Compare commits
586 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9f4b181ab3 | ||
|
|
cbbf077593 | ||
|
|
0c04a6ae78 | ||
|
|
416ccc9e45 | ||
|
|
ff2ff02168 | ||
|
|
4c5c4ddeda | ||
|
|
79badea452 | ||
|
|
37e5390f5f | ||
|
|
a4f59bc65e | ||
|
|
ca457f7ba1 | ||
|
|
cd6f615038 | ||
|
|
517669aaa3 | ||
|
|
e4e1bff605 | ||
|
|
d6656b0c0c | ||
|
|
f4cdedea62 | ||
|
|
39b1fc4ccc | ||
|
|
0b25f47bd9 | ||
|
|
bda1482a27 | ||
|
|
19ee5d9d8b | ||
|
|
61b50720d0 | ||
|
|
0f954f34af | ||
|
|
5262901c5c | ||
|
|
cc550d5908 | ||
|
|
6d1a3f7d00 | ||
|
|
1b3a650f19 | ||
|
|
e83063bf24 | ||
|
|
558b7d8b22 | ||
|
|
caf2074773 | ||
|
|
bdf393792d | ||
|
|
4e14032c02 | ||
|
|
59d58b1158 | ||
|
|
563291ee51 | ||
|
|
6c0377f43e | ||
|
|
2cddbf0821 | ||
|
|
60749f345d | ||
|
|
d4426dce7c | ||
|
|
d9d7f3c619 | ||
|
|
fd5dfb812c | ||
|
|
3dfdddcc91 | ||
|
|
5747bc6457 | ||
|
|
5bea1d2ec9 | ||
|
|
5def9fbc83 | ||
|
|
7a7efe8424 | ||
|
|
44db978531 | ||
|
|
1c8d11e48a | ||
|
|
a220d11e6b | ||
|
|
23827ca312 | ||
|
|
0fd4e6c778 | ||
|
|
e2fafe0686 | ||
|
|
6579632201 | ||
|
|
ac2f0523ca | ||
|
|
fbf68c4e52 | ||
|
|
93477f8efe | ||
|
|
8af9a91e0c | ||
|
|
005d2d3a13 | ||
|
|
1e21f4c14e | ||
|
|
9a616b81c1 | ||
|
|
3bed56bb13 | ||
|
|
4e402b11c6 | ||
|
|
48272448ad | ||
|
|
f7695b5f9e | ||
|
|
452179fe4f | ||
|
|
bf9a90a145 | ||
|
|
c1b92b719d | ||
|
|
cdc3b97dd5 | ||
|
|
8d4e06324f | ||
|
|
57e8bf6a9f | ||
|
|
0ee322ec5f | ||
|
|
79d5ceae6e | ||
|
|
2d5b3e0078 | ||
|
|
8e4118c0de | ||
|
|
3fc6ebcdd7 | ||
|
|
20a560eb97 | ||
|
|
82c5308561 | ||
|
|
26fb2c68e8 | ||
|
|
bf2650a80e | ||
|
|
53646e0f32 | ||
|
|
20879c78f9 | ||
|
|
b666539595 | ||
|
|
95d8713482 | ||
|
|
0d4e29f13f | ||
|
|
497db6212f | ||
|
|
24dc581dc3 | ||
|
|
4c82741b54 | ||
|
|
15c39ea757 | ||
|
|
b7143b74ce | ||
|
|
61196d8857 | ||
|
|
b4526d3fc3 | ||
|
|
3d802710e7 | ||
|
|
7126ecffde | ||
|
|
ab885b33ba | ||
|
|
839ed3368e | ||
|
|
6e8cdcd3cb | ||
|
|
e5c3f4b87f | ||
|
|
bc6be6c11e | ||
|
|
94323a26a7 | ||
|
|
5818f6cf51 | ||
|
|
0b734de449 | ||
|
|
5e16f1d24b | ||
|
|
2fd9c1308a | ||
|
|
8f0009aad0 | ||
|
|
41444b5236 | ||
|
|
772e620e32 | ||
|
|
07f6eeaa13 | ||
|
|
22535d0589 | ||
|
|
898615122f | ||
|
|
156a28786b | ||
|
|
f498d855ba | ||
|
|
b699a15062 | ||
|
|
9cc90ee3eb | ||
|
|
9a0a5d32ee | ||
|
|
d9f90965c8 | ||
|
|
41886af138 | ||
|
|
22a1d7ce78 | ||
|
|
4ac401af2b | ||
|
|
5fb59c8475 | ||
|
|
122c9ca1ce | ||
|
|
3b9a6cf2b1 | ||
|
|
3748e7ef7a | ||
|
|
8ebf2d8831 | ||
|
|
a72d152b0c | ||
|
|
eb476e6ea9 | ||
|
|
2d28b0b479 | ||
|
|
8b275ce5be | ||
|
|
2a18e98ccf | ||
|
|
8a5281006f | ||
|
|
bdeb1c171c | ||
|
|
9c1ed58ef2 | ||
|
|
8b90e50979 | ||
|
|
6ee066a14f | ||
|
|
dd5b57e3d7 | ||
|
|
75a818c720 | ||
|
|
2865f913f7 | ||
|
|
b49616f951 | ||
|
|
5e29e7a488 | ||
|
|
8afb97cd3f | ||
|
|
69694f40b3 | ||
|
|
c49025f01b | ||
|
|
696672905f | ||
|
|
6c9dbde7de | ||
|
|
ee8abf0cff | ||
|
|
fabf449feb | ||
|
|
cc9cf6d1bd | ||
|
|
1c8286a44b | ||
|
|
1af4a47fd1 | ||
|
|
f2aaa0a475 | ||
|
|
daa1565b93 | ||
|
|
09fdb2b269 | ||
|
|
65a8659182 | ||
|
|
770ab200f2 | ||
|
|
954683d0db | ||
|
|
30c0c81351 | ||
|
|
13b0ff8a6f | ||
|
|
c320801187 | ||
|
|
c0b0cfaeec | ||
|
|
669d9e4c67 | ||
|
|
9ee0a6553a | ||
|
|
5cbb01bc2f | ||
|
|
c3ffbae067 | ||
|
|
d605677b33 | ||
|
|
ce759b7db6 | ||
|
|
52810907e2 | ||
|
|
af8cf79a2d | ||
|
|
66b0961a46 | ||
|
|
754597c8a9 | ||
|
|
915fdb5745 | ||
|
|
5a8a48931a | ||
|
|
8ce2a1052c | ||
|
|
f82314fcfc | ||
|
|
0075c6d096 | ||
|
|
83ca891118 | ||
|
|
f9f9faface | ||
|
|
471cd3eace | ||
|
|
a68bbafddb | ||
|
|
73e3a9e676 | ||
|
|
518c0dc2fe | ||
|
|
ce0542e10b | ||
|
|
8473019d40 | ||
|
|
89f15894dd | ||
|
|
67158994a4 | ||
|
|
7390ff3b1e | ||
|
|
0bedfb26af | ||
|
|
f71cfd2687 | ||
|
|
c695c4af7f | ||
|
|
0dbba9f751 | ||
|
|
f584758271 | ||
|
|
95b7cf9bbe | ||
|
|
191a0d56b4 | ||
|
|
3c60ecd7a8 | ||
|
|
7ae6626723 | ||
|
|
6632365e16 | ||
|
|
ad07796777 | ||
|
|
1b80895285 | ||
|
|
5f9d5a244b | ||
|
|
14eba07acd | ||
|
|
4b2f0d9413 | ||
|
|
25eac1d780 | ||
|
|
e38c94228b | ||
|
|
203942c8b2 | ||
|
|
3c72c89a52 | ||
|
|
614377abd6 | ||
|
|
8dfa0cc552 | ||
|
|
e5ecdfdd2d | ||
|
|
7d29fbf74b | ||
|
|
2c641e64ad | ||
|
|
7d2467e830 | ||
|
|
6f021d8aa0 | ||
|
|
d854ed0bcf | ||
|
|
abcd006b8c | ||
|
|
d985d1d7dc | ||
|
|
d1cdf51e1b | ||
|
|
b4626ab93e | ||
|
|
a9e459c2a4 | ||
|
|
3bb4dec720 | ||
|
|
8733191563 | ||
|
|
83b01f960a | ||
|
|
d72e871cfa | ||
|
|
037c3159b6 | ||
|
|
bdd4a22a2e | ||
|
|
fdf37566ef | ||
|
|
08c8968482 | ||
|
|
479a427a48 | ||
|
|
3a0eeee320 | ||
|
|
447da7ea86 | ||
|
|
9c41bc8d10 | ||
|
|
6ad0ddbae4 | ||
|
|
a55142f904 | ||
|
|
5718ef69bb | ||
|
|
13ecf10a92 | ||
|
|
7a415f47a9 | ||
|
|
89fa2fca24 | ||
|
|
364b69e931 | ||
|
|
dc96a1ae19 | ||
|
|
2d810b081e | ||
|
|
9f7e9f0547 | ||
|
|
a355f38ecc | ||
|
|
38c69080c7 | ||
|
|
70a708d726 | ||
|
|
e7d4782736 | ||
|
|
3326bdfd4e | ||
|
|
68bb885d22 | ||
|
|
ad66f7c7d8 | ||
|
|
de8e8e3b0d | ||
|
|
a1e71cfad1 | ||
|
|
0bfc7cc998 | ||
|
|
7183fd1665 | ||
|
|
254838f23c | ||
|
|
0b7dfa986d | ||
|
|
d514bb38ee | ||
|
|
0849c80e2a | ||
|
|
56e8f5e4fd | ||
|
|
e813abbb2c | ||
|
|
5e68a4ce67 | ||
|
|
ca08597670 | ||
|
|
f48e390032 | ||
|
|
369a6dd2c4 | ||
|
|
b3ce8fb9fd | ||
|
|
cf80d28689 | ||
|
|
6fb44c4b7c | ||
|
|
d2247c1e61 | ||
|
|
cb12ad7049 | ||
|
|
f6b7194f64 | ||
|
|
7c6eb4fb29 | ||
|
|
b962db9952 | ||
|
|
d0b7ab88ba | ||
|
|
405b529545 | ||
|
|
9d720187f1 | ||
|
|
d247bc5a9c | ||
|
|
9f4daca9d9 | ||
|
|
b5d0f2a908 | ||
|
|
e760bf5c40 | ||
|
|
36c83cdbba | ||
|
|
81778a7feb | ||
|
|
bc94662b31 | ||
|
|
9fa8faa44a | ||
|
|
9a7444e39f | ||
|
|
54fca4a218 | ||
|
|
cd4955367e | ||
|
|
8354203d95 | ||
|
|
e0b41243b4 | ||
|
|
619263d4a6 | ||
|
|
e3b0402bb7 | ||
|
|
967867d48c | ||
|
|
cbaac71bf5 | ||
|
|
3ab3516e46 | ||
|
|
9c5fca75f4 | ||
|
|
a5da4d0b3e | ||
|
|
32a60a7bac | ||
|
|
bb52934ba4 | ||
|
|
8aabd7c8c0 | ||
|
|
a09b29ca11 | ||
|
|
9bfee68773 | ||
|
|
ea77750759 | ||
|
|
c27ebeb1c2 | ||
|
|
0c7c98a965 | ||
|
|
dc2eb75b85 | ||
|
|
fa34efe3bd | ||
|
|
5cbaa9e07c | ||
|
|
c7427375ee | ||
|
|
22d1241a50 | ||
|
|
f04229b84d | ||
|
|
f067ad15d1 | ||
|
|
483004dd1d | ||
|
|
00a5d08103 | ||
|
|
d043997d30 | ||
|
|
f1c2301697 | ||
|
|
8d31a6632f | ||
|
|
b643eae08b | ||
|
|
baa6b4dc36 | ||
|
|
d4aeefc297 | ||
|
|
587e7ca654 | ||
|
|
c90459eba0 | ||
|
|
04278afb10 | ||
|
|
935ae153e1 | ||
|
|
e91662e784 | ||
|
|
63fafaef45 | ||
|
|
ec28cd9136 | ||
|
|
6eb5d64522 | ||
|
|
10a79e9898 | ||
|
|
ea3f39bd69 | ||
|
|
b33cd61070 | ||
|
|
34eda0f853 | ||
|
|
d31e226650 | ||
|
|
b79fd7d92c | ||
|
|
38c22e631a | ||
|
|
6bbdcd28ae | ||
|
|
ab130001a8 | ||
|
|
ca4b8f30e0 | ||
|
|
70b84058c1 | ||
|
|
2ca8f6e23d | ||
|
|
7985ff88b9 | ||
|
|
c6812947e9 | ||
|
|
9230f65823 | ||
|
|
6ab1e6fd4a | ||
|
|
07dcbc3a3e | ||
|
|
8ae23d8e80 | ||
|
|
7df42b9a23 | ||
|
|
5d8bbb7281 | ||
|
|
2c1d2375d6 | ||
|
|
64ccb3c7e3 | ||
|
|
9465b23432 | ||
|
|
bb4416dd5b | ||
|
|
c0b0da264b | ||
|
|
c26ca27207 | ||
|
|
7c6bb84016 | ||
|
|
c54d3ed5e6 | ||
|
|
c7ee4b37a1 | ||
|
|
7b70b266d8 | ||
|
|
8f60d093ba | ||
|
|
dafbe321d2 | ||
|
|
5f84ea63e8 | ||
|
|
843a7ff70c | ||
|
|
a60620dcea | ||
|
|
015f73dc49 | ||
|
|
904bf58e7d | ||
|
|
5f50263088 | ||
|
|
5e806f555d | ||
|
|
f07e5bb522 | ||
|
|
03ec517afb | ||
|
|
f257fc999f | ||
|
|
bb50e69839 | ||
|
|
510f3438c1 | ||
|
|
ea63b1c092 | ||
|
|
9953f22fce | ||
|
|
d1a6bd6845 | ||
|
|
83dbac28eb | ||
|
|
538cb068bc | ||
|
|
1b3eee672c | ||
|
|
5a69f84c3c | ||
|
|
9eee470244 | ||
|
|
045377ea89 | ||
|
|
4d341b78e8 | ||
|
|
6138f92084 | ||
|
|
be0726c1ed | ||
|
|
766ae119a8 | ||
|
|
fc90ceb6ba | ||
|
|
4506ddc86a | ||
|
|
20ace7c853 | ||
|
|
b29b3b86c5 | ||
|
|
22ec02afc0 | ||
|
|
39f114c44b | ||
|
|
6730f3e1a3 | ||
|
|
73332160c8 | ||
|
|
2622c55aff | ||
|
|
1beb348ee2 | ||
|
|
9aa39e743c | ||
|
|
d31df04c8a | ||
|
|
e68763f40c | ||
|
|
310ad09258 | ||
|
|
4f7a3cb6fb | ||
|
|
bb222ceddb | ||
|
|
14af129c55 | ||
|
|
fca42836f2 | ||
|
|
858d51f91a | ||
|
|
cd5017c1c9 | ||
|
|
83f343146a | ||
|
|
b021cf67c7 | ||
|
|
1770fc77ed | ||
|
|
05a9f3faa1 | ||
|
|
86c5970ac0 | ||
|
|
bfc214f434 | ||
|
|
3f5939add6 | ||
|
|
5960f946a9 | ||
|
|
5cfe38f41c | ||
|
|
0f9c2a7822 | ||
|
|
153d0a8142 | ||
|
|
ab4dd19b91 | ||
|
|
f1d6cef71c | ||
|
|
33fb282d5c | ||
|
|
50bf66e5c4 | ||
|
|
e60e19b175 | ||
|
|
a5af64d3ce | ||
|
|
3e52e0364c | ||
|
|
34608de2e9 | ||
|
|
39fb74c5bd | ||
|
|
74e124f4d7 | ||
|
|
a562c17e8a | ||
|
|
5942c17d55 | ||
|
|
c032b11e07 | ||
|
|
b8ffb2937f | ||
|
|
ce37c11164 | ||
|
|
b5c3906b38 | ||
|
|
5d43e75e5b | ||
|
|
517f4a94e4 | ||
|
|
52a471c5c7 | ||
|
|
ad76574cb8 | ||
|
|
9acfe4df41 | ||
|
|
9829b013ea | ||
|
|
5c69cde037 | ||
|
|
e9589d6d92 | ||
|
|
0d82a798a5 | ||
|
|
925fff26fd | ||
|
|
75b9b55b22 | ||
|
|
1765f1c60c | ||
|
|
1de69fe4d5 | ||
|
|
ae197f651b | ||
|
|
1b5b8ca81a | ||
|
|
6678d5cf65 | ||
|
|
e172564eea | ||
|
|
a3cc326748 | ||
|
|
86a97e91fc | ||
|
|
5acdadc9f3 | ||
|
|
55ad9d5f8c | ||
|
|
a9f04edc58 | ||
|
|
a475ec2300 | ||
|
|
06eb9fb426 | ||
|
|
413322645e | ||
|
|
11200de970 | ||
|
|
037c38eb0f | ||
|
|
1e11d2d1f5 | ||
|
|
65ea6be38f | ||
|
|
5df6f57b5d | ||
|
|
6588bfdef9 | ||
|
|
50ed2879ef | ||
|
|
66d4233210 | ||
|
|
591010b7ef | ||
|
|
08f92d55e9 | ||
|
|
8115d8cce9 | ||
|
|
6969fc9ba4 | ||
|
|
cb7c4b4be3 | ||
|
|
1208863eca | ||
|
|
e1c528196e | ||
|
|
17030fd4c0 | ||
|
|
c19dcd362f | ||
|
|
1c08bf35b4 | ||
|
|
2a02546e20 | ||
|
|
b334605a66 | ||
|
|
de17a9755e | ||
|
|
c14ac98fed | ||
|
|
2894511893 | ||
|
|
f3bc40223a | ||
|
|
841e74ac40 | ||
|
|
2d75df45e6 | ||
|
|
1abc9c8703 | ||
|
|
8edbcf5209 | ||
|
|
e545a636ba | ||
|
|
33e5203a2a | ||
|
|
a178e25912 | ||
|
|
78e133d041 | ||
|
|
7afa985fba | ||
|
|
ddb6a9f47c | ||
|
|
3b71f84b50 | ||
|
|
0a6b008117 | ||
|
|
56f3c660bf | ||
|
|
f7a5107784 | ||
|
|
91be9c2867 | ||
|
|
03c5018c98 | ||
|
|
2ba5cc8b86 | ||
|
|
1e68002b87 | ||
|
|
ba9095e5bd | ||
|
|
f123328b82 | ||
|
|
63a7e8edba | ||
|
|
0eea47d580 | ||
|
|
7cd0cdfce6 | ||
|
|
ea03c9dcd2 | ||
|
|
3a9ee995cf | ||
|
|
47da42d928 | ||
|
|
17bbd83176 | ||
|
|
bfb52de866 | ||
|
|
eca962c6da | ||
|
|
c1696cd1b5 | ||
|
|
369f459b20 | ||
|
|
ce9ac2fe05 | ||
|
|
e638f2858a | ||
|
|
a531001cc7 | ||
|
|
d420bc792a | ||
|
|
d965474aaa | ||
|
|
1c61361fd2 | ||
|
|
a6decf1e62 | ||
|
|
48eb1399c0 | ||
|
|
b4f6ebb2e8 | ||
|
|
d7430a1651 | ||
|
|
f2b80f95d2 | ||
|
|
1aa9cf3292 | ||
|
|
2f88d19ef3 | ||
|
|
eb96c3bd82 | ||
|
|
5f98de7697 | ||
|
|
8d34211a7a | ||
|
|
1589b58d3e | ||
|
|
7ad574bffd | ||
|
|
e2382b6adb | ||
|
|
c24f897352 | ||
|
|
a5991a7aa6 | ||
|
|
2c038ccef0 | ||
|
|
b85216a3c0 | ||
|
|
82cae45d44 | ||
|
|
25853d0be8 | ||
|
|
79040635da | ||
|
|
66d35c07ce | ||
|
|
c75b50607b | ||
|
|
4ba7fa0244 | ||
|
|
ab76abc767 | ||
|
|
9300058026 | ||
|
|
f82d09c9b4 | ||
|
|
e6829e7ac5 | ||
|
|
07f6a1a685 | ||
|
|
e746965c50 | ||
|
|
45a2842d7f | ||
|
|
17b41f622e | ||
|
|
cf4418b806 | ||
|
|
6225a7827c | ||
|
|
b6779d8df3 | ||
|
|
8328a2d8cd | ||
|
|
afe732bef9 | ||
|
|
a9ac56fc0d | ||
|
|
25b51b1a8b | ||
|
|
61a2b00bc2 | ||
|
|
a5f4292f9f | ||
|
|
f87810cd3e | ||
|
|
10c919f4c7 | ||
|
|
ce80e69fb8 | ||
|
|
19944ad252 | ||
|
|
10b43ceea5 | ||
|
|
0a4c49c57c | ||
|
|
88ed893034 | ||
|
|
334ba48cea | ||
|
|
14764aa2e2 | ||
|
|
b2c995f623 | ||
|
|
4151fbfa8a | ||
|
|
6045ed31f8 | ||
|
|
f836e69346 | ||
|
|
5b69cfe7c3 | ||
|
|
95fa9545f1 | ||
|
|
11b74147ee | ||
|
|
6ab8cad22e | ||
|
|
011b11d8d7 | ||
|
|
ff6ca2a892 | ||
|
|
374e093e09 | ||
|
|
855789403b | ||
|
|
6f7869f365 | ||
|
|
281ad42df4 | ||
|
|
1cde6b2eff | ||
|
|
c5a48b15bd | ||
|
|
f2298799ba | ||
|
|
60383f3b64 | ||
|
|
8270c62530 | ||
|
|
821f93872e | ||
|
|
e1630391d6 | ||
|
|
99458e8aca | ||
|
|
33346fd9b8 | ||
|
|
136c93cb47 | ||
|
|
1305fb294c | ||
|
|
7914c47d5a | ||
|
|
79547efb65 | ||
|
|
a3dffc447a | ||
|
|
ce2473bb01 |
@@ -33,7 +33,7 @@ def pull(repo, remote_name='origin', branch='master'):
|
||||
|
||||
user = repo.default_signature
|
||||
tree = repo.index.write_tree()
|
||||
commit = repo.create_commit('HEAD',
|
||||
repo.create_commit('HEAD',
|
||||
user,
|
||||
user,
|
||||
'Merge!',
|
||||
@@ -62,12 +62,38 @@ except:
|
||||
|
||||
print("checking out master branch")
|
||||
branch = repo.lookup_branch('master')
|
||||
if branch is None:
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
repo.checkout(ref)
|
||||
branch = repo.lookup_branch('master')
|
||||
if branch is None:
|
||||
repo.create_branch('master', repo.get(ref.target))
|
||||
else:
|
||||
ref = repo.lookup_reference(branch.name)
|
||||
repo.checkout(ref)
|
||||
|
||||
print("pulling latest changes")
|
||||
pull(repo)
|
||||
|
||||
if "--stable" in sys.argv:
|
||||
def latest_tag(repo):
|
||||
versions = []
|
||||
for k in repo.references:
|
||||
try:
|
||||
prefix = "refs/tags/v"
|
||||
if k.startswith(prefix):
|
||||
version = list(map(int, k[len(prefix):].split(".")))
|
||||
versions.append((version[0] * 10000000000 + version[1] * 100000 + version[2], k))
|
||||
except:
|
||||
pass
|
||||
versions.sort()
|
||||
if len(versions) > 0:
|
||||
return versions[-1][1]
|
||||
return None
|
||||
latest_tag = latest_tag(repo)
|
||||
if latest_tag is not None:
|
||||
repo.checkout(latest_tag)
|
||||
|
||||
print("Done!")
|
||||
|
||||
self_update = True
|
||||
@@ -108,3 +134,13 @@ if not os.path.exists(req_path) or not files_equal(repo_req_path, req_path):
|
||||
shutil.copy(repo_req_path, req_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
stable_update_script = os.path.join(repo_path, ".ci/update_windows/update_comfyui_stable.bat")
|
||||
stable_update_script_to = os.path.join(cur_path, "update_comfyui_stable.bat")
|
||||
|
||||
try:
|
||||
if not file_size(stable_update_script_to) > 10:
|
||||
shutil.copy(stable_update_script, stable_update_script_to)
|
||||
except:
|
||||
pass
|
||||
|
||||
8
.ci/update_windows/update_comfyui_stable.bat
Executable file
8
.ci/update_windows/update_comfyui_stable.bat
Executable file
@@ -0,0 +1,8 @@
|
||||
@echo off
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --stable
|
||||
if exist update_new.py (
|
||||
move /y update_new.py update.py
|
||||
echo Running updater again since it got updated.
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --skip_self_update --stable
|
||||
)
|
||||
if "%~1"=="" pause
|
||||
@@ -14,7 +14,7 @@ run_cpu.bat
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/blob/main/v1-5-pruned-emaonly-fp16.safetensors
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
|
||||
2
.ci/windows_nightly_base_files/run_nvidia_gpu_fast.bat
Normal file
2
.ci/windows_nightly_base_files/run_nvidia_gpu_fast.bat
Normal file
@@ -0,0 +1,2 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast
|
||||
pause
|
||||
2
.gitattributes
vendored
Normal file
2
.gitattributes
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
/web/assets/** linguist-generated
|
||||
/web/** linguist-vendored
|
||||
3
.github/ISSUE_TEMPLATE/config.yml
vendored
3
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,5 +1,8 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: ComfyUI Frontend Issues
|
||||
url: https://github.com/Comfy-Org/ComfyUI_frontend/issues
|
||||
about: Issues related to the ComfyUI frontend (display issues, user interaction bugs), please go to the frontend repo to file the issue
|
||||
- name: ComfyUI Matrix Space
|
||||
url: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
|
||||
about: The ComfyUI Matrix Space is available for support and general discussion related to ComfyUI (Matrix is like Discord but open source).
|
||||
|
||||
53
.github/workflows/pullrequest-ci-run.yml
vendored
Normal file
53
.github/workflows/pullrequest-ci-run.yml
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
# This is the GitHub Workflow that drives full-GPU-enabled tests of pull requests to ComfyUI, when the 'Run-CI-Test' label is added
|
||||
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
|
||||
name: Pull Request CI Workflow Runs
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [labeled]
|
||||
|
||||
jobs:
|
||||
pr-test-stable:
|
||||
if: ${{ github.event.label.name == 'Run-CI-Test' }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux, windows]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
- os: windows
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
use_prior_commit: 'true'
|
||||
comment:
|
||||
if: ${{ github.event.label.name == 'Run-CI-Test' }}
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.createComment({
|
||||
issue_number: context.issue.number,
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
body: '(Automated Bot Message) CI Tests are running, you can view the results at https://ci.comfy.org/?branch=${{ github.event.pull_request.number }}%2Fmerge'
|
||||
})
|
||||
23
.github/workflows/ruff.yml
vendored
Normal file
23
.github/workflows/ruff.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Python Linting
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
ruff:
|
||||
name: Run Ruff
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.x
|
||||
|
||||
- name: Install Ruff
|
||||
run: pip install ruff
|
||||
|
||||
- name: Run Ruff
|
||||
run: ruff check .
|
||||
91
.github/workflows/stable-release.yml
vendored
91
.github/workflows/stable-release.yml
vendored
@@ -2,9 +2,28 @@
|
||||
name: "Release Stable Version"
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
cu:
|
||||
description: 'CUDA version'
|
||||
required: true
|
||||
type: string
|
||||
default: "124"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "7"
|
||||
|
||||
|
||||
jobs:
|
||||
package_comfy_windows:
|
||||
@@ -13,69 +32,44 @@ jobs:
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
runs-on: windows-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python_version: [3.11.8]
|
||||
cuda_version: [121]
|
||||
steps:
|
||||
- name: Calculate Minor Version
|
||||
shell: bash
|
||||
run: |
|
||||
# Extract the minor version from the Python version
|
||||
MINOR_VERSION=$(echo "${{ matrix.python_version }}" | cut -d'.' -f2)
|
||||
echo "MINOR_VERSION=$MINOR_VERSION" >> $GITHUB_ENV
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.git_tag }}
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
- uses: actions/cache/restore@v4
|
||||
id: cache
|
||||
with:
|
||||
path: |
|
||||
cu${{ inputs.cu }}_python_deps.tar
|
||||
update_comfyui_and_python_dependencies.bat
|
||||
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
|
||||
- shell: bash
|
||||
run: |
|
||||
echo "@echo off
|
||||
call update_comfyui.bat nopause
|
||||
echo -
|
||||
echo This will try to update pytorch and all python dependencies.
|
||||
echo -
|
||||
echo If you just want to update normally, close this and run update_comfyui.bat instead.
|
||||
echo -
|
||||
pause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu${{ matrix.cuda_version }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu${{ matrix.cuda_version }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
mv temp_wheel_dir cu${{ matrix.cuda_version }}_python_deps
|
||||
mv cu${{ matrix.cuda_version }}_python_deps ../
|
||||
mv cu${{ inputs.cu }}_python_deps.tar ../
|
||||
mv update_comfyui_and_python_dependencies.bat ../
|
||||
cd ..
|
||||
tar xf cu${{ inputs.cu }}_python_deps.tar
|
||||
pwd
|
||||
ls
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
cd ..
|
||||
cp -r ComfyUI ComfyUI_copy
|
||||
curl https://www.python.org/ftp/python/${{ matrix.python_version }}/python-${{ matrix.python_version }}-embed-amd64.zip -o python_embeded.zip
|
||||
curl https://www.python.org/ftp/python/3.${{ inputs.python_minor }}.${{ inputs.python_patch }}/python-3.${{ inputs.python_minor }}.${{ inputs.python_patch }}-embed-amd64.zip -o python_embeded.zip
|
||||
unzip python_embeded.zip -d python_embeded
|
||||
cd python_embeded
|
||||
echo ${{ env.MINOR_VERSION }}
|
||||
echo 'import site' >> ./python3${{ env.MINOR_VERSION }}._pth
|
||||
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe --version
|
||||
echo "Pip version:"
|
||||
./python.exe -m pip --version
|
||||
|
||||
set PATH=$PWD/Scripts:$PATH
|
||||
echo $PATH
|
||||
./python.exe -s -m pip install ../cu${{ matrix.cuda_version }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ env.MINOR_VERSION }}._pth
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
@@ -104,6 +98,7 @@ jobs:
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia.7z
|
||||
tag: ${{ github.ref }}
|
||||
tag: ${{ inputs.git_tag }}
|
||||
overwrite: true
|
||||
|
||||
prerelease: true
|
||||
make_latest: false
|
||||
|
||||
21
.github/workflows/stale-issues.yml
vendored
Normal file
21
.github/workflows/stale-issues.yml
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
name: 'Close stale issues'
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 430 am PT
|
||||
- cron: '30 11 * * *'
|
||||
permissions:
|
||||
issues: write
|
||||
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
stale-issue-message: "This issue is being marked stale because it has not had any activity for 30 days. Reply below within 7 days if your issue still isn't solved, and it will be left open. Otherwise, the issue will be closed automatically."
|
||||
days-before-stale: 30
|
||||
days-before-close: 7
|
||||
stale-issue-label: 'Stale'
|
||||
only-labels: 'User Support'
|
||||
exempt-all-assignees: true
|
||||
exempt-all-milestones: true
|
||||
76
.github/workflows/test-browser.yml
vendored
76
.github/workflows/test-browser.yml
vendored
@@ -1,76 +0,0 @@
|
||||
# This is a temporary action during frontend TS migration.
|
||||
# This file should be removed after TS migration is completed.
|
||||
# The browser test is here to ensure TS repo is working the same way as the
|
||||
# current JS code.
|
||||
# If you are adding UI feature, please sync your changes to the TS repo:
|
||||
# huchenlei/ComfyUI_frontend and update test expectation files accordingly.
|
||||
name: Playwright Browser Tests CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout ComfyUI
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "comfyanonymous/ComfyUI"
|
||||
path: "ComfyUI"
|
||||
- name: Checkout ComfyUI_frontend
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "huchenlei/ComfyUI_frontend"
|
||||
path: "ComfyUI_frontend"
|
||||
ref: "fcc54d803e5b6a9b08a462a1d94899318c96dcbb"
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: lts/*
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
pip install wait-for-it
|
||||
working-directory: ComfyUI
|
||||
- name: Start ComfyUI server
|
||||
run: |
|
||||
python main.py --cpu 2>&1 | tee console_output.log &
|
||||
wait-for-it --service 127.0.0.1:8188 -t 600
|
||||
working-directory: ComfyUI
|
||||
- name: Install ComfyUI_frontend dependencies
|
||||
run: |
|
||||
npm ci
|
||||
working-directory: ComfyUI_frontend
|
||||
- name: Install Playwright Browsers
|
||||
run: npx playwright install --with-deps
|
||||
working-directory: ComfyUI_frontend
|
||||
- name: Run Playwright tests
|
||||
run: npx playwright test
|
||||
working-directory: ComfyUI_frontend
|
||||
- name: Check for unhandled exceptions in server log
|
||||
run: |
|
||||
if grep -qE "Exception|Error" console_output.log; then
|
||||
echo "Unhandled exception/error found in server log."
