Compare commits
37 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0c7c98a965 | ||
|
|
dc2eb75b85 | ||
|
|
fa34efe3bd | ||
|
|
5cbaa9e07c | ||
|
|
c7427375ee | ||
|
|
22d1241a50 | ||
|
|
f04229b84d | ||
|
|
f067ad15d1 | ||
|
|
483004dd1d | ||
|
|
00a5d08103 | ||
|
|
d043997d30 | ||
|
|
f1c2301697 | ||
|
|
8d31a6632f | ||
|
|
b643eae08b | ||
|
|
baa6b4dc36 | ||
|
|
d4aeefc297 | ||
|
|
587e7ca654 | ||
|
|
c90459eba0 | ||
|
|
04278afb10 | ||
|
|
935ae153e1 | ||
|
|
e91662e784 | ||
|
|
63fafaef45 | ||
|
|
ec28cd9136 | ||
|
|
6eb5d64522 | ||
|
|
10a79e9898 | ||
|
|
ea3f39bd69 | ||
|
|
b33cd61070 | ||
|
|
34eda0f853 | ||
|
|
d31e226650 | ||
|
|
b79fd7d92c | ||
|
|
38c22e631a | ||
|
|
6bbdcd28ae | ||
|
|
ab130001a8 | ||
|
|
ca4b8f30e0 | ||
|
|
70b84058c1 | ||
|
|
2ca8f6e23d | ||
|
|
7985ff88b9 |
@@ -14,7 +14,7 @@ run_cpu.bat
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/blob/main/v1-5-pruned-emaonly-fp16.safetensors
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
|
||||
2
.github/workflows/stable-release.yml
vendored
2
.github/workflows/stable-release.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
description: 'CUDA version'
|
||||
required: true
|
||||
type: string
|
||||
default: "121"
|
||||
default: "124"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
|
||||
21
.github/workflows/stale-issues.yml
vendored
Normal file
21
.github/workflows/stale-issues.yml
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
name: 'Close stale issues'
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 430 am PT
|
||||
- cron: '30 11 * * *'
|
||||
permissions:
|
||||
issues: write
|
||||
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
stale-issue-message: "This issue is being marked stale because it has not had any activity for 30 days. Reply below within 7 days if your issue still isn't solved, and it will be left open. Otherwise, the issue will be closed automatically."
|
||||
days-before-stale: 30
|
||||
days-before-close: 7
|
||||
stale-issue-label: 'Stale'
|
||||
only-labels: 'User Support'
|
||||
exempt-all-assignees: true
|
||||
exempt-all-milestones: true
|
||||
12
README.md
12
README.md
@@ -1,7 +1,7 @@
|
||||
<div align="center">
|
||||
|
||||
# ComfyUI
|
||||
**The most powerful and modular stable diffusion GUI and backend.**
|
||||
**The most powerful and modular diffusion model GUI and backend.**
|
||||
|
||||
|
||||
[![Website][website-shield]][website-url]
|
||||
@@ -94,6 +94,8 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
| Alt + `+` | Canvas Zoom in |
|
||||
| Alt + `-` | Canvas Zoom out |
|
||||
| Ctrl + Shift + LMB + Vertical drag | Canvas Zoom in/out |
|
||||
| P | Pin/Unpin selected nodes |
|
||||
| Ctrl + G | Group selected nodes |
|
||||
| Q | Toggle visibility of the queue |
|
||||
| H | Toggle visibility of history |
|
||||
| R | Refresh graph |
|
||||
@@ -135,17 +137,17 @@ Put your VAE in: models/vae
|
||||
### AMD GPUs (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.0 which might have some performance improvements:
|
||||
This is the command to install the nightly with ROCm 6.2 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.1```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.2```
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements:
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@ from aiohttp import web
|
||||
from typing import Optional
|
||||
from folder_paths import models_dir, user_directory, output_directory
|
||||
from api_server.services.file_service import FileService
|
||||
import app.logger
|
||||
|
||||
class InternalRoutes:
|
||||
'''
|
||||
@@ -31,6 +32,9 @@ class InternalRoutes:
|
||||
except Exception as e:
|
||||
return web.json_response({"error": str(e)}, status=500)
|
||||
|
||||
@self.routes.get('/logs')
|
||||
async def get_logs(request):
|
||||
return web.json_response(app.logger.get_logs())
|
||||
|
||||
def get_app(self):
|
||||
if self._app is None:
|
||||
|
||||
@@ -8,7 +8,7 @@ import zipfile
|
||||
from dataclasses import dataclass
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import TypedDict
|
||||
from typing import TypedDict, Optional
|
||||
|
||||
import requests
|
||||
from typing_extensions import NotRequired
|
||||
@@ -132,12 +132,13 @@ class FrontendManager:
|
||||
return match_result.group(1), match_result.group(2), match_result.group(3)
|
||||
|
||||
@classmethod
|
||||
def init_frontend_unsafe(cls, version_string: str) -> str:
|
||||
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
|
||||
"""
|
||||
Initializes the frontend for the specified version.
|
||||
|
||||
Args:
|
||||
version_string (str): The version string.
|
||||
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
|
||||
|
||||
Returns:
|
||||
str: The path to the initialized frontend.
|
||||
@@ -150,7 +151,7 @@ class FrontendManager:
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
provider = FrontEndProvider(repo_owner, repo_name)
|
||||
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
||||
release = provider.get_release(version)
|
||||
|
||||
semantic_version = release["tag_name"].lstrip("v")
|
||||
@@ -158,15 +159,21 @@ class FrontendManager:
|
||||
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
|
||||
)
|
||||
if not os.path.exists(web_root):
|
||||
os.makedirs(web_root, exist_ok=True)
|
||||
logging.info(
|
||||
"Downloading frontend(%s) version(%s) to (%s)",
|
||||
provider.folder_name,
|
||||
semantic_version,
|
||||
web_root,
|
||||
)
|
||||
logging.debug(release)
|
||||
download_release_asset_zip(release, destination_path=web_root)
|
||||
try:
|
||||
os.makedirs(web_root, exist_ok=True)
|
||||
logging.info(
|
||||
"Downloading frontend(%s) version(%s) to (%s)",
|
||||
provider.folder_name,
|
||||
semantic_version,
|
||||
web_root,
|
||||
)
|
||||
logging.debug(release)
|
||||
download_release_asset_zip(release, destination_path=web_root)
|
||||
finally:
|
||||
# Clean up the directory if it is empty, i.e. the download failed
|
||||
if not os.listdir(web_root):
|
||||
os.rmdir(web_root)
|
||||
|
||||
return web_root
|
||||
|
||||
@classmethod
|
||||
|
||||
31
app/logger.py
Normal file
31
app/logger.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import logging
|
||||
from logging.handlers import MemoryHandler
|
||||
from collections import deque
|
||||
|
||||
logs = None
|
||||
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
||||
|
||||
|
||||
def get_logs():
|
||||
return "\n".join([formatter.format(x) for x in logs])
|
||||
|
||||
|
||||
def setup_logger(verbose: bool = False, capacity: int = 300):
|
||||
global logs
|
||||
if logs:
|
||||
return
|
||||
|
||||
# Setup default global logger
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
||||
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setFormatter(logging.Formatter("%(message)s"))
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
# Create a memory handler with a deque as its buffer
|
||||
logs = deque(maxlen=capacity)
|
||||
memory_handler = MemoryHandler(capacity, flushLevel=logging.INFO)
|
||||
memory_handler.buffer = logs
|
||||
memory_handler.setFormatter(formatter)
|
||||
logger.addHandler(memory_handler)
|
||||
@@ -92,6 +92,8 @@ class LatentPreviewMethod(enum.Enum):
|
||||
|
||||
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
||||
|
||||
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
||||
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
@@ -179,10 +181,3 @@ if args.windows_standalone_build:
|
||||
|
||||
if args.disable_auto_launch:
|
||||
args.auto_launch = False
|
||||
|
||||
import logging
|
||||
logging_level = logging.INFO
|
||||
if args.verbose:
|
||||
logging_level = logging.DEBUG
|
||||
|
||||
logging.basicConfig(format="%(message)s", level=logging_level)
|
||||
|
||||
@@ -34,7 +34,7 @@ import comfy.t2i_adapter.adapter
|
||||
import comfy.ldm.cascade.controlnet
|
||||
import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet_xlabs
|
||||
import comfy.ldm.flux.controlnet
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
@@ -148,7 +148,7 @@ class ControlBase:
|
||||
elif self.strength_type == StrengthType.LINEAR_UP:
|
||||
x *= (self.strength ** float(len(control_output) - i))
|
||||
|
||||
if x.dtype != output_dtype:
|
||||
if output_dtype is not None and x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
@@ -206,7 +206,6 @@ class ControlNet(ControlBase):
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
@@ -236,7 +235,7 @@ class ControlNet(ControlBase):
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
||||
return self.control_merge(control, control_prev, output_dtype)
|
||||
return self.control_merge(control, control_prev, output_dtype=None)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
@@ -431,14 +430,36 @@ def load_controlnet_hunyuandit(controlnet_data):
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_xlabs(sd):
|
||||
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd)
