml paths before adding.

* Fix tests.

* Fix tests.
2025-02-20 07:09:45 -05:00
Silver
c5be423d6b Fix link pointing to non-exisiting docs (#6891)
* Fix link pointing to non-exisiting docs

The current link is pointing to a path that does not exist any longer.
I changed it to point to the currect correct path for custom nodes datatypes.

* Update node_typing.py
2025-02-20 07:07:07 -05:00
Dr.Lt.Data
b4d3652d88 fixed: crash caused by outdated incompatible aiohttp dependency (#6841)
https://github.com/comfyanonymous/ComfyUI/issues/6038#issuecomment-2661776795
https://github.com/comfyanonymous/ComfyUI/issues/5814#issue-2700816845
2025-02-19 07:15:36 -05:00
maedtb
5715be2ca9 Fix Hunyuan unet config detection for some models. (#6877)
The change to support 32 channel hunyuan models is missing the `key_prefix` on the key.

This addresses a complain in the comments of acc152b674.
2025-02-19 07:14:45 -05:00
comfyanonymous
0d4d9222c6 Add early experimental SaveWEBM node to save .webm files.
The frontend part isn't done yet so there is no video preview on the node
or dragging the webm on the interface to load the workflow yet.

This uses a new dependency: PyAV.
2025-02-19 07:12:15 -05:00
bymyself
afc85cdeb6 Add Load Image Output node (#6790)
* add LoadImageOutput node

* add route for input/output/temp files

* update node_typing.py

* use literal type for image_folder field

* mark node as beta
2025-02-18 17:53:01 -05:00
Jukka Seppänen
acc152b674 Support loading and using SkyReels-V1-Hunyuan-I2V (#6862)
* Support SkyReels-V1-Hunyuan-I2V

* VAE scaling

* Fix T2V

oops

* Proper latent scaling
2025-02-18 17:06:54 -05:00
comfyanonymous
b07258cef2 Fix typo.
Let me know if this slows things down on 2000 series and below.
2025-02-18 07:28:33 -05:00
comfyanonymous
31e54b7052 Improve AMD arch detection. 2025-02-17 04:53:40 -05:00
comfyanonymous
8c0bae50c3 bf16 manual cast works on old AMD. 2025-02-17 04:42:40 -05:00
comfyanonymous
530412cb9d Refactor torch version checks to be more future proof. 2025-02-17 04:36:45 -05:00
Zhong-Yu Li
61c8c70c6e support system prompt and cfg renorm in Lumina2 (#6795)
* support system prompt and cfg renorm in Lumina2

* fix issues with the ruff style check
2025-02-16 18:15:43 -05:00
Comfy Org PR Bot
d0399f4343 Update frontend to v1.9.18 (#6828)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-16 11:45:47 -05:00
comfyanonymous
e2919d38b4 Disable bf16 on AMD GPUs that don't support it. 2025-02-16 05:46:10 -05:00
Terry Jia
93c8607d51 remove light_intensity and fov from load3d (#6742) 2025-02-15 15:34:36 -05:00
Comfy Org PR Bot
b3d6ae15b3 Update frontend to v1.9.17 (#6814)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-15 04:32:47 -05:00
comfyanonymous
2e21122aab Add a node to set the model compute dtype for debugging. 2025-02-15 04:15:37 -05:00
comfyanonymous
1cd6cd6080 Disable pytorch attention in VAE for AMD. 2025-02-14 05:42:14 -05:00
comfyanonymous
d7b4bf21a2 Auto enable mem efficient attention on gfx1100 on pytorch nightly 2.7
I'm not not sure which arches are supported yet. If you see improvements in
memory usage while using --use-pytorch-cross-attention on your AMD GPU let
me know and I will add it to the list.
2025-02-14 04:18:14 -05:00
Robin Huang
042a905c37 Open yaml files with utf-8 encoding for extra_model_paths.yaml (#6807)
* Using utf-8 encoding for yaml files.

* Fix test assertion.
2025-02-13 20:39:04 -05:00
comfyanonymous
019c7029ea Add a way to set a different compute dtype for the model at runtime.
Currently only works for diffusion models.
2025-02-13 20:34:03 -05:00
comfyanonymous
8773ccf74d Better memory estimation for ROCm that support mem efficient attention.
There is no way to check if the card actually supports it so it assumes
that it does if you use --use-pytorch-cross-attention with yours.
2025-02-13 08:32:36 -05:00
comfyanonymous
1d5d6586f3 Fix ruff. 2025-02-12 06:49:16 -05:00
zhoufan2956
35740259de mix_ascend_bf16_infer_err (#6794) 2025-02-12 06:48:11 -05:00
comfyanonymous
ab888e1e0b Add add_weight_wrapper function to model patcher.
Functions can now easily be added to wrap/modify model weights.
2025-02-12 05:55:35 -05:00
comfyanonymous
d9f0fcdb0c Cleanup. 2025-02-11 17:17:03 -05:00
HishamC
b124256817 Fix for running via DirectML (#6542)
* Fix for running via DirectML

Fix DirectML empty image generation issue with Flux1. add CPU fallback for unsupported path. Verified the model works on AMD GPUs

* fix formating

* update casual mask calculation
2025-02-11 17:11:32 -05:00
comfyanonymous
af4b7c91be Make --force-fp16 actually force the diffusion model to be fp16. 2025-02-11 08:33:09 -05:00
bananasss00
e57d2282d1 Fix incorrect Content-Type for WebP images (#6752) 2025-02-11 04:48:35 -05:00
comfyanonymous
4027466c80 Make lumina model work with any latent resolution. 2025-02-10 00:24:20 -05:00
comfyanonymous
095d867147 Remove useless function. 2025-02-09 07:02:57 -05:00
Pam
caeb27c3a5 res_multistep: Fix cfgpp and add ancestral samplers (#6731) 2025-02-08 19:39:58 -05:00
comfyanonymous
3d06e1c555 Make error more clear to user. 2025-02-08 18:57:24 -05:00
catboxanon
43a74c0de1 Allow FP16 accumulation with --fast (#6453)
Currently only applies to PyTorch nightly releases. (>=20250208)
2025-02-08 17:00:56 -05:00
comfyanonymous
af93c8d1ee Document which text encoder to use for lumina 2. 2025-02-08 06:57:25 -05:00
Raphael Walker
832e3f5ca3 Fix another small bug in attention_bias redux (#6737)
* fix a bug in the attn_masked redux code when using weight=1.0

* oh shit wait there was another bug
2025-02-07 14:44:43 -05:00
comfyanonymous
079eccc92a Don't compress http response by default.
Remove argument to disable it.

Add new --enable-compress-response-body argument to enable it.
2025-02-07 03:29:21 -05:00
Raphael Walker
b6951768c4 fix a bug in the attn_masked redux code when using weight=1.0 (#6721) 2025-02-06 16:51:16 -05:00
Comfy Org PR Bot
fca304debf Update frontend to v1.8.14 (#6724)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-06 10:43:10 -05:00
comfyanonymous
14880e6dba Remove some useless code. 2025-02-06 05:00:37 -05:00
Chenlei Hu
f1059b0b82 Remove unused GET /files API endpoint (#6714) 2025-02-05 18:48:36 -05:00
69 changed files with 11080 additions and 8744 deletions