|
||||
exit 1
|
||||
fi
|
||||
working-directory: ComfyUI
|
||||
- uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: playwright-report
|
||||
path: ComfyUI_frontend/playwright-report/
|
||||
retention-days: 30
|
||||
- uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: console-output
|
||||
path: ComfyUI/console_output.log
|
||||
retention-days: 30
|
||||
96
.github/workflows/test-ci.yml
vendored
Normal file
96
.github/workflows/test-ci.yml
vendored
Normal file
@@ -0,0 +1,96 @@
|
||||
# This is the GitHub Workflow that drives automatic full-GPU-enabled tests of all new commits to the master branch of ComfyUI
|
||||
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
|
||||
name: Full Comfy CI Workflow Runs
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths-ignore:
|
||||
- 'app/**'
|
||||
- 'input/**'
|
||||
- 'output/**'
|
||||
- 'notebooks/**'
|
||||
- 'script_examples/**'
|
||||
- '.github/**'
|
||||
- 'web/**'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
test-stable:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
os: [macos, linux]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
# - os: windows
|
||||
# runner_label: [self-hosted, Windows]
|
||||
# flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
|
||||
# test-win-nightly:
|
||||
# strategy:
|
||||
# fail-fast: true
|
||||
# matrix:
|
||||
# os: [windows]
|
||||
# python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
# cuda_version: ["12.1"]
|
||||
# torch_version: ["nightly"]
|
||||
# include:
|
||||
# - os: windows
|
||||
# runner_label: [self-hosted, Windows]
|
||||
# flags: ""
|
||||
# runs-on: ${{ matrix.runner_label }}
|
||||
# steps:
|
||||
# - name: Test Workflows
|
||||
# uses: comfy-org/comfy-action@main
|
||||
# with:
|
||||
# os: ${{ matrix.os }}
|
||||
# python_version: ${{ matrix.python_version }}
|
||||
# torch_version: ${{ matrix.torch_version }}
|
||||
# google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
# comfyui_flags: ${{ matrix.flags }}
|
||||
|
||||
test-unix-nightly:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux]
|
||||
python_version: ["3.11"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
45
.github/workflows/test-launch.yml
vendored
Normal file
45
.github/workflows/test-launch.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test server launches without errors
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout ComfyUI
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "comfyanonymous/ComfyUI"
|
||||
path: "ComfyUI"
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.8'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
pip install wait-for-it
|
||||
working-directory: ComfyUI
|
||||
- name: Start ComfyUI server
|
||||
run: |
|
||||
python main.py --cpu 2>&1 | tee console_output.log &
|
||||
wait-for-it --service 127.0.0.1:8188 -t 30
|
||||
working-directory: ComfyUI
|
||||
- name: Check for unhandled exceptions in server log
|
||||
run: |
|
||||
if grep -qE "Exception|Error" console_output.log; then
|
||||
echo "Unhandled exception/error found in server log."
|
||||
exit 1
|
||||
fi
|
||||
working-directory: ComfyUI
|
||||
- uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: console-output
|
||||
path: ComfyUI/console_output.log
|
||||
retention-days: 30
|
||||
26
.github/workflows/test-ui.yaml
vendored
26
.github/workflows/test-ui.yaml
vendored
@@ -1,26 +0,0 @@
|
||||
name: Tests CI
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
- name: Run Tests
|
||||
run: |
|
||||
npm ci
|
||||
npm run test:generate
|
||||
npm test -- --verbose
|
||||
working-directory: ./tests-ui
|
||||
30
.github/workflows/test-unit.yml
vendored
Normal file
30
.github/workflows/test-unit.yml
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
name: Unit Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
runs-on: ${{ matrix.os }}
|
||||
continue-on-error: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
- name: Run Unit Tests
|
||||
run: |
|
||||
pip install -r tests-unit/requirements.txt
|
||||
python -m pytest tests-unit
|
||||
@@ -8,23 +8,28 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
extra_dependencies:
|
||||
description: 'extra dependencies'
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
cu:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "121"
|
||||
default: "124"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "8"
|
||||
default: "7"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -51,7 +56,7 @@ jobs:
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "3"
|
||||
default: "4"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -49,13 +49,13 @@ jobs:
|
||||
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
python -m pip wheel torch torchvision torchaudio mpmath==1.3.0 numpy==1.26.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
ls ../temp_wheel_dir
|
||||
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable_nightly_pytorch
|
||||
@@ -67,6 +67,7 @@ jobs:
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
|
||||
|
||||
echo "call update_comfyui.bat nopause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
|
||||
@@ -7,19 +7,19 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "121"
|
||||
default: "124"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "8"
|
||||
default: "7"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -66,7 +66,7 @@ jobs:
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -12,9 +12,12 @@ extra_model_paths.yaml
|
||||
.vscode/
|
||||
.idea/
|
||||
venv/
|
||||
.venv/
|
||||
/web/extensions/*
|
||||
!/web/extensions/logging.js.example
|
||||
!/web/extensions/core/
|
||||
/tests-ui/data/object_info.json
|
||||
/user/
|
||||
*.log
|
||||
web_custom_versions/
|
||||
.DS_Store
|
||||
|
||||
22
CODEOWNERS
22
CODEOWNERS
@@ -1 +1,23 @@
|
||||
# Admins
|
||||
* @comfyanonymous
|
||||
|
||||
# Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
|
||||
# Inlined the team members for now.
|
||||
|
||||
# Maintainers
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
|
||||
|
||||
# Python web server
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
|
||||
# Frontend assets
|
||||
/web/ @huchenlei @webfiltered @pythongosssss
|
||||
|
||||
# Extra nodes
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink
|
||||
|
||||
174
README.md
174
README.md
@@ -1,8 +1,35 @@
|
||||
ComfyUI
|
||||
=======
|
||||
The most powerful and modular stable diffusion GUI and backend.
|
||||
-----------
|
||||

|
||||
<div align="center">
|
||||
|
||||
# ComfyUI
|
||||
**The most powerful and modular diffusion model GUI and backend.**
|
||||
|
||||
|
||||
[![Website][website-shield]][website-url]
|
||||
[![Dynamic JSON Badge][discord-shield]][discord-url]
|
||||
[![Matrix][matrix-shield]][matrix-url]
|
||||
<br>
|
||||
[![][github-release-shield]][github-release-link]
|
||||
[![][github-release-date-shield]][github-release-link]
|
||||
[![][github-downloads-shield]][github-downloads-link]
|
||||
[![][github-downloads-latest-shield]][github-downloads-link]
|
||||
|
||||
[matrix-shield]: https://img.shields.io/badge/Matrix-000000?style=flat&logo=matrix&logoColor=white
|
||||
[matrix-url]: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
|
||||
[website-shield]: https://img.shields.io/badge/ComfyOrg-4285F4?style=flat
|
||||
[website-url]: https://www.comfy.org/
|
||||
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
|
||||
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
|
||||
[discord-url]: https://www.comfy.org/discord
|
||||
|
||||
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
|
||||
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
|
||||
[github-release-date-shield]: https://img.shields.io/github/release-date/comfyanonymous/ComfyUI?style=flat
|
||||
[github-downloads-shield]: https://img.shields.io/github/downloads/comfyanonymous/ComfyUI/total?style=flat
|
||||
[github-downloads-latest-shield]: https://img.shields.io/github/downloads/comfyanonymous/ComfyUI/latest/total?style=flat&label=downloads%40latest
|
||||
[github-downloads-link]: https://github.com/comfyanonymous/ComfyUI/releases
|
||||
|
||||

|
||||
</div>
|
||||
|
||||
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
|
||||
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
@@ -12,6 +39,9 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
|
||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
||||
@@ -32,6 +62,8 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
|
||||
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
|
||||
- [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
|
||||
- [AuraFlow](https://comfyanonymous.github.io/ComfyUI_examples/aura_flow/)
|
||||
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
|
||||
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
|
||||
- Starts up very fast.
|
||||
- Works fully offline: will never download anything.
|
||||
@@ -43,32 +75,39 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
|
||||
| Keybind | Explanation |
|
||||
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|
||||
| Ctrl + Enter | Queue up current graph for generation |
|
||||
| Ctrl + Shift + Enter | Queue up current graph as first for generation |
|
||||
| Ctrl + Z/Ctrl + Y | Undo/Redo |
|
||||
| Ctrl + S | Save workflow |
|
||||
| Ctrl + O | Load workflow |
|
||||
| Ctrl + A | Select all nodes |
|
||||
| Alt + C | Collapse/uncollapse selected nodes |
|
||||
| Ctrl + M | Mute/unmute selected nodes |
|
||||
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
|
||||
| Delete/Backspace | Delete selected nodes |
|
||||
| Ctrl + Backspace | Delete the current graph |
|
||||
| Space | Move the canvas around when held and moving the cursor |
|
||||
| Ctrl/Shift + Click | Add clicked node to selection |
|
||||
| Ctrl + C/Ctrl + V | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
|
||||
| Ctrl + C/Ctrl + Shift + V | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
|
||||
| Shift + Drag | Move multiple selected nodes at the same time |
|
||||
| Ctrl + D | Load default graph |
|
||||
| Alt + `+` | Canvas Zoom in |
|
||||
| Alt + `-` | Canvas Zoom out |
|
||||
| Ctrl + Shift + LMB + Vertical drag | Canvas Zoom in/out |
|
||||
| Q | Toggle visibility of the queue |
|
||||
| H | Toggle visibility of history |
|
||||
| R | Refresh graph |
|
||||
| `Ctrl` + `Enter` | Queue up current graph for generation |
|
||||
| `Ctrl` + `Shift` + `Enter` | Queue up current graph as first for generation |
|
||||
| `Ctrl` + `Alt` + `Enter` | Cancel current generation |
|
||||
| `Ctrl` + `Z`/`Ctrl` + `Y` | Undo/Redo |
|
||||
| `Ctrl` + `S` | Save workflow |
|
||||
| `Ctrl` + `O` | Load workflow |
|
||||
| `Ctrl` + `A` | Select all nodes |
|
||||
| `Alt `+ `C` | Collapse/uncollapse selected nodes |
|
||||
| `Ctrl` + `M` | Mute/unmute selected nodes |
|
||||
| `Ctrl` + `B` | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
|
||||
| `Delete`/`Backspace` | Delete selected nodes |
|
||||
| `Ctrl` + `Backspace` | Delete the current graph |
|
||||
| `Space` | Move the canvas around when held and moving the cursor |
|
||||
| `Ctrl`/`Shift` + `Click` | Add clicked node to selection |
|
||||
| `Ctrl` + `C`/`Ctrl` + `V` | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
|
||||
| `Ctrl` + `C`/`Ctrl` + `Shift` + `V` | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
|
||||
| `Shift` + `Drag` | Move multiple selected nodes at the same time |
|
||||
| `Ctrl` + `D` | Load default graph |
|
||||
| `Alt` + `+` | Canvas Zoom in |
|
||||
| `Alt` + `-` | Canvas Zoom out |
|
||||
| `Ctrl` + `Shift` + LMB + Vertical drag | Canvas Zoom in/out |
|
||||
| `P` | Pin/Unpin selected nodes |
|
||||
| `Ctrl` + `G` | Group selected nodes |
|
||||
| `Q` | Toggle visibility of the queue |
|
||||
| `H` | Toggle visibility of history |
|
||||
| `R` | Refresh graph |
|
||||
| `F` | Show/Hide menu |
|
||||
| `.` | Fit view to selection (Whole graph when nothing is selected) |
|
||||
| Double-Click LMB | Open node quick search palette |
|
||||
| `Shift` + Drag | Move multiple wires at once |
|
||||
| `Ctrl` + `Alt` + LMB | Disconnect all wires from clicked slot |
|
||||
|
||||
Ctrl can also be replaced with Cmd instead for macOS users
|
||||
`Ctrl` can also be replaced with `Cmd` instead for macOS users
|
||||
|
||||
# Installing
|
||||
|
||||
@@ -76,7 +115,7 @@ Ctrl can also be replaced with Cmd instead for macOS users
|
||||
|
||||
There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases).
|
||||
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_cu121_or_cpu.7z)
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
|
||||
|
||||
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
|
||||
|
||||
@@ -92,6 +131,8 @@ To run it on services like paperspace, kaggle or colab you can use my [Jupyter N
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Note that some dependencies do not yet support python 3.13 so using 3.12 is recommended.
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
|
||||
@@ -102,17 +143,17 @@ Put your VAE in: models/vae
|
||||
### AMD GPUs (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.0 which might have some performance improvements:
|
||||
This is the command to install the nightly with ROCm 6.2 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.1```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.2.4```
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements:
|
||||
|
||||
@@ -162,20 +203,6 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
|
||||
|
||||
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
|
||||
### I already have another UI for Stable Diffusion installed do I really have to install all of these dependencies?
|
||||
|
||||
You don't. If you have another UI installed and working with its own python venv you can use that venv to run ComfyUI. You can open up your favorite terminal and activate it:
|
||||
|
||||
```source path_to_other_sd_gui/venv/bin/activate```
|
||||
|
||||
or on Windows:
|
||||
|
||||
With Powershell: ```"path_to_other_sd_gui\venv\Scripts\Activate.ps1"```
|
||||
|
||||
With cmd.exe: ```"path_to_other_sd_gui\venv\Scripts\activate.bat"```
|
||||
|
||||
And then you can use that terminal to run ComfyUI without installing any dependencies. Note that the venv folder might be called something else depending on the SD UI.
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
@@ -188,6 +215,14 @@ For 6700, 6600 and maybe other RDNA2 or older: ```HSA_OVERRIDE_GFX_VERSION=10.3.
|
||||
|
||||
For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 python main.py```
|
||||
|
||||
### AMD ROCm Tips
|
||||
|
||||
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
|
||||
|
||||
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
|
||||
|
||||
You can also try setting this env variable `PYTORCH_TUNABLEOP_ENABLED=1` which might speed things up at the cost of a very slow initial run.
|
||||
|
||||
# Notes
|
||||
|
||||
Only parts of the graph that have an output with all the correct inputs will be executed.
|
||||
@@ -211,7 +246,7 @@ To use a textual inversion concepts/embeddings in a text prompt put them in the
|
||||
|
||||
Use ```--preview-method auto``` to enable previews.
|
||||
|
||||
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth) (for SD1.x and SD2.x) and [taesdxl_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesdxl_decoder.pth) (for SDXL) models and place them in the `models/vae_approx` folder. Once they're installed, restart ComfyUI to enable high-quality previews.
|
||||
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_decoder.pth, taesdxl_decoder.pth, taesd3_decoder.pth and taef1_decoder.pth](https://github.com/madebyollin/taesd/) and place them in the `models/vae_approx` folder. Once they're installed, restart ComfyUI and launch it with `--preview-method taesd` to enable high-quality previews.
|
||||
|
||||
## How to use TLS/SSL?
|
||||
Generate a self-signed certificate (not appropriate for shared/production use) and key by running the command: `openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -sha256 -days 3650 -nodes -subj "/C=XX/ST=StateName/L=CityName/O=CompanyName/OU=CompanySectionName/CN=CommonNameOrHostname"`
|
||||
@@ -227,6 +262,47 @@ Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app w
|
||||
|
||||
See also: [https://www.comfy.org/](https://www.comfy.org/)
|
||||
|
||||
## Frontend Development
|
||||
|
||||
As of August 15, 2024, we have transitioned to a new frontend, which is now hosted in a separate repository: [ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend). This repository now hosts the compiled JS (from TS/Vue) under the `web/` directory.
|
||||
|
||||
### Reporting Issues and Requesting Features
|
||||
|
||||
For any bugs, issues, or feature requests related to the frontend, please use the [ComfyUI Frontend repository](https://github.com/Comfy-Org/ComfyUI_frontend). This will help us manage and address frontend-specific concerns more efficiently.
|
||||
|
||||
### Using the Latest Frontend
|
||||
|
||||
The new frontend is now the default for ComfyUI. However, please note:
|
||||
|
||||
1. The frontend in the main ComfyUI repository is updated weekly.
|
||||
2. Daily releases are available in the separate frontend repository.
|
||||
|
||||
To use the most up-to-date frontend version:
|
||||
|
||||
1. For the latest daily release, launch ComfyUI with this command line argument:
|
||||
|
||||
```
|
||||
--front-end-version Comfy-Org/ComfyUI_frontend@latest
|
||||
```
|
||||
|
||||
2. For a specific version, replace `latest` with the desired version number:
|
||||
|
||||
```
|
||||
--front-end-version Comfy-Org/ComfyUI_frontend@1.2.2
|
||||
```
|
||||
|
||||
This approach allows you to easily switch between the stable weekly release and the cutting-edge daily updates, or even specific versions for testing purposes.
|
||||
|
||||
### Accessing the Legacy Frontend
|
||||
|
||||
If you need to use the legacy frontend for any reason, you can access it using the following command line argument:
|
||||
|
||||
```
|
||||
--front-end-version Comfy-Org/ComfyUI_legacy_frontend@latest
|
||||
```
|
||||
|
||||
This will use a snapshot of the legacy frontend preserved in the [ComfyUI Legacy Frontend repository](https://github.com/Comfy-Org/ComfyUI_legacy_frontend).
|
||||
|
||||
# QA
|
||||
|
||||
### Which GPU should I buy for this?
|
||||
|
||||
0
api_server/__init__.py
Normal file
0
api_server/__init__.py
Normal file
0
api_server/routes/__init__.py
Normal file
0
api_server/routes/__init__.py
Normal file
3
api_server/routes/internal/README.md
Normal file
3
api_server/routes/internal/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# ComfyUI Internal Routes
|
||||
|
||||
All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.
|
||||
0
api_server/routes/internal/__init__.py
Normal file
0
api_server/routes/internal/__init__.py
Normal file
75
api_server/routes/internal/internal_routes.py
Normal file
75
api_server/routes/internal/internal_routes.py
Normal file
@@ -0,0 +1,75 @@
|
||||
from aiohttp import web
|
||||
from typing import Optional
|
||||
from folder_paths import models_dir, user_directory, output_directory, folder_names_and_paths
|
||||
from api_server.services.file_service import FileService
|
||||
from api_server.services.terminal_service import TerminalService
|
||||
import app.logger
|
||||
|
||||
class InternalRoutes:
|
||||
'''
|
||||
The top level web router for internal routes: /internal/*
|
||||
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
|
||||
Check README.md for more information.
|
||||
'''
|
||||
|
||||
def __init__(self, prompt_server):
|
||||
self.routes: web.RouteTableDef = web.RouteTableDef()
|
||||
self._app: Optional[web.Application] = None
|
||||
self.file_service = FileService({
|
||||
"models": models_dir,
|
||||
"user": user_directory,
|
||||
"output": output_directory
|
||||
})
|
||||
self.prompt_server = prompt_server
|
||||
self.terminal_service = TerminalService(prompt_server)
|
||||
|
||||
def setup_routes(self):
|
||||
@self.routes.get('/files')
|
||||
async def list_files(request):
|
||||
directory_key = request.query.get('directory', '')
|
||||
try:
|
||||
file_list = self.file_service.list_files(directory_key)
|
||||
return web.json_response({"files": file_list})
|
||||
except ValueError as e:
|
||||
return web.json_response({"error": str(e)}, status=400)
|
||||
except Exception as e:
|
||||
return web.json_response({"error": str(e)}, status=500)
|
||||
|
||||
@self.routes.get('/logs')
|
||||
async def get_logs(request):
|
||||
return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
|
||||
|
||||
@self.routes.get('/logs/raw')
|
||||
async def get_raw_logs(request):
|
||||
self.terminal_service.update_size()
|
||||
return web.json_response({
|
||||
"entries": list(app.logger.get_logs()),
|
||||
"size": {"cols": self.terminal_service.cols, "rows": self.terminal_service.rows}
|
||||
})
|
||||
|
||||
@self.routes.patch('/logs/subscribe')
|
||||
async def subscribe_logs(request):
|
||||
json_data = await request.json()
|
||||
client_id = json_data["clientId"]
|
||||
enabled = json_data["enabled"]
|
||||
if enabled:
|
||||
self.terminal_service.subscribe(client_id)
|
||||
else:
|
||||
self.terminal_service.unsubscribe(client_id)
|
||||
|
||||
return web.Response(status=200)
|
||||
|
||||
|
||||
@self.routes.get('/folder_paths')
|
||||
async def get_folder_paths(request):
|
||||
response = {}
|
||||
for key in folder_names_and_paths:
|
||||
response[key] = folder_names_and_paths[key][0]
|
||||
return web.json_response(response)
|
||||
|
||||
def get_app(self):
|
||||
if self._app is None:
|
||||
self._app = web.Application()
|
||||
self.setup_routes()
|
||||
self._app.add_routes(self.routes)
|
||||
return self._app
|
||||
0
api_server/services/__init__.py
Normal file
0
api_server/services/__init__.py
Normal file
13
api_server/services/file_service.py
Normal file
13
api_server/services/file_service.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from typing import Dict, List, Optional
|
||||
from api_server.utils.file_operations import FileSystemOperations, FileSystemItem
|
||||
|
||||
class FileService:
|
||||
def __init__(self, allowed_directories: Dict[str, str], file_system_ops: Optional[FileSystemOperations] = None):
|
||||
self.allowed_directories: Dict[str, str] = allowed_directories
|
||||
self.file_system_ops: FileSystemOperations = file_system_ops or FileSystemOperations()
|
||||
|
||||
def list_files(self, directory_key: str) -> List[FileSystemItem]:
|
||||
if directory_key not in self.allowed_directories:
|
||||
raise ValueError("Invalid directory key")
|
||||
directory_path: str = self.allowed_directories[directory_key]
|
||||
return self.file_system_ops.walk_directory(directory_path)
|
||||
60
api_server/services/terminal_service.py
Normal file
60
api_server/services/terminal_service.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from app.logger import on_flush
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
||||
class TerminalService:
|
||||
def __init__(self, server):
|
||||
self.server = server
|
||||
self.cols = None
|
||||
self.rows = None
|
||||
self.subscriptions = set()
|
||||
on_flush(self.send_messages)
|
||||
|
||||
def get_terminal_size(self):
|
||||
try:
|
||||
size = os.get_terminal_size()
|
||||
return (size.columns, size.lines)
|
||||
except OSError:
|
||||
try:
|
||||
size = shutil.get_terminal_size()
|
||||
return (size.columns, size.lines)
|
||||
except OSError:
|
||||
return (80, 24) # fallback to 80x24
|
||||
|
||||
def update_size(self):
|
||||
columns, lines = self.get_terminal_size()
|
||||
changed = False
|
||||
|
||||
if columns != self.cols:
|
||||
self.cols = columns
|
||||
changed = True
|
||||
|
||||
if lines != self.rows:
|
||||
self.rows = lines
|
||||
changed = True
|
||||
|
||||
if changed:
|
||||
return {"cols": self.cols, "rows": self.rows}
|
||||
|
||||
return None
|
||||
|
||||
def subscribe(self, client_id):
|
||||
self.subscriptions.add(client_id)
|
||||
|
||||
def unsubscribe(self, client_id):
|
||||
self.subscriptions.discard(client_id)
|
||||
|
||||
def send_messages(self, entries):
|
||||
if not len(entries) or not len(self.subscriptions):
|
||||
return
|
||||
|
||||
new_size = self.update_size()
|
||||
|
||||
for client_id in self.subscriptions.copy(): # prevent: Set changed size during iteration
|
||||
if client_id not in self.server.sockets:
|
||||
# Automatically unsub if the socket has disconnected
|
||||
self.unsubscribe(client_id)
|
||||
continue
|
||||
|
||||
self.server.send_sync("logs", {"entries": entries, "size": new_size}, client_id)
|
||||
42
api_server/utils/file_operations.py
Normal file
42
api_server/utils/file_operations.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
from typing import List, Union, TypedDict, Literal
|
||||
from typing_extensions import TypeGuard
|
||||
class FileInfo(TypedDict):
|
||||
name: str
|
||||
path: str
|
||||
type: Literal["file"]
|
||||
size: int
|
||||
|
||||
class DirectoryInfo(TypedDict):
|
||||
name: str
|
||||
path: str
|
||||
type: Literal["directory"]
|
||||
|
||||
FileSystemItem = Union[FileInfo, DirectoryInfo]
|
||||
|
||||
def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
|
||||
return item["type"] == "file"
|
||||
|
||||
class FileSystemOperations:
|
||||
@staticmethod
|
||||
def walk_directory(directory: str) -> List[FileSystemItem]:
|
||||
file_list: List[FileSystemItem] = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for name in files:
|
||||
file_path = os.path.join(root, name)
|
||||
relative_path = os.path.relpath(file_path, directory)
|
||||
file_list.append({
|
||||
"name": name,
|
||||
"path": relative_path,
|
||||
"type": "file",
|
||||
"size": os.path.getsize(file_path)
|
||||
})
|
||||
for name in dirs:
|
||||
dir_path = os.path.join(root, name)
|
||||
relative_path = os.path.relpath(dir_path, directory)
|
||||
file_list.append({
|
||||
"name": name,
|
||||
"path": relative_path,
|
||||
"type": "directory"
|
||||
})
|
||||
return file_list
|
||||
0
app/__init__.py
Normal file
0
app/__init__.py
Normal file
204
app/frontend_management.py
Normal file
204
app/frontend_management.py
Normal file
@@ -0,0 +1,204 @@
|
||||
from __future__ import annotations
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
import zipfile
|
||||
from dataclasses import dataclass
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import TypedDict, Optional
|
||||
|
||||
import requests
|
||||
from typing_extensions import NotRequired
|
||||
from comfy.cli_args import DEFAULT_VERSION_STRING
|
||||
|
||||
|
||||
REQUEST_TIMEOUT = 10 # seconds
|
||||
|
||||
|
||||
class Asset(TypedDict):
|
||||
url: str
|
||||
|
||||
|
||||
class Release(TypedDict):
|
||||
id: int
|
||||
tag_name: str
|
||||
name: str
|
||||
prerelease: bool
|
||||
created_at: str
|
||||
published_at: str
|
||||
body: str
|
||||
assets: NotRequired[list[Asset]]
|
||||
|
||||
|
||||
@dataclass
|
||||
class FrontEndProvider:
|
||||
owner: str
|
||||
repo: str
|
||||
|
||||
@property
|
||||
def folder_name(self) -> str:
|
||||
return f"{self.owner}_{self.repo}"
|
||||
|
||||
@property
|
||||
def release_url(self) -> str:
|
||||
return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
|
||||
|
||||
@cached_property
|
||||
def all_releases(self) -> list[Release]:
|
||||
releases = []
|
||||
api_url = self.release_url
|
||||
while api_url:
|
||||
response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
|
||||
response.raise_for_status() # Raises an HTTPError if the response was an error
|
||||
releases.extend(response.json())
|
||||
# GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
|
||||
if "next" in response.links:
|
||||
api_url = response.links["next"]["url"]
|
||||
else:
|
||||
api_url = None
|
||||
return releases
|
||||
|
||||
@cached_property
|
||||
def latest_release(self) -> Release:
|
||||
latest_release_url = f"{self.release_url}/latest"
|
||||
response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
|
||||
response.raise_for_status() # Raises an HTTPError if the response was an error
|
||||
return response.json()
|
||||
|
||||
def get_release(self, version: str) -> Release:
|
||||
if version == "latest":
|
||||
return self.latest_release
|
||||
else:
|
||||
for release in self.all_releases:
|
||||
if release["tag_name"] in [version, f"v{version}"]:
|
||||
return release
|
||||
raise ValueError(f"Version {version} not found in releases")
|
||||
|
||||
|
||||
def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
||||
"""Download dist.zip from github release."""
|
||||
asset_url = None
|
||||
for asset in release.get("assets", []):
|
||||
if asset["name"] == "dist.zip":
|
||||
asset_url = asset["url"]
|
||||
break
|
||||
|
||||
if not asset_url:
|
||||
raise ValueError("dist.zip not found in the release assets")
|
||||
|
||||
# Use a temporary file to download the zip content
|
||||
with tempfile.TemporaryFile() as tmp_file:
|
||||
headers = {"Accept": "application/octet-stream"}
|
||||
response = requests.get(
|
||||
asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
|
||||
)
|
||||
response.raise_for_status() # Ensure we got a successful response
|
||||
|
||||
# Write the content to the temporary file
|
||||
tmp_file.write(response.content)
|
||||
|
||||
# Go back to the beginning of the temporary file
|
||||
tmp_file.seek(0)
|
||||
|
||||
# Extract the zip file content to the destination path
|
||||
with zipfile.ZipFile(tmp_file, "r") as zip_ref:
|
||||
zip_ref.extractall(destination_path)
|
||||
|
||||
|
||||
class FrontendManager:
|
||||
DEFAULT_FRONTEND_PATH = str(Path(__file__).parents[1] / "web")
|
||||
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
||||
|
||||
@classmethod
|
||||
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
||||
"""
|
||||
Args:
|
||||
value (str): The version string to parse.
|
||||
|
||||
Returns:
|
||||
tuple[str, str]: A tuple containing provider name and version.
|
||||
|
||||
Raises:
|
||||
argparse.ArgumentTypeError: If the version string is invalid.
|
||||
"""
|
||||
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
|
||||
match_result = re.match(VERSION_PATTERN, value)
|
||||
if match_result is None:
|
||||
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
|
||||
|
||||
return match_result.group(1), match_result.group(2), match_result.group(3)
|
||||
|
||||
@classmethod
|
||||
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
|
||||
"""
|
||||
Initializes the frontend for the specified version.
|
||||
|
||||
Args:
|
||||
version_string (str): The version string.
|
||||
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
|
||||
|
||||
Returns:
|
||||
str: The path to the initialized frontend.
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error during the initialization process.
|
||||
main error source might be request timeout or invalid URL.
|
||||
"""
|
||||
if version_string == DEFAULT_VERSION_STRING:
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
|
||||
if version.startswith("v"):
|
||||
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
|
||||
if os.path.exists(expected_path):
|
||||
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
|
||||
return expected_path
|
||||
|
||||
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
|
||||
|
||||
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
||||
release = provider.get_release(version)
|
||||
|
||||
semantic_version = release["tag_name"].lstrip("v")
|
||||
web_root = str(
|
||||
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
|
||||
)
|
||||
if not os.path.exists(web_root):
|
||||
try:
|
||||
os.makedirs(web_root, exist_ok=True)
|
||||
logging.info(
|
||||
"Downloading frontend(%s) version(%s) to (%s)",
|
||||
provider.folder_name,
|
||||
semantic_version,
|
||||
web_root,
|
||||
)
|
||||
logging.debug(release)
|
||||
download_release_asset_zip(release, destination_path=web_root)
|
||||
finally:
|
||||
# Clean up the directory if it is empty, i.e. the download failed
|
||||
if not os.listdir(web_root):
|
||||
os.rmdir(web_root)
|
||||
|
||||
return web_root
|
||||
|
||||
@classmethod
|
||||
def init_frontend(cls, version_string: str) -> str:
|
||||
"""
|
||||
Initializes the frontend with the specified version string.
|
||||
|
||||
Args:
|
||||
version_string (str): The version string to initialize the frontend with.
|
||||
|
||||
Returns:
|
||||
str: The path of the initialized frontend.
|
||||
"""
|
||||
try:
|
||||
return cls.init_frontend_unsafe(version_string)
|
||||
except Exception as e:
|
||||
logging.error("Failed to initialize frontend: %s", e)
|
||||
logging.info("Falling back to the default frontend.")