|
||||
control_model = comfy.ldm.flux.controlnet_xlabs.ControlNetFlux(operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_instantx(sd):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd)
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
num_union_modes = 0
|
||||
union_cnet = "controlnet_mode_embedder.weight"
|
||||
if union_cnet in new_sd:
|
||||
num_union_modes = new_sd[union_cnet].shape[0]
|
||||
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.Flux()
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
@@ -501,11 +522,15 @@ def load_controlnet(ckpt_path, model=None):
|
||||
if len(leftover_keys) > 0:
|
||||
logging.warning("leftover keys: {}".format(leftover_keys))
|
||||
controlnet_data = new_sd
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data:
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
||||
return load_controlnet_flux_xlabs(controlnet_data)
|
||||
else:
|
||||
return load_controlnet_mmdit(controlnet_data)
|
||||
return load_controlnet_flux_xlabs_mistoline(controlnet_data)
|
||||
elif "pos_embed_input.proj.weight" in controlnet_data:
|
||||
return load_controlnet_mmdit(controlnet_data) #SD3 diffusers controlnet
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data)
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True)
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
|
||||
@@ -1,7 +1,18 @@
|
||||
import torch
|
||||
import math
|
||||
|
||||
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
||||
mantissa_scaled = torch.where(
|
||||
normal_mask,
|
||||
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
||||
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
||||
)
|
||||
|
||||
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
|
||||
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
|
||||
|
||||
#Not 100% sure about this
|
||||
def manual_stochastic_round_to_float8(x, dtype):
|
||||
def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
|
||||
elif dtype == torch.float8_e5m2:
|
||||
@@ -9,44 +20,33 @@ def manual_stochastic_round_to_float8(x, dtype):
|
||||
else:
|
||||
raise ValueError("Unsupported dtype")
|
||||
|
||||
x = x.half()
|
||||
sign = torch.sign(x)
|
||||
abs_x = x.abs()
|
||||
sign = torch.where(abs_x == 0, 0, sign)
|
||||
|
||||
# Combine exponent calculation and clamping
|
||||
exponent = torch.clamp(
|
||||
torch.floor(torch.log2(abs_x)).to(torch.int32) + EXPONENT_BIAS,
|
||||
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
|
||||
0, 2**EXPONENT_BITS - 1
|
||||
)
|
||||
|
||||
# Combine mantissa calculation and rounding
|
||||
# min_normal = 2.0 ** (-EXPONENT_BIAS + 1)
|
||||
# zero_mask = (abs_x == 0)
|
||||
# subnormal_mask = (exponent == 0) & (abs_x != 0)
|
||||
normal_mask = ~(exponent == 0)
|
||||
|
||||
mantissa_scaled = torch.where(
|
||||
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
|
||||
|
||||
sign *= torch.where(
|
||||
normal_mask,
|
||||
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
||||
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
||||
)
|
||||
mantissa_floor = mantissa_scaled.floor()
|
||||
mantissa = torch.where(
|
||||
torch.rand_like(mantissa_scaled) < (mantissa_scaled - mantissa_floor),
|
||||
(mantissa_floor + 1) / (2**MANTISSA_BITS),
|
||||
mantissa_floor / (2**MANTISSA_BITS)
|
||||
)
|
||||
result = torch.where(
|
||||
normal_mask,
|
||||
sign * (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + mantissa),
|
||||
sign * (2.0 ** (-EXPONENT_BIAS + 1)) * mantissa
|
||||
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
|
||||
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
||||
)
|
||||
|
||||
result = torch.where(abs_x == 0, 0, result)
|
||||
return result.to(dtype=dtype)
|
||||
return sign
|
||||
|
||||
|
||||
|
||||
def stochastic_rounding(value, dtype):
|
||||
def stochastic_rounding(value, dtype, seed=0):
|
||||
if dtype == torch.float32:
|
||||
return value.to(dtype=torch.float32)
|
||||
if dtype == torch.float16:
|
||||
@@ -54,6 +54,13 @@ def stochastic_rounding(value, dtype):
|
||||
if dtype == torch.bfloat16:
|
||||
return value.to(dtype=torch.bfloat16)
|
||||
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
||||
return manual_stochastic_round_to_float8(value, dtype)
|
||||
generator = torch.Generator(device=value.device)
|
||||
generator.manual_seed(seed)
|
||||
output = torch.empty_like(value, dtype=dtype)
|
||||
num_slices = max(1, (value.numel() / (4096 * 4096)))
|
||||
slice_size = max(1, round(value.shape[0] / num_slices))
|
||||
for i in range(0, value.shape[0], slice_size):
|
||||
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
|
||||
return output
|
||||
|
||||
return value.to(dtype=dtype)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and torch.jit.is_tracing() or torch.jit.is_scripting():
|
||||
@@ -6,3 +7,15 @@ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
|
||||
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]
|
||||
return torch.nn.functional.pad(img, (0, pad_w, 0, pad_h), mode=padding_mode)
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
def rms_norm(x, weight, eps=1e-6):
|
||||
if rms_norm_torch is not None:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
return (x * rrms) * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
|
||||
200
comfy/ldm/flux/controlnet.py
Normal file
200
comfy/ldm/flux/controlnet.py
Normal file
@@ -0,0 +1,200 @@
|
||||
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
|
||||
#modified to support different types of flux controlnets
|
||||
|
||||
import torch
|
||||
import math
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
MLPEmbedder, SingleStreamBlock,
|
||||
timestep_embedding)
|
||||
|
||||
from .model import Flux
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
class MistolineCondDownsamplBlock(nn.Module):
|
||||
def __init__(self, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.encoder(x)
|
||||
|
||||
class MistolineControlnetBlock(nn.Module):
|
||||
def __init__(self, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear = operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.linear(x))
|
||||
|
||||
|
||||
class ControlNetFlux(Flux):
|
||||
def __init__(self, latent_input=False, num_union_modes=0, mistoline=False, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
|
||||
self.main_model_double = 19
|
||||
self.main_model_single = 38
|
||||
|
||||
self.mistoline = mistoline
|
||||
# add ControlNet blocks
|
||||
if self.mistoline:
|
||||
control_block = lambda : MistolineControlnetBlock(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
control_block = lambda : operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth):
|
||||
self.controlnet_blocks.append(control_block())
|
||||
|
||||
self.controlnet_single_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth_single_blocks):
|
||||
self.controlnet_single_blocks.append(control_block())
|
||||
|
||||
self.num_union_modes = num_union_modes
|
||||
self.controlnet_mode_embedder = None
|
||||
if self.num_union_modes > 0:
|
||||
self.controlnet_mode_embedder = operations.Embedding(self.num_union_modes, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.latent_input = latent_input
|
||||
self.pos_embed_input = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
if not self.latent_input:
|
||||
if self.mistoline:
|
||||
self.input_cond_block = MistolineCondDownsamplBlock(dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.input_hint_block = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
controlnet_cond: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control_type: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
controlnet_cond = self.pos_embed_input(controlnet_cond)
|
||||
img = img + controlnet_cond
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
if self.controlnet_mode_embedder is not None and len(control_type) > 0:
|
||||
control_cond = self.controlnet_mode_embedder(torch.tensor(control_type, device=img.device), out_dtype=img.dtype).unsqueeze(0).repeat((txt.shape[0], 1, 1))
|
||||
txt = torch.cat([control_cond, txt], dim=1)
|
||||
txt_ids = torch.cat([txt_ids[:,:1], txt_ids], dim=1)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
controlnet_double = ()
|
||||
|
||||
for i in range(len(self.double_blocks)):
|
||||
img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
|
||||
controlnet_double = controlnet_double + (self.controlnet_blocks[i](img),)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
controlnet_single = ()
|
||||
|
||||
for i in range(len(self.single_blocks)):
|
||||
img = self.single_blocks[i](img, vec=vec, pe=pe)
|
||||
controlnet_single = controlnet_single + (self.controlnet_single_blocks[i](img[:, txt.shape[1] :, ...]),)
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(controlnet_double))
|
||||
if self.latent_input:
|
||||
out_input = ()
|
||||
for x in controlnet_double:
|
||||
out_input += (x,) * repeat
|