View File

@@ -293,6 +293,8 @@ Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app w
## Support and dev channel
[Discord](https://comfy.org/discord): Try the #help or #feedback channels.
[Matrix space: #comfyui_space:matrix.org](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) (it's like discord but open source).
See also: [https://www.comfy.org/](https://www.comfy.org/)
@@ -309,7 +311,7 @@ For any bugs, issues, or feature requests related to the frontend, please use th
The new frontend is now the default for ComfyUI. However, please note:
1. The frontend in the main ComfyUI repository is updated weekly.
1. The frontend in the main ComfyUI repository is updated fortnightly.
2. Daily releases are available in the separate frontend repository.
To use the most up-to-date frontend version:
@@ -326,7 +328,7 @@ To use the most up-to-date frontend version:
--front-end-version Comfy-Org/ComfyUI_frontend@1.2.2
```
This approach allows you to easily switch between the stable weekly release and the cutting-edge daily updates, or even specific versions for testing purposes.
This approach allows you to easily switch between the stable fortnightly release and the cutting-edge daily updates, or even specific versions for testing purposes.
### Accessing the Legacy Frontend

View File

@@ -1,9 +1,9 @@
from aiohttp import web
from typing import Optional
from folder_paths import models_dir, user_directory, output_directory, folder_names_and_paths
from api_server.services.file_service import FileService
from folder_paths import folder_names_and_paths, get_directory_by_type
from api_server.services.terminal_service import TerminalService
import app.logger
import os
class InternalRoutes:
'''
@@ -15,26 +15,10 @@ class InternalRoutes:
def __init__(self, prompt_server):
self.routes: web.RouteTableDef = web.RouteTableDef()
self._app: Optional[web.Application] = None
self.file_service = FileService({
"models": models_dir,
"user": user_directory,
"output": output_directory
})
self.prompt_server = prompt_server
self.terminal_service = TerminalService(prompt_server)
def setup_routes(self):
@self.routes.get('/files')
async def list_files(request):
directory_key = request.query.get('directory', '')
try:
file_list = self.file_service.list_files(directory_key)
return web.json_response({"files": file_list})
except ValueError as e:
return web.json_response({"error": str(e)}, status=400)
except Exception as e:
return web.json_response({"error": str(e)}, status=500)
@self.routes.get('/logs')
async def get_logs(request):
return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
@@ -67,6 +51,20 @@ class InternalRoutes:
response[key] = folder_names_and_paths[key][0]
return web.json_response(response)
@self.routes.get('/files/{directory_type}')
async def get_files(request: web.Request) -> web.Response:
directory_type = request.match_info['directory_type']
if directory_type not in ("output", "input", "temp"):
return web.json_response({"error": "Invalid directory type"}, status=400)
directory = get_directory_by_type(directory_type)
sorted_files = sorted(
(entry for entry in os.scandir(directory) if entry.is_file()),
key=lambda entry: -entry.stat().st_mtime
)
return web.json_response([entry.name for entry in sorted_files], status=200)
def get_app(self):
if self._app is None:
self._app = web.Application()

View File

@@ -1,13 +0,0 @@
from typing import Dict, List, Optional
from api_server.utils.file_operations import FileSystemOperations, FileSystemItem
class FileService:
def __init__(self, allowed_directories: Dict[str, str], file_system_ops: Optional[FileSystemOperations] = None):
self.allowed_directories: Dict[str, str] = allowed_directories
self.file_system_ops: FileSystemOperations = file_system_ops or FileSystemOperations()
def list_files(self, directory_key: str) -> List[FileSystemItem]:
if directory_key not in self.allowed_directories:
raise ValueError("Invalid directory key")
directory_path: str = self.allowed_directories[directory_key]
return self.file_system_ops.walk_directory(directory_path)

View File

@@ -179,7 +179,7 @@ parser.add_argument(
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path. Overrides --base-directory.")
parser.add_argument("--disable-compres-response-body", action="store_true", help="Disable compressing response body.")
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
if comfy.options.args_parsing:
args = parser.parse_args()
@@ -191,3 +191,6 @@ if args.windows_standalone_build:
if args.disable_auto_launch:
args.auto_launch = False
if args.force_fp16:
args.fp16_unet = True

View File

@@ -104,7 +104,8 @@ class CLIPTextModel_(torch.nn.Module):
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(-torch.finfo(x.dtype).max).triu_(1)
causal_mask = torch.full((x.shape[1], x.shape[1]), -torch.finfo(x.dtype).max, dtype=x.dtype, device=x.device).triu_(1)
if mask is not None:
mask += causal_mask
else:

View File

@@ -66,13 +66,26 @@ class IO(StrEnum):
b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b))
class RemoteInputOptions(TypedDict):
route: str
"""The route to the remote source."""
refresh_button: bool
"""Specifies whether to show a refresh button in the UI below the widget."""
control_after_refresh: Literal["first", "last"]
"""Specifies the control after the refresh button is clicked. If "first", the first item will be automatically selected, and so on."""
timeout: int
"""The maximum amount of time to wait for a response from the remote source in milliseconds."""
max_retries: int
"""The maximum number of retries before aborting the request."""
refresh: int
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
class InputTypeOptions(TypedDict):
"""Provides type hinting for the return type of the INPUT_TYPES node function.
Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
Comfy Docs: https://docs.comfy.org/essentials/custom_node_datatypes
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
"""
default: bool | str | float | int | list | tuple
@@ -113,6 +126,14 @@ class InputTypeOptions(TypedDict):
# defaultVal: str
dynamicPrompts: bool
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
# class InputTypeCombo(InputTypeOptions):
image_upload: bool
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
image_folder: Literal["input", "output", "temp"]
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
"""
remote: RemoteInputOptions
"""Specifies the configuration for a remote input."""
class HiddenInputTypeDict(TypedDict):
@@ -133,7 +154,7 @@ class HiddenInputTypeDict(TypedDict):
class InputTypeDict(TypedDict):
"""Provides type hinting for node INPUT_TYPES.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
"""
required: dict[str, tuple[IO, InputTypeOptions]]
@@ -143,14 +164,14 @@ class InputTypeDict(TypedDict):
hidden: HiddenInputTypeDict
"""Offers advanced functionality and server-client communication.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
"""
class ComfyNodeABC(ABC):
"""Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview
"""
DESCRIPTION: str
@@ -167,7 +188,7 @@ class ComfyNodeABC(ABC):
CATEGORY: str
"""The category of the node, as per the "Add Node" menu.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#category
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#category
"""
EXPERIMENTAL: bool
"""Flags a node as experimental, informing users that it may change or not work as expected."""
@@ -181,9 +202,9 @@ class ComfyNodeABC(ABC):
* Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
* The ``optional`` key can be added to describe inputs which do not need to be connected.
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#input-types
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#input-types
"""
return {"required": {}}
@@ -198,7 +219,7 @@ class ComfyNodeABC(ABC):
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#output-node
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
"""
INPUT_IS_LIST: bool
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
@@ -209,7 +230,7 @@ class ComfyNodeABC(ABC):
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
OUTPUT_IS_LIST: tuple[bool]
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
@@ -227,7 +248,7 @@ class ComfyNodeABC(ABC):
the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
specifying which outputs which should be so treated.
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
RETURN_TYPES: tuple[IO]
@@ -237,19 +258,19 @@ class ComfyNodeABC(ABC):
RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-types
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
"""
RETURN_NAMES: tuple[str]
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-names
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
"""
OUTPUT_TOOLTIPS: tuple[str]
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
FUNCTION: str
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#function
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#function
"""
@@ -267,7 +288,7 @@ class CheckLazyMixin:
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lazy_evaluation#defining-check-lazy-status
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lazy_evaluation#defining-check-lazy-status
"""
need = [name for name in kwargs if kwargs[name] is None]

View File

@@ -1267,7 +1267,7 @@ def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, dis
return x
@torch.no_grad()
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None, cfg_pp=False):
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, eta=1., cfg_pp=False):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@@ -1289,53 +1289,60 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
if s_churn > 0:
gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
sigma_hat = sigmas[i] * (gamma + 1)
else:
gamma = 0
sigma_hat = sigmas[i]
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
if sigmas[i + 1] == 0 or old_denoised is None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
if sigma_down == 0 or old_denoised is None:
# Euler method
if cfg_pp:
d = to_d(x, sigma_hat, uncond_denoised)
x = denoised + d * sigmas[i + 1]
d = to_d(x, sigmas[i], uncond_denoised)
x = denoised + d * sigma_down
else:
d = to_d(x, sigma_hat, denoised)
dt = sigmas[i + 1] - sigma_hat
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# Second order multistep method in https://arxiv.org/pdf/2308.02157
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigmas[i + 1]), t_fn(sigmas[i - 1])
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigma_down), t_fn(sigmas[i - 1])
h = t_next - t
c2 = (t_prev - t) / h
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
b2 = torch.nan_to_num(phi2_val / c2, nan=0.0)
if cfg_pp:
x = x + (denoised - uncond_denoised)
x = sigma_fn(h) * x + h * (b1 * uncond_denoised + b2 * old_denoised)
else:
x = sigma_fn(h) * x + h * (b1 * denoised + b2 * old_denoised)
x = (sigma_fn(t_next) / sigma_fn(t)) * x + h * (b1 * denoised + b2 * old_denoised)
# Noise addition
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
old_denoised = denoised
if cfg_pp:
old_denoised = uncond_denoised
else:
old_denoised = denoised
return x
@torch.no_grad()
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=False)
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=0., cfg_pp=False)
@torch.no_grad()
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=0., cfg_pp=True)
@torch.no_grad()
def sample_res_multistep_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=False)
@torch.no_grad()
def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
@torch.no_grad()
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):

View File

@@ -22,7 +22,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu():
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled():
device = torch.device("cpu")
else:
device = pos.device

View File

@@ -310,7 +310,7 @@ class HunyuanVideo(nn.Module):
shape[i] = shape[i] // self.patch_size[i]
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
return img
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs):

View File

@@ -6,6 +6,7 @@ from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.attention import optimized_attention_masked
@@ -352,25 +353,6 @@ class FinalLayer(nn.Module):
return x
class RopeEmbedder:
def __init__(
self, theta: float = 10000.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512)
):
super().__init__()
self.theta = theta
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.freqs_cis = NextDiT.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
def __call__(self, ids: torch.Tensor):
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
result = []
for i in range(len(self.axes_dims)):
index = ids[:, :, i:i+1].repeat(1, 1, self.freqs_cis[i].shape[-1]).to(torch.int64)
result.append(torch.gather(self.freqs_cis[i].unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
return torch.cat(result, dim=-1)
class NextDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
@@ -481,7 +463,6 @@ class NextDiT(nn.Module):
assert (dim // n_heads) == sum(axes_dims)
self.axes_dims = axes_dims
self.axes_lens = axes_lens
# self.rope_embedder = RopeEmbedder(axes_dims=axes_dims, axes_lens=axes_lens)
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
self.dim = dim
self.n_heads = n_heads
@@ -609,12 +590,13 @@ class NextDiT(nn.Module):
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
# def forward(self, x, t, cap_feats, cap_mask):
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
t = 1.0 - timesteps
cap_feats = context
cap_mask = attention_mask
bs, c, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
"""
Forward pass of NextDiT.
t: (N,) tensor of diffusion timesteps
@@ -634,41 +616,7 @@ class NextDiT(nn.Module):
x = layer(x, mask, freqs_cis, adaln_input)
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]
return -x
@staticmethod
def precompute_freqs_cis(
dim: List[int],
end: List[int],
theta: float = 10000.0,
):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (list): Dimension of the frequency tensor.