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
73
app/logger.py
Normal file
73
app/logger.py
Normal file
@@ -0,0 +1,73 @@
|
||||
from collections import deque
|
||||
from datetime import datetime
|
||||
import io
|
||||
import logging
|
||||
import sys
|
||||
import threading
|
||||
|
||||
logs = None
|
||||
stdout_interceptor = None
|
||||
stderr_interceptor = None
|
||||
|
||||
|
||||
class LogInterceptor(io.TextIOWrapper):
|
||||
def __init__(self, stream, *args, **kwargs):
|
||||
buffer = stream.buffer
|
||||
encoding = stream.encoding
|
||||
super().__init__(buffer, *args, **kwargs, encoding=encoding, line_buffering=stream.line_buffering)
|
||||
self._lock = threading.Lock()
|
||||
self._flush_callbacks = []
|
||||
self._logs_since_flush = []
|
||||
|
||||
def write(self, data):
|
||||
entry = {"t": datetime.now().isoformat(), "m": data}
|
||||
with self._lock:
|
||||
self._logs_since_flush.append(entry)
|
||||
|
||||
# Simple handling for cr to overwrite the last output if it isnt a full line
|
||||
# else logs just get full of progress messages
|
||||
if isinstance(data, str) and data.startswith("\r") and not logs[-1]["m"].endswith("\n"):
|
||||
logs.pop()
|
||||
logs.append(entry)
|
||||
super().write(data)
|
||||
|
||||
def flush(self):
|
||||
super().flush()
|
||||
for cb in self._flush_callbacks:
|
||||
cb(self._logs_since_flush)
|
||||
self._logs_since_flush = []
|
||||
|
||||
def on_flush(self, callback):
|
||||
self._flush_callbacks.append(callback)
|
||||
|
||||
|
||||
def get_logs():
|
||||
return logs
|
||||
|
||||
|
||||
def on_flush(callback):
|
||||
if stdout_interceptor is not None:
|
||||
stdout_interceptor.on_flush(callback)
|
||||
if stderr_interceptor is not None:
|
||||
stderr_interceptor.on_flush(callback)
|
||||
|
||||
def setup_logger(log_level: str = 'INFO', capacity: int = 300):
|
||||
global logs
|
||||
if logs:
|
||||
return
|
||||
|
||||
# Override output streams and log to buffer
|
||||
logs = deque(maxlen=capacity)
|
||||
|
||||
global stdout_interceptor
|
||||
global stderr_interceptor
|
||||
stdout_interceptor = sys.stdout = LogInterceptor(sys.stdout)
|
||||
stderr_interceptor = sys.stderr = LogInterceptor(sys.stderr)
|
||||
|
||||
# Setup default global logger
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(log_level)
|
||||
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setFormatter(logging.Formatter("%(message)s"))
|
||||
logger.addHandler(stream_handler)
|
||||
167
app/model_manager.py
Normal file
167
app/model_manager.py
Normal file
@@ -0,0 +1,167 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import time
|
||||
import logging
|
||||
import folder_paths
|
||||
import glob
|
||||
from aiohttp import web
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
from folder_paths import map_legacy, filter_files_extensions, filter_files_content_types
|
||||
|
||||
|
||||
class ModelFileManager:
|
||||
def __init__(self) -> None:
|
||||
self.cache: dict[str, tuple[list[dict], dict[str, float], float]] = {}
|
||||
|
||||
def get_cache(self, key: str, default=None) -> tuple[list[dict], dict[str, float], float] | None:
|
||||
return self.cache.get(key, default)
|
||||
|
||||
def set_cache(self, key: str, value: tuple[list[dict], dict[str, float], float]):
|
||||
self.cache[key] = value
|
||||
|
||||
def clear_cache(self):
|
||||
self.cache.clear()
|
||||
|
||||
def add_routes(self, routes):
|
||||
# NOTE: This is an experiment to replace `/models`
|
||||
@routes.get("/experiment/models")
|
||||
async def get_model_folders(request):
|
||||
model_types = list(folder_paths.folder_names_and_paths.keys())
|
||||
folder_black_list = ["configs", "custom_nodes"]
|
||||
output_folders: list[dict] = []
|
||||
for folder in model_types:
|
||||
if folder in folder_black_list:
|
||||
continue
|
||||
output_folders.append({"name": folder, "folders": folder_paths.get_folder_paths(folder)})
|
||||
return web.json_response(output_folders)
|
||||
|
||||
# NOTE: This is an experiment to replace `/models/{folder}`
|
||||
@routes.get("/experiment/models/{folder}")
|
||||
async def get_all_models(request):
|
||||
folder = request.match_info.get("folder", None)
|
||||
if not folder in folder_paths.folder_names_and_paths:
|
||||
return web.Response(status=404)
|
||||
files = self.get_model_file_list(folder)
|
||||
return web.json_response(files)
|
||||
|
||||
@routes.get("/experiment/models/preview/{folder}/{path_index}/{filename:.*}")
|
||||
async def get_model_preview(request):
|
||||
folder_name = request.match_info.get("folder", None)
|
||||
path_index = int(request.match_info.get("path_index", None))
|
||||
filename = request.match_info.get("filename", None)
|
||||
|
||||
if not folder_name in folder_paths.folder_names_and_paths:
|
||||
return web.Response(status=404)
|
||||
|
||||
folders = folder_paths.folder_names_and_paths[folder_name]
|
||||
folder = folders[0][path_index]
|
||||
full_filename = os.path.join(folder, filename)
|
||||
|
||||
preview_files = self.get_model_previews(full_filename)
|
||||
default_preview_file = preview_files[0] if len(preview_files) > 0 else None
|
||||
if default_preview_file is None or not os.path.isfile(default_preview_file):
|
||||
return web.Response(status=404)
|
||||
|
||||
try:
|
||||
with Image.open(default_preview_file) as img:
|
||||
img_bytes = BytesIO()
|
||||
img.save(img_bytes, format="WEBP")
|
||||
img_bytes.seek(0)
|
||||
return web.Response(body=img_bytes.getvalue(), content_type="image/webp")
|
||||
except:
|
||||
return web.Response(status=404)
|
||||
|
||||
def get_model_file_list(self, folder_name: str):
|
||||
folder_name = map_legacy(folder_name)
|
||||
folders = folder_paths.folder_names_and_paths[folder_name]
|
||||
output_list: list[dict] = []
|
||||
|
||||
for index, folder in enumerate(folders[0]):
|
||||
if not os.path.isdir(folder):
|
||||
continue
|
||||
out = self.cache_model_file_list_(folder)
|
||||
if out is None:
|
||||
out = self.recursive_search_models_(folder, index)
|
||||
self.set_cache(folder, out)
|
||||
output_list.extend(out[0])
|
||||
|
||||
return output_list
|
||||
|
||||
def cache_model_file_list_(self, folder: str):
|
||||
model_file_list_cache = self.get_cache(folder)
|
||||
|
||||
if model_file_list_cache is None:
|
||||
return None
|
||||
if not os.path.isdir(folder):
|
||||
return None
|
||||
if os.path.getmtime(folder) != model_file_list_cache[1]:
|
||||
return None
|
||||
for x in model_file_list_cache[1]:
|
||||
time_modified = model_file_list_cache[1][x]
|
||||
folder = x
|
||||
if os.path.getmtime(folder) != time_modified:
|
||||
return None
|
||||
|
||||
return model_file_list_cache
|
||||
|
||||
def recursive_search_models_(self, directory: str, pathIndex: int) -> tuple[list[str], dict[str, float], float]:
|
||||
if not os.path.isdir(directory):
|
||||
return [], {}, time.perf_counter()
|
||||
|
||||
excluded_dir_names = [".git"]
|
||||
# TODO use settings
|
||||
include_hidden_files = False
|
||||
|
||||
result: list[str] = []
|
||||
dirs: dict[str, float] = {}
|
||||
|
||||
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
|
||||
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
|
||||
if not include_hidden_files:
|
||||
subdirs[:] = [d for d in subdirs if not d.startswith(".")]
|
||||
filenames = [f for f in filenames if not f.startswith(".")]
|
||||
|
||||
filenames = filter_files_extensions(filenames, folder_paths.supported_pt_extensions)
|
||||
|
||||
for file_name in filenames:
|
||||
try:
|
||||
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
||||
result.append(relative_path)
|
||||
except:
|
||||
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
|
||||
continue
|
||||
|
||||
for d in subdirs:
|
||||
path: str = os.path.join(dirpath, d)
|
||||
try:
|
||||
dirs[path] = os.path.getmtime(path)
|
||||
except FileNotFoundError:
|
||||
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
|
||||
continue
|
||||
|
||||
return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
|
||||
|
||||
def get_model_previews(self, filepath: str) -> list[str]:
|
||||
dirname = os.path.dirname(filepath)
|
||||
|
||||
if not os.path.exists(dirname):
|
||||
return []
|
||||
|
||||
basename = os.path.splitext(filepath)[0]
|
||||
match_files = glob.glob(f"{basename}.*", recursive=False)
|
||||
image_files = filter_files_content_types(match_files, "image")
|
||||
|
||||
result: list[str] = []
|
||||
|
||||
for filename in image_files:
|
||||
_basename = os.path.splitext(filename)[0]
|
||||
if _basename == basename:
|
||||
result.append(filename)
|
||||
if _basename == f"{basename}.preview":
|
||||
result.append(filename)
|
||||
return result
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.clear_cache()
|
||||
@@ -1,38 +1,58 @@
|
||||
from __future__ import annotations
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import uuid
|
||||
import glob
|
||||
import shutil
|
||||
import logging
|
||||
from aiohttp import web
|
||||
from urllib import parse
|
||||
from comfy.cli_args import args
|
||||
from folder_paths import user_directory
|
||||
import folder_paths
|
||||
from .app_settings import AppSettings
|
||||
from typing import TypedDict
|
||||
|
||||
default_user = "default"
|
||||
users_file = os.path.join(user_directory, "users.json")
|
||||
|
||||
|
||||
class FileInfo(TypedDict):
|
||||
path: str
|
||||
size: int
|
||||
modified: int
|
||||
|
||||
|
||||
def get_file_info(path: str, relative_to: str) -> FileInfo:
|
||||
return {
|
||||
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
|
||||
"size": os.path.getsize(path),
|
||||
"modified": os.path.getmtime(path)
|
||||
}
|
||||
|
||||
|
||||
class UserManager():
|
||||
def __init__(self):
|
||||
global user_directory
|
||||
user_directory = folder_paths.get_user_directory()
|
||||
|
||||
self.settings = AppSettings(self)
|
||||
if not os.path.exists(user_directory):
|
||||
os.mkdir(user_directory)
|
||||
os.makedirs(user_directory, exist_ok=True)
|
||||
if not args.multi_user:
|
||||
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
|
||||
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
||||
|
||||
if args.multi_user:
|
||||
if os.path.isfile(users_file):
|
||||
with open(users_file) as f:
|
||||
if os.path.isfile(self.get_users_file()):
|
||||
with open(self.get_users_file()) as f:
|
||||
self.users = json.load(f)
|
||||
else:
|
||||
self.users = {}
|
||||
else:
|
||||
self.users = {"default": "default"}
|
||||
|
||||
def get_users_file(self):
|
||||
return os.path.join(folder_paths.get_user_directory(), "users.json")
|
||||
|
||||
def get_request_user_id(self, request):
|
||||
user = "default"
|
||||
if args.multi_user and "comfy-user" in request.headers:
|
||||
@@ -44,7 +64,7 @@ class UserManager():
|
||||
return user
|
||||
|
||||
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
|
||||
global user_directory
|
||||
user_directory = folder_paths.get_user_directory()
|
||||
|
||||
if type == "userdata":
|
||||
root_dir = user_directory
|
||||
@@ -59,6 +79,10 @@ class UserManager():
|
||||
return None
|
||||
|
||||
if file is not None:
|
||||
# Check if filename is url encoded
|
||||
if "%" in file:
|
||||
file = parse.unquote(file)
|
||||
|
||||
# prevent leaving /{type}/{user}
|
||||
path = os.path.abspath(os.path.join(user_root, file))
|
||||
if os.path.commonpath((user_root, path)) != user_root:
|
||||
@@ -80,8 +104,7 @@ class UserManager():
|
||||
|
||||
self.users[user_id] = name
|
||||
|
||||
global users_file
|
||||
with open(users_file, "w") as f:
|
||||
with open(self.get_users_file(), "w") as f:
|
||||
json.dump(self.users, f)
|
||||
|
||||
return user_id
|
||||
@@ -112,25 +135,65 @@ class UserManager():
|
||||
|
||||
@routes.get("/userdata")
|
||||
async def listuserdata(request):
|
||||
"""
|
||||
List user data files in a specified directory.
|
||||
|
||||
This endpoint allows listing files in a user's data directory, with options for recursion,
|
||||
full file information, and path splitting.
|
||||
|
||||
Query Parameters:
|
||||
- dir (required): The directory to list files from.
|
||||
- recurse (optional): If "true", recursively list files in subdirectories.
|
||||
- full_info (optional): If "true", return detailed file information (path, size, modified time).
|
||||
- split (optional): If "true", split file paths into components (only applies when full_info is false).
|
||||
|
||||
Returns:
|
||||
- 400: If 'dir' parameter is missing.
|
||||
- 403: If the requested path is not allowed.
|
||||
- 404: If the requested directory does not exist.
|
||||
- 200: JSON response with the list of files or file information.
|
||||
|
||||
The response format depends on the query parameters:
|
||||
- Default: List of relative file paths.
|
||||
- full_info=true: List of dictionaries with file details.
|
||||
- split=true (and full_info=false): List of lists, each containing path components.
|
||||
"""
|
||||
directory = request.rel_url.query.get('dir', '')
|
||||
if not directory:
|
||||
return web.Response(status=400)
|
||||
return web.Response(status=400, text="Directory not provided")
|
||||
|
||||
path = self.get_request_user_filepath(request, directory)
|
||||
if not path:
|
||||
return web.Response(status=403)
|
||||
return web.Response(status=403, text="Invalid directory")
|
||||
|
||||
if not os.path.exists(path):
|
||||
return web.Response(status=404)
|
||||
return web.Response(status=404, text="Directory not found")
|
||||
|
||||
recurse = request.rel_url.query.get('recurse', '').lower() == "true"
|
||||
results = glob.glob(os.path.join(
|
||||
glob.escape(path), '**/*'), recursive=recurse)
|
||||
results = [os.path.relpath(x, path) for x in results if os.path.isfile(x)]
|
||||
|
||||
full_info = request.rel_url.query.get('full_info', '').lower() == "true"
|
||||
split_path = request.rel_url.query.get('split', '').lower() == "true"
|
||||
|
||||
# Use different patterns based on whether we're recursing or not
|
||||
if recurse:
|
||||
pattern = os.path.join(glob.escape(path), '**', '*')
|
||||
else:
|
||||
pattern = os.path.join(glob.escape(path), '*')
|
||||
|
||||
def process_full_path(full_path: str) -> FileInfo | str | list[str]:
|
||||
if full_info:
|
||||
return get_file_info(full_path, path)
|
||||
|
||||
rel_path = os.path.relpath(full_path, path).replace(os.sep, '/')
|
||||
if split_path:
|
||||
results = [[x] + x.split(os.sep) for x in results]
|
||||
return [rel_path] + rel_path.split('/')
|
||||
|
||||
return rel_path
|
||||
|
||||
results = [
|
||||
process_full_path(full_path)
|
||||
for full_path in glob.glob(pattern, recursive=recurse)
|
||||
if os.path.isfile(full_path)
|
||||
]
|
||||
|
||||
return web.json_response(results)
|
||||
|
||||
@@ -158,20 +221,51 @@ class UserManager():
|
||||
|
||||
@routes.post("/userdata/{file}")
|
||||
async def post_userdata(request):
|
||||
"""
|
||||
Upload or update a user data file.
|
||||
|
||||
This endpoint handles file uploads to a user's data directory, with options for
|
||||
controlling overwrite behavior and response format.
|
||||
|
||||
Query Parameters:
|
||||
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
|
||||
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
|
||||
If "false", returns only the relative file path.
|
||||
|
||||
Path Parameters:
|
||||
- file: The target file path (URL encoded if necessary).
|
||||
|
||||
Returns:
|
||||
- 400: If 'file' parameter is missing.
|
||||
- 403: If the requested path is not allowed.
|
||||
- 409: If overwrite=false and the file already exists.
|
||||
- 200: JSON response with either:
|
||||
- Full file information (if full_info=true)
|
||||
- Relative file path (if full_info=false)
|
||||
|
||||
The request body should contain the raw file content to be written.
|
||||
"""
|
||||
path = get_user_data_path(request)
|
||||
if not isinstance(path, str):
|
||||
return path
|
||||
|
||||
overwrite = request.query["overwrite"] != "false"
|
||||
overwrite = request.query.get("overwrite", 'true') != "false"
|
||||
full_info = request.query.get('full_info', 'false').lower() == "true"
|
||||
|
||||
if not overwrite and os.path.exists(path):
|
||||
return web.Response(status=409)
|
||||
return web.Response(status=409, text="File already exists")
|
||||
|
||||
body = await request.read()
|
||||
|
||||
with open(path, "wb") as f:
|
||||
f.write(body)
|
||||
|
||||
resp = os.path.relpath(path, self.get_request_user_filepath(request, None))
|
||||
user_path = self.get_request_user_filepath(request, None)
|
||||
if full_info:
|
||||
resp = get_file_info(path, user_path)
|
||||
else:
|
||||
resp = os.path.relpath(path, user_path)
|
||||
|
||||
return web.json_response(resp)
|
||||
|
||||
@routes.delete("/userdata/{file}")
|
||||
@@ -186,6 +280,30 @@ class UserManager():
|
||||
|
||||
@routes.post("/userdata/{file}/move/{dest}")
|
||||
async def move_userdata(request):
|
||||
"""
|
||||
Move or rename a user data file.
|
||||
|
||||
This endpoint handles moving or renaming files within a user's data directory, with options for
|
||||
controlling overwrite behavior and response format.
|
||||
|
||||
Path Parameters:
|
||||
- file: The source file path (URL encoded if necessary)
|
||||
- dest: The destination file path (URL encoded if necessary)
|
||||
|
||||
Query Parameters:
|
||||
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
|
||||
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
|
||||
If "false", returns only the relative file path.
|
||||
|
||||
Returns:
|
||||
- 400: If either 'file' or 'dest' parameter is missing
|
||||
- 403: If either requested path is not allowed
|
||||
- 404: If the source file does not exist
|
||||
- 409: If overwrite=false and the destination file already exists
|
||||
- 200: JSON response with either:
|
||||
- Full file information (if full_info=true)
|
||||
- Relative file path (if full_info=false)
|
||||
"""
|
||||
source = get_user_data_path(request, check_exists=True)
|
||||
if not isinstance(source, str):
|
||||
return source
|
||||
@@ -194,12 +312,19 @@ class UserManager():
|
||||
if not isinstance(source, str):
|
||||
return dest
|
||||
|
||||
overwrite = request.query["overwrite"] != "false"
|
||||
if not overwrite and os.path.exists(dest):
|
||||
return web.Response(status=409)
|
||||
overwrite = request.query.get("overwrite", 'true') != "false"
|
||||
full_info = request.query.get('full_info', 'false').lower() == "true"
|
||||
|
||||
print(f"moving '{source}' -> '{dest}'")
|
||||
if not overwrite and os.path.exists(dest):
|
||||
return web.Response(status=409, text="File already exists")
|
||||
|
||||
logging.info(f"moving '{source}' -> '{dest}'")
|
||||
shutil.move(source, dest)
|
||||
|
||||
resp = os.path.relpath(dest, self.get_request_user_filepath(request, None))
|
||||
user_path = self.get_request_user_filepath(request, None)
|
||||
if full_info:
|
||||
resp = get_file_info(dest, user_path)
|
||||
else:
|
||||
resp = os.path.relpath(dest, user_path)
|
||||
|
||||
return web.json_response(resp)
|
||||
|
||||
@@ -2,17 +2,16 @@
|
||||
#and modified
|
||||
|
||||
import torch
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
|
||||
from ..ldm.modules.diffusionmodules.util import (
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from ..ldm.modules.attention import SpatialTransformer
|
||||
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
||||
from ..ldm.util import exists
|
||||
from .control_types import UNION_CONTROLNET_TYPES
|
||||
from collections import OrderedDict
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
@@ -92,7 +91,7 @@ class ControlNet(nn.Module):
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
attn_precision=None,
|
||||
union_controlnet=False,
|
||||
union_controlnet_num_control_type=None,
|
||||
device=None,
|
||||
operations=comfy.ops.disable_weight_init,
|
||||
**kwargs,
|
||||
@@ -320,8 +319,8 @@ class ControlNet(nn.Module):
|
||||
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
||||
self._feature_size += ch
|
||||
|
||||
if union_controlnet:
|
||||
self.num_control_type = 6
|
||||
if union_controlnet_num_control_type is not None:
|
||||
self.num_control_type = union_controlnet_num_control_type
|
||||
num_trans_channel = 320
|
||||
num_trans_head = 8
|
||||
num_trans_layer = 1
|
||||
@@ -361,7 +360,7 @@ class ControlNet(nn.Module):
|
||||
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
||||
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
||||
if idx < len(control_type):
|
||||
feat_seq += self.task_embedding[control_type[idx]]
|
||||
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
||||
|
||||
inputs.append(feat_seq.unsqueeze(1))
|
||||
condition_list.append(controlnet_cond)
|
||||
@@ -390,6 +389,18 @@ class ControlNet(nn.Module):
|
||||
if self.control_add_embedding is not None: #Union Controlnet
|
||||
control_type = kwargs.get("control_type", [])
|
||||
|
||||
if any([c >= self.num_control_type for c in control_type]):
|
||||
max_type = max(control_type)
|
||||
max_type_name = {
|
||||
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
||||
}[max_type]
|
||||
raise ValueError(
|
||||
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
||||
f"({self.num_control_type}) supported.\n" +
|
||||
"Please consider using the ProMax ControlNet Union model.\n" +
|
||||
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
||||
)
|
||||
|
||||
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
||||
if len(control_type) > 0:
|
||||
if len(hint.shape) < 5:
|
||||
@@ -402,7 +413,6 @@ class ControlNet(nn.Module):
|
||||
out_output = []
|
||||
out_middle = []
|
||||
|
||||
hs = []
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
10
comfy/cldm/control_types.py
Normal file
10
comfy/cldm/control_types.py
Normal file
@@ -0,0 +1,10 @@
|
||||
UNION_CONTROLNET_TYPES = {
|
||||
"openpose": 0,
|
||||
"depth": 1,
|
||||
"hed/pidi/scribble/ted": 2,
|
||||
"canny/lineart/anime_lineart/mlsd": 3,
|
||||
"normal": 4,
|
||||
"segment": 5,
|
||||
"tile": 6,
|
||||
"repaint": 7,
|
||||
}
|
||||
120
comfy/cldm/dit_embedder.py
Normal file
120
comfy/cldm/dit_embedder.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
|
||||
|
||||
|
||||
class ControlNetEmbedder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int,
|
||||
patch_size: int,
|
||||
in_chans: int,
|
||||
attention_head_dim: int,
|
||||
num_attention_heads: int,
|
||||
adm_in_channels: int,
|
||||
num_layers: int,
|
||||
main_model_double: int,
|
||||
double_y_emb: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
pos_embed_max_size: Optional[int] = None,
|
||||
operations = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.main_model_double = main_model_double
|
||||
self.dtype = dtype
|
||||
self.hidden_size = num_attention_heads * attention_head_dim
|
||||
self.patch_size = patch_size
|
||||
self.x_embedder = PatchEmbed(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=self.hidden_size,
|
||||
strict_img_size=pos_embed_max_size is None,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.double_y_emb = double_y_emb
|
||||
if self.double_y_emb:
|
||||
self.orig_y_embedder = VectorEmbedder(
|
||||
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
||||
)
|
||||
self.y_embedder = VectorEmbedder(
|
||||
self.hidden_size, self.hidden_size, dtype, device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.y_embedder = VectorEmbedder(
|
||||
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
||||
)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
DismantledBlock(
|
||||
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
)
|
||||
|
||||
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
|
||||
# TODO double check this logic when 8b
|
||||
self.use_y_embedder = True
|
||||
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(len(self.transformer_blocks)):
|
||||
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
self.controlnet_blocks.append(controlnet_block)
|
||||
|
||||
self.pos_embed_input = PatchEmbed(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=self.hidden_size,
|
||||
strict_img_size=False,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
hint = None,
|
||||
) -> Tuple[Tensor, List[Tensor]]:
|
||||
x_shape = list(x.shape)
|
||||
x = self.x_embedder(x)
|
||||
if not self.double_y_emb:
|
||||
h = (x_shape[-2] + 1) // self.patch_size
|
||||
w = (x_shape[-1] + 1) // self.patch_size
|
||||
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
|
||||
c = self.t_embedder(timesteps, dtype=x.dtype)
|
||||
if y is not None and self.y_embedder is not None:
|
||||
if self.double_y_emb:
|
||||
y = self.orig_y_embedder(y)
|
||||
y = self.y_embedder(y)
|
||||
c = c + y
|
||||
|
||||
x = x + self.pos_embed_input(hint)
|
||||
|
||||
block_out = ()
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
|
||||
for i in range(len(self.transformer_blocks)):
|
||||
out = self.transformer_blocks[i](x, c)
|
||||
if not self.double_y_emb:
|
||||
x = out
|
||||
block_out += (self.controlnet_blocks[i](out),) * repeat
|
||||
|
||||
return {"output": block_out}
|
||||
@@ -1,11 +1,12 @@
|
||||
import torch
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
import comfy.ldm.modules.diffusionmodules.mmdit
|
||||
|
||||
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
||||
def __init__(
|
||||
self,
|
||||
num_blocks = None,
|
||||
control_latent_channels = None,
|
||||
dtype = None,
|
||||
device = None,
|
||||
operations = None,
|
||||
@@ -17,10 +18,13 @@ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
||||
for _ in range(len(self.joint_blocks)):
|
||||
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
||||
|
||||
if control_latent_channels is None:
|
||||
control_latent_channels = self.in_channels
|
||||
|
||||
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
||||
None,
|
||||
self.patch_size,
|
||||
self.in_channels,
|
||||
control_latent_channels,
|
||||
self.hidden_size,
|
||||
bias=True,
|
||||
strict_img_size=False,
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
import argparse
|
||||
import enum
|
||||
import os
|
||||
from typing import Optional
|
||||
import comfy.options
|
||||
|
||||
|
||||
class EnumAction(argparse.Action):
|
||||
"""
|
||||
Argparse action for handling Enums
|
||||
@@ -33,7 +36,7 @@ class EnumAction(argparse.Action):
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
||||
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
||||
@@ -57,8 +60,10 @@ fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If
|
||||
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
||||
|
||||
fpunet_group = parser.add_mutually_exclusive_group()
|
||||
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
||||
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
|
||||
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
|
||||
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
||||
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
||||
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
||||
|
||||
@@ -89,10 +94,17 @@ class LatentPreviewMethod(enum.Enum):
|
||||
|
||||
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
||||
|
||||
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
||||
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
||||
|
||||
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
||||
|
||||
@@ -109,9 +121,14 @@ vram_group.add_argument("--lowvram", action="store_true", help="Split the unet i
|
||||
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
||||
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
||||
|
||||
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reverved depending on your OS.")
|
||||
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
||||
parser.add_argument("--fast", action="store_true", help="Enable some untested and potentially quality deteriorating optimizations.")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
@@ -122,8 +139,42 @@ parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Dis
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
|
||||
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
|
||||
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
||||
|
||||
# The default built-in provider hosted under web/
|
||||
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
||||
|
||||
parser.add_argument(
|
||||
"--front-end-version",
|
||||
type=str,
|
||||
default=DEFAULT_VERSION_STRING,
|
||||
help="""
|
||||
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
||||
download available frontend implementations from GitHub releases.
|
||||
|
||||
The version string should be in the format of:
|
||||
[repoOwner]/[repoName]@[version]
|
||||
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
||||
""",
|
||||
)
|
||||
|
||||
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
||||
"""Validate if the given path is a directory."""
|
||||
if path is None:
|
||||
return None
|
||||
|
||||
if not os.path.isdir(path):
|
||||
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
||||
return path
|
||||
|
||||
parser.add_argument(
|
||||
"--front-end-root",
|
||||
type=is_valid_directory,
|
||||
default=None,
|
||||
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
||||
)
|
||||
|
||||
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path.")