||||
else:
|
||||
out_input = (controlnet_double * repeat)
|
||||
|
||||
out = {"input": out_input[:self.main_model_double]}
|
||||
if len(controlnet_single) > 0:
|
||||
repeat = math.ceil(self.main_model_single / len(controlnet_single))
|
||||
out_output = ()
|
||||
if self.latent_input:
|
||||
for x in controlnet_single:
|
||||
out_output += (x,) * repeat
|
||||
else:
|
||||
out_output = (controlnet_single * repeat)
|
||||
out["output"] = out_output[:self.main_model_single]
|
||||
return out
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
patch_size = 2
|
||||
if self.latent_input:
|
||||
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
|
||||
elif self.mistoline:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_cond_block(hint)
|
||||
else:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_hint_block(hint)
|
||||
|
||||
hint = rearrange(hint, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance, control_type=kwargs.get("control_type", []))
|
||||
@@ -1,104 +0,0 @@
|
||||
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
MLPEmbedder, SingleStreamBlock,
|
||||
timestep_embedding)
|
||||
|
||||
from .model import Flux
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
class ControlNetFlux(Flux):
|
||||
def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
|
||||
# add ControlNet blocks
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth):
|
||||
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
# controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_blocks.append(controlnet_block)
|
||||
self.pos_embed_input = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.gradient_checkpointing = False
|
||||
self.input_hint_block = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
controlnet_cond: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
controlnet_cond = self.input_hint_block(controlnet_cond)
|
||||
controlnet_cond = rearrange(controlnet_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
controlnet_cond = self.pos_embed_input(controlnet_cond)
|
||||
img = img + controlnet_cond
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
block_res_samples = ()
|
||||
|
||||
for block in self.double_blocks:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||
block_res_samples = block_res_samples + (img,)
|
||||
|
||||
controlnet_block_res_samples = ()
|
||||
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
||||
block_res_sample = controlnet_block(block_res_sample)
|
||||
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
||||
|
||||
return {"input": (controlnet_block_res_samples * 10)[:19]}
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
hint = hint * 2.0 - 1.0
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance)
|
||||
@@ -6,6 +6,7 @@ from torch import Tensor, nn
|
||||
|
||||
from .math import attention, rope
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
@@ -63,10 +64,7 @@ class RMSNorm(torch.nn.Module):
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
x_dtype = x.dtype
|
||||
x = x.float()
|
||||
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
||||
return (x * rrms).to(dtype=x_dtype) * comfy.ops.cast_to(self.scale, dtype=x_dtype, device=x.device)
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
|
||||
@@ -372,7 +372,7 @@ class HunYuanDiT(nn.Module):
|
||||
for layer, block in enumerate(self.blocks):
|
||||
if layer > self.depth // 2:
|
||||
if controls is not None:
|
||||
skip = skips.pop() + controls.pop()
|
||||
skip = skips.pop() + controls.pop().to(dtype=x.dtype)
|
||||
else:
|
||||
skip = skips.pop()
|
||||
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
|
||||
|
||||
@@ -355,29 +355,9 @@ class RMSNorm(torch.nn.Module):
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
|
||||
def _norm(self, x):
|
||||
"""
|
||||
Apply the RMSNorm normalization to the input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The normalized tensor.
|
||||
"""
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass through the RMSNorm layer.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The output tensor after applying RMSNorm.
|
||||
"""
|
||||
x = self._norm(x)
|
||||
if self.learnable_scale:
|
||||
return x * self.weight.to(device=x.device, dtype=x.dtype)
|
||||
else:
|
||||
return x
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
|
||||
|
||||
|
||||
class SwiGLUFeedForward(nn.Module):
|
||||
|
||||
@@ -842,6 +842,11 @@ class UNetModel(nn.Module):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if "emb_patch" in transformer_patches:
|
||||
patch = transformer_patches["emb_patch"]
|
||||
for p in patch:
|
||||
emb = p(emb, self.model_channels, transformer_options)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
@@ -16,6 +16,7 @@
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_base
|
||||
@@ -323,6 +324,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
to = diffusers_keys[k]
|
||||
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
|
||||
|
||||
return key_map
|
||||
|
||||
@@ -347,6 +349,39 @@ def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediat
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): The original tensor to be padded.
|
||||
new_shape (List[int]): The desired shape of the padded tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A new tensor padded with zeros to the specified shape.
|
||||
|
||||
Note:
|
||||
If the new shape is smaller than the original tensor in any dimension,
|
||||
the original tensor will be truncated in that dimension.
|
||||
"""
|
||||
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
|
||||
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
|
||||
|
||||
if len(new_shape) != len(tensor.shape):
|
||||
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
|
||||
|
||||
# Create a new tensor filled with zeros
|
||||
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
|
||||
|
||||
# Create slicing tuples for both tensors
|
||||
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
|
||||
# Copy the original tensor into the new tensor
|
||||
padded_tensor[new_slices] = tensor[orig_slices]
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
@@ -375,12 +410,18 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
v = v[1]
|
||||
|
||||
if patch_type == "diff":
|
||||
w1 = v[0]
|
||||
diff: torch.Tensor = v[0]
|
||||
# An extra flag to pad the weight if the diff's shape is larger than the weight
|
||||
do_pad_weight = len(v) > 1 and v[1]['pad_weight']
|
||||
if do_pad_weight and diff.shape != weight.shape:
|
||||
logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape))
|
||||
weight = pad_tensor_to_shape(weight, diff.shape)
|
||||
|
||||
if strength != 0.0:
|
||||
if w1.shape != weight.shape:
|
||||
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
if diff.shape != weight.shape:
|
||||
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
|
||||
else:
|
||||
weight += function(strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype))
|
||||
weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
@@ -487,20 +528,40 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / v[0].shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype))
|
||||
else:
|
||||
|
||||
@@ -45,6 +45,7 @@ cpu_state = CPUState.GPU
|
||||
total_vram = 0
|
||||
|
||||
xpu_available = False
|
||||
torch_version = ""
|
||||
try:
|
||||
torch_version = torch.version.__version__
|
||||
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
|
||||
@@ -369,12 +370,11 @@ def offloaded_memory(loaded_models, device):
|
||||
offloaded_mem += m.model_offloaded_memory()
|
||||
return offloaded_mem
|
||||
|
||||
def minimum_inference_memory():
|
||||
return (1024 * 1024 * 1024) * 1.2
|
||||
WINDOWS = any(platform.win32_ver())
|
||||
|
||||
EXTRA_RESERVED_VRAM = 200 * 1024 * 1024
|
||||
if any(platform.win32_ver()):
|
||||
EXTRA_RESERVED_VRAM = 500 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
||||
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
|
||||
if WINDOWS:
|
||||
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
||||
|
||||
if args.reserve_vram is not None:
|
||||
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
|
||||
@@ -383,6 +383,9 @@ if args.reserve_vram is not None:
|
||||
def extra_reserved_memory():
|
||||
return EXTRA_RESERVED_VRAM
|
||||
|
||||
def minimum_inference_memory():
|
||||
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
|
||||
|
||||
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
|
||||
to_unload = []
|
||||
for i in range(len(current_loaded_models)):
|
||||
@@ -405,6 +408,8 @@ def unload_model_clones(model, unload_weights_only=True, force_unload=True):
|
||||
if not force_unload:
|
||||
if unload_weights_only and unload_weight == False:
|
||||
return None
|
||||
else:
|
||||
unload_weight = True
|
||||
|
||||
for i in to_unload:
|
||||
logging.debug("unload clone {} {}".format(i, unload_weight))
|
||||