end (list): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
freqs_cis = []
for i, (d, e) in enumerate(zip(dim, end)):
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
freqs = torch.outer(timestep, freqs).float()
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
freqs_cis.append(freqs_cis_i)
return freqs_cis

View File

@@ -297,7 +297,7 @@ def vae_attention():
if model_management.xformers_enabled_vae():
logging.info("Using xformers attention in VAE")
return xformers_attention
elif model_management.pytorch_attention_enabled():
elif model_management.pytorch_attention_enabled_vae():
logging.info("Using pytorch attention in VAE")
return pytorch_attention
else:

View File

@@ -166,9 +166,6 @@ class BaseModel(torch.nn.Module):
def get_dtype(self):
return self.diffusion_model.dtype
def is_adm(self):
return self.adm_channels > 0
def encode_adm(self, **kwargs):
return None
@@ -874,6 +871,15 @@ class HunyuanVideo(BaseModel):
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if image is not None:
padding_shape = (noise.shape[0], 16, noise.shape[2] - 1, noise.shape[3], noise.shape[4])
latent_padding = torch.zeros(padding_shape, device=noise.device, dtype=noise.dtype)
image_latents = torch.cat([image.to(noise), latent_padding], dim=2)
out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_latents))
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))

View File

@@ -136,7 +136,7 @@ def detect_unet_config(state_dict, key_prefix):
if '{}txt_in.individual_token_refiner.blocks.0.norm1.weight'.format(key_prefix) in state_dict_keys: #Hunyuan Video
dit_config = {}
dit_config["image_model"] = "hunyuan_video"
dit_config["in_channels"] = 16
dit_config["in_channels"] = state_dict['{}img_in.proj.weight'.format(key_prefix)].shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = [1, 2, 2]
dit_config["out_channels"] = 16
dit_config["vec_in_dim"] = 768

View File

@@ -50,7 +50,9 @@ xpu_available = False
torch_version = ""
try:
torch_version = torch.version.__version__
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
temp = torch_version.split(".")
torch_version_numeric = (int(temp[0]), int(temp[1]))
xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available()
except:
pass
@@ -218,7 +220,7 @@ def is_amd():
MIN_WEIGHT_MEMORY_RATIO = 0.4
if is_nvidia():
MIN_WEIGHT_MEMORY_RATIO = 0.1
MIN_WEIGHT_MEMORY_RATIO = 0.0
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
@@ -227,7 +229,7 @@ if args.use_pytorch_cross_attention:
try:
if is_nvidia():
if int(torch_version[0]) >= 2:
if torch_version_numeric[0] >= 2:
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
if is_intel_xpu() or is_ascend_npu():
@@ -236,13 +238,32 @@ try:
except:
pass
try:
if is_amd():
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
logging.info("AMD arch: {}".format(arch))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
try:
if int(torch_version[0]) == 2 and int(torch_version[2]) >= 5:
if is_nvidia() and args.fast:
torch.backends.cuda.matmul.allow_fp16_accumulation = True
except:
pass
try:
if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5:
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except:
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
@@ -256,15 +277,10 @@ elif args.highvram or args.gpu_only:
vram_state = VRAMState.HIGH_VRAM
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
logging.info("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16:
logging.info("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
@@ -898,6 +914,11 @@ def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_enabled_vae():
if is_amd():
return False # enabling pytorch attention on AMD currently causes crash when doing high res
return pytorch_attention_enabled()
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
@@ -908,6 +929,8 @@ def pytorch_attention_flash_attention():
return True
if is_ascend_npu():
return True
if is_amd():
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
return False
def mac_version():
@@ -920,7 +943,7 @@ def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
macos_version = mac_version()
if macos_version is not None and ((14, 5) <= macos_version <= (15, 2)): # black image bug on recent versions of macOS
if macos_version is not None and ((14, 5) <= macos_version < (16,)): # black image bug on recent versions of macOS
upcast = True
if upcast:
@@ -990,21 +1013,26 @@ def is_device_mps(device):
def is_device_cuda(device):
return is_device_type(device, 'cuda')
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
def is_directml_enabled():
global directml_enabled
if directml_enabled:
return True
return False
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
if args.force_fp16:
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if is_directml_enabled():
return True
if (device is not None and is_device_mps(device)) or mps_mode():
return True
@@ -1075,13 +1103,23 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
if is_intel_xpu():
return True
if is_ascend_npu():
return True
if is_amd():
arch = torch.cuda.get_device_properties(device).gcnArchName
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
if manual_cast:
return True
return False
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast:
if bf16_works and manual_cast:
free_model_memory = maximum_vram_for_weights(device)
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
@@ -1100,11 +1138,11 @@ def supports_fp8_compute(device=None):
if props.minor < 9:
return False
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3):
return False
if WINDOWS:
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4):
return False
return True

View File

@@ -96,8 +96,28 @@ def wipe_lowvram_weight(m):
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
if hasattr(m, "weight_function"):
m.weight_function = []
if hasattr(m, "bias_function"):
m.bias_function = []
def move_weight_functions(m, device):
if device is None:
return 0
memory = 0
if hasattr(m, "weight_function"):
for f in m.weight_function:
if hasattr(f, "move_to"):
memory += f.move_to(device=device)
if hasattr(m, "bias_function"):
for f in m.bias_function:
if hasattr(f, "move_to"):
memory += f.move_to(device=device)
return memory
class LowVramPatch:
def __init__(self, key, patches):
@@ -192,11 +212,13 @@ class ModelPatcher:
self.backup = {}
self.object_patches = {}
self.object_patches_backup = {}
self.weight_wrapper_patches = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
self.weight_inplace_update = weight_inplace_update
self.force_cast_weights = False
self.patches_uuid = uuid.uuid4()
self.parent = None
@@ -250,11 +272,14 @@ class ModelPatcher:
n.patches_uuid = self.patches_uuid
n.object_patches = self.object_patches.copy()
n.weight_wrapper_patches = self.weight_wrapper_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.parent = self
n.force_cast_weights = self.force_cast_weights
# attachments
n.attachments = {}
for k in self.attachments:
@@ -402,6 +427,16 @@ class ModelPatcher:
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
def set_model_compute_dtype(self, dtype):
self.add_object_patch("manual_cast_dtype", dtype)
if dtype is not None:
self.force_cast_weights = True
self.patches_uuid = uuid.uuid4() #TODO: optimize by preventing a full model reload for this
def add_weight_wrapper(self, name, function):
self.weight_wrapper_patches[name] = self.weight_wrapper_patches.get(name, []) + [function]
self.patches_uuid = uuid.uuid4()
def get_model_object(self, name: str) -> torch.nn.Module:
"""Retrieves a nested attribute from an object using dot notation considering
object patches.
@@ -566,6 +601,9 @@ class ModelPatcher:
lowvram_weight = False
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if not full_load and hasattr(m, "comfy_cast_weights"):
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
@@ -573,34 +611,46 @@ class ModelPatcher:
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
continue
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
cast_weight = self.force_cast_weights
if lowvram_weight:
if hasattr(m, "comfy_cast_weights"):
m.weight_function = []
m.bias_function = []
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = LowVramPatch(weight_key, self.patches)
m.weight_function = [LowVramPatch(weight_key, self.patches)]
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = LowVramPatch(bias_key, self.patches)
m.bias_function = [LowVramPatch(bias_key, self.patches)]
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
cast_weight = True
else:
if hasattr(m, "comfy_cast_weights"):
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
wipe_lowvram_weight(m)
if full_load or mem_counter + module_mem < lowvram_model_memory:
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
if cast_weight:
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
if weight_key in self.weight_wrapper_patches:
m.weight_function.extend(self.weight_wrapper_patches[weight_key])
if bias_key in self.weight_wrapper_patches:
m.bias_function.extend(self.weight_wrapper_patches[bias_key])
mem_counter += move_weight_functions(m, device_to)
load_completely.sort(reverse=True)
for x in load_completely:
n = x[1]
@@ -662,6 +712,7 @@ class ModelPatcher:
self.unpatch_hooks()
if self.model.model_lowvram:
for m in self.model.modules():
move_weight_functions(m, device_to)
wipe_lowvram_weight(m)
self.model.model_lowvram = False
@@ -728,15 +779,19 @@ class ModelPatcher:
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if move_weight:
cast_weight = self.force_cast_weights
m.to(device_to)
module_mem += move_weight_functions(m, device_to)
if lowvram_possible:
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self.patches)
m.weight_function.append(LowVramPatch(weight_key, self.patches))
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self.patches)
m.bias_function.append(LowVramPatch(bias_key, self.patches))
patch_counter += 1
cast_weight = True
if cast_weight:
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False

View File

@@ -38,21 +38,23 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = s.bias_function is not None
has_function = len(s.bias_function) > 0
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
bias = s.bias_function(bias)
for f in s.bias_function:
bias = f(bias)
has_function = s.weight_function is not None
has_function = len(s.weight_function) > 0
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
weight = s.weight_function(weight)
for f in s.weight_function:
weight = f(weight)
return weight, bias
class CastWeightBiasOp:
comfy_cast_weights = False
weight_function = None
bias_function = None
weight_function = []
bias_function = []
class disable_weight_init:
class Linear(torch.nn.Linear, CastWeightBiasOp):
@@ -64,7 +66,7 @@ class disable_weight_init:
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -78,7 +80,7 @@ class disable_weight_init:
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -92,7 +94,7 @@ class disable_weight_init:
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -106,7 +108,7 @@ class disable_weight_init:
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -120,12 +122,11 @@ class disable_weight_init:
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
def reset_parameters(self):
return None
@@ -139,7 +140,7 @@ class disable_weight_init:
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -160,7 +161,7 @@ class disable_weight_init:
output_padding, self.groups, self.dilation)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -181,7 +182,7 @@ class disable_weight_init:
output_padding, self.groups, self.dilation)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -199,7 +200,7 @@ class disable_weight_init:
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
if "out_dtype" in kwargs:

View File

@@ -686,7 +686,8 @@ class Sampler:
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "gradient_estimation"]
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@@ -58,7 +58,7 @@ def load_torch_file(ckpt, safe_load=False, device=None):
if "HeaderTooLarge" in message:
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt or invalid. Make sure this is actually a safetensors file and not a ckpt or pt or other filetype.".format(message, ckpt))
if "MetadataIncompleteBuffer" in message:
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is incomplete. Check the file size and make sure you have copied/downloaded it correctly.".format(message, ckpt))
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt/incomplete. Check the file size and make sure you have copied/downloaded it correctly.".format(message, ckpt))
raise e
else:
if safe_load or ALWAYS_SAFE_LOAD:

View File

@@ -20,9 +20,7 @@ class Load3D():
"width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"material": (["original", "normal", "wireframe", "depth"],),
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
@@ -34,22 +32,14 @@ class Load3D():
CATEGORY = "3d"
def process(self, model_file, image, **kwargs):
if isinstance(image, dict):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
return output_image, output_mask, model_file,
else:
# to avoid the format is not dict which will happen the FE code is not compatibility to core,
# we need to this to double-check, it can be removed after merged FE into the core
image_path = folder_paths.get_annotated_filepath(image)
load_image_node = nodes.LoadImage()
output_image, output_mask = load_image_node.load_image(image=image_path)
return output_image, output_mask, model_file,
return output_image, output_mask, model_file,
class Load3DAnimation():
@classmethod
@@ -66,9 +56,7 @@ class Load3DAnimation():
"width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
"material": (["original", "normal", "wireframe", "depth"],),
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
@@ -80,20 +68,14 @@ class Load3DAnimation():
CATEGORY = "3d"
def process(self, model_file, image, **kwargs):
if isinstance(image, dict):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
return output_image, output_mask, model_file,
else:
image_path = folder_paths.get_annotated_filepath(image)
load_image_node = nodes.LoadImage()
output_image, output_mask = load_image_node.load_image(image=image_path)
return output_image, output_mask, model_file,
return output_image, output_mask, model_file,
class Preview3D():
@classmethod
@@ -101,9 +83,7 @@ class Preview3D():
return {"required": {
"model_file": ("STRING", {"default": "", "multiline": False}),
"material": (["original", "normal", "wireframe", "depth"],),
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}}
OUTPUT_NODE = True
@@ -123,9 +103,7 @@ class Preview3DAnimation():
return {"required": {
"model_file": ("STRING", {"default": "", "multiline": False}),
"material": (["original", "normal", "wireframe", "depth"],),
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}}
OUTPUT_NODE = True

View File

@@ -0,0 +1,104 @@
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
import torch
class RenormCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"cfg_trunc": ("FLOAT", {"default": 100, "min": 0.0, "max": 100.0, "step": 0.01}),
"renorm_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, cfg_trunc, renorm_cfg):
def renorm_cfg_func(args):
cond_denoised = args["cond_denoised"]
uncond_denoised = args["uncond_denoised"]
cond_scale = args["cond_scale"]
timestep = args["timestep"]
x_orig = args["input"]
in_channels = model.model.diffusion_model.in_channels
if timestep[0] < cfg_trunc:
cond_eps, uncond_eps = cond_denoised[:, :in_channels], uncond_denoised[:, :in_channels]
cond_rest, _ = cond_denoised[:, in_channels:], uncond_denoised[:, in_channels:]
half_eps = uncond_eps + cond_scale * (cond_eps - uncond_eps)
half_rest = cond_rest
if float(renorm_cfg) > 0.0:
ori_pos_norm = torch.linalg.vector_norm(cond_eps
, dim=tuple(range(1, len(cond_eps.shape))), keepdim=True
)
max_new_norm = ori_pos_norm * float(renorm_cfg)
new_pos_norm = torch.linalg.vector_norm(
half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True
)
if new_pos_norm >= max_new_norm:
half_eps = half_eps * (max_new_norm / new_pos_norm)
else:
cond_eps, uncond_eps = cond_denoised[:, :in_channels], uncond_denoised[:, :in_channels]
cond_rest, _ = cond_denoised[:, in_channels:], uncond_denoised[:, in_channels:]
half_eps = cond_eps
half_rest = cond_rest
cfg_result = torch.cat([half_eps, half_rest], dim=1)
# cfg_result = uncond_denoised + (cond_denoised - uncond_denoised) * cond_scale
return x_orig - cfg_result
m = model.clone()
m.set_model_sampler_cfg_function(renorm_cfg_func)
return (m, )
class CLIPTextEncodeLumina2(ComfyNodeABC):
SYSTEM_PROMPT = {
"superior": "You are an assistant designed to generate superior images with the superior "\
"degree of image-text alignment based on textual prompts or user prompts.",
"alignment": "You are an assistant designed to generate high-quality images with the "\
"highest degree of image-text alignment based on textual prompts."
}
SYSTEM_PROMPT_TIP = "Lumina2 provide two types of system prompts:" \
"Superior: You are an assistant designed to generate superior images with the superior "\
"degree of image-text alignment based on textual prompts or user prompts. "\
"Alignment: You are an assistant designed to generate high-quality images with the highest "\
"degree of image-text alignment based on textual prompts."
@classmethod
def INPUT_TYPES(s) -> InputTypeDict:
return {
"required": {
"system_prompt": (list(CLIPTextEncodeLumina2.SYSTEM_PROMPT.keys()), {"tooltip": CLIPTextEncodeLumina2.SYSTEM_PROMPT_TIP}),
"user_prompt": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
}
}
RETURN_TYPES = (IO.CONDITIONING,)
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
FUNCTION = "encode"
CATEGORY = "conditioning"
DESCRIPTION = "Encodes a system prompt and a user prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
def encode(self, clip, user_prompt, system_prompt):
if clip is None:
raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.")
system_prompt = CLIPTextEncodeLumina2.SYSTEM_PROMPT[system_prompt]
prompt = f'{system_prompt} <Prompt Start> {user_prompt}'
tokens = clip.tokenize(prompt)
return (clip.encode_from_tokens_scheduled(tokens), )
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeLumina2": CLIPTextEncodeLumina2,
"RenormCFG": RenormCFG
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPTextEncodeLumina2": "CLIP Text Encode for Lumina2",
}

View File

@@ -3,6 +3,8 @@ import comfy.model_sampling
import comfy.latent_formats
import nodes
import torch
import node_helpers
class LCM(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
@@ -294,6 +296,24 @@ class RescaleCFG:
m.set_model_sampler_cfg_function(rescale_cfg)
return (m, )
class ModelComputeDtype:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"dtype": (["default", "fp32", "fp16", "bf16"],),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/debug/model"
def patch(self, model, dtype):
m = model.clone()
m.set_model_compute_dtype(node_helpers.string_to_torch_dtype(dtype))
return (m, )
NODE_CLASS_MAPPINGS = {
"ModelSamplingDiscrete": ModelSamplingDiscrete,
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
@@ -303,4 +323,5 @@ NODE_CLASS_MAPPINGS = {
"ModelSamplingAuraFlow": ModelSamplingAuraFlow,
"ModelSamplingFlux": ModelSamplingFlux,
"RescaleCFG": RescaleCFG,
"ModelComputeDtype": ModelComputeDtype,
}

View File

@@ -0,0 +1,75 @@
import os
import av
import torch
import folder_paths
import json
from fractions import Fraction
class SaveWEBM:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"codec": (["vp9", "av1"],),
"fps": ("FLOAT", {"default": 24.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"crf": ("FLOAT", {"default": 32.0, "min": 0, "max": 63.0, "step": 1, "tooltip": "Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/video"
EXPERIMENTAL = True
def save_images(self, images, codec, fps, filename_prefix, crf, prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
file = f"{filename}_{counter:05}_.webm"
container = av.open(os.path.join(full_output_folder, file), mode="w")
if prompt is not None:
container.metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
container.metadata[x] = json.dumps(extra_pnginfo[x])
codec_map = {"vp9": "libvpx-vp9", "av1": "libaom-av1"}
stream = container.add_stream(codec_map[codec], rate=Fraction(round(fps * 1000), 1000))
stream.width = images.shape[-2]
stream.height = images.shape[-3]
stream.pix_fmt = "yuv420p"
stream.bit_rate = 0
stream.options = {'crf': str(crf)}
for frame in images:
frame = av.VideoFrame.from_ndarray(torch.clamp(frame[..., :3] * 255, min=0, max=255).to(device=torch.device("cpu"), dtype=torch.uint8).numpy(), format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
container.close()
results = [{
"filename": file,
"subfolder": subfolder,
"type": self.type
}]
return {"ui": {"images": results, "animated": (True,)}} # TODO: frontend side
NODE_CLASS_MAPPINGS = {
"SaveWEBM": SaveWEBM,
}

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.14"
__version__ = "0.3.15"

View File

@@ -1,4 +1,5 @@
import hashlib
import torch
from comfy.cli_args import args
@@ -35,3 +36,11 @@ def hasher():
"sha512": hashlib.sha512
}
return hashfuncs[args.default_hashing_function]
def string_to_torch_dtype(string):
if string == "fp32":
return torch.float32
if string == "fp16":
return torch.float16
if string == "bf16":
return torch.bfloat16

View File

@@ -924,7 +924,7 @@ class CLIPLoader:
CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5\ncosmos: old t5 xxl"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5\ncosmos: old t5 xxl\nlumina2: gemma 2 2B"
def load_clip(self, clip_name, type="stable_diffusion", device="default"):
if type == "stable_cascade":
@@ -1064,10 +1064,11 @@ class StyleModelApply:
for t in conditioning:
(txt, keys) = t
keys = keys.copy()
if strength_type == "attn_bias" and strength != 1.0:
# even if the strength is 1.0 (i.e, no change), if there's already a mask, we have to add to it
if "attention_mask" in keys or (strength_type == "attn_bias" and strength != 1.0):
# math.log raises an error if the argument is zero
# torch.log returns -inf, which is what we want
attn_bias = torch.log(torch.Tensor([strength]))
attn_bias = torch.log(torch.Tensor([strength if strength_type == "attn_bias" else 1.0]))
# get the size of the mask image
mask_ref_size = keys.get("attention_mask_img_shape", (1, 1))
n_ref = mask_ref_size[0] * mask_ref_size[1]
@@ -1762,6 +1763,36 @@ class LoadImageMask:
return True
class LoadImageOutput(LoadImage):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("COMBO", {
"image_upload": True,
"image_folder": "output",
"remote": {
"route": "/internal/files/output",
"refresh_button": True,
"control_after_refresh": "first",
},
}),
}
}
DESCRIPTION = "Load an image from the output folder. When the refresh button is clicked, the node will update the image list and automatically select the first image, allowing for easy iteration."
EXPERIMENTAL = True
FUNCTION = "load_image_output"
def load_image_output(self, image):
return self.load_image(f"{image} [output]")
@classmethod
def VALIDATE_INPUTS(s, image):
return True
class ImageScale:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
@@ -1948,6 +1979,7 @@ NODE_CLASS_MAPPINGS = {
"PreviewImage": PreviewImage,
"LoadImage": LoadImage,
"LoadImageMask": LoadImageMask,
"LoadImageOutput": LoadImageOutput,
"ImageScale": ImageScale,
"ImageScaleBy": ImageScaleBy,
"ImageInvert": ImageInvert,
@@ -2048,6 +2080,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"PreviewImage": "Preview Image",
"LoadImage": "Load Image",
"LoadImageMask": "Load Image (as Mask)",
"LoadImageOutput": "Load Image (from Outputs)",
"ImageScale": "Upscale Image",
"ImageScaleBy": "Upscale Image By",
"ImageUpscaleWithModel": "Upscale Image (using Model)",
@@ -2232,6 +2265,8 @@ def init_builtin_extra_nodes():
"nodes_hooks.py",
"nodes_load_3d.py",
"nodes_cosmos.py",
"nodes_video.py",
"nodes_lumina2.py",
]
import_failed = []

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.14"
version = "0.3.15"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -8,7 +8,8 @@ transformers>=4.28.1
tokenizers>=0.13.3
sentencepiece
safetensors>=0.4.2
aiohttp
aiohttp>=3.11.8
yarl>=1.18.0
pyyaml
Pillow
scipy
@@ -19,3 +20,4 @@ psutil
kornia>=0.7.1
spandrel
soundfile
av

View File

@@ -57,8 +57,6 @@ async def cache_control(request: web.Request, handler):
async def compress_body(request: web.Request, handler):
accept_encoding = request.headers.get("Accept-Encoding", "")
response: web.Response = await handler(request)
if args.disable_compres_response_body:
return response
if not isinstance(response, web.Response):
return response
if response.content_type not in ["application/json", "text/plain"]:
@@ -152,7 +150,8 @@ class PromptServer():
PromptServer.instance = self
mimetypes.init()
mimetypes.types_map['.js'] = 'application/javascript; charset=utf-8'
mimetypes.add_type('application/javascript; charset=utf-8', '.js')
mimetypes.add_type('image/webp', '.webp')
self.user_manager = UserManager()
self.model_file_manager = ModelFileManager()
@@ -165,7 +164,10 @@ class PromptServer():
self.client_session:Optional[aiohttp.ClientSession] = None
self.number = 0
middlewares = [cache_control, compress_body]
middlewares = [cache_control]
if args.enable_compress_response_body:
middlewares.append(compress_body)
if args.enable_cors_header:
middlewares.append(create_cors_middleware(args.enable_cors_header))
else:

View File

@@ -1,115 +0,0 @@
import pytest
from aiohttp import web
from unittest.mock import MagicMock, patch
from api_server.routes.internal.internal_routes import InternalRoutes
from api_server.services.file_service import FileService
from folder_paths import models_dir, user_directory, output_directory
@pytest.fixture
def internal_routes():
return InternalRoutes(None)
@pytest.fixture
def aiohttp_client_factory(aiohttp_client, internal_routes):
async def _get_client():
app = internal_routes.get_app()
return await aiohttp_client(app)
return _get_client
@pytest.mark.asyncio
async def test_list_files_valid_directory(aiohttp_client_factory, internal_routes):
mock_file_list = [
{"name": "file1.txt", "path": "file1.txt", "type": "file", "size": 100},
{"name": "dir1", "path": "dir1", "type": "directory"}
]
internal_routes.file_service.list_files = MagicMock(return_value=mock_file_list)
client = await aiohttp_client_factory()
resp = await client.get('/files?directory=models')
assert resp.status == 200
data = await resp.json()
assert 'files' in data
assert len(data['files']) == 2
assert data['files'] == mock_file_list
# Check other valid directories
resp = await client.get('/files?directory=user')
assert resp.status == 200
resp = await client.get('/files?directory=output')
assert resp.status == 200
@pytest.mark.asyncio
async def test_list_files_invalid_directory(aiohttp_client_factory, internal_routes):
internal_routes.file_service.list_files = MagicMock(side_effect=ValueError("Invalid directory key"))
client = await aiohttp_client_factory()
resp = await client.get('/files?directory=invalid')
assert resp.status == 400
data = await resp.json()
assert 'error' in data
assert data['error'] == "Invalid directory key"
@pytest.mark.asyncio
async def test_list_files_exception(aiohttp_client_factory, internal_routes):
internal_routes.file_service.list_files = MagicMock(side_effect=Exception("Unexpected error"))
client = await aiohttp_client_factory()
resp = await client.get('/files?directory=models')
assert resp.status == 500
data = await resp.json()
assert 'error' in data
assert data['error'] == "Unexpected error"
@pytest.mark.asyncio
async def test_list_files_no_directory_param(aiohttp_client_factory, internal_routes):
mock_file_list = []
internal_routes.file_service.list_files = MagicMock(return_value=mock_file_list)
client = await aiohttp_client_factory()
resp = await client.get('/files')
assert resp.status == 200
data = await resp.json()
assert 'files' in data
assert len(data['files']) == 0
def test_setup_routes(internal_routes):
internal_routes.setup_routes()