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
@@ -135,10 +186,3 @@ if args.windows_standalone_build:
|
||||
|
||||
if args.disable_auto_launch:
|
||||
args.auto_launch = False
|
||||
|
||||
import logging
|
||||
logging_level = logging.INFO
|
||||
if args.verbose:
|
||||
logging_level = logging.DEBUG
|
||||
|
||||
logging.basicConfig(format="%(message)s", level=logging_level)
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"initializer_factor": 1.0,
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
@@ -22,6 +23,7 @@ class CLIPAttention(torch.nn.Module):
|
||||
|
||||
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
||||
"gelu": torch.nn.functional.gelu,
|
||||
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
||||
}
|
||||
|
||||
class CLIPMLP(torch.nn.Module):
|
||||
@@ -71,13 +73,13 @@ class CLIPEncoder(torch.nn.Module):
|
||||
return x, intermediate
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens):
|
||||
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
||||
def forward(self, input_tokens, dtype=torch.float32):
|
||||
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
||||
|
||||
|
||||
class CLIPTextModel_(torch.nn.Module):
|
||||
@@ -87,14 +89,16 @@ class CLIPTextModel_(torch.nn.Module):
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
num_positions = config_dict["max_position_embeddings"]
|
||||
self.eos_token_id = config_dict["eos_token_id"]
|
||||
|
||||
super().__init__()
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
x = self.embeddings(input_tokens)
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
||||
x = self.embeddings(input_tokens, dtype=dtype)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
@@ -111,7 +115,7 @@ class CLIPTextModel_(torch.nn.Module):
|
||||
if i is not None and final_layer_norm_intermediate:
|
||||
i = self.final_layer_norm(i)
|
||||
|
||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
||||
return x, i, pooled_output
|
||||
|
||||
class CLIPTextModel(torch.nn.Module):
|
||||
@@ -121,7 +125,6 @@ class CLIPTextModel(torch.nn.Module):
|
||||
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
||||
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
@@ -137,27 +140,35 @@ class CLIPTextModel(torch.nn.Module):
|
||||
|
||||
|
||||
class CLIPVisionEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
|
||||
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
if model_type == "siglip_vision_model":
|
||||
self.class_embedding = None
|
||||
patch_bias = True
|
||||
else:
|
||||
num_patches = num_patches + 1
|
||||
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
||||
patch_bias = False
|
||||
|
||||
self.patch_embedding = operations.Conv2d(
|
||||
in_channels=num_channels,
|
||||
out_channels=embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=False,
|
||||
bias=patch_bias,
|
||||
dtype=dtype,
|
||||
device=device
|
||||
)
|
||||
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
num_positions = num_patches + 1
|
||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, pixel_values):
|
||||
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
||||
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
|
||||
if self.class_embedding is not None:
|
||||
embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
|
||||
return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
||||
|
||||
|
||||
class CLIPVision(torch.nn.Module):
|
||||
@@ -168,9 +179,15 @@ class CLIPVision(torch.nn.Module):
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
model_type = config_dict["model_type"]
|
||||
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
||||
if model_type == "siglip_vision_model":
|
||||
self.pre_layrnorm = lambda a: a
|
||||
self.output_layernorm = True
|
||||
else:
|
||||
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
||||
self.output_layernorm = False
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.post_layernorm = operations.LayerNorm(embed_dim)
|
||||
|
||||
@@ -179,6 +196,10 @@ class CLIPVision(torch.nn.Module):
|
||||
x = self.pre_layrnorm(x)
|
||||
#TODO: attention_mask?
|
||||
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
||||
if self.output_layernorm:
|
||||
x = self.post_layernorm(x)
|
||||
pooled_output = x
|
||||
else:
|
||||
pooled_output = self.post_layernorm(x[:, 0, :])
|
||||
return x, i, pooled_output
|
||||
|
||||
@@ -186,7 +207,10 @@ class CLIPVisionModelProjection(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
||||
if "projection_dim" in config_dict:
|
||||
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
||||
else:
|
||||
self.visual_projection = lambda a: a
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
x = self.vision_model(*args, **kwargs)
|
||||
|
||||
@@ -16,13 +16,18 @@ class Output:
|
||||
def __setitem__(self, key, item):
|
||||
setattr(self, key, item)
|
||||
|
||||
def clip_preprocess(image, size=224):
|
||||
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
if not (image.shape[2] == size and image.shape[3] == size):
|
||||
if crop:
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
||||
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
||||
else:
|
||||
scale_size = (size, size)
|
||||
|
||||
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size)//2
|
||||
w = (image.shape[3] - size)//2
|
||||
image = image[:,:,h:h+size,w:w+size]
|
||||
@@ -34,6 +39,9 @@ class ClipVisionModel():
|
||||
with open(json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
||||
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
@@ -48,9 +56,9 @@ class ClipVisionModel():
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
def encode_image(self, image):
|
||||
def encode_image(self, image, crop=True):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device)).float()
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
||||
|
||||
outputs = Output()
|
||||
@@ -93,6 +101,11 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
||||
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
else:
|
||||
return None
|
||||
@@ -105,8 +118,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k not in u:
|
||||
t = sd.pop(k)
|
||||
del t
|
||||
sd.pop(k)
|
||||
return clip
|
||||
|
||||
def load(ckpt_path):
|
||||
|
||||
18
comfy/clip_vision_config_vitl_336.json
Normal file
18
comfy/clip_vision_config_vitl_336.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"image_size": 336,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-5,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
13
comfy/clip_vision_siglip_384.json
Normal file
13
comfy/clip_vision_siglip_384.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"num_channels": 3,
|
||||
"hidden_act": "gelu_pytorch_tanh",
|
||||
"hidden_size": 1152,
|
||||
"image_size": 384,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "siglip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 14,
|
||||
"image_mean": [0.5, 0.5, 0.5],
|
||||
"image_std": [0.5, 0.5, 0.5]
|
||||
}
|
||||
43
comfy/comfy_types/README.md
Normal file
43
comfy/comfy_types/README.md
Normal file
@@ -0,0 +1,43 @@
|
||||
# Comfy Typing
|
||||
## Type hinting for ComfyUI Node development
|
||||
|
||||
This module provides type hinting and concrete convenience types for node developers.
|
||||
If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
|
||||
|
||||
```python
|
||||
from comfy_types import IO, ComfyNodeABC, CheckLazyMixin
|
||||
|
||||
class ExampleNode(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {"required": {}}
|
||||
```
|
||||
|
||||
Full example is in [examples/example_nodes.py](examples/example_nodes.py).
|
||||
|
||||
# Types
|
||||
A few primary types are documented below. More complete information is available via the docstrings on each type.
|
||||
|
||||
## `IO`
|
||||
|
||||
A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
|
||||
|
||||
- `ANY`: `"*"`
|
||||
- `NUMBER`: `"FLOAT,INT"`
|
||||
- `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
|
||||
|
||||
## `ComfyNodeABC`
|
||||
|
||||
An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
|
||||
|
||||
### Type hinting for `INPUT_TYPES`
|
||||
|
||||

|
||||
|
||||
### `INPUT_TYPES` return dict
|
||||
|
||||

|
||||
|
||||
### Options for individual inputs
|
||||
|
||||

|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from typing import Callable, Protocol, TypedDict, Optional, List
|
||||
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
|
||||
|
||||
|
||||
class UnetApplyFunction(Protocol):
|
||||
@@ -30,3 +31,15 @@ class UnetParams(TypedDict):
|
||||
|
||||
|
||||
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
|
||||
|
||||
|
||||
__all__ = [
|
||||
"UnetWrapperFunction",
|
||||
UnetApplyConds.__name__,
|
||||
UnetParams.__name__,
|
||||
UnetApplyFunction.__name__,
|
||||
IO.__name__,
|
||||
InputTypeDict.__name__,
|
||||
ComfyNodeABC.__name__,
|
||||
CheckLazyMixin.__name__,
|
||||
]
|
||||
28
comfy/comfy_types/examples/example_nodes.py
Normal file
28
comfy/comfy_types/examples/example_nodes.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from comfy_types import IO, ComfyNodeABC, InputTypeDict
|
||||
from inspect import cleandoc
|
||||
|
||||
|
||||
class ExampleNode(ComfyNodeABC):
|
||||
"""An example node that just adds 1 to an input integer.
|
||||
|
||||
* Requires an IDE configured with analysis paths etc to be worth looking at.
|
||||
* Not intended for use in ComfyUI.
|
||||
"""
|
||||
|
||||
DESCRIPTION = cleandoc(__doc__)
|
||||
CATEGORY = "examples"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
return {
|
||||
"required": {
|
||||
"input_int": (IO.INT, {"defaultInput": True}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.INT,)
|
||||
RETURN_NAMES = ("input_plus_one",)
|
||||
FUNCTION = "execute"
|
||||
|
||||
def execute(self, input_int: int):
|
||||
return (input_int + 1,)
|
||||
BIN
comfy/comfy_types/examples/input_options.png
Normal file
BIN
comfy/comfy_types/examples/input_options.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 19 KiB |
BIN
comfy/comfy_types/examples/input_types.png
Normal file
BIN
comfy/comfy_types/examples/input_types.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
BIN
comfy/comfy_types/examples/required_hint.png
Normal file
BIN
comfy/comfy_types/examples/required_hint.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 19 KiB |
274
comfy/comfy_types/node_typing.py
Normal file
274
comfy/comfy_types/node_typing.py
Normal file
@@ -0,0 +1,274 @@
|
||||
"""Comfy-specific type hinting"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Literal, TypedDict
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class StrEnum(str, Enum):
|
||||
"""Base class for string enums. Python's StrEnum is not available until 3.11."""
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.value
|
||||
|
||||
|
||||
class IO(StrEnum):
|
||||
"""Node input/output data types.
|
||||
|
||||
Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
|
||||
"""
|
||||
|
||||
STRING = "STRING"
|
||||
IMAGE = "IMAGE"
|
||||
MASK = "MASK"
|
||||
LATENT = "LATENT"
|
||||
BOOLEAN = "BOOLEAN"
|
||||
INT = "INT"
|
||||
FLOAT = "FLOAT"
|
||||
CONDITIONING = "CONDITIONING"
|
||||
SAMPLER = "SAMPLER"
|
||||
SIGMAS = "SIGMAS"
|
||||
GUIDER = "GUIDER"
|
||||
NOISE = "NOISE"
|
||||
CLIP = "CLIP"
|
||||
CONTROL_NET = "CONTROL_NET"
|
||||
VAE = "VAE"
|
||||
MODEL = "MODEL"
|
||||
CLIP_VISION = "CLIP_VISION"
|
||||
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
|
||||
STYLE_MODEL = "STYLE_MODEL"
|
||||
GLIGEN = "GLIGEN"
|
||||
UPSCALE_MODEL = "UPSCALE_MODEL"
|
||||
AUDIO = "AUDIO"
|
||||
WEBCAM = "WEBCAM"
|
||||
POINT = "POINT"
|
||||
FACE_ANALYSIS = "FACE_ANALYSIS"
|
||||
BBOX = "BBOX"
|
||||
SEGS = "SEGS"
|
||||
|
||||
ANY = "*"
|
||||
"""Always matches any type, but at a price.
|
||||
|
||||
Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
|
||||
"""
|
||||
NUMBER = "FLOAT,INT"
|
||||
"""A float or an int - could be either"""
|
||||
PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
|
||||
"""Could be any of: string, float, int, or bool"""
|
||||
|
||||
def __ne__(self, value: object) -> bool:
|
||||
if self == "*" or value == "*":
|
||||
return False
|
||||
if not isinstance(value, str):
|
||||
return True
|
||||
a = frozenset(self.split(","))
|
||||
b = frozenset(value.split(","))
|
||||
return not (b.issubset(a) or a.issubset(b))
|
||||
|
||||
|
||||
class InputTypeOptions(TypedDict):
|
||||
"""Provides type hinting for the return type of the INPUT_TYPES node function.
|
||||
|
||||
Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_datatypes
|
||||
"""
|
||||
|
||||
default: bool | str | float | int | list | tuple
|
||||
"""The default value of the widget"""
|
||||
defaultInput: bool
|
||||
"""Defaults to an input slot rather than a widget"""
|
||||
forceInput: bool
|
||||
"""`defaultInput` and also don't allow converting to a widget"""
|
||||
lazy: bool
|
||||
"""Declares that this input uses lazy evaluation"""
|
||||
rawLink: bool
|
||||
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
|
||||
tooltip: str
|
||||
"""Tooltip for the input (or widget), shown on pointer hover"""
|
||||
# class InputTypeNumber(InputTypeOptions):
|
||||
# default: float | int
|
||||
min: float
|
||||
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
|
||||
max: float
|
||||
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
|
||||
step: float
|
||||
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
|
||||
round: float
|
||||
"""Floats are rounded by this value (``FLOAT``)"""
|
||||
# class InputTypeBoolean(InputTypeOptions):
|
||||
# default: bool
|
||||
label_on: str
|
||||
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
||||
label_on: str
|
||||
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
||||
# class InputTypeString(InputTypeOptions):
|
||||
# default: str
|
||||
multiline: bool
|
||||
"""Use a multiline text box (``STRING``)"""
|
||||
placeholder: str
|
||||
"""Placeholder text to display in the UI when empty (``STRING``)"""
|
||||
# Deprecated:
|
||||
# defaultVal: str
|
||||
dynamicPrompts: bool
|
||||
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
|
||||
|
||||
|
||||
class HiddenInputTypeDict(TypedDict):
|
||||
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
|
||||
|
||||
node_id: Literal["UNIQUE_ID"]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
unique_id: Literal["UNIQUE_ID"]
|
||||
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
||||
prompt: Literal["PROMPT"]
|
||||
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
|
||||
extra_pnginfo: Literal["EXTRA_PNGINFO"]
|
||||
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
|
||||
dynprompt: Literal["DYNPROMPT"]
|
||||
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
|
||||
|
||||
|
||||
class InputTypeDict(TypedDict):
|
||||
"""Provides type hinting for node INPUT_TYPES.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs
|
||||
"""
|
||||
|
||||
required: dict[str, tuple[IO, InputTypeOptions]]
|
||||
"""Describes all inputs that must be connected for the node to execute."""
|
||||
optional: dict[str, tuple[IO, InputTypeOptions]]
|
||||
"""Describes inputs which do not need to be connected."""
|
||||
hidden: HiddenInputTypeDict
|
||||
"""Offers advanced functionality and server-client communication.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
||||
"""
|
||||
|
||||
|
||||
class ComfyNodeABC(ABC):
|
||||
"""Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview
|
||||
"""
|
||||
|
||||
DESCRIPTION: str
|
||||
"""Node description, shown as a tooltip when hovering over the node.
|
||||
|
||||
Usage::
|
||||
|
||||
# Explicitly define the description
|
||||
DESCRIPTION = "Example description here."
|
||||
|
||||
# Use the docstring of the node class.
|
||||
DESCRIPTION = cleandoc(__doc__)
|
||||
"""
|
||||
CATEGORY: str
|
||||
"""The category of the node, as per the "Add Node" menu.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#category
|
||||
"""
|
||||
EXPERIMENTAL: bool
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
DEPRECATED: bool
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def INPUT_TYPES(s) -> InputTypeDict:
|
||||
"""Defines node inputs.
|
||||
|
||||
* Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
|
||||
* The ``optional`` key can be added to describe inputs which do not need to be connected.
|
||||
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#input-types
|
||||
"""
|
||||
return {"required": {}}
|
||||
|
||||
OUTPUT_NODE: bool
|
||||
"""Flags this node as an output node, causing any inputs it requires to be executed.
|
||||
|
||||
If a node is not connected to any output nodes, that node will not be executed. Usage::
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
From the docs:
|
||||
|
||||
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#output-node
|
||||
"""
|
||||
INPUT_IS_LIST: bool
|
||||
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
|
||||
|
||||
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
|
||||
|
||||
From the docs:
|
||||
|
||||
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
||||
"""
|
||||
OUTPUT_IS_LIST: tuple[bool]
|
||||
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
||||
|
||||
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
||||
|
||||
A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
|
||||
|
||||
RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
|
||||
OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
|
||||
|
||||
From the docs:
|
||||
|
||||
In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
|
||||
the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
|
||||
specifying which outputs which should be so treated.
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
||||
"""
|
||||
|
||||
RETURN_TYPES: tuple[IO]
|
||||
"""A tuple representing the outputs of this node.
|
||||
|
||||
Usage::
|
||||
|
||||
RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-types
|
||||
"""
|
||||
RETURN_NAMES: tuple[str]
|
||||
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-names
|
||||
"""
|
||||
OUTPUT_TOOLTIPS: tuple[str]
|
||||
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
||||
FUNCTION: str
|
||||
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#function
|
||||
"""
|
||||
|
||||
|
||||
class CheckLazyMixin:
|
||||
"""Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
|
||||
|
||||
def check_lazy_status(self, **kwargs) -> list[str]:
|
||||
"""Returns a list of input names that should be evaluated.
|
||||
|
||||
This basic mixin impl. requires all inputs.
|
||||
|
||||
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
|
||||
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
|
||||
|
||||
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
|
||||
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lazy_evaluation#defining-check-lazy-status
|
||||
"""
|
||||
|
||||
need = [name for name in kwargs if kwargs[name] is None]
|
||||
return need
|
||||
@@ -1,4 +1,24 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
from enum import Enum
|
||||
import math
|
||||
import os
|
||||
import logging
|
||||
@@ -13,6 +33,12 @@ import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.ldm.cascade.controlnet
|
||||
import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet
|
||||
import comfy.cldm.dit_embedder
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from comfy.hooks import HookGroup
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
@@ -33,8 +59,12 @@ def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class StrengthType(Enum):
|
||||
CONSTANT = 1
|
||||
LINEAR_UP = 2
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
def __init__(self):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
@@ -45,18 +75,27 @@ class ControlBase:
|
||||
self.timestep_range = None
|
||||
self.compression_ratio = 8
|
||||
self.upscale_algorithm = 'nearest-exact'
|
||||
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.extra_args = {}
|
||||
self.previous_controlnet = None
|
||||
self.extra_conds = []
|
||||
self.strength_type = StrengthType.CONSTANT
|
||||
self.concat_mask = False
|
||||
self.extra_concat_orig = []
|
||||
self.extra_concat = None
|
||||
self.extra_hooks: HookGroup = None
|
||||
self.preprocess_image = lambda a: a
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None):
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
if self.latent_format is not None:
|
||||
if vae is None:
|
||||
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
|
||||
self.vae = vae
|
||||
self.extra_concat_orig = extra_concat.copy()
|
||||
if self.concat_mask and len(self.extra_concat_orig) == 0:
|
||||
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
@@ -71,9 +110,9 @@ class ControlBase:
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
|
||||
self.cond_hint = None
|
||||
self.extra_concat = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
@@ -82,6 +121,14 @@ class ControlBase:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def get_extra_hooks(self):
|
||||
out = []
|
||||
if self.extra_hooks is not None:
|
||||
out.append(self.extra_hooks)
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_extra_hooks()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
@@ -90,7 +137,14 @@ class ControlBase:
|
||||
c.compression_ratio = self.compression_ratio
|
||||
c.upscale_algorithm = self.upscale_algorithm
|
||||
c.latent_format = self.latent_format
|
||||
c.extra_args = self.extra_args.copy()
|
||||
c.vae = self.vae
|
||||
c.extra_conds = self.extra_conds.copy()
|
||||
c.strength_type = self.strength_type
|
||||
c.concat_mask = self.concat_mask
|
||||
c.extra_concat_orig = self.extra_concat_orig.copy()
|
||||
c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
|
||||
c.preprocess_image = self.preprocess_image
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
if self.previous_controlnet is not None:
|
||||
@@ -111,9 +165,12 @@ class ControlBase:
|
||||
|
||||
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
|
||||
applied_to.add(x)
|
||||
if self.strength_type == StrengthType.CONSTANT:
|
||||
x *= self.strength
|
||||
elif self.strength_type == StrengthType.LINEAR_UP:
|
||||
x *= (self.strength ** float(len(control_output) - i))
|
||||
|
||||
if x.dtype != output_dtype:
|
||||
if output_dtype is not None and x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
@@ -135,9 +192,13 @@ class ControlBase:
|
||||
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
|
||||
return out
|
||||
|
||||
def set_extra_arg(self, argument, value=None):
|
||||
self.extra_args[argument] = value
|
||||
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None):
|
||||
super().__init__(device)
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
|
||||
super().__init__()
|
||||
self.control_model = control_model
|
||||
self.load_device = load_device
|
||||
if control_model is not None:
|
||||
@@ -148,11 +209,15 @@ class ControlNet(ControlBase):
|
||||
self.model_sampling_current = None
|
||||
self.manual_cast_dtype = manual_cast_dtype
|
||||
self.latent_format = latent_format
|
||||
self.extra_conds += extra_conds
|
||||
self.strength_type = strength_type
|
||||
self.concat_mask = concat_mask
|
||||
self.preprocess_image = preprocess_image
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
@@ -165,7 +230,6 @@ class ControlNet(ControlBase):
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
@@ -173,26 +237,41 @@ class ControlNet(ControlBase):
|
||||
compression_ratio = self.compression_ratio
|
||||
if self.vae is not None:
|
||||
compression_ratio *= self.vae.downscale_ratio
|
||||
else:
|
||||
if self.latent_format is not None:
|
||||
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
||||
self.cond_hint = self.preprocess_image(self.cond_hint)
|
||||
if self.vae is not None:
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
if self.latent_format is not None:
|
||||
self.cond_hint = self.latent_format.process_in(self.cond_hint)
|
||||
self.cond_hint = self.cond_hint.to(device=self.device, dtype=dtype)
|
||||
if len(self.extra_concat_orig) > 0:
|
||||
to_concat = []
|
||||
for c in self.extra_concat_orig:
|
||||
c = c.to(self.cond_hint.device)
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
||||
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
||||
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
||||
|
||||
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
||||
y = cond.get('y', None)
|
||||
if y is not None:
|
||||
y = y.to(dtype)
|
||||
extra = self.extra_args.copy()
|
||||
for c in self.extra_conds:
|
||||
temp = cond.get(c, None)
|
||||
if temp is not None:
|
||||
extra[c] = temp.to(dtype)
|
||||
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
|
||||
return self.control_merge(control, control_prev, output_dtype)
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
||||
return self.control_merge(control, control_prev, output_dtype=None)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
@@ -218,7 +297,6 @@ class ControlLoraOps:
|
||||
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
@@ -276,10 +354,11 @@ class ControlLoraOps:
|
||||
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
||||
ControlBase.__init__(self, device)
|
||||
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
|
||||
ControlBase.__init__(self)
|
||||
self.control_weights = control_weights
|
||||
self.global_average_pooling = global_average_pooling
|
||||
self.extra_conds += ["y"]
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
@@ -302,7 +381,6 @@ class ControlLora(ControlNet):
|
||||
self.control_model.to(comfy.model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = sd[k]
|
||||
@@ -332,43 +410,191 @@ class ControlLora(ControlNet):
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def load_controlnet_mmdit(sd):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config = comfy.model_detection.model_config_from_unet(new_sd, "", True)
|
||||
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
def controlnet_config(sd, model_options={}):
|
||||
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
|
||||
|
||||
supported_inference_dtypes = model_config.supported_inference_dtypes
|
||||
unet_dtype = model_options.get("dtype", None)
|
||||
if unet_dtype is None:
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None:
|
||||
supported_inference_dtypes.append(weight_dtype)
|
||||
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
controlnet_config = model_config.unet_config
|
||||
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
if manual_cast_dtype is not None:
|
||||
operations = comfy.ops.manual_cast
|
||||
else:
|
||||
operations = comfy.ops.disable_weight_init
|
||||
|
||||
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, operations=operations, device=load_device, dtype=unet_dtype, **controlnet_config)
|
||||
missing, unexpected = control_model.load_state_dict(new_sd, strict=False)
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
offload_device = comfy.model_management.unet_offload_device()
|
||||
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
|
||||
|
||||
def controlnet_load_state_dict(control_model, sd):
|
||||
missing, unexpected = control_model.load_state_dict(sd, strict=False)
|
||||
|
||||
if len(missing) > 0:
|
||||
logging.warning("missing controlnet keys: {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
||||
return control_model
|
||||
|
||||
|
||||
def load_controlnet_mmdit(sd, model_options={}):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
||||
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
concat_mask = False
|
||||
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
|
||||
if control_latent_channels == 17: #inpaint controlnet
|
||||
concat_mask = True
|
||||
|
||||
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.SD3()
|
||||
latent_format.shift_factor = 0 #SD3 controlnet weirdness
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
class ControlNetSD35(ControlNet):
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
if self.control_model.double_y_emb:
|
||||
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
|
||||
else:
|
||||
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
c.control_model = self.control_model
|
||||
c.control_model_wrapped = self.control_model_wrapped
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_controlnet_sd35(sd, model_options={}):
|
||||
control_type = -1
|
||||
if "control_type" in sd:
|
||||
control_type = round(sd.pop("control_type").item())
|
||||
|
||||
# blur_cnet = control_type == 0
|
||||
canny_cnet = control_type == 1
|
||||
depth_cnet = control_type == 2
|
||||
|
||||
new_sd = {}
|
||||
for k in comfy.utils.MMDIT_MAP_BASIC:
|
||||
if k[1] in sd:
|
||||
new_sd[k[0]] = sd.pop(k[1])
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
sd = new_sd
|
||||
|
||||
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
|
||||
depth = y_emb_shape[0] // 64
|
||||
hidden_size = 64 * depth
|
||||
num_heads = depth
|
||||
head_dim = hidden_size // num_heads
|
||||
num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
|
||||
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
offload_device = comfy.model_management.unet_offload_device()
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
|
||||
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
|
||||
patch_size=2,
|
||||
in_chans=16,
|
||||
num_layers=num_blocks,
|
||||
main_model_double=depth,
|
||||
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
|
||||
attention_head_dim=head_dim,
|
||||
num_attention_heads=num_heads,
|
||||
adm_in_channels=2048,
|
||||
device=offload_device,
|
||||
dtype=unet_dtype,
|
||||
operations=operations)
|
||||
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
|
||||
latent_format = comfy.latent_formats.SD3()
|
||||
preprocess_image = lambda a: a
|
||||
if canny_cnet:
|
||||
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
|
||||
elif depth_cnet:
|
||||
preprocess_image = lambda a: 1.0 - a
|
||||
|
||||
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
|
||||
return control
|
||||
|
||||
|
||||
|
||||
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
|
||||
|
||||
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
|
||||
control_model = controlnet_load_state_dict(control_model, controlnet_data)
|
||||
|
||||
latent_format = comfy.latent_formats.SDXL()
|
||||
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_instantx(sd, model_options={}):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
num_union_modes = 0
|
||||
union_cnet = "controlnet_mode_embedder.weight"
|
||||
if union_cnet in new_sd:
|
||||
num_union_modes = new_sd[union_cnet].shape[0]
|
||||
|
||||
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
|
||||
concat_mask = False
|
||||
if control_latent_channels == 17:
|
||||
concat_mask = True
|
||||
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.Flux()
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
|
||||
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
controlnet_data = state_dict
|
||||
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
|
||||
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
|
||||
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
return ControlLora(controlnet_data, model_options=model_options)
|
||||
|
||||
controlnet_config = None
|
||||
supported_inference_dtypes = None
|
||||
@@ -414,7 +640,7 @@ def load_controlnet(ckpt_path, model=None):
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
|
||||
controlnet_config["union_controlnet"] = True
|
||||
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
|
||||
for k in list(controlnet_data.keys()):
|
||||
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
|
||||
new_sd[new_k] = controlnet_data.pop(k)
|
||||
@@ -423,8 +649,18 @@ def load_controlnet(ckpt_path, model=None):
|
||||
if len(leftover_keys) > 0:
|
||||
logging.warning("leftover keys: {}".format(leftover_keys))
|
||||
controlnet_data = new_sd
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
|
||||
return load_controlnet_mmdit(controlnet_data)
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data:
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
||||
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
|
||||
elif "pos_embed_input.proj.weight" in controlnet_data:
|
||||
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
|
||||
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
|
||||
else:
|
||||
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
@@ -436,26 +672,38 @@ def load_controlnet(ckpt_path, model=None):
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
net = load_t2i_adapter(controlnet_data, model_options=model_options)
|
||||
if net is None:
|
||||
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
||||
logging.error("error could not detect control model type.")
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
||||
supported_inference_dtypes = model_config.supported_inference_dtypes
|
||||
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
||||
controlnet_config = model_config.unet_config
|
||||
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
unet_dtype = model_options.get("dtype", None)
|
||||
if unet_dtype is None:
|
||||
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
|
||||
|
||||
if supported_inference_dtypes is None:
|
||||
unet_dtype = comfy.model_management.unet_dtype()
|
||||
else:
|
||||
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
||||
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
|
||||
|
||||
if weight_dtype is not None:
|
||||
supported_inference_dtypes.append(weight_dtype)
|
||||
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
if manual_cast_dtype is not None:
|
||||
controlnet_config["operations"] = comfy.ops.manual_cast
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
|
||||
|
||||
controlnet_config["operations"] = operations
|
||||
controlnet_config["dtype"] = unet_dtype
|
||||
controlnet_config["device"] = comfy.model_management.unet_offload_device()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
@@ -489,22 +737,32 @@ def load_controlnet(ckpt_path, model=None):
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
||||
|
||||
global_average_pooling = False
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
global_average_pooling = True
|
||||
|
||||
global_average_pooling = model_options.get("global_average_pooling", False)
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
def load_controlnet(ckpt_path, model=None, model_options={}):
|
||||
if "global_average_pooling" not in model_options:
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
model_options["global_average_pooling"] = True
|
||||
|
||||
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
|
||||
if cnet is None:
|
||||
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
||||
return cnet
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
||||
super().__init__(device)
|
||||
super().__init__()
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.control_input = None
|
||||
self.compression_ratio = compression_ratio
|
||||
self.upscale_algorithm = upscale_algorithm
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
self.device = device
|
||||
|
||||
def scale_image_to(self, width, height):
|
||||
unshuffle_amount = self.t2i_model.unshuffle_amount
|
||||
@@ -512,10 +770,10 @@ class T2IAdapter(ControlBase):
|
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
||||
return width, height
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
@@ -552,7 +810,7 @@ class T2IAdapter(ControlBase):
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
|
||||
compression_ratio = 8
|
||||
upscale_algorithm = 'nearest-exact'
|
||||
|
||||
@@ -563,7 +821,7 @@ def load_t2i_adapter(t2i_data):
|
||||
for i in range(4):
|
||||
for j in range(2):
|
||||
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
||||
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
|
||||
prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
|
||||
prefix_replace["adapter."] = ""
|
||||
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
||||
keys = t2i_data.keys()
|
||||
|
||||
@@ -157,16 +157,23 @@ vae_conversion_map_attn = [
|
||||
]
|
||||
|
||||
|
||||
def reshape_weight_for_sd(w):
|
||||
def reshape_weight_for_sd(w, conv3d=False):
|
||||
# convert HF linear weights to SD conv2d weights
|
||||
if conv3d:
|
||||
return w.reshape(*w.shape, 1, 1, 1)
|
||||
else:
|
||||
return w.reshape(*w.shape, 1, 1)
|
||||
|
||||
|
||||
def convert_vae_state_dict(vae_state_dict):
|
||||
mapping = {k: k for k in vae_state_dict.keys()}
|
||||
conv3d = False
|
||||
for k, v in mapping.items():
|
||||
for sd_part, hf_part in vae_conversion_map:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
if v.endswith(".conv.weight"):
|
||||
if not conv3d and vae_state_dict[k].ndim == 5:
|
||||
conv3d = True
|
||||
mapping[k] = v
|
||||
for k, v in mapping.items():
|
||||
if "attentions" in k:
|
||||
@@ -179,7 +186,7 @@ def convert_vae_state_dict(vae_state_dict):
|
||||
for weight_name in weights_to_convert:
|
||||
if f"mid.attn_1.{weight_name}.weight" in k:
|
||||
logging.debug(f"Reshaping {k} for SD format")
|
||||
new_state_dict[k] = reshape_weight_for_sd(v)
|
||||
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
|
||||
return new_state_dict
|
||||
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_dire
|
||||
if text_encoder2_path is not None:
|
||||
text_encoder_paths.append(text_encoder2_path)
|
||||
|
||||
unet = comfy.sd.load_unet(unet_path)
|
||||
unet = comfy.sd.load_diffusion_model(unet_path)
|
||||
|
||||
clip = None
|
||||
if output_clip:
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
from tqdm.auto import trange, tqdm
|
||||
from tqdm.auto import trange
|
||||
|
||||
|
||||
class NoiseScheduleVP:
|
||||
@@ -16,7 +15,7 @@ class NoiseScheduleVP:
|
||||
continuous_beta_0=0.1,
|
||||
continuous_beta_1=20.,
|
||||
):
|
||||
"""Create a wrapper class for the forward SDE (VP type).
|
||||
r"""Create a wrapper class for the forward SDE (VP type).