@@ -421,7 +426,7 @@ def free_memory(memory_required, device, keep_loaded=[]):
|
||||
shift_model = current_loaded_models[i]
|
||||
if shift_model.device == device:
|
||||
if shift_model not in keep_loaded:
|
||||
can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
||||
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
||||
shift_model.currently_used = False
|
||||
|
||||
for x in sorted(can_unload):
|
||||
@@ -999,7 +1004,10 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
|
||||
for x in nvidia_10_series:
|
||||
if x in props.name.lower():
|
||||
return True
|
||||
if WINDOWS or manual_cast:
|
||||
return True
|
||||
else:
|
||||
return False #weird linux behavior where fp32 is faster
|
||||
|
||||
if manual_cast:
|
||||
free_model_memory = maximum_vram_for_weights(device)
|
||||
|
||||
@@ -30,6 +30,18 @@ import comfy.model_management
|
||||
import comfy.lora
|
||||
from comfy.types import UnetWrapperFunction
|
||||
|
||||
def string_to_seed(data):
|
||||
crc = 0xFFFFFFFF
|
||||
for byte in data:
|
||||
if isinstance(byte, str):
|
||||
byte = ord(byte)
|
||||
crc ^= byte
|
||||
for _ in range(8):
|
||||
if crc & 1:
|
||||
crc = (crc >> 1) ^ 0xEDB88320
|
||||
else:
|
||||
crc >>= 1
|
||||
return crc ^ 0xFFFFFFFF
|
||||
|
||||
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
|
||||
to = model_options["transformer_options"].copy()
|
||||
@@ -309,7 +321,7 @@ class ModelPatcher:
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
|
||||
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype)
|
||||
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
||||
if inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, out_weight)
|
||||
else:
|
||||
|
||||
@@ -528,6 +528,8 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
("guidance_in.out_layer.weight", "time_text_embed.guidance_embedder.linear_2.weight"),
|
||||
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
|
||||
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
|
||||
("pos_embed_input.bias", "controlnet_x_embedder.bias"),
|
||||
("pos_embed_input.weight", "controlnet_x_embedder.weight"),
|
||||
}
|
||||
|
||||
for k in MAP_BASIC:
|
||||
|
||||
@@ -98,7 +98,7 @@ class CacheKeySetInputSignature(CacheKeySet):
|
||||
class_type = node["class_type"]
|
||||
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
||||
signature = [class_type, self.is_changed_cache.get(node_id)]
|
||||
if self.include_node_id_in_input() or (hasattr(class_def, "NOT_IDEMPOTENT") and class_def.NOT_IDEMPOTENT):
|
||||
if self.include_node_id_in_input() or (hasattr(class_def, "NOT_IDEMPOTENT") and class_def.NOT_IDEMPOTENT) or "UNIQUE_ID" in class_def.INPUT_TYPES().get("hidden", {}).values():
|
||||
signature.append(node_id)
|
||||
inputs = node["inputs"]
|
||||
for key in sorted(inputs.keys()):
|
||||
|
||||
91
comfy_extras/nodes_lora_extract.py
Normal file
91
comfy_extras/nodes_lora_extract.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
import folder_paths
|
||||
import os
|
||||
import logging
|
||||
|
||||
CLAMP_QUANTILE = 0.99
|
||||
|
||||
def extract_lora(diff, rank):
|
||||
conv2d = (len(diff.shape) == 4)
|
||||
kernel_size = None if not conv2d else diff.size()[2:4]
|
||||
conv2d_3x3 = conv2d and kernel_size != (1, 1)
|
||||
out_dim, in_dim = diff.size()[0:2]
|
||||
rank = min(rank, in_dim, out_dim)
|
||||
|
||||
if conv2d:
|
||||
if conv2d_3x3:
|
||||
diff = diff.flatten(start_dim=1)
|
||||
else:
|
||||
diff = diff.squeeze()
|
||||
|
||||
|
||||
U, S, Vh = torch.linalg.svd(diff.float())
|
||||
U = U[:, :rank]
|
||||
S = S[:rank]
|
||||
U = U @ torch.diag(S)
|
||||
Vh = Vh[:rank, :]
|
||||
|
||||
dist = torch.cat([U.flatten(), Vh.flatten()])
|
||||
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
||||
low_val = -hi_val
|
||||
|
||||
U = U.clamp(low_val, hi_val)
|
||||
Vh = Vh.clamp(low_val, hi_val)
|
||||
if conv2d:
|
||||
U = U.reshape(out_dim, rank, 1, 1)
|
||||
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
||||
return (U, Vh)
|
||||
|
||||
class LoraSave:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
|
||||
"rank": ("INT", {"default": 8, "min": 1, "max": 1024, "step": 1}),
|
||||
},
|
||||
"optional": {"model_diff": ("MODEL",),},
|
||||
}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def save(self, filename_prefix, rank, model_diff=None):
|
||||
if model_diff is None:
|
||||
return {}
|
||||
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||||
|
||||
output_sd = {}
|
||||
prefix_key = "diffusion_model."
|
||||
stored = set()
|
||||
|
||||
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
|
||||
sd = model_diff.model_state_dict(filter_prefix=prefix_key)
|
||||
|
||||
for k in sd:
|
||||
if k.endswith(".weight"):
|
||||
weight_diff = sd[k]
|
||||
if weight_diff.ndim < 2:
|
||||
continue
|
||||
try:
|
||||
out = extract_lora(weight_diff, rank)
|
||||
output_sd["{}.lora_up.weight".format(k[:-7])] = out[0].contiguous().half().cpu()
|
||||
output_sd["{}.lora_down.weight".format(k[:-7])] = out[1].contiguous().half().cpu()
|
||||
except:
|
||||
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k))
|
||||
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
|
||||
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
|
||||
return {}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LoraSave": LoraSave
|
||||
}
|
||||
@@ -9,7 +9,7 @@ import folder_paths
|
||||
import comfy.utils
|
||||
import logging
|
||||
|
||||
MAX_PREVIEW_RESOLUTION = 512
|
||||
MAX_PREVIEW_RESOLUTION = args.preview_size
|
||||
|
||||
def preview_to_image(latent_image):
|
||||
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
|
||||
|
||||
5
main.py
5
main.py
@@ -6,6 +6,10 @@ import importlib.util
|
||||
import folder_paths
|
||||
import time
|
||||
from comfy.cli_args import args
|
||||
from app.logger import setup_logger
|
||||
|
||||
|
||||
setup_logger(verbose=args.verbose)
|
||||
|
||||
|
||||
def execute_prestartup_script():
|
||||
@@ -243,6 +247,7 @@ if __name__ == "__main__":
|
||||
folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip"))
|
||||
folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae"))
|
||||
folder_paths.add_model_folder_path("diffusion_models", os.path.join(folder_paths.get_output_directory(), "diffusion_models"))
|
||||
folder_paths.add_model_folder_path("loras", os.path.join(folder_paths.get_output_directory(), "loras"))
|
||||
|
||||
if args.input_directory:
|
||||
input_dir = os.path.abspath(args.input_directory)
|
||||
|
||||
3
nodes.py
3
nodes.py
@@ -2101,6 +2101,7 @@ def init_builtin_extra_nodes():
|
||||
"nodes_controlnet.py",
|
||||
"nodes_hunyuan.py",
|
||||
"nodes_flux.py",
|
||||
"nodes_lora_extract.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
@@ -2129,3 +2130,5 @@ def init_extra_nodes(init_custom_nodes=True):
|
||||
else:
|
||||
logging.warning("Please do a: pip install -r requirements.txt")
|
||||
logging.warning("")
|
||||
|
||||
return import_failed
|
||||
|
||||
@@ -79,7 +79,7 @@
|
||||
"#!wget -c https://huggingface.co/comfyanonymous/clip_vision_g/resolve/main/clip_vision_g.safetensors -P ./models/clip_vision/\n",
|
||||
"\n",
|
||||
"# SD1.5\n",
|
||||
"!wget -c https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
|
||||
"!wget -c https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/resolve/main/v1-5-pruned-emaonly-fp16.safetensors -P ./models/checkpoints/\n",
|
||||
"\n",
|
||||
"# SD2\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.safetensors -P ./models/checkpoints/\n",
|
||||
|
||||
@@ -43,7 +43,7 @@ prompt_text = """
|
||||
"4": {
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"inputs": {
|
||||
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
|
||||
"ckpt_name": "v1-5-pruned-emaonly.safetensors"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
|
||||
@@ -41,15 +41,14 @@ def get_images(ws, prompt):
|
||||
continue #previews are binary data
|
||||
|
||||
history = get_history(prompt_id)[prompt_id]
|
||||
for o in history['outputs']:
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
if 'images' in node_output:
|
||||
images_output = []
|
||||
for image in node_output['images']:
|
||||
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
images_output = []
|
||||
if 'images' in node_output:
|
||||
for image in node_output['images']:
|
||||
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
|
||||
return output_images
|
||||
|
||||
@@ -85,7 +84,7 @@ prompt_text = """
|
||||
"4": {
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"inputs": {
|
||||
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
|
||||
"ckpt_name": "v1-5-pruned-emaonly.safetensors"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
|
||||
@@ -81,7 +81,7 @@ prompt_text = """
|
||||
"4": {
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"inputs": {
|
||||
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
|
||||
"ckpt_name": "v1-5-pruned-emaonly.safetensors"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