routes = internal_routes.routes
assert any(route.method == 'GET' and str(route.path) == '/files' for route in routes)
def test_get_app(internal_routes):
app = internal_routes.get_app()
assert isinstance(app, web.Application)
assert internal_routes._app is not None
def test_get_app_reuse(internal_routes):
app1 = internal_routes.get_app()
app2 = internal_routes.get_app()
assert app1 is app2
@pytest.mark.asyncio
async def test_routes_added_to_app(aiohttp_client_factory, internal_routes):
client = await aiohttp_client_factory()
try:
resp = await client.get('/files')
print(f"Response received: status {resp.status}") # noqa: T201
except Exception as e:
print(f"Exception occurred during GET request: {e}") # noqa: T201
raise
assert resp.status != 404, "Route /files does not exist"
@pytest.mark.asyncio
async def test_file_service_initialization():
with patch('api_server.routes.internal.internal_routes.FileService') as MockFileService:
# Create a mock instance
mock_file_service_instance = MagicMock(spec=FileService)
MockFileService.return_value = mock_file_service_instance
internal_routes = InternalRoutes(None)
# Check if FileService was initialized with the correct parameters
MockFileService.assert_called_once_with({
"models": models_dir,
"user": user_directory,
"output": output_directory
})
# Verify that the file_service attribute of InternalRoutes is set
assert internal_routes.file_service == mock_file_service_instance

View File

@@ -1,54 +0,0 @@
import pytest
from unittest.mock import MagicMock
from api_server.services.file_service import FileService
@pytest.fixture
def mock_file_system_ops():
return MagicMock()
@pytest.fixture
def file_service(mock_file_system_ops):
allowed_directories = {
"models": "/path/to/models",
"user": "/path/to/user",
"output": "/path/to/output"
}
return FileService(allowed_directories, file_system_ops=mock_file_system_ops)
def test_list_files_valid_directory(file_service, mock_file_system_ops):
mock_file_system_ops.walk_directory.return_value = [
{"name": "file1.txt", "path": "file1.txt", "type": "file", "size": 100},
{"name": "dir1", "path": "dir1", "type": "directory"}
]
result = file_service.list_files("models")
assert len(result) == 2
assert result[0]["name"] == "file1.txt"
assert result[1]["name"] == "dir1"
mock_file_system_ops.walk_directory.assert_called_once_with("/path/to/models")
def test_list_files_invalid_directory(file_service):
# Does not support walking directories outside of the allowed directories
with pytest.raises(ValueError, match="Invalid directory key"):
file_service.list_files("invalid_key")
def test_list_files_empty_directory(file_service, mock_file_system_ops):
mock_file_system_ops.walk_directory.return_value = []
result = file_service.list_files("models")
assert len(result) == 0
mock_file_system_ops.walk_directory.assert_called_once_with("/path/to/models")
@pytest.mark.parametrize("directory_key", ["models", "user", "output"])
def test_list_files_all_allowed_directories(file_service, mock_file_system_ops, directory_key):
mock_file_system_ops.walk_directory.return_value = [
{"name": f"file_{directory_key}.txt", "path": f"file_{directory_key}.txt", "type": "file", "size": 100}
]
result = file_service.list_files(directory_key)
assert len(result) == 1
assert result[0]["name"] == f"file_{directory_key}.txt"
mock_file_system_ops.walk_directory.assert_called_once_with(f"/path/to/{directory_key}")

View File

@@ -114,7 +114,7 @@ def test_load_extra_model_paths_expands_userpath(
mock_yaml_safe_load.assert_called_once()
# Check if open was called with the correct file path
mock_file.assert_called_once_with(dummy_yaml_file_name, 'r')
mock_file.assert_called_once_with(dummy_yaml_file_name, 'r', encoding='utf-8')
@patch('builtins.open', new_callable=mock_open)
@@ -145,7 +145,7 @@ def test_load_extra_model_paths_expands_appdata(
else:
expected_base_path = '/Users/TestUser/AppData/Roaming/ComfyUI'
expected_calls = [
('checkpoints', os.path.join(expected_base_path, 'models/checkpoints'), False),
('checkpoints', os.path.normpath(os.path.join(expected_base_path, 'models/checkpoints')), False),
]
assert mock_add_model_folder_path.call_count == len(expected_calls)
@@ -197,8 +197,8 @@ def test_load_extra_path_config_relative_base_path(
load_extra_path_config(dummy_yaml_name)
expected_checkpoints = os.path.abspath(os.path.join(str(tmp_path), sub_folder, "checkpoints"))
expected_some_value = os.path.abspath(os.path.join(str(tmp_path), sub_folder, "some_value"))
expected_checkpoints = os.path.abspath(os.path.join(str(tmp_path), "my_rel_base", "checkpoints"))
expected_some_value = os.path.abspath(os.path.join(str(tmp_path), "my_rel_base", "some_value"))
actual_paths = folder_paths.folder_names_and_paths["checkpoints"][0]
assert len(actual_paths) == 1, "Should have one path added for 'checkpoints'."

View File

@@ -4,7 +4,7 @@ import folder_paths
import logging
def load_extra_path_config(yaml_path):
with open(yaml_path, 'r') as stream:
with open(yaml_path, 'r', encoding='utf-8') as stream:
config = yaml.safe_load(stream)
yaml_dir = os.path.dirname(os.path.abspath(yaml_path))
for c in config:
@@ -29,5 +29,6 @@ def load_extra_path_config(yaml_path):
full_path = os.path.join(base_path, full_path)
elif not os.path.isabs(full_path):
full_path = os.path.abspath(os.path.join(yaml_dir, y))
logging.info("Adding extra search path {} {}".format(x, full_path))
folder_paths.add_model_folder_path(x, full_path, is_default)
normalized_path = os.path.normpath(full_path)
logging.info("Adding extra search path {} {}".format(x, normalized_path))
folder_paths.add_model_folder_path(x, normalized_path, is_default)

View File

@@ -1,4 +1,4 @@
import { d as defineComponent, U as ref, p as onMounted, b4 as isElectron, W as nextTick, b5 as electronAPI, o as openBlock, f as createElementBlock, i as withDirectives, v as vShow, j as unref, b6 as isNativeWindow, m as createBaseVNode, A as renderSlot, ai as normalizeClass } from "./index-4Hb32CNk.js";
import { d as defineComponent, T as ref, p as onMounted, b8 as isElectron, V as nextTick, b9 as electronAPI, o as openBlock, f as createElementBlock, i as withDirectives, v as vShow, j as unref, ba as isNativeWindow, m as createBaseVNode, A as renderSlot, aj as normalizeClass } from "./index-Bv0b06LE.js";
const _hoisted_1 = { class: "flex-grow w-full flex items-center justify-center overflow-auto" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "BaseViewTemplate",
@@ -27,7 +27,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
});
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", {
class: normalizeClass(["font-sans w-screen h-screen flex flex-col pointer-events-auto", [
class: normalizeClass(["font-sans w-screen h-screen flex flex-col", [
props.dark ? "text-neutral-300 bg-neutral-900 dark-theme" : "text-neutral-900 bg-neutral-300"
]])
}, [
@@ -48,4 +48,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as _
};
//# sourceMappingURL=BaseViewTemplate-v6omkdXg.js.map
//# sourceMappingURL=BaseViewTemplate-BTbuZf5t.js.map

19
web/assets/DesktopStartView-D9r53Bue.js generated vendored Normal file
View File

@@ -0,0 +1,19 @@
import { d as defineComponent, o as openBlock, y as createBlock, z as withCtx, k as createVNode, j as unref, bE as script } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "DesktopStartView",
setup(__props) {
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, { dark: "" }, {
default: withCtx(() => [
createVNode(unref(script), { class: "m-8 w-48 h-48" })
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=DesktopStartView-D9r53Bue.js.map

View File

@@ -1,22 +0,0 @@
import { d as defineComponent, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, k as createVNode, j as unref, bz as script } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
const _hoisted_1 = { class: "max-w-screen-sm w-screen p-8" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "DesktopStartView",
setup(__props) {
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, { dark: "" }, {
default: withCtx(() => [
createBaseVNode("div", _hoisted_1, [
createVNode(unref(script), { mode: "indeterminate" })
])
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=DesktopStartView-coDnSXEF.js.map

58
web/assets/DesktopUpdateView-C-R0415K.js generated vendored Normal file
View File

@@ -0,0 +1,58 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, T as ref, d8 as onUnmounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, j as unref, bg as t, k as createVNode, bE as script, l as script$1, b9 as electronAPI, _ as _export_sfc } from "./index-Bv0b06LE.js";
import { s as script$2 } from "./index-A_bXPJCN.js";
import { _ as _sfc_main$1 } from "./TerminalOutputDrawer-CKr7Br7O.js";
import { _ as _sfc_main$2 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1 = { class: "h-screen w-screen grid items-center justify-around overflow-y-auto" };
const _hoisted_2 = { class: "relative m-8 text-center" };
const _hoisted_3 = { class: "download-bg pi-download text-4xl font-bold" };
const _hoisted_4 = { class: "m-8" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "DesktopUpdateView",
setup(__props) {
const electron = electronAPI();
const terminalVisible = ref(false);
const toggleConsoleDrawer = /* @__PURE__ */ __name(() => {
terminalVisible.value = !terminalVisible.value;
}, "toggleConsoleDrawer");
onUnmounted(() => electron.Validation.dispose());
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$2, { dark: "" }, {
default: withCtx(() => [
createBaseVNode("div", _hoisted_1, [
createBaseVNode("div", _hoisted_2, [
createBaseVNode("h1", _hoisted_3, toDisplayString(unref(t)("desktopUpdate.title")), 1),
createBaseVNode("div", _hoisted_4, [
createBaseVNode("span", null, toDisplayString(unref(t)("desktopUpdate.description")), 1)
]),
createVNode(unref(script), { class: "m-8 w-48 h-48" }),
createVNode(unref(script$1), {
style: { "transform": "translateX(-50%)" },
class: "fixed bottom-0 left-1/2 my-8",
label: unref(t)("maintenance.consoleLogs"),
icon: "pi pi-desktop",
"icon-pos": "left",
severity: "secondary",
onClick: toggleConsoleDrawer
}, null, 8, ["label"]),
createVNode(_sfc_main$1, {
modelValue: terminalVisible.value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => terminalVisible.value = $event),
header: unref(t)("g.terminal"),
"default-message": unref(t)("desktopUpdate.terminalDefaultMessage")
}, null, 8, ["modelValue", "header", "default-message"])
])
]),
createVNode(unref(script$2))
]),
_: 1
});
};
}
});
const DesktopUpdateView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-8d77828d"]]);
export {
DesktopUpdateView as default
};
//# sourceMappingURL=DesktopUpdateView-C-R0415K.js.map

20
web/assets/DesktopUpdateView-CxchaIvw.css generated vendored Normal file
View File

@@ -0,0 +1,20 @@
.download-bg[data-v-8d77828d]::before {
position: absolute;
margin: 0px;
color: var(--p-text-muted-color);
font-family: 'primeicons';
top: -2rem;
right: 2rem;
speak: none;
font-style: normal;
font-weight: normal;
font-variant: normal;
text-transform: none;
line-height: 1;
display: inline-block;
-webkit-font-smoothing: antialiased;
opacity: 0.02;
font-size: min(14rem, 90vw);
z-index: 0
}

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, l as script, be as useRouter } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, l as script, bi as useRouter } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1 = { class: "max-w-screen-sm flex flex-col gap-8 p-8 bg-[url('/assets/images/Git-Logo-White.svg')] bg-no-repeat bg-right-top bg-origin-padding" };
const _hoisted_2 = { class: "mt-24 text-4xl font-bold text-red-500" };
const _hoisted_3 = { class: "space-y-4" };
@@ -55,4 +55,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as default
};
//# sourceMappingURL=DownloadGitView-3STu4yxt.js.map
//# sourceMappingURL=DownloadGitView-PWqK5ke4.js.map

View File

@@ -1,8 +1,8 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, U as ref, dl as FilterMatchMode, dr as useExtensionStore, a as useSettingStore, p as onMounted, c as computed, o as openBlock, y as createBlock, z as withCtx, k as createVNode, dm as SearchBox, j as unref, bj as script, m as createBaseVNode, f as createElementBlock, D as renderList, E as toDisplayString, a7 as createTextVNode, F as Fragment, l as script$1, B as createCommentVNode, a4 as script$3, ax as script$4, bn as script$5, dn as _sfc_main$1 } from "./index-4Hb32CNk.js";
import { g as script$2, h as script$6 } from "./index-nJubvliG.js";
import "./index-D6zf5KAf.js";
import { d as defineComponent, T as ref, dx as FilterMatchMode, dC as useExtensionStore, a as useSettingStore, p as onMounted, c as computed, o as openBlock, y as createBlock, z as withCtx, k as createVNode, dy as SearchBox, j as unref, bn as script, m as createBaseVNode, f as createElementBlock, D as renderList, E as toDisplayString, a8 as createTextVNode, F as Fragment, l as script$1, B as createCommentVNode, a5 as script$3, ay as script$4, br as script$5, dz as _sfc_main$1 } from "./index-Bv0b06LE.js";
import { g as script$2, h as script$6 } from "./index-CgMyWf7n.js";
import "./index-Dzu9WL4p.js";
const _hoisted_1 = { class: "flex justify-end" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ExtensionPanel",
@@ -179,4 +179,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as default
};
//# sourceMappingURL=ExtensionPanel-GE0aOkbr.js.map
//# sourceMappingURL=ExtensionPanel-Ba57xrmg.js.map

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,5 @@
.comfy-menu-hamburger[data-v-7ed57d1a] {
pointer-events: auto;
.comfy-menu-hamburger[data-v-82120b51] {
position: fixed;
z-index: 9999;
display: flex;
@@ -41,19 +40,19 @@
z-index: 999;
}
.p-buttongroup-vertical[data-v-cb8f9a1a] {
.p-buttongroup-vertical[data-v-27a9500c] {
display: flex;
flex-direction: column;
border-radius: var(--p-button-border-radius);
overflow: hidden;
border: 1px solid var(--p-panel-border-color);
}
.p-buttongroup-vertical .p-button[data-v-cb8f9a1a] {
.p-buttongroup-vertical .p-button[data-v-27a9500c] {
margin: 0;