|
||||
|
||||
***
|
||||
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
||||
@@ -704,7 +703,6 @@ class UniPC:
|
||||
):
|
||||
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
||||
# t_T = self.noise_schedule.T if t_start is None else t_start
|
||||
device = x.device
|
||||
steps = len(timesteps) - 1
|
||||
if method == 'multistep':
|
||||
assert steps >= order
|
||||
|
||||
67
comfy/float.py
Normal file
67
comfy/float.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import torch
|
||||
|
||||
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
||||
mantissa_scaled = torch.where(
|
||||
normal_mask,
|
||||
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
||||
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
||||
)
|
||||
|
||||
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
|
||||
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
|
||||
|
||||
#Not 100% sure about this
|
||||
def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
|
||||
elif dtype == torch.float8_e5m2:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
|
||||
else:
|
||||
raise ValueError("Unsupported dtype")
|
||||
|
||||
x = x.half()
|
||||
sign = torch.sign(x)
|
||||
abs_x = x.abs()
|
||||
sign = torch.where(abs_x == 0, 0, sign)
|
||||
|
||||
# Combine exponent calculation and clamping
|
||||
exponent = torch.clamp(
|
||||
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
|
||||
0, 2**EXPONENT_BITS - 1
|
||||
)
|
||||
|
||||
# Combine mantissa calculation and rounding
|
||||
normal_mask = ~(exponent == 0)
|
||||
|
||||
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
|
||||
|
||||
sign *= torch.where(
|
||||
normal_mask,
|
||||
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
|
||||
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
||||
)
|
||||
|
||||
inf = torch.finfo(dtype)
|
||||
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
|
||||
return sign
|
||||
|
||||
|
||||
|
||||
def stochastic_rounding(value, dtype, seed=0):
|
||||
if dtype == torch.float32:
|
||||
return value.to(dtype=torch.float32)
|
||||
if dtype == torch.float16:
|
||||
return value.to(dtype=torch.float16)
|
||||
if dtype == torch.bfloat16:
|
||||
return value.to(dtype=torch.bfloat16)
|
||||
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
||||
generator = torch.Generator(device=value.device)
|
||||
generator.manual_seed(seed)
|
||||
output = torch.empty_like(value, dtype=dtype)
|
||||
num_slices = max(1, (value.numel() / (4096 * 4096)))
|
||||
slice_size = max(1, round(value.shape[0] / num_slices))
|
||||
for i in range(0, value.shape[0], slice_size):
|
||||
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
|
||||
return output
|
||||
|
||||
return value.to(dtype=dtype)
|
||||
@@ -1,3 +1,4 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from .ldm.modules.attention import CrossAttention
|
||||
|
||||
690
comfy/hooks.py
Normal file
690
comfy/hooks.py
Normal file
@@ -0,0 +1,690 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Callable
|
||||
import enum
|
||||
import math
|
||||
import torch
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
||||
from comfy.model_base import BaseModel
|
||||
from comfy.sd import CLIP
|
||||
import comfy.lora
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
from node_helpers import conditioning_set_values
|
||||
|
||||
class EnumHookMode(enum.Enum):
|
||||
MinVram = "minvram"
|
||||
MaxSpeed = "maxspeed"
|
||||
|
||||
class EnumHookType(enum.Enum):
|
||||
Weight = "weight"
|
||||
Patch = "patch"
|
||||
ObjectPatch = "object_patch"
|
||||
AddModels = "add_models"
|
||||
Callbacks = "callbacks"
|
||||
Wrappers = "wrappers"
|
||||
SetInjections = "add_injections"
|
||||
|
||||
class EnumWeightTarget(enum.Enum):
|
||||
Model = "model"
|
||||
Clip = "clip"
|
||||
|
||||
class _HookRef:
|
||||
pass
|
||||
|
||||
# NOTE: this is an example of how the should_register function should look
|
||||
def default_should_register(hook: 'Hook', model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
return True
|
||||
|
||||
|
||||
class Hook:
|
||||
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
|
||||
hook_keyframe: 'HookKeyframeGroup'=None):
|
||||
self.hook_type = hook_type
|
||||
self.hook_ref = hook_ref if hook_ref else _HookRef()
|
||||
self.hook_id = hook_id
|
||||
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
|
||||
self.custom_should_register = default_should_register
|
||||
self.auto_apply_to_nonpositive = False
|
||||
|
||||
@property
|
||||
def strength(self):
|
||||
return self.hook_keyframe.strength
|
||||
|
||||
def initialize_timesteps(self, model: 'BaseModel'):
|
||||
self.reset()
|
||||
self.hook_keyframe.initialize_timesteps(model)
|
||||
|
||||
def reset(self):
|
||||
self.hook_keyframe.reset()
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: Hook = subtype()
|
||||
c.hook_type = self.hook_type
|
||||
c.hook_ref = self.hook_ref
|
||||
c.hook_id = self.hook_id
|
||||
c.hook_keyframe = self.hook_keyframe
|
||||
c.custom_should_register = self.custom_should_register
|
||||
# TODO: make this do something
|
||||
c.auto_apply_to_nonpositive = self.auto_apply_to_nonpositive
|
||||
return c
|
||||
|
||||
def should_register(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
return self.custom_should_register(self, model, model_options, target, registered)
|
||||
|
||||
def add_hook_patches(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
|
||||
|
||||
def on_apply(self, model: 'ModelPatcher', transformer_options: dict[str]):
|
||||
pass
|
||||
|
||||
def on_unapply(self, model: 'ModelPatcher', transformer_options: dict[str]):
|
||||
pass
|
||||
|
||||
def __eq__(self, other: 'Hook'):
|
||||
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self.hook_ref)
|
||||
|
||||
class WeightHook(Hook):
|
||||
def __init__(self, strength_model=1.0, strength_clip=1.0):
|
||||
super().__init__(hook_type=EnumHookType.Weight)
|
||||
self.weights: dict = None
|
||||
self.weights_clip: dict = None
|
||||
self.need_weight_init = True
|
||||
self._strength_model = strength_model
|
||||
self._strength_clip = strength_clip
|
||||
|
||||
@property
|
||||
def strength_model(self):
|
||||
return self._strength_model * self.strength
|
||||
|
||||
@property
|
||||
def strength_clip(self):
|
||||
return self._strength_clip * self.strength
|
||||
|
||||
def add_hook_patches(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
if not self.should_register(model, model_options, target, registered):
|
||||
return False
|
||||
weights = None
|
||||
if target == EnumWeightTarget.Model:
|
||||
strength = self._strength_model
|
||||
else:
|
||||
strength = self._strength_clip
|
||||
|
||||
if self.need_weight_init:
|
||||
key_map = {}
|
||||
if target == EnumWeightTarget.Model:
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
||||
else:
|
||||
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
|
||||
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
|
||||
else:
|
||||
if target == EnumWeightTarget.Model:
|
||||
weights = self.weights
|
||||
else:
|
||||
weights = self.weights_clip
|
||||
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
|
||||
registered.append(self)
|
||||
return True
|
||||
# TODO: add logs about any keys that were not applied
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: WeightHook = super().clone(subtype)
|
||||
c.weights = self.weights
|
||||
c.weights_clip = self.weights_clip
|
||||
c.need_weight_init = self.need_weight_init
|
||||
c._strength_model = self._strength_model
|
||||
c._strength_clip = self._strength_clip
|
||||
return c
|
||||
|
||||
class PatchHook(Hook):
|
||||
def __init__(self):
|
||||
super().__init__(hook_type=EnumHookType.Patch)
|
||||
self.patches: dict = None
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: PatchHook = super().clone(subtype)
|
||||
c.patches = self.patches
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class ObjectPatchHook(Hook):
|
||||
def __init__(self):
|
||||
super().__init__(hook_type=EnumHookType.ObjectPatch)
|
||||
self.object_patches: dict = None
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: ObjectPatchHook = super().clone(subtype)
|
||||
c.object_patches = self.object_patches
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class AddModelsHook(Hook):
|
||||
def __init__(self, key: str=None, models: list['ModelPatcher']=None):
|
||||
super().__init__(hook_type=EnumHookType.AddModels)
|
||||
self.key = key
|
||||
self.models = models
|
||||
self.append_when_same = True
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: AddModelsHook = super().clone(subtype)
|
||||
c.key = self.key
|
||||
c.models = self.models.copy() if self.models else self.models
|
||||
c.append_when_same = self.append_when_same
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class CallbackHook(Hook):
|
||||
def __init__(self, key: str=None, callback: Callable=None):
|
||||
super().__init__(hook_type=EnumHookType.Callbacks)
|
||||
self.key = key
|
||||
self.callback = callback
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: CallbackHook = super().clone(subtype)
|
||||
c.key = self.key
|
||||
c.callback = self.callback
|
||||
return c
|
||||
# TODO: add functionality
|
||||
|
||||
class WrapperHook(Hook):
|
||||
def __init__(self, wrappers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None):
|
||||
super().__init__(hook_type=EnumHookType.Wrappers)
|
||||
self.wrappers_dict = wrappers_dict
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: WrapperHook = super().clone(subtype)
|
||||
c.wrappers_dict = self.wrappers_dict
|
||||
return c
|
||||
|
||||
def add_hook_patches(self, model: 'ModelPatcher', model_options: dict, target: EnumWeightTarget, registered: list[Hook]):
|
||||
if not self.should_register(model, model_options, target, registered):
|
||||
return False
|
||||
add_model_options = {"transformer_options": self.wrappers_dict}
|
||||
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
|
||||
registered.append(self)
|
||||
return True
|
||||
|
||||
class SetInjectionsHook(Hook):
|
||||
def __init__(self, key: str=None, injections: list['PatcherInjection']=None):
|
||||
super().__init__(hook_type=EnumHookType.SetInjections)
|
||||
self.key = key
|
||||
self.injections = injections
|
||||
|
||||
def clone(self, subtype: Callable=None):
|
||||
if subtype is None:
|
||||
subtype = type(self)
|
||||
c: SetInjectionsHook = super().clone(subtype)
|
||||
c.key = self.key
|
||||
c.injections = self.injections.copy() if self.injections else self.injections
|
||||
return c
|
||||
|
||||
def add_hook_injections(self, model: 'ModelPatcher'):
|
||||
# TODO: add functionality
|
||||
pass
|
||||
|
||||
class HookGroup:
|
||||
def __init__(self):
|
||||
self.hooks: list[Hook] = []
|
||||
|
||||
def add(self, hook: Hook):
|
||||
if hook not in self.hooks:
|
||||
self.hooks.append(hook)
|
||||
|
||||
def contains(self, hook: Hook):
|
||||
return hook in self.hooks
|
||||
|
||||
def clone(self):
|
||||
c = HookGroup()
|
||||
for hook in self.hooks:
|
||||
c.add(hook.clone())
|
||||
return c
|
||||
|
||||
def clone_and_combine(self, other: 'HookGroup'):
|
||||
c = self.clone()
|
||||
if other is not None:
|
||||
for hook in other.hooks:
|
||||
c.add(hook.clone())
|
||||
return c
|
||||
|
||||
def set_keyframes_on_hooks(self, hook_kf: 'HookKeyframeGroup'):
|
||||
if hook_kf is None:
|
||||
hook_kf = HookKeyframeGroup()
|
||||
else:
|
||||
hook_kf = hook_kf.clone()
|
||||
for hook in self.hooks:
|
||||
hook.hook_keyframe = hook_kf
|
||||
|
||||
def get_dict_repr(self):
|
||||
d: dict[EnumHookType, dict[Hook, None]] = {}
|
||||
for hook in self.hooks:
|
||||
with_type = d.setdefault(hook.hook_type, {})
|
||||
with_type[hook] = None
|
||||
return d
|
||||
|
||||
def get_hooks_for_clip_schedule(self):
|
||||
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
|
||||
for hook in self.hooks:
|
||||
# only care about WeightHooks, for now
|
||||
if hook.hook_type == EnumHookType.Weight:
|
||||
hook_schedule = []
|
||||
# if no hook keyframes, assign default value
|
||||
if len(hook.hook_keyframe.keyframes) == 0:
|
||||
hook_schedule.append(((0.0, 1.0), None))
|
||||
scheduled_hooks[hook] = hook_schedule
|
||||
continue
|
||||
# find ranges of values
|
||||
prev_keyframe = hook.hook_keyframe.keyframes[0]
|
||||
for keyframe in hook.hook_keyframe.keyframes:
|
||||
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
|
||||
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
|
||||
prev_keyframe = keyframe
|
||||
elif keyframe.start_percent == prev_keyframe.start_percent:
|
||||
prev_keyframe = keyframe
|
||||
# create final range, assuming last start_percent was not 1.0
|
||||
if not math.isclose(prev_keyframe.start_percent, 1.0):
|
||||
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
|
||||
scheduled_hooks[hook] = hook_schedule
|
||||
# hooks should not have their schedules in a list of tuples
|
||||
all_ranges: list[tuple[float, float]] = []
|
||||
for range_kfs in scheduled_hooks.values():
|
||||
for t_range, keyframe in range_kfs:
|
||||
all_ranges.append(t_range)
|
||||
# turn list of ranges into boundaries
|
||||
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
|
||||
boundaries_set.add(0.0)
|
||||
boundaries = sorted(boundaries_set)
|
||||
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
|
||||
# with real ranges defined, give appropriate hooks w/ keyframes for each range
|
||||
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
|
||||
for t_range in real_ranges:
|
||||
hooks_schedule = []
|
||||
for hook, val in scheduled_hooks.items():
|
||||
keyframe = None
|
||||
# check if is a keyframe that works for the current t_range
|
||||
for stored_range, stored_kf in val:
|
||||
# if stored start is less than current end, then fits - give it assigned keyframe
|
||||
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
|
||||
keyframe = stored_kf
|
||||
break
|
||||
hooks_schedule.append((hook, keyframe))
|
||||
scheduled_keyframes.append((t_range, hooks_schedule))
|
||||
return scheduled_keyframes
|
||||
|
||||
def reset(self):
|
||||
for hook in self.hooks:
|
||||
hook.reset()
|
||||
|
||||
@staticmethod
|
||||
def combine_all_hooks(hooks_list: list['HookGroup'], require_count=0) -> 'HookGroup':
|
||||
actual: list[HookGroup] = []
|
||||
for group in hooks_list:
|
||||
if group is not None:
|
||||
actual.append(group)
|
||||
if len(actual) < require_count:
|
||||
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
|
||||
# if no hooks, then return None
|
||||
if len(actual) == 0:
|
||||
return None
|
||||
# if only 1 hook, just return itself without cloning
|
||||
elif len(actual) == 1:
|
||||
return actual[0]
|
||||
final_hook: HookGroup = None
|
||||
for hook in actual:
|
||||
if final_hook is None:
|
||||
final_hook = hook.clone()
|
||||
else:
|
||||
final_hook = final_hook.clone_and_combine(hook)
|
||||
return final_hook
|
||||
|
||||
|
||||
class HookKeyframe:
|
||||
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
|
||||
self.strength = strength
|
||||
# scheduling
|
||||
self.start_percent = float(start_percent)
|
||||
self.start_t = 999999999.9
|
||||
self.guarantee_steps = guarantee_steps
|
||||
|
||||
def clone(self):
|
||||
c = HookKeyframe(strength=self.strength,
|
||||
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
|
||||
c.start_t = self.start_t
|
||||
return c
|
||||
|
||||
class HookKeyframeGroup:
|
||||
def __init__(self):
|
||||
self.keyframes: list[HookKeyframe] = []
|
||||
self._current_keyframe: HookKeyframe = None
|
||||
self._current_used_steps = 0
|
||||
self._current_index = 0
|
||||
self._current_strength = None
|
||||
self._curr_t = -1.
|
||||
|
||||
# properties shadow those of HookWeightsKeyframe
|
||||
@property
|
||||
def strength(self):
|
||||
if self._current_keyframe is not None:
|
||||
return self._current_keyframe.strength
|
||||
return 1.0
|
||||
|
||||
def reset(self):
|
||||
self._current_keyframe = None
|
||||
self._current_used_steps = 0
|
||||
self._current_index = 0
|
||||
self._current_strength = None
|
||||
self.curr_t = -1.
|
||||
self._set_first_as_current()
|
||||
|
||||
def add(self, keyframe: HookKeyframe):
|
||||
# add to end of list, then sort
|
||||
self.keyframes.append(keyframe)
|
||||
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
|
||||
self._set_first_as_current()
|
||||
|
||||
def _set_first_as_current(self):
|
||||
if len(self.keyframes) > 0:
|
||||
self._current_keyframe = self.keyframes[0]
|
||||
else:
|
||||
self._current_keyframe = None
|
||||
|
||||
def has_index(self, index: int):
|
||||
return index >= 0 and index < len(self.keyframes)
|
||||
|
||||
def is_empty(self):
|
||||
return len(self.keyframes) == 0
|
||||
|
||||
def clone(self):
|
||||
c = HookKeyframeGroup()
|
||||
for keyframe in self.keyframes:
|
||||
c.keyframes.append(keyframe.clone())
|
||||
c._set_first_as_current()
|
||||
return c
|
||||
|
||||
def initialize_timesteps(self, model: 'BaseModel'):
|
||||
for keyframe in self.keyframes:
|
||||
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
|
||||
|
||||
def prepare_current_keyframe(self, curr_t: float) -> bool:
|
||||
if self.is_empty():
|
||||
return False
|
||||
if curr_t == self._curr_t:
|
||||
return False
|
||||
prev_index = self._current_index
|
||||
prev_strength = self._current_strength
|
||||
# if met guaranteed steps, look for next keyframe in case need to switch
|
||||
if self._current_used_steps >= self._current_keyframe.guarantee_steps:
|
||||
# if has next index, loop through and see if need to switch
|
||||
if self.has_index(self._current_index+1):
|
||||
for i in range(self._current_index+1, len(self.keyframes)):
|
||||
eval_c = self.keyframes[i]
|
||||
# check if start_t is greater or equal to curr_t
|
||||
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
|
||||
if eval_c.start_t >= curr_t:
|
||||
self._current_index = i
|
||||
self._current_strength = eval_c.strength
|
||||
self._current_keyframe = eval_c
|
||||
self._current_used_steps = 0
|
||||
# if guarantee_steps greater than zero, stop searching for other keyframes
|
||||
if self._current_keyframe.guarantee_steps > 0:
|
||||
break
|
||||
# if eval_c is outside the percent range, stop looking further
|
||||
else: break
|
||||
# update steps current context is used
|
||||
self._current_used_steps += 1
|
||||
# update current timestep this was performed on
|
||||
self._curr_t = curr_t
|
||||
# return True if keyframe changed, False if no change
|
||||
return prev_index != self._current_index and prev_strength != self._current_strength
|
||||
|
||||
|
||||
class InterpolationMethod:
|
||||
LINEAR = "linear"
|
||||
EASE_IN = "ease_in"
|
||||
EASE_OUT = "ease_out"
|
||||
EASE_IN_OUT = "ease_in_out"
|
||||
|
||||
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
|
||||
|
||||
@classmethod
|
||||
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
|
||||
diff = num_to - num_from
|
||||
if method == cls.LINEAR:
|
||||
weights = torch.linspace(num_from, num_to, length)
|
||||
elif method == cls.EASE_IN:
|
||||
index = torch.linspace(0, 1, length)
|
||||
weights = diff * np.power(index, 2) + num_from
|
||||
elif method == cls.EASE_OUT:
|
||||
index = torch.linspace(0, 1, length)
|
||||
weights = diff * (1 - np.power(1 - index, 2)) + num_from
|
||||
elif method == cls.EASE_IN_OUT:
|
||||
index = torch.linspace(0, 1, length)
|
||||
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
|
||||
else:
|
||||
raise ValueError(f"Unrecognized interpolation method '{method}'.")
|
||||
if reverse:
|
||||
weights = weights.flip(dims=(0,))
|
||||
return weights
|
||||
|
||||
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
|
||||
if not objects:
|
||||
return objects
|
||||
elif len(objects) <= 1:
|
||||
return [x for x in objects]
|
||||
# now that we know we have to sort, do it following these rules:
|
||||
# a) if objects have same value of attribute, maintain their relative order
|
||||
# b) perform sorting of the groups of objects with same attributes
|
||||
unique_attrs = {}
|
||||
for o in objects:
|
||||
val_attr = getattr(o, attr)
|
||||
attr_list: list = unique_attrs.get(val_attr, list())
|
||||
attr_list.append(o)
|
||||
if val_attr not in unique_attrs:
|
||||
unique_attrs[val_attr] = attr_list
|
||||
# now that we have the unique attr values grouped together in relative order, sort them by key
|
||||
sorted_attrs = dict(sorted(unique_attrs.items()))
|
||||
# now flatten out the dict into a list to return
|
||||
sorted_list = []
|
||||
for object_list in sorted_attrs.values():
|
||||
sorted_list.extend(object_list)
|
||||
return sorted_list
|
||||
|
||||
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
|
||||
hook_group = HookGroup()
|
||||
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
||||
hook_group.add(hook)
|
||||
hook.weights = lora
|
||||
return hook_group
|
||||
|
||||
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
|
||||
hook_group = HookGroup()
|
||||
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
||||
hook_group.add(hook)
|
||||
patches_model = None
|
||||
patches_clip = None
|
||||
if weights_model is not None:
|
||||
patches_model = {}
|
||||
for key in weights_model:
|
||||
patches_model[key] = ("model_as_lora", (weights_model[key],))
|
||||
if weights_clip is not None:
|
||||
patches_clip = {}
|
||||
for key in weights_clip:
|
||||
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
|
||||
hook.weights = patches_model
|
||||
hook.weights_clip = patches_clip
|
||||
hook.need_weight_init = False
|
||||
return hook_group
|
||||
|
||||
def get_patch_weights_from_model(model: 'ModelPatcher', discard_model_sampling=True):
|
||||
if model is None:
|
||||
return None
|
||||
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
|
||||
if discard_model_sampling:
|
||||
# do not include ANY model_sampling components of the model that should act as a patch
|
||||
for key in list(patches_model.keys()):
|
||||
if key.startswith("model_sampling"):
|
||||
patches_model.pop(key, None)
|
||||
return patches_model
|
||||
|
||||
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
|
||||
def load_hook_lora_for_models(model: 'ModelPatcher', clip: 'CLIP', lora: dict[str, torch.Tensor],
|
||||
strength_model: float, strength_clip: float):
|
||||
key_map = {}
|
||||
if model is not None:
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
||||
if clip is not None:
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
|
||||
hook_group = HookGroup()
|
||||
hook = WeightHook()
|
||||
hook_group.add(hook)
|
||||
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
|
||||
if model is not None:
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
|
||||
else:
|
||||
k = ()
|
||||
new_modelpatcher = None
|
||||
|
||||
if clip is not None:
|
||||
new_clip = clip.clone()
|
||||
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
|
||||
else:
|
||||
k1 = ()
|
||||
new_clip = None
|
||||
k = set(k)
|
||||
k1 = set(k1)
|
||||
for x in loaded:
|
||||
if (x not in k) and (x not in k1):
|
||||
print(f"NOT LOADED {x}")
|
||||
return (new_modelpatcher, new_clip, hook_group)
|
||||
|
||||
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
||||
hooks_key = 'hooks'
|
||||
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
|
||||
if hooks_key not in values:
|
||||
return
|
||||
if hooks_key not in c_dict:
|
||||
hooks_value = values.get(hooks_key, None)
|
||||
if hooks_value is not None:
|
||||
c_dict[hooks_key] = hooks_value
|
||||
return
|
||||
# otherwise, need to combine with minimum duplication via cache
|
||||
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
|
||||
cached_hooks = cache.get(hooks_tuple, None)
|
||||
if cached_hooks is None:
|
||||
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
|
||||
cache[hooks_tuple] = new_hooks
|
||||
c_dict[hooks_key] = new_hooks
|
||||
else:
|
||||
c_dict[hooks_key] = cache[hooks_tuple]
|
||||
|
||||
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True):
|
||||
c = []
|
||||
hooks_combine_cache: dict[tuple[HookGroup, HookGroup], HookGroup] = {}
|
||||
for t in conditioning:
|
||||
n = [t[0], t[1].copy()]
|
||||
for k in values:
|
||||
if append_hooks and k == 'hooks':
|
||||
_combine_hooks_from_values(n[1], values, hooks_combine_cache)
|
||||
else:
|
||||
n[1][k] = values[k]
|
||||
c.append(n)
|
||||
|
||||
return c
|
||||
|
||||
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True):
|
||||
if hooks is None:
|
||||
return cond
|
||||
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks)
|
||||
|
||||
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
|
||||
if timestep_range is None:
|
||||
return cond
|
||||
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
|
||||
"end_percent": timestep_range[1]})
|
||||
|
||||
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
|
||||
if mask is None:
|
||||
return cond
|
||||
set_area_to_bounds = False
|
||||
if set_cond_area != 'default':
|
||||
set_area_to_bounds = True
|
||||
if len(mask.shape) < 3:
|
||||
mask = mask.unsqueeze(0)
|
||||
return conditioning_set_values(cond, {'mask': mask,
|
||||
'set_area_to_bounds': set_area_to_bounds,
|
||||
'mask_strength': strength})
|
||||
|
||||
def combine_conditioning(conds: list):
|
||||
combined_conds = []
|
||||
for cond in conds:
|
||||
combined_conds.extend(cond)
|
||||
return combined_conds
|
||||
|
||||
def combine_with_new_conds(conds: list, new_conds: list):
|
||||
combined_conds = []
|
||||
for c, new_c in zip(conds, new_conds):
|
||||
combined_conds.append(combine_conditioning([c, new_c]))
|
||||
return combined_conds
|
||||
|
||||
def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
||||
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
final_conds = []
|
||||
for c in conds:
|
||||
# first, apply lora_hook to conditioning, if provided
|
||||
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks)
|
||||
# next, apply mask to conditioning
|
||||
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
|
||||
# apply timesteps, if present
|
||||
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
|
||||
# finally, apply mask to conditioning and store
|
||||
final_conds.append(c)
|
||||
return final_conds
|
||||
|
||||
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
|
||||
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
combined_conds = []
|
||||
for c, masked_c in zip(conds, new_conds):
|
||||
# first, apply lora_hook to new conditioning, if provided
|
||||
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks)
|
||||
# next, apply mask to new conditioning, if provided
|
||||
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
|
||||
# apply timesteps, if present
|
||||
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
|
||||
# finally, combine with existing conditioning and store
|
||||
combined_conds.append(combine_conditioning([c, masked_c]))
|
||||
return combined_conds
|
||||
|
||||
def set_default_conds_and_combine(conds: list, new_conds: list,
|
||||
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
||||
combined_conds = []
|
||||
for c, new_c in zip(conds, new_conds):
|
||||
# first, apply lora_hook to new conditioning, if provided
|
||||
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks)
|
||||
# next, add default_cond key to cond so that during sampling, it can be identified
|
||||
new_c = conditioning_set_values(new_c, {'default': True})
|
||||
# apply timesteps, if present
|
||||
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
|
||||
# finally, combine with existing conditioning and store
|
||||
combined_conds.append(combine_conditioning([c, new_c]))
|
||||
return combined_conds
|
||||
@@ -11,7 +11,6 @@ import numpy as np
|
||||
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
|
||||
|
||||
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
|
||||
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5
|
||||
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
|
||||
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
|
||||
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
|
||||
|
||||
@@ -9,6 +9,7 @@ from tqdm.auto import trange, tqdm
|
||||
from . import utils
|
||||
from . import deis
|
||||
import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
def append_zero(x):
|
||||
return torch.cat([x, x.new_zeros([1])])
|
||||
@@ -43,6 +44,17 @@ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
||||
return append_zero(sigmas)
|
||||
|
||||
|
||||
def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
|
||||
"""Constructs the noise schedule proposed by Tiankai et al. (2024). """
|
||||
epsilon = 1e-5 # avoid log(0)
|
||||
x = torch.linspace(0, 1, n, device=device)
|
||||
clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
|
||||
lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
|
||||
sigmas = clamp(torch.exp(lmb))
|
||||
return sigmas
|
||||
|
||||
|
||||
|
||||
def to_d(x, sigma, denoised):
|
||||
"""Converts a denoiser output to a Karras ODE derivative."""
|
||||
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
||||
@@ -152,6 +164,8 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
||||
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
||||
"""Ancestral sampling with Euler method steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
@@ -161,14 +175,42 @@ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
if sigma_down == 0:
|
||||
x = denoised
|
||||
else:
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
x = x + d * dt + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with Euler method steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
downstep_ratio = 1 + (sigmas[i + 1] / sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i + 1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i + 1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i + 1]**2 - sigma_down**2 * alpha_ip1**2 / alpha_down**2)**0.5
|
||||
# Euler method
|
||||
sigma_down_i_ratio = sigma_down / sigmas[i]
|
||||
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
|
||||
if eta > 0:
|
||||
x = (alpha_ip1 / alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||
@@ -243,6 +285,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
||||
return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
||||
|
||||
"""Ancestral sampling with DPM-Solver second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
@@ -269,6 +314,38 @@ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i+1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i+1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
||||
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if sigma_down == 0:
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
else:
|
||||
# DPM-Solver-2
|
||||
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
||||
dt_1 = sigma_mid - sigmas[i]
|
||||
dt_2 = sigma_down - sigmas[i]
|
||||
x_2 = x + d * dt_1
|
||||
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
||||
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
||||
x = x + d_2 * dt_2
|
||||
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
return x
|
||||
|
||||
def linear_multistep_coeff(order, t, i, j):
|
||||
if order - 1 > i:
|
||||
@@ -509,6 +586,9 @@ def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callbac
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
||||
return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
||||
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
@@ -541,6 +621,55 @@ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None,
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
|
||||
lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
|
||||
|
||||
# logged_x = x.unsqueeze(0)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i+1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i+1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
||||
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
# Euler method
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
else:
|
||||
# DPM-Solver++(2S)
|
||||
if sigmas[i] == 1.0:
|
||||
sigma_s = 0.9999
|
||||
else:
|
||||
t_i, t_down = lambda_fn(sigmas[i]), lambda_fn(sigma_down)
|
||||
r = 1 / 2
|
||||
h = t_down - t_i
|
||||
s = t_i + r * h
|
||||
sigma_s = sigma_fn(s)
|
||||
# sigma_s = sigmas[i+1]
|
||||
sigma_s_i_ratio = sigma_s / sigmas[i]
|
||||
u = sigma_s_i_ratio * x + (1 - sigma_s_i_ratio) * denoised
|
||||
D_i = model(u, sigma_s * s_in, **extra_args)
|
||||
sigma_down_i_ratio = sigma_down / sigmas[i]
|
||||
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * D_i
|
||||
# print("sigma_i", sigmas[i], "sigma_ip1", sigmas[i+1],"sigma_down", sigma_down, "sigma_down_i_ratio", sigma_down_i_ratio, "sigma_s_i_ratio", sigma_s_i_ratio, "renoise_coeff", renoise_coeff)
|
||||
# Noise addition
|
||||
if sigmas[i + 1] > 0 and eta > 0:
|
||||
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
"""DPM-Solver++ (stochastic)."""