|
||||
28
server.py
28
server.py
@@ -31,7 +31,6 @@ from model_filemanager import download_model, DownloadModelStatus
|
||||
from typing import Optional
|
||||
from api_server.routes.internal.internal_routes import InternalRoutes
|
||||
|
||||
|
||||
class BinaryEventTypes:
|
||||
PREVIEW_IMAGE = 1
|
||||
UNENCODED_PREVIEW_IMAGE = 2
|
||||
@@ -42,6 +41,21 @@ async def send_socket_catch_exception(function, message):
|
||||
except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError) as err:
|
||||
logging.warning("send error: {}".format(err))
|
||||
|
||||
def get_comfyui_version():
|
||||
comfyui_version = "unknown"
|
||||
repo_path = os.path.dirname(os.path.realpath(__file__))
|
||||
try:
|
||||
import pygit2
|
||||
repo = pygit2.Repository(repo_path)
|
||||
comfyui_version = repo.describe(describe_strategy=pygit2.GIT_DESCRIBE_TAGS)
|
||||
except Exception:
|
||||
try:
|
||||
import subprocess
|
||||
comfyui_version = subprocess.check_output(["git", "describe", "--tags"], cwd=repo_path).decode('utf-8')
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to get ComfyUI version: {e}")
|
||||
return comfyui_version.strip()
|
||||
|
||||
@web.middleware
|
||||
async def cache_control(request: web.Request, handler):
|
||||
response: web.Response = await handler(request)
|
||||
@@ -401,16 +415,20 @@ class PromptServer():
|
||||
return web.json_response(dt["__metadata__"])
|
||||
|
||||
@routes.get("/system_stats")
|
||||
async def get_queue(request):
|
||||
async def system_stats(request):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
device_name = comfy.model_management.get_torch_device_name(device)
|
||||
vram_total, torch_vram_total = comfy.model_management.get_total_memory(device, torch_total_too=True)
|
||||
vram_free, torch_vram_free = comfy.model_management.get_free_memory(device, torch_free_too=True)
|
||||
|
||||
system_stats = {
|
||||
"system": {
|
||||
"os": os.name,
|
||||
"comfyui_version": get_comfyui_version(),
|
||||
"python_version": sys.version,
|
||||
"embedded_python": os.path.split(os.path.split(sys.executable)[0])[1] == "python_embeded"
|
||||
"pytorch_version": comfy.model_management.torch_version,
|
||||
"embedded_python": os.path.split(os.path.split(sys.executable)[0])[1] == "python_embeded",
|
||||
"argv": sys.argv
|
||||
},
|
||||
"devices": [
|
||||
{
|
||||
@@ -586,7 +604,9 @@ class PromptServer():
|
||||
@routes.post("/internal/models/download")
|
||||
async def download_handler(request):
|
||||
async def report_progress(filename: str, status: DownloadModelStatus):
|
||||
await self.send_json("download_progress", status.to_dict())
|
||||
payload = status.to_dict()
|
||||
payload['download_path'] = filename
|
||||
await self.send_json("download_progress", payload)
|
||||
|
||||
data = await request.json()
|
||||
url = data.get('url')
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import pytest
|
||||
from requests.exceptions import HTTPError
|
||||
from unittest.mock import patch
|
||||
|
||||
from app.frontend_management import (
|
||||
FrontendManager,
|
||||
@@ -83,6 +84,35 @@ def test_init_frontend_invalid_provider():
|
||||
with pytest.raises(HTTPError):
|
||||
FrontendManager.init_frontend_unsafe(version_string)
|
||||
|
||||
@pytest.fixture
|
||||
def mock_os_functions():
|
||||
with patch('app.frontend_management.os.makedirs') as mock_makedirs, \
|
||||
patch('app.frontend_management.os.listdir') as mock_listdir, \
|
||||
patch('app.frontend_management.os.rmdir') as mock_rmdir:
|
||||
mock_listdir.return_value = [] # Simulate empty directory
|
||||
yield mock_makedirs, mock_listdir, mock_rmdir
|
||||
|
||||
@pytest.fixture
|
||||
def mock_download():
|
||||
with patch('app.frontend_management.download_release_asset_zip') as mock:
|
||||
mock.side_effect = Exception("Download failed") # Simulate download failure
|
||||
yield mock
|
||||
|
||||
def test_finally_block(mock_os_functions, mock_download, mock_provider):
|
||||
# Arrange
|
||||
mock_makedirs, mock_listdir, mock_rmdir = mock_os_functions
|
||||
version_string = 'test-owner/test-repo@1.0.0'
|
||||
|
||||
# Act & Assert
|
||||
with pytest.raises(Exception):
|
||||
FrontendManager.init_frontend_unsafe(version_string, mock_provider)
|
||||
|
||||
# Assert
|
||||
mock_makedirs.assert_called_once()
|
||||
mock_download.assert_called_once()
|
||||
mock_listdir.assert_called_once()
|
||||
mock_rmdir.assert_called_once()
|
||||
|
||||
|
||||
def test_parse_version_string():
|
||||
version_string = "owner/repo@1.0.0"
|
||||
|
||||
@@ -95,17 +95,16 @@ class ComfyClient:
|
||||
pass # Probably want to store this off for testing
|
||||
|
||||
history = self.get_history(prompt_id)[prompt_id]
|
||||
for o in history['outputs']:
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
result.outputs[node_id] = node_output
|
||||
if 'images' in node_output:
|
||||
images_output = []
|
||||
for image in node_output['images']:
|
||||
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
||||
image_obj = Image.open(BytesIO(image_data))
|
||||
images_output.append(image_obj)
|
||||
node_output['image_objects'] = images_output
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
result.outputs[node_id] = node_output
|
||||
images_output = []
|
||||
if 'images' in node_output:
|
||||
for image in node_output['images']:
|
||||
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
||||
image_obj = Image.open(BytesIO(image_data))
|
||||
images_output.append(image_obj)
|
||||
node_output['image_objects'] = images_output
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@@ -109,15 +109,14 @@ class ComfyClient:
|
||||
continue #previews are binary data
|
||||
|
||||
history = self.get_history(prompt_id)[prompt_id]
|
||||
for o in history['outputs']:
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
if 'images' in node_output:
|
||||
images_output = []
|
||||
for image in node_output['images']:
|
||||
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
images_output = []
|
||||
if 'images' in node_output:
|
||||
for image in node_output['images']:
|
||||
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
|
||||
return output_images
|
||||
|
||||
|
||||
0
web/assets/index-DjWyclij.css → web/assets/index-BRhY6FpL.css
generated
vendored
0
web/assets/index-DjWyclij.css → web/assets/index-BRhY6FpL.css
generated
vendored
1
web/assets/index-CaD4RONs.js.map
generated
vendored
1
web/assets/index-CaD4RONs.js.map
generated
vendored
File diff suppressed because one or more lines are too long
2634
web/assets/index-DkvOTKox.js → web/assets/index-CrROdkG4.js
generated
vendored
2634
web/assets/index-DkvOTKox.js → web/assets/index-CrROdkG4.js
generated
vendored
File diff suppressed because it is too large
Load Diff
1
web/assets/index-CrROdkG4.js.map
generated
vendored
Normal file
1
web/assets/index-CrROdkG4.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
61868
web/assets/index-CaD4RONs.js → web/assets/index-Dfv2aLsq.js
generated
vendored
61868
web/assets/index-CaD4RONs.js → web/assets/index-Dfv2aLsq.js
generated
vendored
File diff suppressed because one or more lines are too long
1
web/assets/index-Dfv2aLsq.js.map
generated
vendored
Normal file
1
web/assets/index-Dfv2aLsq.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
1
web/assets/index-DkvOTKox.js.map
generated
vendored
1
web/assets/index-DkvOTKox.js.map
generated
vendored
File diff suppressed because one or more lines are too long
663
web/assets/index-DAK31IJJ.css → web/assets/index-W4jP-SrU.css
generated
vendored
663
web/assets/index-DAK31IJJ.css → web/assets/index-W4jP-SrU.css
generated
vendored
File diff suppressed because it is too large
Load Diff
0
web/assets/userSelection-BGzn1LuN.css → web/assets/userSelection-CF-ymHZW.css
generated
vendored
0
web/assets/userSelection-BGzn1LuN.css → web/assets/userSelection-CF-ymHZW.css
generated
vendored
120
web/assets/userSelection-DSpF-zVD.js
generated
vendored
Normal file
120
web/assets/userSelection-DSpF-zVD.js
generated
vendored
Normal file
@@ -0,0 +1,120 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
import { j as createSpinner, h as api, $ as $el } from "./index-Dfv2aLsq.js";
|
||||
class UserSelectionScreen {
|
||||
static {
|
||||
__name(this, "UserSelectionScreen");
|
||||
}
|
||||
async show(users, user) {
|
||||
const userSelection = document.getElementById("comfy-user-selection");
|
||||
userSelection.style.display = "";
|
||||
return new Promise((resolve) => {
|
||||
const input = userSelection.getElementsByTagName("input")[0];
|
||||
const select = userSelection.getElementsByTagName("select")[0];
|
||||
const inputSection = input.closest("section");
|
||||
const selectSection = select.closest("section");
|
||||
const form = userSelection.getElementsByTagName("form")[0];
|
||||
const error = userSelection.getElementsByClassName("comfy-user-error")[0];
|
||||
const button = userSelection.getElementsByClassName(