border-radius: 0;
}
.node-tooltip[data-v-46859edf] {
.node-tooltip[data-v-f03142eb] {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
@@ -133,13 +132,11 @@
border-right: 4px solid var(--p-button-text-primary-color);
}
.side-tool-bar-container[data-v-33cac83a] {
.side-tool-bar-container[data-v-04875455] {
display: flex;
flex-direction: column;
align-items: center;
pointer-events: auto;
width: var(--sidebar-width);
height: 100%;
@@ -150,16 +147,16 @@
--sidebar-width: 4rem;
--sidebar-icon-size: 1.5rem;
}
.side-tool-bar-container.small-sidebar[data-v-33cac83a] {
.side-tool-bar-container.small-sidebar[data-v-04875455] {
--sidebar-width: 2.5rem;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-end[data-v-33cac83a] {
.side-tool-bar-end[data-v-04875455] {
align-self: flex-end;
margin-top: auto;
}
.status-indicator[data-v-8d011a31] {
.status-indicator[data-v-fd6ae3af] {
position: absolute;
font-weight: 700;
font-size: 1.5rem;
@@ -221,7 +218,7 @@
border-radius: 0px
}
[data-v-38831d8e] .workflow-tabs {
[data-v-6ab68035] .workflow-tabs {
background-color: var(--comfy-menu-bg);
}
@@ -235,31 +232,36 @@
border-bottom-right-radius: 0;
}
.actionbar[data-v-915e5456] {
.actionbar[data-v-ebd56d51] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-915e5456] {
.actionbar.is-docked[data-v-ebd56d51] {
position: static;
border-style: none;
background-color: transparent;
padding: 0px;
}
.actionbar.is-dragging[data-v-915e5456] {
.actionbar.is-dragging[data-v-ebd56d51] {
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
}
[data-v-915e5456] .p-panel-content {
[data-v-ebd56d51] .p-panel-content {
padding: 0.25rem;
}
.is-docked[data-v-915e5456] .p-panel-content {
.is-docked[data-v-ebd56d51] .p-panel-content {
padding: 0px;
}
[data-v-915e5456] .p-panel-header {
[data-v-ebd56d51] .p-panel-header {
display: none;
}
.drag-handle[data-v-ebd56d51] {
height: -moz-max-content;
height: max-content;
width: 0.75rem;
}
.top-menubar[data-v-56df69d2] .p-menubar-item-link svg {
display: none;
@@ -275,7 +277,7 @@
border-style: solid;
}
.comfyui-menu[data-v-929e7543] {
.comfyui-menu[data-v-68d3b5b9] {
width: 100vw;
height: var(--comfy-topbar-height);
background: var(--comfy-menu-bg);
@@ -288,19 +290,94 @@
order: 0;
grid-column: 1/-1;
}
.comfyui-menu.dropzone[data-v-929e7543] {
.comfyui-menu.dropzone[data-v-68d3b5b9] {
background: var(--p-highlight-background);
}
.comfyui-menu.dropzone-active[data-v-929e7543] {
.comfyui-menu.dropzone-active[data-v-68d3b5b9] {
background: var(--p-highlight-background-focus);
}
[data-v-929e7543] .p-menubar-item-label {
[data-v-68d3b5b9] .p-menubar-item-label {
line-height: revert;
}
.comfyui-logo[data-v-929e7543] {
.comfyui-logo[data-v-68d3b5b9] {
font-size: 1.2em;
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
cursor: default;
}
.comfyui-body[data-v-e89d9273] {
grid-template-columns: auto 1fr auto;
grid-template-rows: auto 1fr auto;
}
/**
+------------------+------------------+------------------+
| |
| .comfyui-body- |
| top |
| (spans all cols) |
| |
+------------------+------------------+------------------+
| | | |
| .comfyui-body- | #graph-canvas | .comfyui-body- |
| left | | right |
| | | |
| | | |
+------------------+------------------+------------------+
| |
| .comfyui-body- |
| bottom |
| (spans all cols) |
| |
+------------------+------------------+------------------+
*/
.comfyui-body-top[data-v-e89d9273] {
order: -5;
/* Span across all columns */
grid-column: 1/-1;
/* Position at the first row */
grid-row: 1;
/* Top menu bar dropdown needs to be above of graph canvas splitter overlay which is z-index: 999 */
/* Top menu bar z-index needs to be higher than bottom menu bar z-index as by default
pysssss's image feed is located at body-bottom, and it can overlap with the queue button, which
is located in body-top. */
z-index: 1001;
display: flex;
flex-direction: column;
}
.comfyui-body-left[data-v-e89d9273] {
order: -4;
/* Position in the first column */
grid-column: 1;
/* Position below the top element */
grid-row: 2;
z-index: 10;
display: flex;
}
.graph-canvas-container[data-v-e89d9273] {
width: 100%;
height: 100%;
order: -3;
grid-column: 2;
grid-row: 2;
position: relative;
overflow: hidden;
}
.comfyui-body-right[data-v-e89d9273] {
order: -2;
z-index: 10;
grid-column: 3;
grid-row: 2;
}
.comfyui-body-bottom[data-v-e89d9273] {
order: 4;
/* Span across all columns */
grid-column: 1/-1;
grid-row: 3;
/* Bottom menu bar dropdown needs to be above of graph canvas splitter overlay which is z-index: 999 */
z-index: 1000;
display: flex;
flex-direction: column;
}

View File

@@ -1,9 +1,9 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, U as ref, bm as useModel, o as openBlock, f as createElementBlock, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, bn as script, bh as script$1, ar as withModifiers, z as withCtx, ab as script$2, K as useI18n, c as computed, ai as normalizeClass, B as createCommentVNode, a4 as script$3, a7 as createTextVNode, b5 as electronAPI, _ as _export_sfc, p as onMounted, r as resolveDirective, bg as script$4, i as withDirectives, bo as script$5, bp as script$6, l as script$7, y as createBlock, bj as script$8, bq as MigrationItems, w as watchEffect, F as Fragment, D as renderList, br as script$9, bs as mergeModels, bt as ValidationState, Y as normalizeI18nKey, O as watch, bu as checkMirrorReachable, bv as _sfc_main$7, bw as mergeValidationStates, bc as t, a$ as script$a, bx as CUDA_TORCH_URL, by as NIGHTLY_CPU_TORCH_URL, be as useRouter, ag as toRaw } from "./index-4Hb32CNk.js";
import { s as script$b, a as script$c, b as script$d, c as script$e, d as script$f } from "./index-hkkV7N7e.js";
import { d as defineComponent, T as ref, bq as useModel, o as openBlock, f as createElementBlock, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, br as script, bl as script$1, as as withModifiers, z as withCtx, ac as script$2, I as useI18n, c as computed, aj as normalizeClass, B as createCommentVNode, a5 as script$3, a8 as createTextVNode, b9 as electronAPI, _ as _export_sfc, p as onMounted, r as resolveDirective, bk as script$4, i as withDirectives, bs as script$5, bt as script$6, l as script$7, y as createBlock, bn as script$8, bu as MigrationItems, w as watchEffect, F as Fragment, D as renderList, bv as script$9, bw as mergeModels, bx as ValidationState, X as normalizeI18nKey, N as watch, by as checkMirrorReachable, bz as _sfc_main$7, bA as isInChina, bB as mergeValidationStates, bg as t, b3 as script$a, bC as CUDA_TORCH_URL, bD as NIGHTLY_CPU_TORCH_URL, bi as useRouter, ah as toRaw } from "./index-Bv0b06LE.js";
import { s as script$b, a as script$c, b as script$d, c as script$e, d as script$f } from "./index-SeIZOWJp.js";
import { P as PYTHON_MIRROR, a as PYPI_MIRROR } from "./uvMirrors-B-HKMf6X.js";
import { _ as _sfc_main$8 } from "./BaseViewTemplate-v6omkdXg.js";
import { _ as _sfc_main$8 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1$5 = { class: "flex flex-col gap-6 w-[600px]" };
const _hoisted_2$5 = { class: "flex flex-col gap-4" };
const _hoisted_3$5 = { class: "text-2xl font-semibold text-neutral-100" };
@@ -314,6 +314,7 @@ const _sfc_main$4 = /* @__PURE__ */ defineComponent({
const pathExists = ref(false);
const appData = ref("");
const appPath = ref("");
const inputTouched = ref(false);
const electron = electronAPI();
onMounted(async () => {
const paths = await electron.getSystemPaths();
@@ -355,6 +356,13 @@ const _sfc_main$4 = /* @__PURE__ */ defineComponent({
pathError.value = t2("install.failedToSelectDirectory");
}
}, "browsePath");
const onFocus = /* @__PURE__ */ __name(() => {
if (!inputTouched.value) {
inputTouched.value = true;
return;
}
validatePath(installPath.value);
}, "onFocus");
return (_ctx, _cache) => {
const _directive_tooltip = resolveDirective("tooltip");
return openBlock(), createElementBlock("div", _hoisted_1$3, [
@@ -370,10 +378,16 @@ const _sfc_main$4 = /* @__PURE__ */ defineComponent({
_cache[0] || (_cache[0] = ($event) => installPath.value = $event),
validatePath
],
class: normalizeClass(["w-full", { "p-invalid": pathError.value }])
class: normalizeClass(["w-full", { "p-invalid": pathError.value }]),
onFocus
}, null, 8, ["modelValue", "class"]),
withDirectives(createVNode(unref(script$5), { class: "pi pi-info-circle" }, null, 512), [
[_directive_tooltip, _ctx.$t("install.installLocationTooltip")]
[
_directive_tooltip,
_ctx.$t("install.installLocationTooltip"),
void 0,
{ top: true }
]
])
]),
_: 1
@@ -595,13 +609,12 @@ const _sfc_main$2 = /* @__PURE__ */ defineComponent({
}
});
return (_ctx, _cache) => {
const _component_UrlInput = _sfc_main$7;
return openBlock(), createElementBlock("div", _hoisted_1$1, [
createBaseVNode("div", _hoisted_2$1, [
createBaseVNode("h3", _hoisted_3$1, toDisplayString(_ctx.$t(`settings.${normalizedSettingId.value}.name`)), 1),
createBaseVNode("p", _hoisted_4$1, toDisplayString(_ctx.$t(`settings.${normalizedSettingId.value}.tooltip`)), 1)
]),
createVNode(_component_UrlInput, {
createVNode(_sfc_main$7, {
modelValue: modelValue.value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => modelValue.value = $event),
"validate-url-fn": /* @__PURE__ */ __name((mirror) => unref(checkMirrorReachable)(mirror + (_ctx.item.validationPathSuffix ?? "")), "validate-url-fn"),
@@ -653,11 +666,24 @@ const _sfc_main$1 = /* @__PURE__ */ defineComponent({
};
}
}, "getTorchMirrorItem");
const mirrors = computed(() => [
[PYTHON_MIRROR, pythonMirror],
[PYPI_MIRROR, pypiMirror],
[getTorchMirrorItem(__props.device), torchMirror]
]);
const userIsInChina = ref(false);
onMounted(async () => {
userIsInChina.value = await isInChina();
});
const useFallbackMirror = /* @__PURE__ */ __name((mirror) => ({
...mirror,
mirror: mirror.fallbackMirror
}), "useFallbackMirror");
const mirrors = computed(
() => [
[PYTHON_MIRROR, pythonMirror],
[PYPI_MIRROR, pypiMirror],
[getTorchMirrorItem(__props.device), torchMirror]
].map(([item, modelValue]) => [
userIsInChina.value ? useFallbackMirror(item) : item,
modelValue
])
);
const validationStates = ref(
mirrors.value.map(() => ValidationState.IDLE)
);
@@ -942,4 +968,4 @@ const InstallView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-
export {
InstallView as default
};
//# sourceMappingURL=InstallView-DTDlVr0Z.js.map
//# sourceMappingURL=InstallView-DW9xwU_F.js.map

8
web/assets/KeybindingPanel-CDYVPYDp.css generated vendored Normal file
View File

@@ -0,0 +1,8 @@
[data-v-8454e24f] .p-datatable-tbody > tr > td {
padding: 0.25rem;
min-height: 2rem
}
[data-v-8454e24f] .p-datatable-row-selected .actions,[data-v-8454e24f] .p-datatable-selectable-row:hover .actions {
visibility: visible
}

View File

@@ -1,8 +0,0 @@
[data-v-2554ab36] .p-datatable-tbody > tr > td {
padding: 0.25rem;
min-height: 2rem
}
[data-v-2554ab36] .p-datatable-row-selected .actions,[data-v-2554ab36] .p-datatable-selectable-row:hover .actions {
visibility: visible
}

View File

@@ -1,9 +1,9 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, c as computed, o as openBlock, f as createElementBlock, F as Fragment, D as renderList, k as createVNode, z as withCtx, a7 as createTextVNode, E as toDisplayString, j as unref, a4 as script, B as createCommentVNode, U as ref, dl as FilterMatchMode, an as useKeybindingStore, L as useCommandStore, K as useI18n, Y as normalizeI18nKey, w as watchEffect, aR as useToast, r as resolveDirective, y as createBlock, dm as SearchBox, m as createBaseVNode, l as script$2, bg as script$4, ar as withModifiers, bj as script$5, ab as script$6, i as withDirectives, dn as _sfc_main$2, dp as KeyComboImpl, dq as KeybindingImpl, _ as _export_sfc } from "./index-4Hb32CNk.js";
import { g as script$1, h as script$3 } from "./index-nJubvliG.js";
import { u as useKeybindingService } from "./keybindingService-BTNdTpfl.js";
import "./index-D6zf5KAf.js";
import { d as defineComponent, c as computed, o as openBlock, f as createElementBlock, F as Fragment, D as renderList, k as createVNode, z as withCtx, a8 as createTextVNode, E as toDisplayString, j as unref, a5 as script, B as createCommentVNode, T as ref, dx as FilterMatchMode, ao as useKeybindingStore, J as useCommandStore, I as useI18n, X as normalizeI18nKey, w as watchEffect, aV as useToast, r as resolveDirective, y as createBlock, dy as SearchBox, m as createBaseVNode, l as script$2, bk as script$4, as as withModifiers, bn as script$5, ac as script$6, i as withDirectives, dz as _sfc_main$2, dA as KeyComboImpl, dB as KeybindingImpl, _ as _export_sfc } from "./index-Bv0b06LE.js";
import { g as script$1, h as script$3 } from "./index-CgMyWf7n.js";
import { u as useKeybindingService } from "./keybindingService-DyjX-nxF.js";
import "./index-Dzu9WL4p.js";
const _hoisted_1$1 = {
key: 0,
class: "px-2"
@@ -96,6 +96,16 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}
__name(removeKeybinding, "removeKeybinding");
function captureKeybinding(event) {
if (!event.shiftKey && !event.altKey && !event.ctrlKey && !event.metaKey) {
switch (event.key) {
case "Escape":
cancelEdit();
return;
case "Enter":
saveKeybinding();
return;
}
}
const keyCombo = KeyComboImpl.fromEvent(event);
newBindingKeyCombo.value = keyCombo;
}
@@ -151,7 +161,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
value: commandsData.value,
selection: selectedCommandData.value,
"onUpdate:selection": _cache[1] || (_cache[1] = ($event) => selectedCommandData.value = $event),
"global-filter-fields": ["id"],
"global-filter-fields": ["id", "label"],
filters: filters.value,
selectionMode: "single",
stripedRows: "",
@@ -216,7 +226,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
visible: editDialogVisible.value,
"onUpdate:visible": _cache[2] || (_cache[2] = ($event) => editDialogVisible.value = $event),
modal: "",
header: currentEditingCommand.value?.id,
header: currentEditingCommand.value?.label,
onHide: cancelEdit
}, {
footer: withCtx(() => [
@@ -275,8 +285,8 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
};
}
});
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-2554ab36"]]);