|
||||
@@ -1016,7 +1145,6 @@ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
d = to_d(x, sigma_hat, temp[0])
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
# Euler method
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
return x
|
||||
@@ -1043,8 +1171,81 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = denoised + d * sigma_down
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
|
||||
temp = [0]
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigma_down == 0:
|
||||
# Euler method
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
x = denoised + d * sigma_down
|
||||
else:
|
||||
# DPM-Solver++(2S)
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
||||
# r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird
|
||||
r = 1 / 2
|
||||
h = t_next - t
|
||||
s = t + r * h
|
||||
x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised
|
||||
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
||||
x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2
|
||||
# Noise addition
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
"""DPM-Solver++(2M)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
|
||||
old_uncond_denoised = None
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
||||
h = t_next - t
|
||||
if old_uncond_denoised is None or sigmas[i + 1] == 0:
|
||||
denoised_mix = -torch.exp(-h) * uncond_denoised
|
||||
else:
|
||||
h_last = t - t_fn(sigmas[i - 1])
|
||||
r = h_last / h
|
||||
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
|
||||
x = denoised + denoised_mix + torch.exp(-h) * x
|
||||
old_uncond_denoised = uncond_denoised
|
||||
return x
|
||||
|
||||
@@ -4,6 +4,7 @@ class LatentFormat:
|
||||
scale_factor = 1.0
|
||||
latent_channels = 4
|
||||
latent_rgb_factors = None
|
||||
latent_rgb_factors_bias = None
|
||||
taesd_decoder_name = None
|
||||
|
||||
def process_in(self, latent):
|
||||
@@ -30,11 +31,13 @@ class SDXL(LatentFormat):
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3920, 0.4054, 0.4549],
|
||||
[-0.2634, -0.0196, 0.0653],
|
||||
[ 0.0568, 0.1687, -0.0755],
|
||||
[-0.3112, -0.2359, -0.2076]
|
||||
[ 0.3651, 0.4232, 0.4341],
|
||||
[-0.2533, -0.0042, 0.1068],
|
||||
[ 0.1076, 0.1111, -0.0362],
|
||||
[-0.3165, -0.2492, -0.2188]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
|
||||
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
class SDXL_Playground_2_5(LatentFormat):
|
||||
@@ -112,23 +115,24 @@ class SD3(LatentFormat):
|
||||
self.scale_factor = 1.5305
|
||||
self.shift_factor = 0.0609
|
||||
self.latent_rgb_factors = [
|
||||
[-0.0645, 0.0177, 0.1052],
|
||||
[ 0.0028, 0.0312, 0.0650],
|
||||
[ 0.1848, 0.0762, 0.0360],
|
||||
[ 0.0944, 0.0360, 0.0889],
|
||||
[ 0.0897, 0.0506, -0.0364],
|
||||
[-0.0020, 0.1203, 0.0284],
|
||||
[ 0.0855, 0.0118, 0.0283],
|
||||
[-0.0539, 0.0658, 0.1047],
|
||||
[-0.0057, 0.0116, 0.0700],
|
||||
[-0.0412, 0.0281, -0.0039],
|
||||
[ 0.1106, 0.1171, 0.1220],
|
||||
[-0.0248, 0.0682, -0.0481],
|
||||
[ 0.0815, 0.0846, 0.1207],
|
||||
[-0.0120, -0.0055, -0.0867],
|
||||
[-0.0749, -0.0634, -0.0456],
|
||||
[-0.1418, -0.1457, -0.1259]
|
||||
[-0.0922, -0.0175, 0.0749],
|
||||
[ 0.0311, 0.0633, 0.0954],
|
||||
[ 0.1994, 0.0927, 0.0458],
|
||||
[ 0.0856, 0.0339, 0.0902],
|
||||
[ 0.0587, 0.0272, -0.0496],
|
||||
[-0.0006, 0.1104, 0.0309],
|
||||
[ 0.0978, 0.0306, 0.0427],
|
||||
[-0.0042, 0.1038, 0.1358],
|
||||
[-0.0194, 0.0020, 0.0669],
|
||||
[-0.0488, 0.0130, -0.0268],
|
||||
[ 0.0922, 0.0988, 0.0951],
|
||||
[-0.0278, 0.0524, -0.0542],
|
||||
[ 0.0332, 0.0456, 0.0895],
|
||||
[-0.0069, -0.0030, -0.0810],
|
||||
[-0.0596, -0.0465, -0.0293],
|
||||
[-0.1448, -0.1463, -0.1189]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
|
||||
self.taesd_decoder_name = "taesd3_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
@@ -139,3 +143,236 @@ class SD3(LatentFormat):
|
||||
|
||||
class StableAudio1(LatentFormat):
|
||||
latent_channels = 64
|
||||
|
||||
class Flux(SD3):
|
||||
latent_channels = 16
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.3611
|
||||
self.shift_factor = 0.1159
|
||||
self.latent_rgb_factors =[
|
||||
[-0.0346, 0.0244, 0.0681],
|
||||
[ 0.0034, 0.0210, 0.0687],
|
||||
[ 0.0275, -0.0668, -0.0433],
|
||||
[-0.0174, 0.0160, 0.0617],
|
||||
[ 0.0859, 0.0721, 0.0329],
|
||||
[ 0.0004, 0.0383, 0.0115],
|
||||
[ 0.0405, 0.0861, 0.0915],
|
||||
[-0.0236, -0.0185, -0.0259],
|
||||
[-0.0245, 0.0250, 0.1180],
|
||||
[ 0.1008, 0.0755, -0.0421],
|
||||
[-0.0515, 0.0201, 0.0011],
|
||||
[ 0.0428, -0.0012, -0.0036],
|
||||
[ 0.0817, 0.0765, 0.0749],
|
||||
[-0.1264, -0.0522, -0.1103],
|
||||
[-0.0280, -0.0881, -0.0499],
|
||||
[-0.1262, -0.0982, -0.0778]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
||||
self.taesd_decoder_name = "taef1_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
return (latent - self.shift_factor) * self.scale_factor
|
||||
|
||||
def process_out(self, latent):
|
||||
return (latent / self.scale_factor) + self.shift_factor
|
||||
|
||||
class Mochi(LatentFormat):
|
||||
latent_channels = 12
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
|
||||
-0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
|
||||
0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
|
||||
-0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
|
||||
self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
|
||||
0.959253732819592, 0.8244560132752793, 0.917259975397747,
|
||||
0.9294154431013696, 1.3720942357788521, 0.881393668867029,
|
||||
0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
|
||||
|
||||
self.latent_rgb_factors =[
|
||||
[-0.0069, -0.0045, 0.0018],
|
||||
[ 0.0154, -0.0692, -0.0274],
|
||||
[ 0.0333, 0.0019, 0.0206],
|
||||
[-0.1390, 0.0628, 0.1678],
|
||||
[-0.0725, 0.0134, -0.1898],
|
||||
[ 0.0074, -0.0270, -0.0209],
|
||||
[-0.0176, -0.0277, -0.0221],
|
||||
[ 0.5294, 0.5204, 0.3852],
|
||||
[-0.0326, -0.0446, -0.0143],
|
||||
[-0.0659, 0.0153, -0.0153],
|
||||
[ 0.0185, -0.0217, 0.0014],
|
||||
[-0.0396, -0.0495, -0.0281]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
|
||||
self.taesd_decoder_name = None #TODO
|
||||
|
||||
def process_in(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return (latent - latents_mean) * self.scale_factor / latents_std
|
||||
|
||||
def process_out(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
||||
class LTXV(LatentFormat):
|
||||
latent_channels = 128
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
[ 1.1202e-02, -6.3815e-04, -1.0021e-02],
|
||||
[ 8.6031e-02, 6.5813e-02, 9.5409e-04],
|
||||
[-1.2576e-02, -7.5734e-03, -4.0528e-03],
|
||||
[ 9.4063e-03, -2.1688e-03, 2.6093e-03],
|
||||
[ 3.7636e-03, 1.2765e-02, 9.1548e-03],
|
||||
[ 2.1024e-02, -5.2973e-03, 3.4373e-03],
|
||||
[-8.8896e-03, -1.9703e-02, -1.8761e-02],
|
||||
[-1.3160e-02, -1.0523e-02, 1.9709e-03],
|
||||
[-1.5152e-03, -6.9891e-03, -7.5810e-03],
|
||||
[-1.7247e-03, 4.6560e-04, -3.3839e-03],
|
||||
[ 1.3617e-02, 4.7077e-03, -2.0045e-03],
|
||||
[ 1.0256e-02, 7.7318e-03, 1.3948e-02],
|
||||
[-1.6108e-02, -6.2151e-03, 1.1561e-03],
|
||||
[ 7.3407e-03, 1.5628e-02, 4.4865e-04],
|
||||
[ 9.5357e-04, -2.9518e-03, -1.4760e-02],
|
||||
[ 1.9143e-02, 1.0868e-02, 1.2264e-02],
|
||||
[ 4.4575e-03, 3.6682e-05, -6.8508e-03],
|
||||
[-4.5681e-04, 3.2570e-03, 7.7929e-03],
|
||||
[ 3.3902e-02, 3.3405e-02, 3.7454e-02],
|
||||
[-2.3001e-02, -2.4877e-03, -3.1033e-03],
|
||||
[ 5.0265e-02, 3.8841e-02, 3.3539e-02],
|
||||
[-4.1018e-03, -1.1095e-03, 1.5859e-03],
|
||||
[-1.2689e-01, -1.3107e-01, -2.1005e-01],
|
||||
[ 2.6276e-02, 1.4189e-02, -3.5963e-03],
|
||||
[-4.8679e-03, 8.8486e-03, 7.8029e-03],
|
||||
[-1.6610e-03, -4.8597e-03, -5.2060e-03],
|
||||
[-2.1010e-03, 2.3610e-03, 9.3796e-03],
|
||||
[-2.2482e-02, -2.1305e-02, -1.5087e-02],
|
||||
[-1.5753e-02, -1.0646e-02, -6.5083e-03],
|
||||
[-4.6975e-03, 5.0288e-03, -6.7390e-03],
|
||||
[ 1.1951e-02, 2.0712e-02, 1.6191e-02],
|
||||
[-6.3704e-03, -8.4827e-03, -9.5483e-03],
|
||||
[ 7.2610e-03, -9.9326e-03, -2.2978e-02],
|
||||
[-9.1904e-04, 6.2882e-03, 9.5720e-03],
|
||||
[-3.7178e-02, -3.7123e-02, -5.6713e-02],
|
||||
[-1.3373e-01, -1.0720e-01, -5.3801e-02],
|
||||
[-5.3702e-03, 8.1256e-03, 8.8397e-03],
|
||||
[-1.5247e-01, -2.1437e-01, -2.1843e-01],
|
||||
[ 3.1441e-02, 7.0335e-03, -9.7541e-03],
|
||||
[ 2.1528e-03, -8.9817e-03, -2.1023e-02],
|
||||
[ 3.8461e-03, -5.8957e-03, -1.5014e-02],
|
||||
[-4.3470e-03, -1.2940e-02, -1.5972e-02],
|
||||
[-5.4781e-03, -1.0842e-02, -3.0204e-03],
|
||||
[-6.5347e-03, 3.0806e-03, -1.0163e-02],
|
||||
[-5.0414e-03, -7.1503e-03, -8.9686e-04],
|
||||
[-8.5851e-03, -2.4351e-03, 1.0674e-03],
|
||||
[-9.0016e-03, -9.6493e-03, 1.5692e-03],
|
||||
[ 5.0914e-03, 1.2099e-02, 1.9968e-02],
|
||||
[ 1.3758e-02, 1.1669e-02, 8.1958e-03],
|
||||
[-1.0518e-02, -1.1575e-02, -4.1307e-03],
|
||||
[-2.8410e-02, -3.1266e-02, -2.2149e-02],
|
||||
[ 2.9336e-03, 3.6511e-02, 1.8717e-02],
|
||||
[-1.6703e-02, -1.6696e-02, -4.4529e-03],
|
||||
[ 4.8818e-02, 4.0063e-02, 8.7410e-03],
|
||||
[-1.5066e-02, -5.7328e-04, 2.9785e-03],
|
||||
[-1.7613e-02, -8.1034e-03, 1.3086e-02],
|
||||
[-9.2633e-03, 1.0803e-02, -6.3489e-03],
|
||||
[ 3.0851e-03, 4.7750e-04, 1.2347e-02],
|
||||
[-2.2785e-02, -2.3043e-02, -2.6005e-02],
|
||||
[-2.4787e-02, -1.5389e-02, -2.2104e-02],
|
||||
[-2.3572e-02, 1.0544e-03, 1.2361e-02],
|
||||
[-7.8915e-03, -1.2271e-03, -6.0968e-03],
|
||||
[-1.1478e-02, -1.2543e-03, 6.2679e-03],
|
||||
[-5.4229e-02, 2.6644e-02, 6.3394e-03],
|
||||
[ 4.4216e-03, -7.3338e-03, -1.0464e-02],
|
||||
[-4.5013e-03, 1.6082e-03, 1.4420e-02],
|
||||
[ 1.3673e-02, 8.8877e-03, 4.1253e-03],
|
||||
[-1.0145e-02, 9.0072e-03, 1.5695e-02],
|
||||
[-5.6234e-03, 1.1847e-03, 8.1261e-03],
|
||||
[-3.7171e-03, -5.3538e-03, 1.2590e-03],
|
||||
[ 2.9476e-02, 2.1424e-02, 3.0424e-02],
|
||||
[-3.4925e-02, -2.4340e-02, -2.5316e-02],
|
||||
[-3.4127e-02, -2.2406e-02, -1.0589e-02],
|
||||
[-1.7342e-02, -1.3249e-02, -1.0719e-02],
|
||||
[-2.1478e-03, -8.6051e-03, -2.9878e-03],
|
||||
[ 1.2089e-03, -4.2391e-03, -6.8569e-03],
|
||||
[ 9.0411e-04, -6.6886e-03, -6.7547e-05],
|
||||
[ 1.6048e-02, -1.0057e-02, -2.8929e-02],
|
||||
[ 1.2290e-03, 1.0163e-02, 1.8861e-02],
|
||||
[ 1.7264e-02, 2.7257e-04, 1.3785e-02],
|
||||
[-1.3482e-02, -3.6427e-03, 6.7481e-04],
|
||||
[ 4.6782e-03, -5.2423e-03, 2.4467e-03],
|
||||
[-5.9113e-03, -6.2244e-03, -1.8162e-03],
|
||||
[ 1.5496e-02, 1.4582e-02, 1.9514e-03],
|
||||
[ 7.4958e-03, 1.5886e-03, -8.2305e-03],
|
||||
[ 1.9086e-02, 1.6360e-03, -3.9674e-03],
|
||||
[-5.7021e-03, -2.7307e-03, -4.1066e-03],
|
||||
[ 1.7450e-03, 1.4602e-02, 2.5794e-02],
|
||||
[-8.2788e-04, 2.2902e-03, 4.5161e-03],
|
||||
[ 1.1632e-02, 8.9193e-03, -7.2813e-03],
|
||||
[ 7.5721e-03, 2.6784e-03, 1.1393e-02],
|
||||
[ 5.1939e-03, 3.6903e-03, 1.4049e-02],
|
||||
[-1.8383e-02, -2.2529e-02, -2.4477e-02],
|
||||
[ 5.8842e-04, -5.7874e-03, -1.4770e-02],
|
||||
[-1.6125e-02, -8.6101e-03, -1.4533e-02],
|
||||
[ 2.0540e-02, 2.0729e-02, 6.4338e-03],
|
||||
[ 3.3587e-03, -1.1226e-02, -1.6444e-02],
|
||||
[-1.4742e-03, -1.0489e-02, 1.7097e-03],
|
||||
[ 2.8130e-02, 2.3546e-02, 3.2791e-02],
|
||||
[-1.8532e-02, -1.2842e-02, -8.7756e-03],
|
||||
[-8.0533e-03, -1.0771e-02, -1.7536e-02],
|
||||
[-3.9009e-03, 1.6150e-02, 3.3359e-02],
|
||||
[-7.4554e-03, -1.4154e-02, -6.1910e-03],
|
||||
[ 3.4734e-03, -1.1370e-02, -1.0581e-02],
|
||||
[ 1.1476e-02, 3.9281e-03, 2.8231e-03],
|
||||
[ 7.1639e-03, -1.4741e-03, -3.8066e-03],
|
||||
[ 2.2250e-03, -8.7552e-03, -9.5719e-03],
|
||||
[ 2.4146e-02, 2.1696e-02, 2.8056e-02],
|
||||
[-5.4365e-03, -2.4291e-02, -1.7802e-02],
|
||||
[ 7.4263e-03, 1.0510e-02, 1.2705e-02],
|
||||
[ 6.2669e-03, 6.2658e-03, 1.9211e-02],
|
||||
[ 1.6378e-02, 9.4933e-03, 6.6971e-03],
|
||||
[ 1.7173e-02, 2.3601e-02, 2.3296e-02],
|
||||
[-1.4568e-02, -9.8279e-03, -1.1556e-02],
|
||||
[ 1.4431e-02, 1.4430e-02, 6.6362e-03],
|
||||
[-6.8230e-03, 1.8863e-02, 1.4555e-02],
|
||||
[ 6.1156e-03, 3.4700e-03, -2.6662e-03],
|
||||
[-2.6983e-03, -5.9402e-03, -9.2276e-03],
|
||||
[ 1.0235e-02, 7.4173e-03, -7.6243e-03],
|
||||
[-1.3255e-02, 1.9322e-02, -9.2153e-04],
|
||||
[ 2.4222e-03, -4.8039e-03, -1.5759e-02],
|
||||
[ 2.6244e-02, 2.5951e-02, 2.0249e-02],
|
||||
[ 1.5711e-02, 1.8498e-02, 2.7407e-03],
|
||||
[-2.1714e-03, 4.7214e-03, -2.2443e-02],
|
||||
[-7.4747e-03, 7.4166e-03, 1.4430e-02],
|
||||
[-8.3906e-03, -7.9776e-03, 9.7927e-03],
|
||||
[ 3.8321e-02, 9.6622e-03, -1.9268e-02],
|
||||
[-1.4605e-02, -6.7032e-03, 3.9675e-03]
|
||||
]
|
||||
|
||||
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
|
||||
|
||||
class HunyuanVideo(LatentFormat):
|
||||
latent_channels = 16
|
||||
scale_factor = 0.476986
|
||||
latent_rgb_factors = [
|
||||
[-0.0395, -0.0331, 0.0445],
|
||||
[ 0.0696, 0.0795, 0.0518],
|
||||
[ 0.0135, -0.0945, -0.0282],
|
||||
[ 0.0108, -0.0250, -0.0765],
|
||||
[-0.0209, 0.0032, 0.0224],
|
||||
[-0.0804, -0.0254, -0.0639],
|
||||
[-0.0991, 0.0271, -0.0669],
|
||||
[-0.0646, -0.0422, -0.0400],
|
||||
[-0.0696, -0.0595, -0.0894],
|
||||
[-0.0799, -0.0208, -0.0375],
|
||||
[ 0.1166, 0.1627, 0.0962],
|
||||
[ 0.1165, 0.0432, 0.0407],
|
||||
[-0.2315, -0.1920, -0.1355],
|
||||
[-0.0270, 0.0401, -0.0821],
|
||||
[-0.0616, -0.0997, -0.0727],
|
||||
[ 0.0249, -0.0469, -0.1703]
|
||||
]
|
||||
|
||||
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from typing import Literal, Dict, Any
|
||||
from typing import Literal
|
||||
import math
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
@@ -97,7 +97,7 @@ def get_activation(activation: Literal["elu", "snake", "none"], antialias=False,
|
||||
raise ValueError(f"Unknown activation {activation}")
|
||||
|
||||
if antialias:
|
||||
act = Activation1d(act)
|
||||
act = Activation1d(act) # noqa: F821 Activation1d is not defined
|
||||
|
||||
return act
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ from einops import rearrange
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import math
|
||||
import comfy.ops
|
||||
|
||||
class FourierFeatures(nn.Module):
|
||||
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
|
||||
@@ -18,7 +19,7 @@ class FourierFeatures(nn.Module):
|
||||
[out_features // 2, in_features], dtype=dtype, device=device))
|
||||
|
||||
def forward(self, input):
|
||||
f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device)
|
||||
f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
|
||||
return torch.cat([f.cos(), f.sin()], dim=-1)
|
||||
|
||||
# norms
|
||||
@@ -38,9 +39,9 @@ class LayerNorm(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
beta = self.beta
|
||||
if self.beta is not None:
|
||||
beta = beta.to(dtype=x.dtype, device=x.device)
|
||||
return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta)
|
||||
if beta is not None:
|
||||
beta = comfy.ops.cast_to_input(beta, x)
|
||||
return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)
|
||||
|
||||
class GLU(nn.Module):
|
||||
def __init__(
|
||||
@@ -123,7 +124,9 @@ class RotaryEmbedding(nn.Module):
|
||||
scale_base = 512,
|
||||
interpolation_factor = 1.,
|
||||
base = 10000,
|
||||
base_rescale_factor = 1.
|
||||
base_rescale_factor = 1.,
|
||||
dtype=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||
@@ -131,8 +134,8 @@ class RotaryEmbedding(nn.Module):
|
||||
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
base *= base_rescale_factor ** (dim / (dim - 2))
|
||||
|
||||
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer('inv_freq', inv_freq)
|
||||
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
|
||||
|
||||
assert interpolation_factor >= 1.
|
||||
self.interpolation_factor = interpolation_factor
|
||||
@@ -155,20 +158,19 @@ class RotaryEmbedding(nn.Module):
|
||||
def forward(self, t):
|
||||
# device = self.inv_freq.device
|
||||
device = t.device
|
||||
dtype = t.dtype
|
||||
|
||||
# t = t.to(torch.float32)
|
||||
|
||||
t = t / self.interpolation_factor
|
||||
|
||||
freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device))
|
||||
freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
|
||||
freqs = torch.cat((freqs, freqs), dim = -1)
|
||||
|
||||
if self.scale is None:
|
||||
return freqs, 1.
|
||||
|
||||
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
||||
scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1')
|
||||
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base # noqa: F821 seq_len is not defined
|
||||
scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
|
||||
scale = torch.cat((scale, scale), dim = -1)
|
||||
|
||||
return freqs, scale
|
||||
@@ -226,9 +228,9 @@ class FeedForward(nn.Module):
|
||||
linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
linear_in = nn.Sequential(
|
||||
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
|
||||
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
activation
|
||||
)
|
||||
|
||||
@@ -243,9 +245,9 @@ class FeedForward(nn.Module):
|
||||
|
||||
self.ff = nn.Sequential(
|
||||
linear_in,
|
||||
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
||||
rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
||||
linear_out,
|
||||
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -343,18 +345,13 @@ class Attention(nn.Module):
|
||||
|
||||
# determine masking
|
||||
masks = []
|
||||
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
|
||||
|
||||
if input_mask is not None:
|
||||
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
||||
masks.append(~input_mask)
|
||||
|
||||
# Other masks will be added here later
|
||||
|
||||
if len(masks) > 0:
|
||||
final_attn_mask = ~or_reduce(masks)
|
||||
|
||||
n, device = q.shape[-2], q.device
|
||||
n = q.shape[-2]
|
||||
|
||||
causal = self.causal if causal is None else causal
|
||||
|
||||
@@ -568,7 +565,7 @@ class ContinuousTransformer(nn.Module):
|
||||
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
|
||||
|
||||
if rotary_pos_emb:
|
||||
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
||||
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
|
||||
else:
|
||||
self.rotary_pos_emb = None
|
||||
|
||||
@@ -609,7 +606,9 @@ class ContinuousTransformer(nn.Module):
|
||||
return_info = False,
|
||||
**kwargs
|
||||
):
|
||||
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
|
||||
batch, seq, device = *x.shape[:2], x.device
|
||||
context = kwargs["context"]
|
||||
|
||||
info = {
|
||||
"hidden_states": [],
|
||||
@@ -640,9 +639,19 @@ class ContinuousTransformer(nn.Module):
|
||||
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
||||
x = x + self.pos_emb(x)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
# Iterate over the transformer layers
|
||||
for layer in self.layers:
|
||||
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
||||
for i, layer in enumerate(self.layers):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
|
||||
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
||||
|
||||
if return_info:
|
||||
@@ -871,7 +880,6 @@ class AudioDiffusionTransformer(nn.Module):
|
||||
mask=None,
|
||||
return_info=False,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
**kwargs):
|
||||
return self._forward(
|
||||
x,
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor, einsum
|
||||
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
||||
from torch import Tensor
|
||||
from typing import List, Union
|
||||
from einops import rearrange
|
||||
import math
|
||||
import comfy.ops
|
||||
|
||||
@@ -8,6 +8,8 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
@@ -145,7 +147,6 @@ class DoubleAttention(nn.Module):
|
||||
|
||||
bsz, seqlen1, _ = c.shape
|
||||
bsz, seqlen2, _ = x.shape
|
||||
seqlen = seqlen1 + seqlen2
|
||||
|
||||
cq, ck, cv = self.w1q(c), self.w1k(c), self.w1v(c)
|
||||
cq = cq.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
@@ -406,10 +407,7 @@ class MMDiT(nn.Module):
|
||||
|
||||
def patchify(self, x):
|
||||
B, C, H, W = x.size()
|
||||
pad_h = (self.patch_size - H % self.patch_size) % self.patch_size
|
||||
pad_w = (self.patch_size - W % self.patch_size) % self.patch_size
|
||||
|
||||
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
x = x.view(
|
||||
B,
|
||||
C,
|
||||
@@ -427,7 +425,7 @@ class MMDiT(nn.Module):
|
||||
max_dim = max(h, w)
|
||||
|
||||
cur_dim = self.h_max
|
||||
pos_encoding = self.positional_encoding.reshape(1, cur_dim, cur_dim, -1).to(device=x.device, dtype=x.dtype)
|
||||
pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)
|
||||
|
||||
if max_dim > cur_dim:
|
||||
pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
|
||||
@@ -438,7 +436,8 @@ class MMDiT(nn.Module):
|
||||
pos_encoding = pos_encoding[:,from_h:from_h+h,from_w:from_w+w]
|
||||
return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
|
||||
|
||||
def forward(self, x, timestep, context, **kwargs):
|
||||
def forward(self, x, timestep, context, transformer_options={}, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
# patchify x, add PE
|
||||
b, c, h, w = x.shape
|
||||
|
||||
@@ -455,18 +454,39 @@ class MMDiT(nn.Module):
|
||||
t = timestep
|
||||
|
||||
c = self.cond_seq_linear(c_seq) # B, T_c, D
|
||||
c = torch.cat([self.register_tokens.to(device=c.device, dtype=c.dtype).repeat(c.size(0), 1, 1), c], dim=1)
|
||||
c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)
|
||||
|
||||
global_cond = self.t_embedder(t, x.dtype) # B, D
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
if len(self.double_layers) > 0:
|
||||
for layer in self.double_layers:
|
||||
for i, layer in enumerate(self.double_layers):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = layer(args["txt"],
|
||||
args["img"],
|
||||
args["vec"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
|
||||
c = out["txt"]
|
||||
x = out["img"]
|
||||
else:
|
||||
c, x = layer(c, x, global_cond, **kwargs)
|
||||
|
||||
if len(self.single_layers) > 0:
|
||||
c_len = c.size(1)
|
||||
cx = torch.cat([c, x], dim=1)
|
||||
for layer in self.single_layers:
|
||||
for i, layer in enumerate(self.single_layers):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = layer(args["img"], args["vec"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
|
||||
cx = out["img"]
|
||||
else:
|
||||
cx = layer(cx, global_cond, **kwargs)
|
||||
|
||||
x = cx[:, c_len:]
|
||||
|
||||
@@ -19,14 +19,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
class Linear(torch.nn.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
import comfy.ops
|
||||
|
||||
class OptimizedAttention(nn.Module):
|
||||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
@@ -78,13 +71,13 @@ class GlobalResponseNorm(nn.Module):
|
||||
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
||||
def __init__(self, dim, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x):
|
||||
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
||||
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||
return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x
|
||||
return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
|
||||
@@ -16,7 +16,6 @@
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
from .common import LayerNorm2d_op
|
||||
|
||||
30
comfy/ldm/common_dit.py
Normal file
30
comfy/ldm/common_dit.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
padding_mode = "reflect"
|
||||
|
||||
pad = ()
|
||||
for i in range(img.ndim - 2):
|
||||
pad = (0, (patch_size[i] - img.shape[i + 2] % patch_size[i]) % patch_size[i]) + pad
|
||||
|
||||
return torch.nn.functional.pad(img, pad, mode=padding_mode)
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
if weight is None:
|
||||
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
||||
else:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
if weight is None:
|
||||
return r
|
||||
else:
|
||||
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
203
comfy/ldm/flux/controlnet.py
Normal file
203
comfy/ldm/flux/controlnet.py
Normal file
@@ -0,0 +1,203 @@
|
||||
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
|
||||
#modified to support different types of flux controlnets
|
||||
|
||||
import torch
|
||||
import math
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .layers import (timestep_embedding)
|
||||
|
||||
from .model import Flux
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
class MistolineCondDownsamplBlock(nn.Module):
|
||||
def __init__(self, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.encoder(x)
|
||||
|
||||
class MistolineControlnetBlock(nn.Module):
|
||||
def __init__(self, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear = operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.linear(x))
|
||||
|
||||
|
||||
class ControlNetFlux(Flux):
|
||||
def __init__(self, latent_input=False, num_union_modes=0, mistoline=False, control_latent_channels=None, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
|
||||
self.main_model_double = 19
|
||||
self.main_model_single = 38
|
||||
|
||||
self.mistoline = mistoline
|
||||
# add ControlNet blocks
|
||||
if self.mistoline:
|
||||
control_block = lambda : MistolineControlnetBlock(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
control_block = lambda : operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth):
|
||||
self.controlnet_blocks.append(control_block())
|
||||
|
||||
self.controlnet_single_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth_single_blocks):
|
||||
self.controlnet_single_blocks.append(control_block())
|
||||
|
||||
self.num_union_modes = num_union_modes
|
||||
self.controlnet_mode_embedder = None
|
||||
if self.num_union_modes > 0:
|
||||
self.controlnet_mode_embedder = operations.Embedding(self.num_union_modes, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.latent_input = latent_input
|
||||
if control_latent_channels is None:
|
||||
control_latent_channels = self.in_channels
|
||||
else:
|
||||
control_latent_channels *= 2 * 2 #patch size
|
||||
|
||||
self.pos_embed_input = operations.Linear(control_latent_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
if not self.latent_input:
|
||||
if self.mistoline:
|
||||
self.input_cond_block = MistolineCondDownsamplBlock(dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.input_hint_block = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
controlnet_cond: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control_type: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
controlnet_cond = self.pos_embed_input(controlnet_cond)
|
||||
img = img + controlnet_cond
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
if self.controlnet_mode_embedder is not None and len(control_type) > 0:
|
||||
control_cond = self.controlnet_mode_embedder(torch.tensor(control_type, device=img.device), out_dtype=img.dtype).unsqueeze(0).repeat((txt.shape[0], 1, 1))
|
||||
txt = torch.cat([control_cond, txt], dim=1)
|
||||
txt_ids = torch.cat([txt_ids[:,:1], txt_ids], dim=1)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
controlnet_double = ()
|
||||
|
||||
for i in range(len(self.double_blocks)):
|
||||
img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
|
||||
controlnet_double = controlnet_double + (self.controlnet_blocks[i](img),)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
controlnet_single = ()
|
||||
|
||||
for i in range(len(self.single_blocks)):
|
||||
img = self.single_blocks[i](img, vec=vec, pe=pe)
|
||||
controlnet_single = controlnet_single + (self.controlnet_single_blocks[i](img[:, txt.shape[1] :, ...]),)
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(controlnet_double))
|
||||
if self.latent_input:
|
||||
out_input = ()
|
||||
for x in controlnet_double:
|
||||
out_input += (x,) * repeat
|
||||
else:
|
||||
out_input = (controlnet_double * repeat)
|
||||
|
||||
out = {"input": out_input[:self.main_model_double]}
|
||||
if len(controlnet_single) > 0:
|
||||
repeat = math.ceil(self.main_model_single / len(controlnet_single))
|
||||
out_output = ()
|
||||
if self.latent_input:
|
||||
for x in controlnet_single:
|
||||
out_output += (x,) * repeat
|
||||
else:
|
||||
out_output = (controlnet_single * repeat)
|
||||
out["output"] = out_output[:self.main_model_single]
|
||||
return out
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
patch_size = 2
|
||||
if self.latent_input:
|
||||
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
|
||||
elif self.mistoline:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_cond_block(hint)
|
||||
else:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_hint_block(hint)
|
||||
|
||||
hint = rearrange(hint, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance, control_type=kwargs.get("control_type", []))
|
||||
260
comfy/ldm/flux/layers.py
Normal file
260
comfy/ldm/flux/layers.py
Normal file
@@ -0,0 +1,260 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .math import attention, rope
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: Tensor) -> Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
|
||||
return emb.unsqueeze(1)
|
||||
|
||||
|
||||
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
t = time_factor * t
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
|
||||
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(t)
|
||||
return embedding
|
||||
|
||||
class MLPEmbedder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.silu = nn.SiLU()
|
||||
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.out_layer(self.silu(self.in_layer(x)))
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||
q = self.query_norm(q)
|
||||
k = self.key_norm(k)
|
||||
return q.to(v), k.to(v)
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModulationOut:
|
||||
shift: Tensor
|
||||
scale: Tensor
|
||||
gate: Tensor
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.is_double = double
|
||||
self.multiplier = 6 if double else 3
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
ModulationOut(*out[:3]),
|
||||
ModulationOut(*out[3:]) if self.is_double else None,
|
||||
)
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
if self.flipped_img_txt:
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((img_q, txt_q), dim=2),
|
||||
torch.cat((img_k, txt_k), dim=2),
|
||||
torch.cat((img_v, txt_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
37
comfy/ldm/flux/math.py
Normal file
37
comfy/ldm/flux/math.py
Normal file
@@ -0,0 +1,37 @@
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
|
||||
q, k = apply_rope(q, k, pe)
|
||||
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
|
||||
return x
|
||||
|
||||
|
||||
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
assert dim % 2 == 0
|
||||
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu():
|
||||
device = torch.device("cpu")
|
||||
else:
|
||||
device = pos.device
|
||||
|
||||
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device)
|
||||
omega = 1.0 / (theta**scale)
|
||||
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega)
|
||||
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
||||
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
||||
return out.to(dtype=torch.float32, device=pos.device)
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
|
||||
205
comfy/ldm/flux/model.py
Normal file
205
comfy/ldm/flux/model.py
Normal file
@@ -0,0 +1,205 @@
|
||||
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
EmbedND,
|
||||
LastLayer,
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
@dataclass
|
||||
class FluxParams:
|
||||
in_channels: int
|
||||
out_channels: int
|
||||
vec_in_dim: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
patch_size: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = FluxParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels * params.patch_size * params.patch_size
|
||||
self.out_channels = params.out_channels * params.patch_size * params.patch_size
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control = None,
|
||||
transformer_options={},
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
||||
if self.params.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"],
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img,
|
||||
txt=txt,
|
||||
vec=vec,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
25
comfy/ldm/flux/redux.py
Normal file
25
comfy/ldm/flux/redux.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
|
||||
ops = comfy.ops.manual_cast
|
||||
|
||||
class ReduxImageEncoder(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
redux_dim: int = 1152,
|
||||
txt_in_features: int = 4096,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.redux_dim = redux_dim
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
|
||||
self.redux_up = ops.Linear(redux_dim, txt_in_features * 3, dtype=dtype)
|
||||
self.redux_down = ops.Linear(txt_in_features * 3, txt_in_features, dtype=dtype)
|
||||
|
||||
def forward(self, sigclip_embeds) -> torch.Tensor:
|
||||
projected_x = self.redux_down(torch.nn.functional.silu(self.redux_up(sigclip_embeds)))
|
||||
return projected_x
|
||||
557
comfy/ldm/genmo/joint_model/asymm_models_joint.py
Normal file
557
comfy/ldm/genmo/joint_model/asymm_models_joint.py
Normal file
@@ -0,0 +1,557 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
# from flash_attn import flash_attn_varlen_qkvpacked_func
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
from .layers import (
|
||||
FeedForward,
|
||||
PatchEmbed,
|
||||
RMSNorm,
|
||||
TimestepEmbedder,
|
||||
)
|
||||
|
||||
from .rope_mixed import (
|
||||
compute_mixed_rotation,
|
||||
create_position_matrix,
|
||||
)
|
||||
from .temporal_rope import apply_rotary_emb_qk_real
|
||||
from .utils import (
|
||||
AttentionPool,
|
||||
modulate,
|
||||
)
|
||||
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.ops
|
||||
|
||||
|
||||
def modulated_rmsnorm(x, scale, eps=1e-6):
|
||||
# Normalize and modulate
|
||||
x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps)
|
||||
x_modulated = x_normed * (1 + scale.unsqueeze(1))
|
||||
|
||||
return x_modulated
|
||||
|
||||
|
||||
def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6):
|
||||
# Apply tanh to gate
|
||||
tanh_gate = torch.tanh(gate).unsqueeze(1)
|
||||
|
||||
# Normalize and apply gated scaling
|
||||
x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate
|
||||
|
||||
# Apply residual connection
|
||||
output = x + x_normed
|
||||
|
||||
return output
|
||||
|
||||
class AsymmetricAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_x: int,
|
||||
dim_y: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = True,
|
||||
qk_norm: bool = False,
|
||||
attn_drop: float = 0.0,
|
||||
update_y: bool = True,
|
||||
out_bias: bool = True,
|
||||
attend_to_padding: bool = False,
|
||||
softmax_scale: Optional[float] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim_x = dim_x
|
||||
self.dim_y = dim_y
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim_x // num_heads
|
||||
self.attn_drop = attn_drop
|
||||
self.update_y = update_y
|
||||
self.attend_to_padding = attend_to_padding
|
||||
self.softmax_scale = softmax_scale
|
||||
if dim_x % num_heads != 0:
|
||||
raise ValueError(
|
||||
f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
|
||||
)
|
||||
|
||||
# Input layers.
|
||||
self.qkv_bias = qkv_bias
|
||||
self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
|
||||
# Project text features to match visual features (dim_y -> dim_x)
|
||||
self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
|
||||
|
||||
# Query and key normalization for stability.
|
||||
assert qk_norm
|
||||
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
|
||||
# Output layers. y features go back down from dim_x -> dim_y.
|
||||
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
|
||||
self.proj_y = (
|
||||
operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype)
|
||||
if update_y
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor, # (B, N, dim_x)
|
||||
y: torch.Tensor, # (B, L, dim_y)
|
||||
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
|
||||
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
|
||||
crop_y,
|
||||
**rope_rotation,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
rope_cos = rope_rotation.get("rope_cos")
|
||||
rope_sin = rope_rotation.get("rope_sin")
|
||||
# Pre-norm for visual features
|
||||
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
|
||||
|
||||
# Process visual features
|
||||
# qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
|
||||
# assert qkv_x.dtype == torch.bfloat16
|
||||
# qkv_x = all_to_all_collect_tokens(
|
||||
# qkv_x, self.num_heads
|
||||
# ) # (3, B, N, local_h, head_dim)
|
||||
|
||||
# Process text features
|
||||
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
|
||||
q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
||||
|
||||
q_y = self.q_norm_y(q_y)
|
||||
k_y = self.k_norm_y(k_y)
|
||||
|
||||
# Split qkv_x into q, k, v
|
||||
q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
||||
q_x = self.q_norm_x(q_x)
|
||||
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
|
||||
k_x = self.k_norm_x(k_x)
|
||||
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
|
||||
|
||||
q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||||
k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||||
v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||||
|
||||
xy = optimized_attention(q,
|
||||
k,
|
||||
v, self.num_heads, skip_reshape=True)
|
||||
|
||||
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
|
||||
x = self.proj_x(x)
|
||||
o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype)
|
||||
o[:, :y.shape[1]] = y
|
||||
|
||||
y = self.proj_y(o)
|
||||
# print("ox", x)
|
||||
# print("oy", y)
|
||||
return x, y
|
||||
|
||||
|
||||
class AsymmetricJointBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size_x: int,
|
||||
hidden_size_y: int,
|
||||
num_heads: int,
|
||||
*,
|
||||
mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens.
|
||||
mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens.
|
||||
update_y: bool = True, # Whether to update text tokens in this block.