|
||||
"comfy-user-button-next"
|
||||
)[0];
|
||||
let inputActive = null;
|
||||
input.addEventListener("focus", () => {
|
||||
inputSection.classList.add("selected");
|
||||
selectSection.classList.remove("selected");
|
||||
inputActive = true;
|
||||
});
|
||||
select.addEventListener("focus", () => {
|
||||
inputSection.classList.remove("selected");
|
||||
selectSection.classList.add("selected");
|
||||
inputActive = false;
|
||||
select.style.color = "";
|
||||
});
|
||||
select.addEventListener("blur", () => {
|
||||
if (!select.value) {
|
||||
select.style.color = "var(--descrip-text)";
|
||||
}
|
||||
});
|
||||
form.addEventListener("submit", async (e) => {
|
||||
e.preventDefault();
|
||||
if (inputActive == null) {
|
||||
error.textContent = "Please enter a username or select an existing user.";
|
||||
} else if (inputActive) {
|
||||
const username = input.value.trim();
|
||||
if (!username) {
|
||||
error.textContent = "Please enter a username.";
|
||||
return;
|
||||
}
|
||||
input.disabled = select.disabled = // @ts-expect-error
|
||||
input.readonly = // @ts-expect-error
|
||||
select.readonly = true;
|
||||
const spinner = createSpinner();
|
||||
button.prepend(spinner);
|
||||
try {
|
||||
const resp = await api.createUser(username);
|
||||
if (resp.status >= 300) {
|
||||
let message = "Error creating user: " + resp.status + " " + resp.statusText;
|
||||
try {
|
||||
const res = await resp.json();
|
||||
if (res.error) {
|
||||
message = res.error;
|
||||
}
|
||||
} catch (error2) {
|
||||
}
|
||||
throw new Error(message);
|
||||
}
|
||||
resolve({ username, userId: await resp.json(), created: true });
|
||||
} catch (err) {
|
||||
spinner.remove();
|
||||
error.textContent = err.message ?? err.statusText ?? err ?? "An unknown error occurred.";
|
||||
input.disabled = select.disabled = // @ts-expect-error
|
||||
input.readonly = // @ts-expect-error
|
||||
select.readonly = false;
|
||||
return;
|
||||
}
|
||||
} else if (!select.value) {
|
||||
error.textContent = "Please select an existing user.";
|
||||
return;
|
||||
} else {
|
||||
resolve({
|
||||
username: users[select.value],
|
||||
userId: select.value,
|
||||
created: false
|
||||
});
|
||||
}
|
||||
});
|
||||
if (user) {
|
||||
const name = localStorage["Comfy.userName"];
|
||||
if (name) {
|
||||
input.value = name;
|
||||
}
|
||||
}
|
||||
if (input.value) {
|
||||
input.focus();
|
||||
}
|
||||
const userIds = Object.keys(users ?? {});
|
||||
if (userIds.length) {
|
||||
for (const u of userIds) {
|
||||
$el("option", { textContent: users[u], value: u, parent: select });
|
||||
}
|
||||
select.style.color = "var(--descrip-text)";
|
||||
if (select.value) {
|
||||
select.focus();
|
||||
}
|
||||
} else {
|
||||
userSelection.classList.add("no-users");
|
||||
input.focus();
|
||||
}
|
||||
}).then((r) => {
|
||||
userSelection.remove();
|
||||
return r;
|
||||
});
|
||||
}
|
||||
}
|
||||
window.comfyAPI = window.comfyAPI || {};
|
||||
window.comfyAPI.userSelection = window.comfyAPI.userSelection || {};
|
||||
window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
|
||||
export {
|
||||
UserSelectionScreen
|
||||
};
|
||||
//# sourceMappingURL=userSelection-DSpF-zVD.js.map
|
||||
1
web/assets/userSelection-DSpF-zVD.js.map
generated
vendored
Normal file
1
web/assets/userSelection-DSpF-zVD.js.map
generated
vendored
Normal file
File diff suppressed because one or more lines are too long
142
web/assets/userSelection-GRU1gtOt.js
generated
vendored
142
web/assets/userSelection-GRU1gtOt.js
generated
vendored
@@ -1,142 +0,0 @@
|
||||
var __defProp = Object.defineProperty;
|
||||
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
||||
var __async = (__this, __arguments, generator) => {
|
||||
return new Promise((resolve, reject) => {
|
||||
var fulfilled = (value) => {
|
||||
try {
|
||||
step(generator.next(value));
|
||||
} catch (e) {
|
||||
reject(e);
|
||||
}
|
||||
};
|
||||
var rejected = (value) => {
|
||||
try {
|
||||
step(generator.throw(value));
|
||||
} catch (e) {
|
||||
reject(e);
|
||||
}
|
||||
};
|
||||
var step = (x) => x.done ? resolve(x.value) : Promise.resolve(x.value).then(fulfilled, rejected);
|
||||
step((generator = generator.apply(__this, __arguments)).next());
|
||||
});
|
||||
};
|
||||
import { j as createSpinner, g as api, $ as $el } from "./index-CaD4RONs.js";
|
||||
const _UserSelectionScreen = class _UserSelectionScreen {
|
||||
show(users, user) {
|
||||
return __async(this, null, function* () {
|
||||
const userSelection = document.getElementById("comfy-user-selection");
|
||||
userSelection.style.display = "";
|
||||
return new Promise((resolve) => {
|
||||
const input = userSelection.getElementsByTagName("input")[0];
|
||||
const select = userSelection.getElementsByTagName("select")[0];
|
||||
const inputSection = input.closest("section");
|
||||
const selectSection = select.closest("section");
|
||||
const form = userSelection.getElementsByTagName("form")[0];
|
||||
const error = userSelection.getElementsByClassName("comfy-user-error")[0];
|
||||
const button = userSelection.getElementsByClassName(
|
||||
"comfy-user-button-next"
|
||||
)[0];
|
||||
let inputActive = null;
|
||||
input.addEventListener("focus", () => {
|
||||
inputSection.classList.add("selected");
|
||||
selectSection.classList.remove("selected");
|
||||
inputActive = true;
|
||||
});
|
||||
select.addEventListener("focus", () => {
|
||||
inputSection.classList.remove("selected");
|
||||
selectSection.classList.add("selected");
|
||||
inputActive = false;
|
||||
select.style.color = "";
|
||||
});
|
||||
select.addEventListener("blur", () => {
|
||||
if (!select.value) {
|
||||
select.style.color = "var(--descrip-text)";
|
||||
}
|
||||
});
|
||||
form.addEventListener("submit", (e) => __async(this, null, function* () {
|
||||
var _a, _b, _c;
|
||||
e.preventDefault();
|
||||
if (inputActive == null) {
|
||||
error.textContent = "Please enter a username or select an existing user.";
|
||||
} else if (inputActive) {
|
||||
const username = input.value.trim();
|
||||
if (!username) {
|
||||
error.textContent = "Please enter a username.";
|
||||
return;
|
||||
}
|
||||
input.disabled = select.disabled = // @ts-expect-error
|
||||
input.readonly = // @ts-expect-error
|
||||
select.readonly = true;
|
||||
const spinner = createSpinner();
|
||||
button.prepend(spinner);
|
||||
try {
|
||||
const resp = yield api.createUser(username);
|
||||
if (resp.status >= 300) {
|
||||
let message = "Error creating user: " + resp.status + " " + resp.statusText;
|
||||
try {
|
||||
const res = yield resp.json();
|
||||
if (res.error) {
|
||||
message = res.error;
|
||||
}
|
||||
} catch (error2) {
|
||||
}
|
||||
throw new Error(message);
|
||||
}
|
||||
resolve({ username, userId: yield resp.json(), created: true });
|
||||
} catch (err) {
|
||||
spinner.remove();
|
||||
error.textContent = (_c = (_b = (_a = err.message) != null ? _a : err.statusText) != null ? _b : err) != null ? _c : "An unknown error occurred.";
|
||||
input.disabled = select.disabled = // @ts-expect-error
|
||||
input.readonly = // @ts-expect-error
|
||||
select.readonly = false;
|
||||
return;
|
||||
}
|
||||
} else if (!select.value) {
|
||||
error.textContent = "Please select an existing user.";
|
||||
return;
|
||||
} else {
|
||||
resolve({
|
||||
username: users[select.value],
|
||||
userId: select.value,
|
||||
created: false
|
||||
});
|
||||
}
|
||||
}));
|
||||
if (user) {
|
||||
const name = localStorage["Comfy.userName"];
|
||||
if (name) {
|
||||
input.value = name;
|
||||
}
|
||||
}
|
||||
if (input.value) {
|
||||
input.focus();
|
||||
}
|
||||
const userIds = Object.keys(users != null ? users : {});
|
||||
if (userIds.length) {
|
||||
for (const u of userIds) {
|
||||
$el("option", { textContent: users[u], value: u, parent: select });
|
||||
}
|
||||
select.style.color = "var(--descrip-text)";
|
||||
if (select.value) {
|
||||
select.focus();
|
||||
}
|
||||
} else {
|
||||
userSelection.classList.add("no-users");
|
||||
input.focus();
|
||||
}
|
||||
}).then((r) => {
|
||||
userSelection.remove();
|
||||
return r;
|
||||
});
|
||||
});
|
||||
}
|
||||
};
|
||||
__name(_UserSelectionScreen, "UserSelectionScreen");
|
||||
let UserSelectionScreen = _UserSelectionScreen;
|
||||
window.comfyAPI = window.comfyAPI || {};
|
||||
window.comfyAPI.userSelection = window.comfyAPI.userSelection || {};
|
||||
window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
|
||||
export {
|
||||
UserSelectionScreen
|
||||
};
|
||||
//# sourceMappingURL=userSelection-GRU1gtOt.js.map
|
||||
1
web/assets/userSelection-GRU1gtOt.js.map
generated
vendored
1
web/assets/userSelection-GRU1gtOt.js.map
generated
vendored
File diff suppressed because one or more lines are too long
BIN
web/dist.zip
vendored
Normal file
BIN
web/dist.zip
vendored
Normal file
Binary file not shown.