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-8454e24f"]]);
export {
KeybindingPanel as default
};
//# sourceMappingURL=KeybindingPanel-C0Nt6GXU.js.map
//# sourceMappingURL=KeybindingPanel-oavhFdkz.js.map

File diff suppressed because one or more lines are too long

View File

@@ -63,10 +63,10 @@
}
}
[data-v-74b78f7d] .p-tag {
[data-v-dd50a7dd] .p-tag {
--p-tag-gap: 0.375rem;
}
.backspan[data-v-74b78f7d]::before {
.backspan[data-v-dd50a7dd]::before {
position: absolute;
margin: 0px;
color: var(--p-text-muted-color);

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, K as useI18n, U as ref, p as onMounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, a4 as script, a$ as script$1, l as script$2, b5 as electronAPI, _ as _export_sfc } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, I as useI18n, T as ref, p as onMounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, a5 as script, b3 as script$1, l as script$2, b9 as electronAPI, _ as _export_sfc } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1 = { class: "comfy-installer grow flex flex-col gap-4 text-neutral-300 max-w-110" };
const _hoisted_2 = { class: "text-2xl font-semibold text-neutral-100" };
const _hoisted_3 = { class: "m-1 text-neutral-300" };
@@ -71,4 +71,4 @@ const ManualConfigurationView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scop
export {
ManualConfigurationView as default
};
//# sourceMappingURL=ManualConfigurationView-DueOvLuK.js.map
//# sourceMappingURL=ManualConfigurationView-DTLyJ3VG.js.map

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, aR as useToast, K as useI18n, U as ref, be as useRouter, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, a7 as createTextVNode, k as createVNode, j as unref, bn as script, l as script$1, b5 as electronAPI } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
import { d as defineComponent, aV as useToast, I as useI18n, T as ref, bi as useRouter, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, a8 as createTextVNode, k as createVNode, j as unref, br as script, l as script$1, b9 as electronAPI } from "./index-Bv0b06LE.js";
const _hoisted_1 = { class: "h-full p-8 2xl:p-16 flex flex-col items-center justify-center" };
const _hoisted_2 = { class: "bg-neutral-800 rounded-lg shadow-lg p-6 w-full max-w-[600px] flex flex-col gap-6" };
const _hoisted_3 = { class: "text-3xl font-semibold text-neutral-100" };
@@ -83,4 +83,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as default
};
//# sourceMappingURL=MetricsConsentView-DTQYUF4Z.js.map
//# sourceMappingURL=MetricsConsentView-C80fk2cl.js.map

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, be as useRouter, r as resolveDirective, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, l as script, i as withDirectives, _ as _export_sfc } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, bi as useRouter, r as resolveDirective, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, l as script, i as withDirectives, _ as _export_sfc } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _imports_0 = "" + new URL("images/sad_girl.png", import.meta.url).href;
const _hoisted_1 = { class: "sad-container" };
const _hoisted_2 = { class: "no-drag sad-text flex items-center" };
@@ -83,4 +83,4 @@ const NotSupportedView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "
export {
NotSupportedView as default
};
//# sourceMappingURL=NotSupportedView-PDDrAb9U.js.map
//# sourceMappingURL=NotSupportedView-B78ZVR9Z.js.map

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { o as openBlock, f as createElementBlock, m as createBaseVNode, H as markRaw, d as defineComponent, a as useSettingStore, ae as storeToRefs, O as watch, dy as useCopyToClipboard, K as useI18n, y as createBlock, z as withCtx, j as unref, bj as script, E as toDisplayString, D as renderList, F as Fragment, k as createVNode, l as script$1, B as createCommentVNode, bh as script$2, dz as FormItem, dn as _sfc_main$1, b5 as electronAPI } from "./index-4Hb32CNk.js";
import { u as useServerConfigStore } from "./serverConfigStore-BYbZcbWj.js";
import { o as openBlock, f as createElementBlock, m as createBaseVNode, H as markRaw, d as defineComponent, a as useSettingStore, af as storeToRefs, N as watch, dJ as useCopyToClipboard, I as useI18n, y as createBlock, z as withCtx, j as unref, bn as script, E as toDisplayString, D as renderList, F as Fragment, k as createVNode, l as script$1, B as createCommentVNode, bl as script$2, dK as FormItem, dz as _sfc_main$1, b9 as electronAPI } from "./index-Bv0b06LE.js";
import { u as useServerConfigStore } from "./serverConfigStore-D2Vr0L0h.js";
const _hoisted_1$1 = {
viewBox: "0 0 24 24",
width: "1.2em",
@@ -153,4 +153,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as default
};
//# sourceMappingURL=ServerConfigPanel-DnGhsuUV.js.map
//# sourceMappingURL=ServerConfigPanel-BYrt6wyr.js.map

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, K as useI18n, U as ref, bk as ProgressStatus, p as onMounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, a7 as createTextVNode, E as toDisplayString, j as unref, f as createElementBlock, B as createCommentVNode, k as createVNode, l as script, i as withDirectives, v as vShow, bl as BaseTerminal, b5 as electronAPI, _ as _export_sfc } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, I as useI18n, T as ref, bo as ProgressStatus, p as onMounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, a8 as createTextVNode, E as toDisplayString, j as unref, f as createElementBlock, B as createCommentVNode, k as createVNode, l as script, i as withDirectives, v as vShow, bp as BaseTerminal, b9 as electronAPI, _ as _export_sfc } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1 = { class: "flex flex-col w-full h-full items-center" };
const _hoisted_2 = { class: "text-2xl font-bold" };
const _hoisted_3 = { key: 0 };
@@ -93,8 +93,8 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
};
}
});
const ServerStartView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-4140d62b"]]);
const ServerStartView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-e6ba9633"]]);
export {
ServerStartView as default
};
//# sourceMappingURL=ServerStartView-yzYZ8gms.js.map
//# sourceMappingURL=ServerStartView-B7TlHxYo.js.map

View File

@@ -1,5 +1,5 @@
[data-v-4140d62b] .xterm-helper-textarea {
[data-v-e6ba9633] .xterm-helper-textarea {
/* Hide this as it moves all over when uv is running */
display: none;
}

1061
web/assets/TerminalOutputDrawer-CKr7Br7O.js generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, aj as useUserStore, be as useRouter, U as ref, c as computed, p as onMounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, bf as withKeys, j as unref, bg as script, bh as script$1, bi as script$2, bj as script$3, a7 as createTextVNode, B as createCommentVNode, l as script$4 } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, ak as useUserStore, bi as useRouter, T as ref, c as computed, p as onMounted, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, bj as withKeys, j as unref, bk as script, bl as script$1, bm as script$2, bn as script$3, a8 as createTextVNode, B as createCommentVNode, l as script$4 } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1 = {
id: "comfy-user-selection",
class: "min-w-84 relative rounded-lg bg-[var(--comfy-menu-bg)] p-5 px-10 shadow-lg"
@@ -98,4 +98,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export {
_sfc_main as default
};
//# sourceMappingURL=UserSelectView-DeJDnrF0.js.map
//# sourceMappingURL=UserSelectView-C703HOyO.js.map

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, be as useRouter, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, l as script, _ as _export_sfc } from "./index-4Hb32CNk.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-v6omkdXg.js";
import { d as defineComponent, bi as useRouter, o as openBlock, y as createBlock, z as withCtx, m as createBaseVNode, E as toDisplayString, k as createVNode, j as unref, l as script, _ as _export_sfc } from "./index-Bv0b06LE.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BTbuZf5t.js";
const _hoisted_1 = { class: "flex flex-col items-center justify-center gap-8 p-8" };
const _hoisted_2 = { class: "animated-gradient-text text-glow select-none" };
const _sfc_main = /* @__PURE__ */ defineComponent({
@@ -36,4 +36,4 @@ const WelcomeView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-
export {
WelcomeView as default
};
//# sourceMappingURL=WelcomeView-DkwLdayn.js.map
//# sourceMappingURL=WelcomeView-DIFvbWc2.js.map

618
web/assets/index-A_bXPJCN.js generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -306,6 +306,7 @@
.litegraph .dialog .dialog-footer {
height: 50px;
padding: 10px;
margin: 0;
border-top: 1px solid #1a1a1a;
}
@@ -442,63 +443,6 @@
color: black;
}
.litegraph .subgraph_property {
padding: 4px;
}
.litegraph .subgraph_property:hover {
background-color: #333;
}
.litegraph .subgraph_property.extra {
margin-top: 8px;
}
.litegraph .subgraph_property span.name {
font-size: 1.3em;
padding-left: 4px;
}
.litegraph .subgraph_property span.type {
opacity: 0.5;
margin-right: 20px;
padding-left: 4px;
}
.litegraph .subgraph_property span.label {
display: inline-block;
width: 60px;
padding: 0px 10px;
}
.litegraph .subgraph_property input {
width: 140px;
color: #999;
background-color: #1a1a1a;
border-radius: 4px;
border: 0;
margin-right: 10px;
padding: 4px;
padding-left: 10px;
}
.litegraph .subgraph_property button {
background-color: #1c1c1c;
color: #aaa;
border: 0;
border-radius: 2px;
padding: 4px 10px;
cursor: pointer;
}
.litegraph .subgraph_property.extra {
color: #ccc;
}
.litegraph .subgraph_property.extra input {
background-color: #111;
}
.litegraph .bullet_icon {
margin-left: 10px;
border-radius: 10px;
@@ -661,21 +605,6 @@
.litegraph .dialog .dialog-content {
display: block;
}
.litegraph .dialog .dialog-content .subgraph_property {
padding: 5px;
}
.litegraph .dialog .dialog-footer {
margin: 0;
}
.litegraph .dialog .dialog-footer .subgraph_property {
margin-top: 0;
display: flex;
align-items: center;
padding: 5px;
}
.litegraph .dialog .dialog-footer .subgraph_property .name {
flex: 1;
}
.litegraph .graphdialog {
display: flex;
align-items: center;
@@ -2110,6 +2039,9 @@
.-right-4{
right: -1rem;
}
.bottom-0{
bottom: 0px;
}
.bottom-\[10px\]{
bottom: 10px;
}
@@ -2119,6 +2051,15 @@
.left-0{
left: 0px;
}
.left-1\/2{
left: 50%;
}
.left-12{
left: 3rem;
}
.left-2{
left: 0.5rem;
}
.left-\[-350px\]{
left: -350px;
}
@@ -2128,6 +2069,9 @@
.top-0{
top: 0px;
}
.top-2{
top: 0.5rem;
}
.top-\[50px\]{
top: 50px;
}
@@ -2137,6 +2081,9 @@
.z-10{
z-index: 10;
}
.z-20{
z-index: 20;
}
.z-\[1000\]{
z-index: 1000;
}
@@ -2196,6 +2143,10 @@
margin-top: 1rem;
margin-bottom: 1rem;
}
.my-8{
margin-top: 2rem;
margin-bottom: 2rem;
}
.mb-2{
margin-bottom: 0.5rem;
}
@@ -2286,6 +2237,9 @@
.h-16{
height: 4rem;
}
.h-48{
height: 12rem;
}
.h-6{
height: 1.5rem;
}
@@ -2331,6 +2285,9 @@
.min-h-screen{
min-height: 100vh;
}
.w-0{
width: 0px;
}
.w-1\/2{
width: 50%;
}
@@ -2343,12 +2300,21 @@
.w-16{
width: 4rem;
}
.w-24{
width: 6rem;
}
.w-28{
width: 7rem;
}
.w-3{
width: 0.75rem;
}
.w-3\/12{
width: 25%;
}
.w-32{
width: 8rem;
}
.w-44{
width: 11rem;
}
@@ -2458,6 +2424,9 @@
.cursor-pointer{
cursor: pointer;
}
.touch-none{
touch-action: none;
}
.select-none{
-webkit-user-select: none;
-moz-user-select: none;
@@ -2893,6 +2862,10 @@
--tw-text-opacity: 1;
color: rgb(239 68 68 / var(--tw-text-opacity));
}
.text-white{
--tw-text-opacity: 1;
color: rgb(255 255 255 / var(--tw-text-opacity));
}
.underline{
text-decoration-line: underline;
}
@@ -3035,8 +3008,6 @@ body {
height: 100vh;
margin: 0;
overflow: hidden;
grid-template-columns: auto 1fr auto;
grid-template-rows: auto 1fr auto;
background: var(--bg-color) var(--bg-img);
color: var(--fg-color);
min-height: -webkit-fill-available;
@@ -3046,87 +3017,6 @@ body {
font-family: Arial, sans-serif;
}
/**
+------------------+------------------+------------------+
| |
| .comfyui-body- |
| top |
| (spans all cols) |
| |
+------------------+------------------+------------------+
| | | |
| .comfyui-body- | #graph-canvas | .comfyui-body- |
| left | | right |
| | | |
| | | |
+------------------+------------------+------------------+
| |
| .comfyui-body- |
| bottom |
| (spans all cols) |
| |
+------------------+------------------+------------------+
*/
.comfyui-body-top {
order: -5;
/* Span across all columns */
grid-column: 1/-1;
/* Position at the first row */
grid-row: 1;
/* Top menu bar dropdown needs to be above of graph canvas splitter overlay which is z-index: 999 */
/* Top menu bar z-index needs to be higher than bottom menu bar z-index as by default
pysssss's image feed is located at body-bottom, and it can overlap with the queue button, which
is located in body-top. */
z-index: 1001;
display: flex;
flex-direction: column;
}
.comfyui-body-left {
order: -4;
/* Position in the first column */
grid-column: 1;
/* Position below the top element */
grid-row: 2;
z-index: 10;
display: flex;
}
.graph-canvas-container {
width: 100%;
height: 100%;
order: -3;
grid-column: 2;
grid-row: 2;
position: relative;
overflow: hidden;
}
#graph-canvas {
width: 100%;
height: 100%;
touch-action: none;
}
.comfyui-body-right {
order: -2;
z-index: 10;
grid-column: 3;
grid-row: 2;
}
.comfyui-body-bottom {
order: 4;
/* Span across all columns */
grid-column: 1/-1;
grid-row: 3;
/* Bottom menu bar dropdown needs to be above of graph canvas splitter overlay which is z-index: 999 */
z-index: 1000;
display: flex;
flex-direction: column;
}
.comfy-multiline-input {
background-color: var(--comfy-input-bg);
color: var(--input-text);
@@ -3541,84 +3431,6 @@ dialog::backdrop {
justify-content: center;
}
#comfy-settings-dialog {
padding: 0;
width: 41rem;
}
#comfy-settings-dialog tr > td:first-child {
text-align: right;
}
#comfy-settings-dialog tbody button,
#comfy-settings-dialog table > button {
background-color: var(--bg-color);
border: 1px var(--border-color) solid;