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.update_y = update_y
|
||||
self.hidden_size_x = hidden_size_x
|
||||
self.hidden_size_y = hidden_size_y
|
||||
self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype)
|
||||
if self.update_y:
|
||||
self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype)
|
||||
else:
|
||||
self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype)
|
||||
|
||||
# Self-attention:
|
||||
self.attn = AsymmetricAttention(
|
||||
hidden_size_x,
|
||||
hidden_size_y,
|
||||
num_heads=num_heads,
|
||||
update_y=update_y,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
**block_kwargs,
|
||||
)
|
||||
|
||||
# MLP.
|
||||
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
|
||||
assert mlp_hidden_dim_x == int(1536 * 8)
|
||||
self.mlp_x = FeedForward(
|
||||
in_features=hidden_size_x,
|
||||
hidden_size=mlp_hidden_dim_x,
|
||||
multiple_of=256,
|
||||
ffn_dim_multiplier=None,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
# MLP for text not needed in last block.
|
||||
if self.update_y:
|
||||
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
|
||||
self.mlp_y = FeedForward(
|
||||
in_features=hidden_size_y,
|
||||
hidden_size=mlp_hidden_dim_y,
|
||||
multiple_of=256,
|
||||
ffn_dim_multiplier=None,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
c: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
**attn_kwargs,
|
||||
):
|
||||
"""Forward pass of a block.
|
||||
|
||||
Args:
|
||||
x: (B, N, dim) tensor of visual tokens
|
||||
c: (B, dim) tensor of conditioned features
|
||||
y: (B, L, dim) tensor of text tokens
|
||||
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
|
||||
|
||||
Returns:
|
||||
x: (B, N, dim) tensor of visual tokens after block
|
||||
y: (B, L, dim) tensor of text tokens after block
|
||||
"""
|
||||
N = x.size(1)
|
||||
|
||||
c = F.silu(c)
|
||||
mod_x = self.mod_x(c)
|
||||
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
|
||||
|
||||
mod_y = self.mod_y(c)
|
||||
if self.update_y:
|
||||
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
|
||||
else:
|
||||
scale_msa_y = mod_y
|
||||
|
||||
# Self-attention block.
|
||||
x_attn, y_attn = self.attn(
|
||||
x,
|
||||
y,
|
||||
scale_x=scale_msa_x,
|
||||
scale_y=scale_msa_y,
|
||||
**attn_kwargs,
|
||||
)
|
||||
|
||||
assert x_attn.size(1) == N
|
||||
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
|
||||
if self.update_y:
|
||||
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
|
||||
|
||||
# MLP block.
|
||||
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
|
||||
if self.update_y:
|
||||
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)
|
||||
|
||||
return x, y
|
||||
|
||||
def ff_block_x(self, x, scale_x, gate_x):
|
||||
x_mod = modulated_rmsnorm(x, scale_x)
|
||||
x_res = self.mlp_x(x_mod)
|
||||
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm
|
||||
return x
|
||||
|
||||
def ff_block_y(self, y, scale_y, gate_y):
|
||||
y_mod = modulated_rmsnorm(y, scale_y)
|
||||
y_res = self.mlp_y(y_mod)
|
||||
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm
|
||||
return y
|
||||
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of DiT.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size,
|
||||
patch_size,
|
||||
out_channels,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(
|
||||
hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype
|
||||
)
|
||||
self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype)
|
||||
self.linear = operations.Linear(
|
||||
hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
c = F.silu(c)
|
||||
shift, scale = self.mod(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class AsymmDiTJoint(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
|
||||
Ingests text embeddings instead of a label.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size_x=1152,
|
||||
hidden_size_y=1152,
|
||||
depth=48,
|
||||
num_heads=16,
|
||||
mlp_ratio_x=8.0,
|
||||
mlp_ratio_y=4.0,
|
||||
use_t5: bool = False,
|
||||
t5_feat_dim: int = 4096,
|
||||
t5_token_length: int = 256,
|
||||
learn_sigma=True,
|
||||
patch_embed_bias: bool = True,
|
||||
timestep_mlp_bias: bool = True,
|
||||
attend_to_padding: bool = False,
|
||||
timestep_scale: Optional[float] = None,
|
||||
use_extended_posenc: bool = False,
|
||||
posenc_preserve_area: bool = False,
|
||||
rope_theta: float = 10000.0,
|
||||
image_model=None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.dtype = dtype
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size_x = hidden_size_x
|
||||
self.hidden_size_y = hidden_size_y
|
||||
self.head_dim = (
|
||||
hidden_size_x // num_heads
|
||||
) # Head dimension and count is determined by visual.
|
||||
self.attend_to_padding = attend_to_padding
|
||||
self.use_extended_posenc = use_extended_posenc
|
||||
self.posenc_preserve_area = posenc_preserve_area
|
||||
self.use_t5 = use_t5
|
||||
self.t5_token_length = t5_token_length
|
||||
self.t5_feat_dim = t5_feat_dim
|
||||
self.rope_theta = (
|
||||
rope_theta # Scaling factor for frequency computation for temporal RoPE.
|
||||
)
|
||||
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size_x,
|
||||
bias=patch_embed_bias,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
# Conditionings
|
||||
# Timestep
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
if self.use_t5:
|
||||
# Caption Pooling (T5)
|
||||
self.t5_y_embedder = AttentionPool(
|
||||
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# Dense Embedding Projection (T5)
|
||||
self.t5_yproj = operations.Linear(
|
||||
t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device
|
||||
)
|
||||
|
||||
# Initialize pos_frequencies as an empty parameter.
|
||||
self.pos_frequencies = nn.Parameter(
|
||||
torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
assert not self.attend_to_padding
|
||||
|
||||
# for depth 48:
|
||||
# b = 0: AsymmetricJointBlock, update_y=True
|
||||
# b = 1: AsymmetricJointBlock, update_y=True
|
||||
# ...
|
||||
# b = 46: AsymmetricJointBlock, update_y=True
|
||||
# b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
|
||||
blocks = []
|
||||
for b in range(depth):
|
||||
# Joint multi-modal block
|
||||
update_y = b < depth - 1
|
||||
block = AsymmetricJointBlock(
|
||||
hidden_size_x,
|
||||
hidden_size_y,
|
||||
num_heads,
|
||||
mlp_ratio_x=mlp_ratio_x,
|
||||
mlp_ratio_y=mlp_ratio_y,
|
||||
update_y=update_y,
|
||||
attend_to_padding=attend_to_padding,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
**block_kwargs,
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
|
||||
self.final_layer = FinalLayer(
|
||||
hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x: (B, C=12, T, H, W) tensor of visual tokens
|
||||
|
||||
Returns:
|
||||
x: (B, C=3072, N) tensor of visual tokens with positional embedding.
|
||||
"""
|
||||
return self.x_embedder(x) # Convert BcTHW to BCN
|
||||
|
||||
def prepare(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sigma: torch.Tensor,
|
||||
t5_feat: torch.Tensor,
|
||||
t5_mask: torch.Tensor,
|
||||
):
|
||||
"""Prepare input and conditioning embeddings."""
|
||||
# Visual patch embeddings with positional encoding.
|
||||
T, H, W = x.shape[-3:]
|
||||
pH, pW = H // self.patch_size, W // self.patch_size
|
||||
x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2
|
||||
assert x.ndim == 3
|
||||
|
||||
pH, pW = H // self.patch_size, W // self.patch_size
|
||||
N = T * pH * pW
|
||||
assert x.size(1) == N
|
||||
pos = create_position_matrix(
|
||||
T, pH=pH, pW=pW, device=x.device, dtype=torch.float32
|
||||
) # (N, 3)
|
||||
rope_cos, rope_sin = compute_mixed_rotation(
|
||||
freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos
|
||||
) # Each are (N, num_heads, dim // 2)
|
||||
|
||||
c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype) # (B, D)
|
||||
|
||||
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
|
||||
|
||||
c = c_t + t5_y_pool
|
||||
|
||||
y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D)
|
||||
|
||||
return x, c, y_feat, rope_cos, rope_sin
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timestep: torch.Tensor,
|
||||
context: List[torch.Tensor],
|
||||
attention_mask: List[torch.Tensor],
|
||||
num_tokens=256,
|
||||
packed_indices: Dict[str, torch.Tensor] = None,
|
||||
rope_cos: torch.Tensor = None,
|
||||
rope_sin: torch.Tensor = None,
|
||||
control=None, transformer_options={}, **kwargs
|
||||
):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
y_feat = context
|
||||
y_mask = attention_mask
|
||||
sigma = timestep
|
||||
"""Forward pass of DiT.
|
||||
|
||||
Args:
|
||||
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
sigma: (B,) tensor of noise standard deviations
|
||||
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
|
||||
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
|
||||
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
|
||||
"""
|
||||
B, _, T, H, W = x.shape
|
||||
|
||||
x, c, y_feat, rope_cos, rope_sin = self.prepare(
|
||||
x, sigma, y_feat, y_mask
|
||||
)
|
||||
del y_mask
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(
|
||||
args["img"],
|
||||
args["vec"],
|
||||
args["txt"],
|
||||
rope_cos=args["rope_cos"],
|
||||
rope_sin=args["rope_sin"],
|
||||
crop_y=args["num_tokens"]
|
||||
)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap})
|
||||
y_feat = out["txt"]
|
||||
x = out["img"]
|
||||
else:
|
||||
x, y_feat = block(
|
||||
x,
|
||||
c,
|
||||
y_feat,
|
||||
rope_cos=rope_cos,
|
||||
rope_sin=rope_sin,
|
||||
crop_y=num_tokens,
|
||||
) # (B, M, D), (B, L, D)
|
||||
del y_feat # Final layers don't use dense text features.
|
||||
|
||||
x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels)
|
||||
x = rearrange(
|
||||
x,
|
||||
"B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
|
||||
T=T,
|
||||
hp=H // self.patch_size,
|
||||
wp=W // self.patch_size,
|
||||
p1=self.patch_size,
|
||||
p2=self.patch_size,
|
||||
c=self.out_channels,
|
||||
)
|
||||
|
||||
return -x
|
||||
164
comfy/ldm/genmo/joint_model/layers.py
Normal file
164
comfy/ldm/genmo/joint_model/layers.py
Normal file
@@ -0,0 +1,164 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
import collections.abc
|
||||
import math
|
||||
from itertools import repeat
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
# From PyTorch internals
|
||||
def _ntuple(n):
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
||||
return tuple(x)
|
||||
return tuple(repeat(x, n))
|
||||
|
||||
return parse
|
||||
|
||||
|
||||
to_2tuple = _ntuple(2)
|
||||
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
frequency_embedding_size: int = 256,
|
||||
*,
|
||||
bias: bool = True,
|
||||
timestep_scale: Optional[float] = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
operations.Linear(frequency_embedding_size, hidden_size, bias=bias, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, hidden_size, bias=bias, dtype=dtype, device=device),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
self.timestep_scale = timestep_scale
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
half = dim // 2
|
||||
freqs = torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
||||
freqs.mul_(-math.log(max_period) / half).exp_()
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
return embedding
|
||||
|
||||
def forward(self, t, out_dtype):
|
||||
if self.timestep_scale is not None:
|
||||
t = t * self.timestep_scale
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=out_dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_size: int,
|
||||
multiple_of: int,
|
||||
ffn_dim_multiplier: Optional[float],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
# keep parameter count and computation constant compared to standard FFN
|
||||
hidden_size = int(2 * hidden_size / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_size = int(ffn_dim_multiplier * hidden_size)
|
||||
hidden_size = multiple_of * ((hidden_size + multiple_of - 1) // multiple_of)
|
||||
|
||||
self.hidden_dim = hidden_size
|
||||
self.w1 = operations.Linear(in_features, 2 * hidden_size, bias=False, device=device, dtype=dtype)
|
||||
self.w2 = operations.Linear(hidden_size, in_features, bias=False, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.w1(x).chunk(2, dim=-1)
|
||||
x = self.w2(F.silu(x) * gate)
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
norm_layer: Optional[Callable] = None,
|
||||
flatten: bool = True,
|
||||
bias: bool = True,
|
||||
dynamic_img_pad: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = to_2tuple(patch_size)
|
||||
self.flatten = flatten
|
||||
self.dynamic_img_pad = dynamic_img_pad
|
||||
|
||||
self.proj = operations.Conv2d(
|
||||
in_chans,
|
||||
embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
assert norm_layer is None
|
||||
self.norm = (
|
||||
norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
B, _C, T, H, W = x.shape
|
||||
if not self.dynamic_img_pad:
|
||||
assert H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
|
||||
assert W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
|
||||
else:
|
||||
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
||||
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
||||
x = F.pad(x, (0, pad_w, 0, pad_h))
|
||||
|
||||
x = rearrange(x, "B C T H W -> (B T) C H W", B=B, T=T)
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode='circular')
|
||||
x = self.proj(x)
|
||||
|
||||
# Flatten temporal and spatial dimensions.
|
||||
if not self.flatten:
|
||||
raise NotImplementedError("Must flatten output.")
|
||||
x = rearrange(x, "(B T) C H W -> B (T H W) C", B=B, T=T)
|
||||
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
def forward(self, x):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
88
comfy/ldm/genmo/joint_model/rope_mixed.py
Normal file
88
comfy/ldm/genmo/joint_model/rope_mixed.py
Normal file
@@ -0,0 +1,88 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
|
||||
# import functools
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def centers(start: float, stop, num, dtype=None, device=None):
|
||||
"""linspace through bin centers.
|
||||
|
||||
Args:
|
||||
start (float): Start of the range.
|
||||
stop (float): End of the range.
|
||||
num (int): Number of points.
|
||||
dtype (torch.dtype): Data type of the points.
|
||||
device (torch.device): Device of the points.
|
||||
|
||||
Returns:
|
||||
centers (Tensor): Centers of the bins. Shape: (num,).
|
||||
"""
|
||||
edges = torch.linspace(start, stop, num + 1, dtype=dtype, device=device)
|
||||
return (edges[:-1] + edges[1:]) / 2
|
||||
|
||||
|
||||
# @functools.lru_cache(maxsize=1)
|
||||
def create_position_matrix(
|
||||
T: int,
|
||||
pH: int,
|
||||
pW: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
*,
|
||||
target_area: float = 36864,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
T: int - Temporal dimension
|
||||
pH: int - Height dimension after patchify
|
||||
pW: int - Width dimension after patchify
|
||||
|
||||
Returns:
|
||||
pos: [T * pH * pW, 3] - position matrix
|
||||
"""
|
||||
# Create 1D tensors for each dimension
|
||||
t = torch.arange(T, dtype=dtype)
|
||||
|
||||
# Positionally interpolate to area 36864.
|
||||
# (3072x3072 frame with 16x16 patches = 192x192 latents).
|
||||
# This automatically scales rope positions when the resolution changes.
|
||||
# We use a large target area so the model is more sensitive
|
||||
# to changes in the learned pos_frequencies matrix.
|
||||
scale = math.sqrt(target_area / (pW * pH))
|
||||
w = centers(-pW * scale / 2, pW * scale / 2, pW)
|
||||
h = centers(-pH * scale / 2, pH * scale / 2, pH)
|
||||
|
||||
# Use meshgrid to create 3D grids
|
||||
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
|
||||
|
||||
# Stack and reshape the grids.
|
||||
pos = torch.stack([grid_t, grid_h, grid_w], dim=-1) # [T, pH, pW, 3]
|
||||
pos = pos.view(-1, 3) # [T * pH * pW, 3]
|
||||
pos = pos.to(dtype=dtype, device=device)
|
||||
|
||||
return pos
|
||||
|
||||
|
||||
def compute_mixed_rotation(
|
||||
freqs: torch.Tensor,
|
||||
pos: torch.Tensor,
|
||||
):
|
||||
"""
|
||||
Project each 3-dim position into per-head, per-head-dim 1D frequencies.
|
||||
|
||||
Args:
|
||||
freqs: [3, num_heads, num_freqs] - learned rotation frequency (for t, row, col) for each head position
|
||||
pos: [N, 3] - position of each token
|
||||
num_heads: int
|
||||
|
||||
Returns:
|
||||
freqs_cos: [N, num_heads, num_freqs] - cosine components
|
||||
freqs_sin: [N, num_heads, num_freqs] - sine components
|
||||
"""
|
||||
assert freqs.ndim == 3
|
||||
freqs_sum = torch.einsum("Nd,dhf->Nhf", pos.to(freqs), freqs)
|
||||
freqs_cos = torch.cos(freqs_sum)
|
||||
freqs_sin = torch.sin(freqs_sum)
|
||||
return freqs_cos, freqs_sin
|
||||
34
comfy/ldm/genmo/joint_model/temporal_rope.py
Normal file
34
comfy/ldm/genmo/joint_model/temporal_rope.py
Normal file
@@ -0,0 +1,34 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
|
||||
# Based on Llama3 Implementation.
|
||||
import torch
|
||||
|
||||
|
||||
def apply_rotary_emb_qk_real(
|
||||
xqk: torch.Tensor,
|
||||
freqs_cos: torch.Tensor,
|
||||
freqs_sin: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor without complex numbers.
|
||||
|
||||
Args:
|
||||
xqk (torch.Tensor): Query and/or Key tensors to apply rotary embeddings. Shape: (B, S, *, num_heads, D)
|
||||
Can be either just query or just key, or both stacked along some batch or * dim.
|
||||
freqs_cos (torch.Tensor): Precomputed cosine frequency tensor.
|
||||
freqs_sin (torch.Tensor): Precomputed sine frequency tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The input tensor with rotary embeddings applied.
|
||||
"""
|
||||
# Split the last dimension into even and odd parts
|
||||
xqk_even = xqk[..., 0::2]
|
||||
xqk_odd = xqk[..., 1::2]
|
||||
|
||||
# Apply rotation
|
||||
cos_part = (xqk_even * freqs_cos - xqk_odd * freqs_sin).type_as(xqk)
|
||||
sin_part = (xqk_even * freqs_sin + xqk_odd * freqs_cos).type_as(xqk)
|
||||
|
||||
# Interleave the results back into the original shape
|
||||
out = torch.stack([cos_part, sin_part], dim=-1).flatten(-2)
|
||||
return out
|
||||
102
comfy/ldm/genmo/joint_model/utils.py
Normal file
102
comfy/ldm/genmo/joint_model/utils.py
Normal file
@@ -0,0 +1,102 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
|
||||
"""
|
||||
Pool tokens in x using mask.
|
||||
|
||||
NOTE: We assume x does not require gradients.
|
||||
|
||||
Args:
|
||||
x: (B, L, D) tensor of tokens.
|
||||
mask: (B, L) boolean tensor indicating which tokens are not padding.
|
||||
|
||||
Returns:
|
||||
pooled: (B, D) tensor of pooled tokens.
|
||||
"""
|
||||
assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
|
||||
assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
|
||||
mask = mask[:, :, None].to(dtype=x.dtype)
|
||||
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
|
||||
pooled = (x * mask).sum(dim=1, keepdim=keepdim)
|
||||
return pooled
|
||||
|
||||
|
||||
class AttentionPool(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
output_dim: int = None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
spatial_dim (int): Number of tokens in sequence length.
|
||||
embed_dim (int): Dimensionality of input tokens.
|
||||
num_heads (int): Number of attention heads.
|
||||
output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.to_kv = operations.Linear(embed_dim, 2 * embed_dim, device=device, dtype=dtype)
|
||||
self.to_q = operations.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
|
||||
self.to_out = operations.Linear(embed_dim, output_dim or embed_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x, mask):
|
||||
"""
|
||||
Args:
|
||||
x (torch.Tensor): (B, L, D) tensor of input tokens.
|
||||
mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.
|
||||
|
||||
NOTE: We assume x does not require gradients.
|
||||
|
||||
Returns:
|
||||
x (torch.Tensor): (B, D) tensor of pooled tokens.
|
||||
"""
|
||||
D = x.size(2)
|
||||
|
||||
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
|
||||
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
|
||||
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
|
||||
|
||||
# Average non-padding token features. These will be used as the query.
|
||||
x_pool = pool_tokens(x, mask, keepdim=True) # (B, 1, D)
|
||||
|
||||
# Concat pooled features to input sequence.
|
||||
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
|
||||
|
||||
# Compute queries, keys, values. Only the mean token is used to create a query.
|
||||
kv = self.to_kv(x) # (B, L+1, 2 * D)
|
||||
q = self.to_q(x[:, 0]) # (B, D)
|
||||
|
||||
# Extract heads.
|
||||
head_dim = D // self.num_heads
|
||||
kv = kv.unflatten(2, (2, self.num_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
|
||||
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
|
||||
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
|
||||
q = q.unflatten(1, (self.num_heads, head_dim)) # (B, H, head_dim)
|
||||
q = q.unsqueeze(2) # (B, H, 1, head_dim)
|
||||
|
||||
# Compute attention.
|
||||
x = F.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=attn_mask, dropout_p=0.0
|
||||
) # (B, H, 1, head_dim)
|
||||
|
||||
# Concatenate heads and run output.
|
||||
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
|
||||
x = self.to_out(x)
|
||||
return x
|
||||
711
comfy/ldm/genmo/vae/model.py
Normal file
711
comfy/ldm/genmo/vae/model.py
Normal file
@@ -0,0 +1,711 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from functools import partial
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
# import mochi_preview.dit.joint_model.context_parallel as cp
|
||||
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
|
||||
|
||||
|
||||
def cast_tuple(t, length=1):
|
||||
return t if isinstance(t, tuple) else ((t,) * length)
|
||||
|
||||
|
||||
class GroupNormSpatial(ops.GroupNorm):
|
||||
"""
|
||||
GroupNorm applied per-frame.
|
||||
"""
|
||||
|
||||
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
|
||||
B, C, T, H, W = x.shape
|
||||
x = rearrange(x, "B C T H W -> (B T) C H W")
|
||||
# Run group norm in chunks.
|
||||
output = torch.empty_like(x)
|
||||
for b in range(0, B * T, chunk_size):
|
||||
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
|
||||
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
|
||||
|
||||
class PConv3d(ops.Conv3d):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size: Union[int, Tuple[int, int, int]],
|
||||
stride: Union[int, Tuple[int, int, int]],
|
||||
causal: bool = True,
|
||||
context_parallel: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
self.causal = causal
|
||||
self.context_parallel = context_parallel
|
||||
kernel_size = cast_tuple(kernel_size, 3)
|
||||
stride = cast_tuple(stride, 3)
|
||||
height_pad = (kernel_size[1] - 1) // 2
|
||||
width_pad = (kernel_size[2] - 1) // 2
|
||||
|
||||
super().__init__(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=(1, 1, 1),
|
||||
padding=(0, height_pad, width_pad),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# Compute padding amounts.
|
||||
context_size = self.kernel_size[0] - 1
|
||||
if self.causal:
|
||||
pad_front = context_size
|
||||
pad_back = 0
|
||||
else:
|
||||
pad_front = context_size // 2
|
||||
pad_back = context_size - pad_front
|
||||
|
||||
# Apply padding.
|
||||
assert self.padding_mode == "replicate" # DEBUG
|
||||
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
|
||||
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class Conv1x1(ops.Linear):
|
||||
"""*1x1 Conv implemented with a linear layer."""
|
||||
|
||||
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
|
||||
super().__init__(in_features, out_features, *args, **kwargs)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, *] or [B, *, C].
|
||||
|
||||
Returns:
|
||||
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
|
||||
"""
|
||||
x = x.movedim(1, -1)
|
||||
x = super().forward(x)
|
||||
x = x.movedim(-1, 1)
|
||||
return x
|
||||
|
||||
|
||||
class DepthToSpaceTime(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
temporal_expansion: int,
|
||||
spatial_expansion: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.temporal_expansion = temporal_expansion
|
||||
self.spatial_expansion = spatial_expansion
|
||||
|
||||
# When printed, this module should show the temporal and spatial expansion factors.
|
||||
def extra_repr(self):
|
||||
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, T, H, W].
|
||||
|
||||
Returns:
|
||||
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
|
||||
"""
|
||||
x = rearrange(
|
||||
x,
|
||||
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
|
||||
st=self.temporal_expansion,
|
||||
sh=self.spatial_expansion,
|
||||
sw=self.spatial_expansion,
|
||||
)
|
||||
|
||||
# cp_rank, _ = cp.get_cp_rank_size()
|
||||
if self.temporal_expansion > 1: # and cp_rank == 0:
|
||||
# Drop the first self.temporal_expansion - 1 frames.
|
||||
# This is because we always want the 3x3x3 conv filter to only apply
|
||||
# to the first frame, and the first frame doesn't need to be repeated.
|
||||
assert all(x.shape)
|
||||
x = x[:, :, self.temporal_expansion - 1 :]
|
||||
assert all(x.shape)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def norm_fn(
|
||||
in_channels: int,
|
||||
affine: bool = True,
|
||||
):
|
||||
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""Residual block that preserves the spatial dimensions."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
*,
|
||||
affine: bool = True,
|
||||
attn_block: Optional[nn.Module] = None,
|
||||
causal: bool = True,
|
||||
prune_bottleneck: bool = False,
|
||||
padding_mode: str,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
|
||||
assert causal
|
||||
self.stack = nn.Sequential(
|
||||
norm_fn(channels, affine=affine),
|
||||
nn.SiLU(inplace=True),
|
||||
PConv3d(
|
||||
in_channels=channels,
|
||||
out_channels=channels // 2 if prune_bottleneck else channels,
|
||||
kernel_size=(3, 3, 3),
|
||||
stride=(1, 1, 1),
|
||||
padding_mode=padding_mode,
|
||||
bias=bias,
|
||||
causal=causal,
|
||||
),
|
||||
norm_fn(channels, affine=affine),
|
||||
nn.SiLU(inplace=True),
|
||||
PConv3d(
|
||||
in_channels=channels // 2 if prune_bottleneck else channels,
|
||||
out_channels=channels,
|
||||
kernel_size=(3, 3, 3),
|
||||
stride=(1, 1, 1),
|
||||
padding_mode=padding_mode,
|
||||
bias=bias,
|
||||
causal=causal,
|
||||
),
|
||||
)
|
||||
|
||||
self.attn_block = attn_block if attn_block else nn.Identity()
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, T, H, W].
|
||||
"""
|
||||
residual = x
|
||||
x = self.stack(x)
|
||||
x = x + residual
|
||||
del residual
|
||||
|
||||
return self.attn_block(x)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
head_dim: int = 32,
|
||||
qkv_bias: bool = False,
|
||||
out_bias: bool = True,
|
||||
qk_norm: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.head_dim = head_dim
|
||||
self.num_heads = dim // head_dim
|
||||
self.qk_norm = qk_norm
|
||||
|
||||
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
|
||||
self.out = nn.Linear(dim, dim, bias=out_bias)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""Compute temporal self-attention.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, T, H, W].
|
||||
chunk_size: Chunk size for large tensors.
|
||||
|
||||
Returns:
|
||||
x: Output tensor. Shape: [B, C, T, H, W].
|
||||
"""
|
||||
B, _, T, H, W = x.shape
|
||||
|
||||
if T == 1:
|
||||
# No attention for single frame.
|
||||
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
|
||||
qkv = self.qkv(x)
|
||||
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
|
||||
x = self.out(x)
|
||||
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
|
||||
|
||||
# 1D temporal attention.
|
||||
x = rearrange(x, "B C t h w -> (B h w) t C")
|
||||
qkv = self.qkv(x)
|
||||
|
||||
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
|
||||
# Output: x with shape [B, num_heads, t, head_dim]
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
|
||||
|
||||
if self.qk_norm:
|
||||
q = F.normalize(q, p=2, dim=-1)
|
||||
k = F.normalize(k, p=2, dim=-1)
|
||||
|
||||
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
|
||||
|
||||
assert x.size(0) == q.size(0)
|
||||
|
||||
x = self.out(x)
|
||||
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
|
||||
return x
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
**attn_kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.norm = norm_fn(dim)
|
||||
self.attn = Attention(dim, **attn_kwargs)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x + self.attn(self.norm(x))
|
||||
|
||||
|
||||
class CausalUpsampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
num_res_blocks: int,
|
||||
*,
|
||||
temporal_expansion: int = 2,
|
||||
spatial_expansion: int = 2,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = []
|
||||
for _ in range(num_res_blocks):
|
||||
blocks.append(block_fn(in_channels, **block_kwargs))
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
self.temporal_expansion = temporal_expansion
|
||||
self.spatial_expansion = spatial_expansion
|
||||
|
||||
# Change channels in the final convolution layer.
|
||||
self.proj = Conv1x1(
|
||||
in_channels,
|
||||
out_channels * temporal_expansion * (spatial_expansion**2),
|
||||
)
|
||||
|
||||
self.d2st = DepthToSpaceTime(
|
||||
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.blocks(x)
|
||||
x = self.proj(x)
|
||||
x = self.d2st(x)
|
||||
return x
|
||||
|
||||
|
||||
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
|
||||
attn_block = AttentionBlock(channels) if has_attention else None
|
||||
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
|
||||
|
||||
|
||||
class DownsampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
num_res_blocks,
|
||||
*,
|
||||
temporal_reduction=2,
|
||||
spatial_reduction=2,
|
||||
**block_kwargs,
|
||||
):
|
||||
"""
|
||||
Downsample block for the VAE encoder.