2
web/extensions/core/clipspace.js
vendored
2
web/extensions/core/clipspace.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for extensions\core\clipspace.ts
|
||||
// Shim for extensions/core/clipspace.ts
|
||||
export const ClipspaceDialog = window.comfyAPI.clipspace.ClipspaceDialog;
|
||||
|
||||
2
web/extensions/core/groupNode.js
vendored
2
web/extensions/core/groupNode.js
vendored
@@ -1,3 +1,3 @@
|
||||
// Shim for extensions\core\groupNode.ts
|
||||
// Shim for extensions/core/groupNode.ts
|
||||
export const GroupNodeConfig = window.comfyAPI.groupNode.GroupNodeConfig;
|
||||
export const GroupNodeHandler = window.comfyAPI.groupNode.GroupNodeHandler;
|
||||
|
||||
2
web/extensions/core/groupNodeManage.js
vendored
2
web/extensions/core/groupNodeManage.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for extensions\core\groupNodeManage.ts
|
||||
// Shim for extensions/core/groupNodeManage.ts
|
||||
export const ManageGroupDialog = window.comfyAPI.groupNodeManage.ManageGroupDialog;
|
||||
|
||||
2
web/extensions/core/widgetInputs.js
vendored
2
web/extensions/core/widgetInputs.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for extensions\core\widgetInputs.ts
|
||||
// Shim for extensions/core/widgetInputs.ts
|
||||
export const getWidgetConfig = window.comfyAPI.widgetInputs.getWidgetConfig;
|
||||
export const setWidgetConfig = window.comfyAPI.widgetInputs.setWidgetConfig;
|
||||
export const mergeIfValid = window.comfyAPI.widgetInputs.mergeIfValid;
|
||||
|
||||
100
web/index.html
vendored
100
web/index.html
vendored
@@ -1,50 +1,50 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>ComfyUI</title>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
|
||||
<!-- Browser Test Fonts -->
|
||||
<!-- <link href="https://fonts.googleapis.com/css2?family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
|
||||
<link href="https://fonts.googleapis.com/css2?family=Noto+Color+Emoji&family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
|
||||
<style>
|
||||
* {
|
||||
font-family: 'Roboto Mono', 'Noto Color Emoji';
|
||||
}
|
||||
</style> -->
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" type="text/css" href="user.css" />
|
||||
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
|
||||
<script type="module" crossorigin src="./assets/index-CaD4RONs.js"></script>
|
||||
<link rel="stylesheet" crossorigin href="./assets/index-DAK31IJJ.css">
|
||||
</head>
|
||||
<body class="litegraph">
|
||||
<div id="vue-app"></div>
|
||||
<div id="comfy-user-selection" class="comfy-user-selection" style="display: none;">
|
||||
<main class="comfy-user-selection-inner">
|
||||
<h1>ComfyUI</h1>
|
||||
<form>
|
||||
<section>
|
||||
<label>New user:
|
||||
<input placeholder="Enter a username" />
|
||||
</label>
|
||||
</section>
|
||||
<div class="comfy-user-existing">
|
||||
<span class="or-separator">OR</span>
|
||||
<section>
|
||||
<label>
|
||||
Existing user:
|
||||
<select>
|
||||
<option hidden disabled selected value> Select a user </option>
|
||||
</select>
|
||||
</label>
|
||||
</section>
|
||||
</div>
|
||||
<footer>
|
||||
<span class="comfy-user-error"> </span>
|
||||
<button class="comfy-btn comfy-user-button-next">Next</button>
|
||||
</footer>
|
||||
</form>
|
||||
</main>
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>ComfyUI</title>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
|
||||
<!-- Browser Test Fonts -->
|
||||
<!-- <link href="https://fonts.googleapis.com/css2?family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
|
||||
<link href="https://fonts.googleapis.com/css2?family=Noto+Color+Emoji&family=Roboto+Mono:ital,wght@0,100..700;1,100..700&family=Roboto:ital,wght@0,100;0,300;0,400;0,500;0,700;0,900;1,100;1,300;1,400;1,500;1,700;1,900&display=swap" rel="stylesheet">
|
||||
<style>
|
||||
* {
|
||||
font-family: 'Roboto Mono', 'Noto Color Emoji';
|
||||
}
|
||||
</style> -->
|
||||
<link rel="stylesheet" type="text/css" href="user.css" />
|
||||
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
|
||||
<script type="module" crossorigin src="./assets/index-Dfv2aLsq.js"></script>
|
||||
<link rel="stylesheet" crossorigin href="./assets/index-W4jP-SrU.css">
|
||||
</head>
|
||||
<body class="litegraph">
|
||||
<div id="vue-app"></div>
|
||||
<div id="comfy-user-selection" class="comfy-user-selection" style="display: none;">
|
||||
<main class="comfy-user-selection-inner">
|
||||
<h1>ComfyUI</h1>
|
||||
<form>
|
||||
<section>
|
||||
<label>New user:
|
||||
<input placeholder="Enter a username" />
|
||||
</label>
|
||||
</section>
|
||||
<div class="comfy-user-existing">
|
||||
<span class="or-separator">OR</span>
|
||||
<section>
|
||||
<label>
|
||||
Existing user:
|
||||
<select>
|
||||
<option hidden disabled selected value> Select a user </option>
|
||||
</select>
|
||||
</label>
|
||||
</section>
|
||||
</div>
|
||||
<footer>
|
||||
<span class="comfy-user-error"> </span>
|
||||
<button class="comfy-btn comfy-user-button-next">Next</button>
|
||||
</footer>
|
||||
</form>
|
||||
</main>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
4
web/materialdesignicons.min.css
vendored
4
web/materialdesignicons.min.css
vendored
File diff suppressed because one or more lines are too long
2
web/scripts/api.js
vendored
2
web/scripts/api.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\api.ts
|
||||
// Shim for scripts/api.ts
|
||||
export const api = window.comfyAPI.api.api;
|
||||
|
||||
2
web/scripts/app.js
vendored
2
web/scripts/app.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for scripts\app.ts
|
||||
// Shim for scripts/app.ts
|
||||
export const ANIM_PREVIEW_WIDGET = window.comfyAPI.app.ANIM_PREVIEW_WIDGET;
|
||||
export const ComfyApp = window.comfyAPI.app.ComfyApp;
|
||||
export const app = window.comfyAPI.app.app;
|
||||
|
||||
2
web/scripts/changeTracker.js
vendored
2
web/scripts/changeTracker.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\changeTracker.ts
|
||||
// Shim for scripts/changeTracker.ts
|
||||
export const ChangeTracker = window.comfyAPI.changeTracker.ChangeTracker;
|
||||
|
||||
2
web/scripts/defaultGraph.js
vendored
2
web/scripts/defaultGraph.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\defaultGraph.ts
|
||||
// Shim for scripts/defaultGraph.ts
|
||||
export const defaultGraph = window.comfyAPI.defaultGraph.defaultGraph;
|
||||
|
||||
2
web/scripts/domWidget.js
vendored
2
web/scripts/domWidget.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\domWidget.ts
|
||||
// Shim for scripts/domWidget.ts
|
||||
export const addDomClippingSetting = window.comfyAPI.domWidget.addDomClippingSetting;
|
||||
|
||||
2
web/scripts/logging.js
vendored
2
web/scripts/logging.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\logging.ts
|
||||
// Shim for scripts/logging.ts
|
||||
export const ComfyLogging = window.comfyAPI.logging.ComfyLogging;
|
||||
|
||||
2
web/scripts/metadata/flac.js
vendored
2
web/scripts/metadata/flac.js
vendored
@@ -1,3 +1,3 @@
|
||||
// Shim for scripts\metadata\flac.ts
|
||||
// Shim for scripts/metadata/flac.ts
|
||||
export const getFromFlacBuffer = window.comfyAPI.flac.getFromFlacBuffer;
|
||||
export const getFromFlacFile = window.comfyAPI.flac.getFromFlacFile;
|
||||
|
||||
2
web/scripts/metadata/png.js
vendored
2
web/scripts/metadata/png.js
vendored
@@ -1,3 +1,3 @@
|
||||
// Shim for scripts\metadata\png.ts
|
||||
// Shim for scripts/metadata/png.ts
|
||||
export const getFromPngBuffer = window.comfyAPI.png.getFromPngBuffer;
|
||||
export const getFromPngFile = window.comfyAPI.png.getFromPngFile;
|
||||
|
||||
2