border-radius: 0;
color: var(--input-text);
font-size: 1rem;
padding: 0.5rem;
}
#comfy-settings-dialog button:hover {
background-color: var(--tr-odd-bg-color);
}
/* General CSS for tables */
.comfy-table {
border-collapse: collapse;
color: var(--input-text);
font-family: Arial, sans-serif;
width: 100%;
}
.comfy-table caption {
position: sticky;
top: 0;
background-color: var(--bg-color);
color: var(--input-text);
font-size: 1rem;
font-weight: bold;
padding: 8px;
text-align: center;
border-bottom: 1px solid var(--border-color);
}
.comfy-table caption .comfy-btn {
position: absolute;
top: -2px;
right: 0;
bottom: 0;
cursor: pointer;
border: none;
height: 100%;
border-radius: 0;
aspect-ratio: 1/1;
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
font-size: 20px;
}
.comfy-table caption .comfy-btn:focus {
outline: none;
}
.comfy-table tr:nth-child(even) {
background-color: var(--tr-even-bg-color);
}
.comfy-table tr:nth-child(odd) {
background-color: var(--tr-odd-bg-color);
}
.comfy-table td,
.comfy-table th {
border: 1px solid var(--border-color);
padding: 8px;
}
/* Context menu */
.litegraph .dialog {
@@ -3718,24 +3530,6 @@ dialog::backdrop {
will-change: transform;
}
@media only screen and (max-width: 450px) {
#comfy-settings-dialog .comfy-table tbody {
display: grid;
}
#comfy-settings-dialog .comfy-table tr {
display: grid;
}
#comfy-settings-dialog tr > td:first-child {
text-align: center;
border-bottom: none;
padding-bottom: 0;
}
#comfy-settings-dialog tr > td:not(:first-child) {
text-align: center;
border-top: none;
}
}
audio.comfy-audio.empty-audio-widget {
display: none;
}
@@ -3746,7 +3540,6 @@ audio.comfy-audio.empty-audio-widget {
left: 0;
width: 100%;
height: 100%;
pointer-events: none;
}
/* Set auto complete panel's width as it is not accessible within vue-root */
@@ -3926,7 +3719,7 @@ audio.comfy-audio.empty-audio-widget {
padding-top: 0px
}
.prompt-dialog-content[data-v-3df70997] {
.prompt-dialog-content[data-v-4f1e3bbe] {
white-space: pre-wrap;
}
@@ -3944,17 +3737,17 @@ audio.comfy-audio.empty-audio-widget {
margin-bottom: 1rem;
}
.comfy-error-report[data-v-3faf7785] {
.comfy-error-report[data-v-e5000be2] {
display: flex;
flex-direction: column;
gap: 1rem;
}
.action-container[data-v-3faf7785] {
.action-container[data-v-e5000be2] {
display: flex;
gap: 1rem;
justify-content: flex-end;
}
.wrapper-pre[data-v-3faf7785] {
.wrapper-pre[data-v-e5000be2] {
white-space: pre-wrap;
word-wrap: break-word;
}
@@ -4023,13 +3816,13 @@ audio.comfy-audio.empty-audio-widget {
padding: 0px;
}
.form-input[data-v-1451da7b] .input-slider .p-inputnumber input,
.form-input[data-v-1451da7b] .input-slider .slider-part {
.form-input[data-v-a29c257f] .input-slider .p-inputnumber input,
.form-input[data-v-a29c257f] .input-slider .slider-part {
width: 5rem
}
.form-input[data-v-1451da7b] .p-inputtext,
.form-input[data-v-1451da7b] .p-select {
.form-input[data-v-a29c257f] .p-inputtext,
.form-input[data-v-a29c257f] .p-select {
width: 11rem
}
@@ -4319,26 +4112,26 @@ audio.comfy-audio.empty-audio-widget {
position: relative;
}
[data-v-250ab9af] .p-terminal .xterm {
[data-v-873a313f] .p-terminal .xterm {
overflow-x: auto;
}
[data-v-250ab9af] .p-terminal .xterm-screen {
[data-v-873a313f] .p-terminal .xterm-screen {
background-color: black;
overflow-y: hidden;
}
[data-v-90a7f075] .p-terminal .xterm {
[data-v-14fef2e4] .p-terminal .xterm {
overflow-x: auto;
}
[data-v-90a7f075] .p-terminal .xterm-screen {
[data-v-14fef2e4] .p-terminal .xterm-screen {
background-color: black;
overflow-y: hidden;
}
[data-v-03daf1c8] .p-terminal .xterm {
[data-v-cf0c7d52] .p-terminal .xterm {
overflow-x: auto;
}
[data-v-03daf1c8] .p-terminal .xterm-screen {
[data-v-cf0c7d52] .p-terminal .xterm-screen {
background-color: black;
overflow-y: hidden;
}
@@ -4650,28 +4443,28 @@ audio.comfy-audio.empty-audio-widget {
box-sizing: border-box;
}
.tree-node[data-v-654109c7] {
.tree-node[data-v-a945b5a8] {
width: 100%;
display: flex;
align-items: center;
justify-content: space-between;
}
.leaf-count-badge[data-v-654109c7] {
.leaf-count-badge[data-v-a945b5a8] {
margin-left: 0.5rem;
}
.node-content[data-v-654109c7] {
.node-content[data-v-a945b5a8] {
display: flex;
align-items: center;
flex-grow: 1;
}
.leaf-label[data-v-654109c7] {
.leaf-label[data-v-a945b5a8] {
margin-left: 0.5rem;
}
[data-v-654109c7] .editable-text span {
[data-v-a945b5a8] .editable-text span {
word-break: break-all;
}
[data-v-976a6d58] .tree-explorer-node-label {
[data-v-e3a237e6] .tree-explorer-node-label {
width: 100%;
display: flex;
align-items: center;
@@ -4684,10 +4477,10 @@ audio.comfy-audio.empty-audio-widget {
* By setting the position to relative on the parent and using an absolutely positioned pseudo-element,
* we can create a visual indicator for the drop target without affecting the layout of other elements.
*/
[data-v-976a6d58] .p-tree-node-content:has(.tree-folder) {
[data-v-e3a237e6] .p-tree-node-content:has(.tree-folder) {
position: relative;
}
[data-v-976a6d58] .p-tree-node-content:has(.tree-folder.can-drop)::after {
[data-v-e3a237e6] .p-tree-node-content:has(.tree-folder.can-drop)::after {
content: '';
position: absolute;
top: 0;
@@ -4790,7 +4583,7 @@ audio.comfy-audio.empty-audio-widget {
vertical-align: top;
}
[data-v-0bb2ac55] .pi-fake-spacer {
[data-v-3be51840] .pi-fake-spacer {
height: 1px;
width: 16px;
}

View File

@@ -1,7 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bA as BaseStyle, bB as script$s, bZ as script$t, o as openBlock, f as createElementBlock, as as mergeProps, m as createBaseVNode, E as toDisplayString, bS as Ripple, r as resolveDirective, i as withDirectives, y as createBlock, C as resolveDynamicComponent, bi as script$u, bK as resolveComponent, ai as normalizeClass, co as createSlots, z as withCtx, aU as script$v, cf as script$w, F as Fragment, D as renderList, a7 as createTextVNode, c9 as setAttribute, cv as normalizeProps, A as renderSlot, B as createCommentVNode, b_ as script$x, ce as equals, cA as script$y, br as script$z, cE as getFirstFocusableElement, c8 as OverlayEventBus, cU as getVNodeProp, cc as resolveFieldData, ds as invokeElementMethod, bP as getAttribute, cV as getNextElementSibling, c3 as getOuterWidth, cW as getPreviousElementSibling, l as script$A, bR as script$B, bU as script$C, bJ as script$E, cd as isNotEmpty, ar as withModifiers, d5 as getOuterHeight, bT as UniqueComponentId, cY as _default, bC as ZIndex, bE as focus, b$ as addStyle, c4 as absolutePosition, c0 as ConnectedOverlayScrollHandler, c1 as isTouchDevice, dt as FilterOperator, bI as script$F, cs as script$G, bH as FocusTrap, k as createVNode, bL as Transition, bf as withKeys, c6 as getIndex, cu as script$H, cX as isClickable, cZ as clearSelection, ca as localeComparator, cn as sort, cG as FilterService, dl as FilterMatchMode, bO as findSingle, cJ as findIndexInList, c5 as find, du as exportCSV, cR as getOffset, c_ as isRTL, dv as getHiddenElementOuterWidth, dw as getHiddenElementOuterHeight, dx as reorderArray, bW as removeClass, bD as addClass, ci as isEmpty, cH as script$I, ck as script$J } from "./index-4Hb32CNk.js";
import { s as script$D } from "./index-D6zf5KAf.js";
import { bG as BaseStyle, bH as script$s, bX as script$t, o as openBlock, f as createElementBlock, at as mergeProps, m as createBaseVNode, E as toDisplayString, bO as Ripple, r as resolveDirective, i as withDirectives, y as createBlock, C as resolveDynamicComponent, bm as script$u, bR as resolveComponent, aj as normalizeClass, cp as createSlots, z as withCtx, aY as script$v, cf as script$w, F as Fragment, D as renderList, a8 as createTextVNode, c8 as setAttribute, cx as normalizeProps, A as renderSlot, B as createCommentVNode, bY as script$x, ce as equals, cF as script$y, bv as script$z, cJ as getFirstFocusableElement, c7 as OverlayEventBus, cZ as getVNodeProp, cc as resolveFieldData, dD as invokeElementMethod, bK as getAttribute, c_ as getNextElementSibling, c2 as getOuterWidth, c$ as getPreviousElementSibling, l as script$A, bN as script$B, bQ as script$C, cl as script$E, cd as isNotEmpty, as as withModifiers, da as getOuterHeight, bP as UniqueComponentId, d1 as _default, bZ as ZIndex, bL as focus, b_ as addStyle, c3 as absolutePosition, b$ as ConnectedOverlayScrollHandler, c0 as isTouchDevice, dE as FilterOperator, ca as script$F, ct as script$G, cB as FocusTrap, k as createVNode, bI as Transition, bj as withKeys, c5 as getIndex, cv as script$H, d0 as isClickable, d2 as clearSelection, c9 as localeComparator, co as sort, cL as FilterService, dx as FilterMatchMode, bJ as findSingle, cO as findIndexInList, c4 as find, dF as exportCSV, cW as getOffset, d3 as isRTL, dG as getHiddenElementOuterWidth, dH as getHiddenElementOuterHeight, dI as reorderArray, bT as removeClass, bU as addClass, ci as isEmpty, cM as script$I, ck as script$J } from "./index-Bv0b06LE.js";
import { s as script$D } from "./index-Dzu9WL4p.js";
var ColumnStyle = BaseStyle.extend({
name: "column"
});
@@ -8787,4 +8787,4 @@ export {
script as h,
script$l as s
};
//# sourceMappingURL=index-nJubvliG.js.map
//# sourceMappingURL=index-CgMyWf7n.js.map

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bZ as script$1, o as openBlock, f as createElementBlock, as as mergeProps, m as createBaseVNode } from "./index-4Hb32CNk.js";
import { bX as script$1, o as openBlock, f as createElementBlock, at as mergeProps, m as createBaseVNode } from "./index-Bv0b06LE.js";
var script = {
name: "BarsIcon",
"extends": script$1
@@ -24,4 +24,4 @@ script.render = render;
export {
script as s
};
//# sourceMappingURL=index-D6zf5KAf.js.map
//# sourceMappingURL=index-Dzu9WL4p.js.map

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value2) => __defProp(target, "name", { value: value2, configurable: true });
import { bA as BaseStyle, bB as script$6, o as openBlock, f as createElementBlock, as as mergeProps, cJ as findIndexInList, c5 as find, bK as resolveComponent, y as createBlock, C as resolveDynamicComponent, z as withCtx, m as createBaseVNode, E as toDisplayString, A as renderSlot, B as createCommentVNode, ai as normalizeClass, bO as findSingle, F as Fragment, bL as Transition, i as withDirectives, v as vShow, bT as UniqueComponentId } from "./index-4Hb32CNk.js";
import { bG as BaseStyle, bH as script$6, o as openBlock, f as createElementBlock, at as mergeProps, cO as findIndexInList, c4 as find, bR as resolveComponent, y as createBlock, C as resolveDynamicComponent, z as withCtx, m as createBaseVNode, E as toDisplayString, A as renderSlot, B as createCommentVNode, aj as normalizeClass, bJ as findSingle, F as Fragment, bI as Transition, i as withDirectives, v as vShow, bP as UniqueComponentId } from "./index-Bv0b06LE.js";
var classes$4 = {
root: /* @__PURE__ */ __name(function root(_ref) {
var instance = _ref.instance;
@@ -536,4 +536,4 @@ export {
script as d,
script$4 as s
};
//# sourceMappingURL=index-hkkV7N7e.js.map
//# sourceMappingURL=index-SeIZOWJp.js.map

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { an as useKeybindingStore, L as useCommandStore, a as useSettingStore, dp as KeyComboImpl, dq as KeybindingImpl } from "./index-4Hb32CNk.js";
import { ao as useKeybindingStore, J as useCommandStore, a as useSettingStore, dA as KeyComboImpl, dB as KeybindingImpl } from "./index-Bv0b06LE.js";
const CORE_KEYBINDINGS = [
{
combo: {
@@ -186,7 +186,7 @@ const useKeybindingService = /* @__PURE__ */ __name(() => {
return;
}
const target = event.composedPath()[0];
if (!keyCombo.hasModifier && (target.tagName === "TEXTAREA" || target.tagName === "INPUT" || target.tagName === "SPAN" && target.classList.contains("property_value"))) {
if (keyCombo.isReservedByTextInput && (target.tagName === "TEXTAREA" || target.tagName === "INPUT" || target.tagName === "SPAN" && target.classList.contains("property_value"))) {
return;
}
const keybinding = keybindingStore.getKeybinding(keyCombo);
@@ -247,4 +247,4 @@ const useKeybindingService = /* @__PURE__ */ __name(() => {
export {
useKeybindingService as u
};
//# sourceMappingURL=keybindingService-BTNdTpfl.js.map
//# sourceMappingURL=keybindingService-DyjX-nxF.js.map

View File

@@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { I as defineStore, U as ref, c as computed } from "./index-4Hb32CNk.js";
import { a1 as defineStore, T as ref, c as computed } from "./index-Bv0b06LE.js";
const useServerConfigStore = defineStore("serverConfig", () => {
const serverConfigById = ref({});
const serverConfigs = computed(() => {
@@ -87,4 +87,4 @@ const useServerConfigStore = defineStore("serverConfig", () => {
export {
useServerConfigStore as u
};
//# sourceMappingURL=serverConfigStore-BYbZcbWj.js.map
//# sourceMappingURL=serverConfigStore-D2Vr0L0h.js.map

4
web/index.html vendored
View File

@@ -6,8 +6,8 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<link rel="stylesheet" type="text/css" href="user.css" />
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
<script type="module" crossorigin src="./assets/index-4Hb32CNk.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-C1Hb_Yo9.css">
<script type="module" crossorigin src="./assets/index-Bv0b06LE.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-CBxvvAzM.css">
</head>
<body class="litegraph grid">
<div id="vue-app"></div>

2
web/scripts/domWidget.js vendored Normal file
View File

@@ -0,0 +1,2 @@
// Shim for scripts/domWidget.ts
export const DOMWidgetImpl = window.comfyAPI.domWidget.DOMWidgetImpl;

View File

@@ -330,7 +330,7 @@
"Node name for S&R": "CheckpointLoaderSimple"
},
"widgets_values": [
"v1-5-pruned-emaonly.safetensors"
"v1-5-pruned-emaonly-fp16.safetensors"
]
}
],
@@ -440,8 +440,8 @@
"extra": {},
"version": 0.4,
"models": [{
"name": "v1-5-pruned-emaonly.safetensors",
"url": "https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly.safetensors?download=true",
"name": "v1-5-pruned-emaonly-fp16.safetensors",
"url": "https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly-fp16.safetensors?download=true",
"directory": "checkpoints"
}]
}