web/scripts/pnginfo.js
vendored
2
web/scripts/pnginfo.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for scripts\pnginfo.ts
|
||||
// Shim for scripts/pnginfo.ts
|
||||
export const getPngMetadata = window.comfyAPI.pnginfo.getPngMetadata;
|
||||
export const getFlacMetadata = window.comfyAPI.pnginfo.getFlacMetadata;
|
||||
export const getWebpMetadata = window.comfyAPI.pnginfo.getWebpMetadata;
|
||||
|
||||
2
web/scripts/ui.js
vendored
2
web/scripts/ui.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for scripts\ui.ts
|
||||
// Shim for scripts/ui.ts
|
||||
export const ComfyDialog = window.comfyAPI.ui.ComfyDialog;
|
||||
export const $el = window.comfyAPI.ui.$el;
|
||||
export const ComfyUI = window.comfyAPI.ui.ComfyUI;
|
||||
|
||||
2
web/scripts/ui/components/asyncDialog.js
vendored
2
web/scripts/ui/components/asyncDialog.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\components\asyncDialog.ts
|
||||
// Shim for scripts/ui/components/asyncDialog.ts
|
||||
export const ComfyAsyncDialog = window.comfyAPI.asyncDialog.ComfyAsyncDialog;
|
||||
|
||||
2
web/scripts/ui/components/button.js
vendored
2
web/scripts/ui/components/button.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\components\button.ts
|
||||
// Shim for scripts/ui/components/button.ts
|
||||
export const ComfyButton = window.comfyAPI.button.ComfyButton;
|
||||
|
||||
2
web/scripts/ui/components/buttonGroup.js
vendored
2
web/scripts/ui/components/buttonGroup.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\components\buttonGroup.ts
|
||||
// Shim for scripts/ui/components/buttonGroup.ts
|
||||
export const ComfyButtonGroup = window.comfyAPI.buttonGroup.ComfyButtonGroup;
|
||||
|
||||
2
web/scripts/ui/components/popup.js
vendored
2
web/scripts/ui/components/popup.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\components\popup.ts
|
||||
// Shim for scripts/ui/components/popup.ts
|
||||
export const ComfyPopup = window.comfyAPI.popup.ComfyPopup;
|
||||
|
||||
2
web/scripts/ui/components/splitButton.js
vendored
2
web/scripts/ui/components/splitButton.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\components\splitButton.ts
|
||||
// Shim for scripts/ui/components/splitButton.ts
|
||||
export const ComfySplitButton = window.comfyAPI.splitButton.ComfySplitButton;
|
||||
|
||||
2
web/scripts/ui/dialog.js
vendored
2
web/scripts/ui/dialog.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\dialog.ts
|
||||
// Shim for scripts/ui/dialog.ts
|
||||
export const ComfyDialog = window.comfyAPI.dialog.ComfyDialog;
|
||||
|
||||
2
web/scripts/ui/draggableList.js
vendored
2
web/scripts/ui/draggableList.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\draggableList.ts
|
||||
// Shim for scripts/ui/draggableList.ts
|
||||
export const DraggableList = window.comfyAPI.draggableList.DraggableList;
|
||||
|
||||
2
web/scripts/ui/imagePreview.js
vendored
2
web/scripts/ui/imagePreview.js
vendored
@@ -1,3 +1,3 @@
|
||||
// Shim for scripts\ui\imagePreview.ts
|
||||
// Shim for scripts/ui/imagePreview.ts
|
||||
export const calculateImageGrid = window.comfyAPI.imagePreview.calculateImageGrid;
|
||||
export const createImageHost = window.comfyAPI.imagePreview.createImageHost;
|
||||
|
||||
2
web/scripts/ui/menu/index.js
vendored
2
web/scripts/ui/menu/index.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\menu\index.ts
|
||||
// Shim for scripts/ui/menu/index.ts
|
||||
export const ComfyAppMenu = window.comfyAPI.index.ComfyAppMenu;
|
||||
|
||||
2
web/scripts/ui/menu/interruptButton.js
vendored
2
web/scripts/ui/menu/interruptButton.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\menu\interruptButton.ts
|
||||
// Shim for scripts/ui/menu/interruptButton.ts
|
||||
export const getInterruptButton = window.comfyAPI.interruptButton.getInterruptButton;
|
||||
|
||||
2
web/scripts/ui/menu/queueButton.js
vendored
2
web/scripts/ui/menu/queueButton.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\menu\queueButton.ts
|
||||
// Shim for scripts/ui/menu/queueButton.ts
|
||||
export const ComfyQueueButton = window.comfyAPI.queueButton.ComfyQueueButton;
|
||||
|
||||
2
web/scripts/ui/menu/queueOptions.js
vendored
2
web/scripts/ui/menu/queueOptions.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\menu\queueOptions.ts
|
||||
// Shim for scripts/ui/menu/queueOptions.ts
|
||||
export const ComfyQueueOptions = window.comfyAPI.queueOptions.ComfyQueueOptions;
|
||||
|
||||
2
web/scripts/ui/menu/workflows.js
vendored
2
web/scripts/ui/menu/workflows.js
vendored
@@ -1,3 +1,3 @@
|
||||
// Shim for scripts\ui\menu\workflows.ts
|
||||
// Shim for scripts/ui/menu/workflows.ts
|
||||
export const ComfyWorkflowsMenu = window.comfyAPI.workflows.ComfyWorkflowsMenu;
|
||||
export const ComfyWorkflowsContent = window.comfyAPI.workflows.ComfyWorkflowsContent;
|
||||
|
||||
2
web/scripts/ui/settings.js
vendored
2
web/scripts/ui/settings.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\settings.ts
|
||||
// Shim for scripts/ui/settings.ts
|
||||
export const ComfySettingsDialog = window.comfyAPI.settings.ComfySettingsDialog;
|
||||
|
||||
2
web/scripts/ui/spinner.js
vendored
2
web/scripts/ui/spinner.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\spinner.ts
|
||||
// Shim for scripts/ui/spinner.ts
|
||||
export const createSpinner = window.comfyAPI.spinner.createSpinner;
|
||||
|
||||
2
web/scripts/ui/toggleSwitch.js
vendored
2
web/scripts/ui/toggleSwitch.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\toggleSwitch.ts
|
||||
// Shim for scripts/ui/toggleSwitch.ts
|
||||
export const toggleSwitch = window.comfyAPI.toggleSwitch.toggleSwitch;
|
||||
|
||||
2
web/scripts/ui/userSelection.js
vendored
2
web/scripts/ui/userSelection.js
vendored
@@ -1,2 +1,2 @@
|
||||
// Shim for scripts\ui\userSelection.ts
|
||||
// Shim for scripts/ui/userSelection.ts
|
||||
export const UserSelectionScreen = window.comfyAPI.userSelection.UserSelectionScreen;
|
||||
|
||||
2
web/scripts/ui/utils.js
vendored
2
web/scripts/ui/utils.js
vendored
@@ -1,3 +1,3 @@
|
||||
// Shim for scripts\ui\utils.ts
|
||||
// Shim for scripts/ui/utils.ts
|
||||
export const applyClasses = window.comfyAPI.utils.applyClasses;
|
||||
export const toggleElement = window.comfyAPI.utils.toggleElement;
|
||||
|
||||
2
web/scripts/utils.js
vendored
2
web/scripts/utils.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for scripts\utils.ts
|
||||
// Shim for scripts/utils.ts
|
||||
export const clone = window.comfyAPI.utils.clone;
|
||||
export const applyTextReplacements = window.comfyAPI.utils.applyTextReplacements;
|
||||
export const addStylesheet = window.comfyAPI.utils.addStylesheet;
|
||||
|
||||
2
web/scripts/widgets.js
vendored
2
web/scripts/widgets.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for scripts\widgets.ts
|
||||
// Shim for scripts/widgets.ts
|
||||
export const updateControlWidgetLabel = window.comfyAPI.widgets.updateControlWidgetLabel;
|
||||
export const addValueControlWidget = window.comfyAPI.widgets.addValueControlWidget;
|
||||
export const addValueControlWidgets = window.comfyAPI.widgets.addValueControlWidgets;
|
||||
|
||||
2
web/scripts/workflows.js
vendored
2
web/scripts/workflows.js
vendored
@@ -1,4 +1,4 @@
|
||||
// Shim for scripts\workflows.ts
|
||||
// Shim for scripts/workflows.ts
|
||||
export const trimJsonExt = window.comfyAPI.workflows.trimJsonExt;
|
||||
export const ComfyWorkflowManager = window.comfyAPI.workflows.ComfyWorkflowManager;
|
||||
export const ComfyWorkflow = window.comfyAPI.workflows.ComfyWorkflow;
|
||||
|
||||
Reference in New Issue
Block a user