|
||||
|
||||
Args:
|
||||
in_channels: Number of input channels.
|
||||
out_channels: Number of output channels.
|
||||
num_res_blocks: Number of residual blocks.
|
||||
temporal_reduction: Temporal reduction factor.
|
||||
spatial_reduction: Spatial reduction factor.
|
||||
"""
|
||||
super().__init__()
|
||||
layers = []
|
||||
|
||||
# Change the channel count in the strided convolution.
|
||||
# This lets the ResBlock have uniform channel count,
|
||||
# as in ConvNeXt.
|
||||
assert in_channels != out_channels
|
||||
layers.append(
|
||||
PConv3d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
|
||||
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
|
||||
# First layer in each block always uses replicate padding
|
||||
padding_mode="replicate",
|
||||
bias=block_kwargs["bias"],
|
||||
)
|
||||
)
|
||||
|
||||
for _ in range(num_res_blocks):
|
||||
layers.append(block_fn(out_channels, **block_kwargs))
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
|
||||
num_freqs = (stop - start) // step
|
||||
assert inputs.ndim == 5
|
||||
C = inputs.size(1)
|
||||
|
||||
# Create Base 2 Fourier features.
|
||||
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
|
||||
assert num_freqs == len(freqs)
|
||||
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
||||
C = inputs.shape[1]
|
||||
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
|
||||
|
||||
# Interleaved repeat of input channels to match w.
|
||||
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
||||
# Scale channels by frequency.
|
||||
h = w * h
|
||||
|
||||
return torch.cat(
|
||||
[
|
||||
inputs,
|
||||
torch.sin(h),
|
||||
torch.cos(h),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
|
||||
class FourierFeatures(nn.Module):
|
||||
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
||||
super().__init__()
|
||||
self.start = start
|
||||
self.stop = stop
|
||||
self.step = step
|
||||
|
||||
def forward(self, inputs):
|
||||
"""Add Fourier features to inputs.
|
||||
|
||||
Args:
|
||||
inputs: Input tensor. Shape: [B, C, T, H, W]
|
||||
|
||||
Returns:
|
||||
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
|
||||
"""
|
||||
return add_fourier_features(inputs, self.start, self.stop, self.step)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
out_channels: int = 3,
|
||||
latent_dim: int,
|
||||
base_channels: int,
|
||||
channel_multipliers: List[int],
|
||||
num_res_blocks: List[int],
|
||||
temporal_expansions: Optional[List[int]] = None,
|
||||
spatial_expansions: Optional[List[int]] = None,
|
||||
has_attention: List[bool],
|
||||
output_norm: bool = True,
|
||||
nonlinearity: str = "silu",
|
||||
output_nonlinearity: str = "silu",
|
||||
causal: bool = True,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.input_channels = latent_dim
|
||||
self.base_channels = base_channels
|
||||
self.channel_multipliers = channel_multipliers
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.output_nonlinearity = output_nonlinearity
|
||||
assert nonlinearity == "silu"
|
||||
assert causal
|
||||
|
||||
ch = [mult * base_channels for mult in channel_multipliers]
|
||||
self.num_up_blocks = len(ch) - 1
|
||||
assert len(num_res_blocks) == self.num_up_blocks + 2
|
||||
|
||||
blocks = []
|
||||
|
||||
first_block = [
|
||||
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
|
||||
] # Input layer.
|
||||
# First set of blocks preserve channel count.
|
||||
for _ in range(num_res_blocks[-1]):
|
||||
first_block.append(
|
||||
block_fn(
|
||||
ch[-1],
|
||||
has_attention=has_attention[-1],
|
||||
causal=causal,
|
||||
**block_kwargs,
|
||||
)
|
||||
)
|
||||
blocks.append(nn.Sequential(*first_block))
|
||||
|
||||
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
|
||||
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
|
||||
|
||||
upsample_block_fn = CausalUpsampleBlock
|
||||
|
||||
for i in range(self.num_up_blocks):
|
||||
block = upsample_block_fn(
|
||||
ch[-i - 1],
|
||||
ch[-i - 2],
|
||||
num_res_blocks=num_res_blocks[-i - 2],
|
||||
has_attention=has_attention[-i - 2],
|
||||
temporal_expansion=temporal_expansions[-i - 1],
|
||||
spatial_expansion=spatial_expansions[-i - 1],
|
||||
causal=causal,
|
||||
**block_kwargs,
|
||||
)
|
||||
blocks.append(block)
|
||||
|
||||
assert not output_norm
|
||||
|
||||
# Last block. Preserve channel count.
|
||||
last_block = []
|
||||
for _ in range(num_res_blocks[0]):
|
||||
last_block.append(
|
||||
block_fn(
|
||||
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
|
||||
)
|
||||
)
|
||||
blocks.append(nn.Sequential(*last_block))
|
||||
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
self.output_proj = Conv1x1(ch[0], out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
|
||||
|
||||
Returns:
|
||||
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
|
||||
T + 1 = (t - 1) * 4.
|
||||
H = h * 16, W = w * 16.
|
||||
"""
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
if self.output_nonlinearity == "silu":
|
||||
x = F.silu(x, inplace=not self.training)
|
||||
else:
|
||||
assert (
|
||||
not self.output_nonlinearity
|
||||
) # StyleGAN3 omits the to-RGB nonlinearity.
|
||||
|
||||
return self.output_proj(x).contiguous()
|
||||
|
||||
class LatentDistribution:
|
||||
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
|
||||
"""Initialize latent distribution.
|
||||
|
||||
Args:
|
||||
mean: Mean of the distribution. Shape: [B, C, T, H, W].
|
||||
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
|
||||
"""
|
||||
assert mean.shape == logvar.shape
|
||||
self.mean = mean
|
||||
self.logvar = logvar
|
||||
|
||||
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
|
||||
if temperature == 0.0:
|
||||
return self.mean
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
|
||||
else:
|
||||
assert noise.device == self.mean.device
|
||||
noise = noise.to(self.mean.dtype)
|
||||
|
||||
if temperature != 1.0:
|
||||
raise NotImplementedError(f"Temperature {temperature} is not supported.")
|
||||
|
||||
# Just Gaussian sample with no scaling of variance.
|
||||
return noise * torch.exp(self.logvar * 0.5) + self.mean
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
in_channels: int,
|
||||
base_channels: int,
|
||||
channel_multipliers: List[int],
|
||||
num_res_blocks: List[int],
|
||||
latent_dim: int,
|
||||
temporal_reductions: List[int],
|
||||
spatial_reductions: List[int],
|
||||
prune_bottlenecks: List[bool],
|
||||
has_attentions: List[bool],
|
||||
affine: bool = True,
|
||||
bias: bool = True,
|
||||
input_is_conv_1x1: bool = False,
|
||||
padding_mode: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.temporal_reductions = temporal_reductions
|
||||
self.spatial_reductions = spatial_reductions
|
||||
self.base_channels = base_channels
|
||||
self.channel_multipliers = channel_multipliers
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.latent_dim = latent_dim
|
||||
|
||||
self.fourier_features = FourierFeatures()
|
||||
ch = [mult * base_channels for mult in channel_multipliers]
|
||||
num_down_blocks = len(ch) - 1
|
||||
assert len(num_res_blocks) == num_down_blocks + 2
|
||||
|
||||
layers = (
|
||||
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
|
||||
if not input_is_conv_1x1
|
||||
else [Conv1x1(in_channels, ch[0])]
|
||||
)
|
||||
|
||||
assert len(prune_bottlenecks) == num_down_blocks + 2
|
||||
assert len(has_attentions) == num_down_blocks + 2
|
||||
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
|
||||
|
||||
for _ in range(num_res_blocks[0]):
|
||||
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
|
||||
prune_bottlenecks = prune_bottlenecks[1:]
|
||||
has_attentions = has_attentions[1:]
|
||||
|
||||
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
|
||||
for i in range(num_down_blocks):
|
||||
layer = DownsampleBlock(
|
||||
ch[i],
|
||||
ch[i + 1],
|
||||
num_res_blocks=num_res_blocks[i + 1],
|
||||
temporal_reduction=temporal_reductions[i],
|
||||
spatial_reduction=spatial_reductions[i],
|
||||
prune_bottleneck=prune_bottlenecks[i],
|
||||
has_attention=has_attentions[i],
|
||||
affine=affine,
|
||||
bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
)
|
||||
|
||||
layers.append(layer)
|
||||
|
||||
# Additional blocks.
|
||||
for _ in range(num_res_blocks[-1]):
|
||||
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
# Output layers.
|
||||
self.output_norm = norm_fn(ch[-1])
|
||||
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
|
||||
|
||||
@property
|
||||
def temporal_downsample(self):
|
||||
return math.prod(self.temporal_reductions)
|
||||
|
||||
@property
|
||||
def spatial_downsample(self):
|
||||
return math.prod(self.spatial_reductions)
|
||||
|
||||
def forward(self, x) -> LatentDistribution:
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
|
||||
|
||||
Returns:
|
||||
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
|
||||
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
|
||||
logvar: Shape: [B, latent_dim, t, h, w].
|
||||
"""
|
||||
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
|
||||
x = self.fourier_features(x)
|
||||
|
||||
x = self.layers(x)
|
||||
|
||||
x = self.output_norm(x)
|
||||
x = F.silu(x, inplace=True)
|
||||
x = self.output_proj(x)
|
||||
|
||||
means, logvar = torch.chunk(x, 2, dim=1)
|
||||
|
||||
assert means.ndim == 5
|
||||
assert logvar.shape == means.shape
|
||||
assert means.size(1) == self.latent_dim
|
||||
|
||||
return LatentDistribution(means, logvar)
|
||||
|
||||
|
||||
class VideoVAE(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.encoder = Encoder(
|
||||
in_channels=15,
|
||||
base_channels=64,
|
||||
channel_multipliers=[1, 2, 4, 6],
|
||||
num_res_blocks=[3, 3, 4, 6, 3],
|
||||
latent_dim=12,
|
||||
temporal_reductions=[1, 2, 3],
|
||||
spatial_reductions=[2, 2, 2],
|
||||
prune_bottlenecks=[False, False, False, False, False],
|
||||
has_attentions=[False, True, True, True, True],
|
||||
affine=True,
|
||||
bias=True,
|
||||
input_is_conv_1x1=True,
|
||||
padding_mode="replicate"
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
out_channels=3,
|
||||
base_channels=128,
|
||||
channel_multipliers=[1, 2, 4, 6],
|
||||
temporal_expansions=[1, 2, 3],
|
||||
spatial_expansions=[2, 2, 2],
|
||||
num_res_blocks=[3, 3, 4, 6, 3],
|
||||
latent_dim=12,
|
||||
has_attention=[False, False, False, False, False],
|
||||
padding_mode="replicate",
|
||||
output_norm=False,
|
||||
nonlinearity="silu",
|
||||
output_nonlinearity="silu",
|
||||
causal=True,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
return self.encoder(x).mode()
|
||||
|
||||
def decode(self, x):
|
||||
return self.decoder(x)
|
||||
330
comfy/ldm/hunyuan_video/model.py
Normal file
330
comfy/ldm/hunyuan_video/model.py
Normal file
@@ -0,0 +1,330 @@
|
||||
#Based on Flux code because of weird hunyuan video code license.
|
||||
|
||||
import torch
|
||||
import comfy.ldm.flux.layers
|
||||
import comfy.ldm.modules.diffusionmodules.mmdit
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from einops import repeat
|
||||
|
||||
from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
DoubleStreamBlock,
|
||||
EmbedND,
|
||||
LastLayer,
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding
|
||||
)
|
||||
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
@dataclass
|
||||
class HunyuanVideoParams:
|
||||
in_channels: int
|
||||
out_channels: int
|
||||
vec_in_dim: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
patch_size: list
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
|
||||
|
||||
class SelfAttentionRef(nn.Module):
|
||||
def __init__(self, dim: int, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
|
||||
|
||||
class TokenRefinerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size,
|
||||
heads,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
mlp_hidden_dim = hidden_size * 4
|
||||
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
self.self_attn = SelfAttentionRef(hidden_size, True, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, x, c, mask):
|
||||
mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
|
||||
norm_x = self.norm1(x)
|
||||
qkv = self.self_attn.qkv(norm_x)
|
||||
q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
|
||||
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)
|
||||
|
||||
x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
|
||||
x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
|
||||
return x
|
||||
|
||||
|
||||
class IndividualTokenRefiner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size,
|
||||
heads,
|
||||
num_blocks,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
TokenRefinerBlock(
|
||||
hidden_size=hidden_size,
|
||||
heads=heads,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
for _ in range(num_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x, c, mask):
|
||||
m = None
|
||||
if mask is not None:
|
||||
m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
|
||||
m = m + m.transpose(2, 3)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, c, m)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class TokenRefiner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
text_dim,
|
||||
hidden_size,
|
||||
heads,
|
||||
num_blocks,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.input_embedder = operations.Linear(text_dim, hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.t_embedder = MLPEmbedder(256, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.c_embedder = MLPEmbedder(text_dim, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.individual_token_refiner = IndividualTokenRefiner(hidden_size, heads, num_blocks, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timesteps,
|
||||
mask,
|
||||
):
|
||||
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
|
||||
# m = mask.float().unsqueeze(-1)
|
||||
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
|
||||
c = x.sum(dim=1) / x.shape[1]
|
||||
|
||||
c = t + self.c_embedder(c.to(x.dtype))
|
||||
x = self.input_embedder(x)
|
||||
x = self.individual_token_refiner(x, c, mask)
|
||||
return x
|
||||
|
||||
class HunyuanVideo(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = HunyuanVideoParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = params.out_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
|
||||
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
|
||||
self.txt_in = TokenRefiner(params.context_in_dim, self.hidden_size, self.num_heads, 2, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
flipped_img_txt=True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
txt_mask: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
|
||||
initial_shape = list(img.shape)
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
|
||||
if self.params.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
if txt_mask is not None and not torch.is_floating_point(txt_mask):
|
||||
txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max
|
||||
|
||||
txt = self.txt_in(txt, timesteps, txt_mask)
|
||||
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
img_len = img.shape[1]
|
||||
if txt_mask is not None:
|
||||
attn_mask_len = img_len + txt.shape[1]
|
||||
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
|
||||
attn_mask[:, 0, img_len:] = txt_mask
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((img, txt), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, : img_len] += add
|
||||
|
||||
img = img[:, : img_len]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
|
||||
shape = initial_shape[-3:]
|
||||
for i in range(len(shape)):
|
||||
shape[i] = shape[i] // self.patch_size[i]
|
||||
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
|
||||
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
|
||||
img = img.reshape(initial_shape)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance, attention_mask=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
|
||||
return out
|
||||
218
comfy/ldm/hydit/attn_layers.py
Normal file
218
comfy/ldm/hydit/attn_layers.py
Normal file
@@ -0,0 +1,218 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Tuple, Union, Optional
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
|
||||
"""
|
||||
Reshape frequency tensor for broadcasting it with another tensor.
|
||||
|
||||
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
||||
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
||||
|
||||
Args:
|
||||
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
|
||||
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
||||
head_first (bool): head dimension first (except batch dim) or not.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Reshaped frequency tensor.
|
||||
|
||||
Raises:
|
||||
AssertionError: If the frequency tensor doesn't match the expected shape.
|
||||
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
||||
"""
|
||||
ndim = x.ndim
|
||||
assert 0 <= 1 < ndim
|
||||
|
||||
if isinstance(freqs_cis, tuple):
|
||||
# freqs_cis: (cos, sin) in real space
|
||||
if head_first:
|
||||
assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
else:
|
||||
assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
|
||||
else:
|
||||
# freqs_cis: values in complex space
|
||||
if head_first:
|
||||
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
else:
|
||||
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: Optional[torch.Tensor],
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
head_first: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor.
|
||||
|
||||
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
||||
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
||||
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
||||
returned as real tensors.
|
||||
|
||||
Args:
|
||||
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
|
||||
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
|
||||
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Precomputed frequency tensor for complex exponentials.
|
||||
head_first (bool): head dimension first (except batch dim) or not.
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||
|
||||
"""
|
||||
xk_out = None
|
||||
if isinstance(freqs_cis, tuple):
|
||||
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
|
||||
xq_out = (xq * cos + rotate_half(xq) * sin)
|
||||
if xk is not None:
|
||||
xk_out = (xk * cos + rotate_half(xk) * sin)
|
||||
else:
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
|
||||
if xk is not None:
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2]
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
|
||||
|
||||
return xq_out, xk_out
|
||||
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
"""
|
||||
Use QK Normalization.
|
||||
"""
|
||||
def __init__(self,
|
||||
qdim,
|
||||
kdim,
|
||||
num_heads,
|
||||
qkv_bias=True,
|
||||
qk_norm=False,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
attn_precision=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.attn_precision = attn_precision
|
||||
self.qdim = qdim
|
||||
self.kdim = kdim
|
||||
self.num_heads = num_heads
|
||||
assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
|
||||
self.head_dim = self.qdim // num_heads
|
||||
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
self.q_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
|
||||
self.kv_proj = operations.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)
|
||||
|
||||
# TODO: eps should be 1 / 65530 if using fp16
|
||||
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.out_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, y, freqs_cis_img=None):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim)
|
||||
y: torch.Tensor
|
||||
(batch, seqlen2, hidden_dim2)
|
||||
freqs_cis_img: torch.Tensor
|
||||
(batch, hidden_dim // 2), RoPE for image
|
||||
"""
|
||||
b, s1, c = x.shape # [b, s1, D]
|
||||
_, s2, c = y.shape # [b, s2, 1024]
|
||||
|
||||
q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim) # [b, s1, h, d]
|
||||
kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim) # [b, s2, 2, h, d]
|
||||
k, v = kv.unbind(dim=2) # [b, s, h, d]
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if freqs_cis_img is not None:
|
||||
qq, _ = apply_rotary_emb(q, None, freqs_cis_img)
|
||||
assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}'
|
||||
q = qq
|
||||
|
||||
q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C
|
||||
k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2
|
||||
v = v.transpose(-2, -3).contiguous()
|
||||
|
||||
context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
|
||||
|
||||
out = self.out_proj(context) # context.reshape - B, L1, -1
|
||||
out = self.proj_drop(out)
|
||||
|
||||
out_tuple = (out,)
|
||||
|
||||
return out_tuple
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
We rename some layer names to align with flash attention
|
||||
"""
|
||||
def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0., attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.attn_precision = attn_precision
|
||||
self.dim = dim
|
||||
self.num_heads = num_heads
|
||||
assert self.dim % num_heads == 0, 'dim should be divisible by num_heads'
|
||||
self.head_dim = self.dim // num_heads
|
||||
# This assertion is aligned with flash attention
|
||||
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
# qkv --> Wqkv
|
||||
self.Wqkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
# TODO: eps should be 1 / 65530 if using fp16
|
||||
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.out_proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, freqs_cis_img=None):
|
||||
B, N, C = x.shape
|
||||
qkv = self.Wqkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) # [3, b, h, s, d]
|
||||
q, k, v = qkv.unbind(0) # [b, h, s, d]
|
||||
q = self.q_norm(q) # [b, h, s, d]
|
||||
k = self.k_norm(k) # [b, h, s, d]
|
||||
|
||||
# Apply RoPE if needed
|
||||
if freqs_cis_img is not None:
|
||||
qq, kk = apply_rotary_emb(q, k, freqs_cis_img, head_first=True)
|
||||
assert qq.shape == q.shape and kk.shape == k.shape, \
|
||||
f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
|
||||
q, k = qq, kk
|
||||
|
||||
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
|
||||
x = self.out_proj(x)
|
||||
x = self.proj_drop(x)
|
||||
|
||||
out_tuple = (x,)
|
||||
|
||||
return out_tuple
|
||||
311
comfy/ldm/hydit/controlnet.py
Normal file
311
comfy/ldm/hydit/controlnet.py
Normal file
@@ -0,0 +1,311 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import (
|
||||
TimestepEmbedder,
|
||||
PatchEmbed,
|
||||
)
|
||||
from .poolers import AttentionPool
|
||||
|
||||
import comfy.latent_formats
|
||||
from .models import HunYuanDiTBlock, calc_rope
|
||||
|
||||
|
||||
|
||||
class HunYuanControlNet(nn.Module):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args: argparse.Namespace
|
||||
The arguments parsed by argparse.
|
||||
input_size: tuple
|
||||
The size of the input image.
|
||||
patch_size: int
|
||||
The size of the patch.
|
||||
in_channels: int
|
||||
The number of input channels.
|
||||
hidden_size: int
|
||||
The hidden size of the transformer backbone.
|
||||
depth: int
|
||||
The number of transformer blocks.
|
||||
num_heads: int
|
||||
The number of attention heads.
|
||||
mlp_ratio: float
|
||||
The ratio of the hidden size of the MLP in the transformer block.
|
||||
log_fn: callable
|
||||
The logging function.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: tuple = 128,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
hidden_size: int = 1408,
|
||||
depth: int = 40,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.3637,
|
||||
text_states_dim=1024,
|
||||
text_states_dim_t5=2048,
|
||||
text_len=77,
|
||||
text_len_t5=256,
|
||||
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
|
||||
size_cond=False,
|
||||
use_style_cond=False,
|
||||
learn_sigma=True,
|
||||
norm="layer",
|
||||
log_fn: callable = print,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.log_fn = log_fn
|
||||
self.depth = depth
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.text_states_dim = text_states_dim
|
||||
self.text_states_dim_t5 = text_states_dim_t5
|
||||
self.text_len = text_len
|
||||
self.text_len_t5 = text_len_t5
|
||||
self.size_cond = size_cond
|
||||
self.use_style_cond = use_style_cond
|
||||
self.norm = norm
|
||||
self.dtype = dtype
|
||||
self.latent_format = comfy.latent_formats.SDXL
|
||||
|
||||
self.mlp_t5 = nn.Sequential(
|
||||
nn.Linear(
|
||||
self.text_states_dim_t5,
|
||||
self.text_states_dim_t5 * 4,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
nn.SiLU(),
|
||||
nn.Linear(
|
||||
self.text_states_dim_t5 * 4,
|
||||
self.text_states_dim,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
# learnable replace
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.randn(
|
||||
self.text_len + self.text_len_t5,
|
||||
self.text_states_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
# Attention pooling
|
||||
pooler_out_dim = 1024
|
||||
self.pooler = AttentionPool(
|
||||
self.text_len_t5,
|
||||
self.text_states_dim_t5,
|
||||
num_heads=8,
|
||||
output_dim=pooler_out_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
# Dimension of the extra input vectors
|
||||
self.extra_in_dim = pooler_out_dim
|
||||
|
||||
if self.size_cond:
|
||||
# Image size and crop size conditions
|
||||
self.extra_in_dim += 6 * 256
|
||||
|
||||
if self.use_style_cond:
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = nn.Embedding(
|
||||
1, hidden_size, dtype=dtype, device=device
|
||||
)
|
||||
self.extra_in_dim += hidden_size
|
||||
|
||||
# Text embedding for `add`
|
||||
self.x_embedder = PatchEmbed(
|
||||
input_size,
|
||||
patch_size,
|
||||
in_channels,
|
||||
hidden_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.extra_embedder = nn.Sequential(
|
||||
operations.Linear(
|
||||
self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device
|
||||
),
|
||||
nn.SiLU(),
|
||||
operations.Linear(
|
||||
hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
HunYuanDiTBlock(
|
||||
hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
text_states_dim=self.text_states_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_type=self.norm,
|
||||
skip=False,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for _ in range(19)
|
||||
]
|
||||
)
|
||||
|
||||
# Input zero linear for the first block
|
||||
self.before_proj = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
|
||||
# Output zero linear for the every block
|
||||
self.after_proj_list = nn.ModuleList(
|
||||
[
|
||||
|
||||
operations.Linear(
|
||||
self.hidden_size, self.hidden_size, dtype=dtype, device=device
|
||||
)
|
||||
for _ in range(len(self.blocks))
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
hint,
|
||||
timesteps,
|
||||
context,#encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
return_dict=False,
|
||||
**kwarg,
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(B, D, H, W)
|
||||
t: torch.Tensor
|
||||
(B)
|
||||
encoder_hidden_states: torch.Tensor
|
||||
CLIP text embedding, (B, L_clip, D)
|
||||
text_embedding_mask: torch.Tensor
|
||||
CLIP text embedding mask, (B, L_clip)
|
||||
encoder_hidden_states_t5: torch.Tensor
|
||||
T5 text embedding, (B, L_t5, D)
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
T5 text embedding mask, (B, L_t5)
|
||||
image_meta_size: torch.Tensor
|
||||
(B, 6)
|
||||
style: torch.Tensor
|
||||
(B)
|
||||
cos_cis_img: torch.Tensor
|
||||
sin_cis_img: torch.Tensor
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
condition = hint
|
||||
if condition.shape[0] == 1:
|
||||
condition = torch.repeat_interleave(condition, x.shape[0], dim=0)
|
||||
|
||||
text_states = context # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
text_states_mask = text_embedding_mask.bool() # 2,77
|
||||
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
|
||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||
|
||||
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||
|
||||
text_states[:, -self.text_len :] = torch.where(
|
||||
text_states_mask[:, -self.text_len :].unsqueeze(2),
|
||||
text_states[:, -self.text_len :],
|
||||
padding[: self.text_len],
|
||||
)
|
||||
text_states_t5[:, -self.text_len_t5 :] = torch.where(
|
||||
text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2),
|
||||
text_states_t5[:, -self.text_len_t5 :],
|
||||
padding[self.text_len :],
|
||||
)
|
||||
|
||||
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024
|
||||
|
||||
# _, _, oh, ow = x.shape
|
||||
# th, tw = oh // self.patch_size, ow // self.patch_size
|
||||
|
||||
# Get image RoPE embedding according to `reso`lution.
|
||||
freqs_cis_img = calc_rope(
|
||||
x, self.patch_size, self.hidden_size // self.num_heads
|
||||
) # (cos_cis_img, sin_cis_img)
|
||||
|
||||
# ========================= Build time and image embedding =========================
|
||||
t = self.t_embedder(timesteps, dtype=self.dtype)
|
||||
x = self.x_embedder(x)
|
||||
|
||||
# ========================= Concatenate all extra vectors =========================
|
||||
# Build text tokens with pooling
|
||||
extra_vec = self.pooler(encoder_hidden_states_t5)
|
||||
|
||||
# Build image meta size tokens if applicable
|
||||
# if image_meta_size is not None:
|
||||
# image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256]
|
||||
# if image_meta_size.dtype != self.dtype:
|
||||
# image_meta_size = image_meta_size.half()
|
||||
# image_meta_size = image_meta_size.view(-1, 6 * 256)
|
||||
# extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
|
||||
|
||||
# Build style tokens
|
||||
if style is not None:
|
||||
style_embedding = self.style_embedder(style)
|
||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
# ========================= Deal with Condition =========================
|
||||
condition = self.x_embedder(condition)
|
||||
|
||||
# ========================= Forward pass through HunYuanDiT blocks =========================
|
||||
controls = []
|
||||
x = x + self.before_proj(condition) # add condition
|
||||
for layer, block in enumerate(self.blocks):
|
||||
x = block(x, c, text_states, freqs_cis_img)
|
||||
controls.append(self.after_proj_list[layer](x)) # zero linear for output
|
||||
|
||||
return {"output": controls}
|
||||
417
comfy/ldm/hydit/models.py
Normal file
417
comfy/ldm/hydit/models.py
Normal file
@@ -0,0 +1,417 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from torch.utils import checkpoint
|
||||
|
||||
from .attn_layers import Attention, CrossAttention
|
||||
from .poolers import AttentionPool
|
||||
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
|
||||
|
||||
def calc_rope(x, patch_size, head_size):
|
||||
th = (x.shape[2] + (patch_size // 2)) // patch_size
|
||||
tw = (x.shape[3] + (patch_size // 2)) // patch_size
|
||||
base_size = 512 // 8 // patch_size
|
||||
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
||||
sub_args = [start, stop, (th, tw)]
|
||||
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
|
||||
rope = get_2d_rotary_pos_embed(head_size, *sub_args)
|
||||
rope = (rope[0].to(x), rope[1].to(x))
|
||||
return rope
|
||||
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
class HunYuanDiTBlock(nn.Module):
|
||||
"""
|
||||
A HunYuanDiT block with `add` conditioning.
|
||||
"""
|
||||
def __init__(self,
|
||||
hidden_size,
|
||||
c_emb_size,
|
||||
num_heads,
|
||||
mlp_ratio=4.0,
|
||||
text_states_dim=1024,
|
||||
qk_norm=False,
|
||||
norm_type="layer",
|
||||
skip=False,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
use_ele_affine = True
|
||||
|
||||
if norm_type == "layer":
|
||||
norm_layer = operations.LayerNorm
|
||||
elif norm_type == "rms":
|
||||
norm_layer = RMSNorm
|
||||
else:
|
||||
raise ValueError(f"Unknown norm_type: {norm_type}")
|
||||
|
||||
# ========================= Self-Attention =========================
|
||||
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# ========================= FFN =========================
|
||||
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# ========================= Add =========================
|
||||
# Simply use add like SDXL.
|
||||
self.default_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
# ========================= Cross-Attention =========================
|
||||
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
|
||||
qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
# ========================= Skip Connection =========================
|
||||
if skip:
|
||||
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
else:
|
||||
self.skip_linear = None
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
|
||||
# Long Skip Connection
|
||||
if self.skip_linear is not None:
|
||||
cat = torch.cat([x, skip], dim=-1)
|
||||
if cat.dtype != x.dtype:
|
||||
cat = cat.to(x.dtype)
|
||||
cat = self.skip_norm(cat)
|
||||
x = self.skip_linear(cat)
|
||||
|
||||
# Self-Attention
|
||||
shift_msa = self.default_modulation(c).unsqueeze(dim=1)
|
||||
attn_inputs = (
|
||||
self.norm1(x) + shift_msa, freq_cis_img,
|
||||
)
|
||||
x = x + self.attn1(*attn_inputs)[0]
|
||||
|
||||
# Cross-Attention
|
||||
cross_inputs = (
|
||||
self.norm3(x), text_states, freq_cis_img
|
||||
)
|
||||
x = x + self.attn2(*cross_inputs)[0]
|
||||
|
||||
# FFN Layer
|
||||
mlp_inputs = self.norm2(x)
|
||||
x = x + self.mlp(mlp_inputs)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip)
|
||||
return self._forward(x, c, text_states, freq_cis_img, skip)
|
||||
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of HunYuanDiT.
|
||||
"""
|
||||
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class HunYuanDiT(nn.Module):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args: argparse.Namespace
|
||||
The arguments parsed by argparse.
|
||||
input_size: tuple
|
||||
The size of the input image.
|
||||
patch_size: int
|
||||
The size of the patch.
|
||||
in_channels: int
|
||||
The number of input channels.
|
||||
hidden_size: int
|
||||
The hidden size of the transformer backbone.
|
||||
depth: int
|
||||
The number of transformer blocks.
|
||||
num_heads: int
|
||||
The number of attention heads.
|
||||
mlp_ratio: float
|
||||
The ratio of the hidden size of the MLP in the transformer block.
|
||||
log_fn: callable
|
||||
The logging function.
|
||||
"""
|
||||
#@register_to_config
|
||||
def __init__(self,
|
||||
input_size: tuple = 32,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
hidden_size: int = 1152,
|
||||
depth: int = 28,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.0,
|
||||
text_states_dim = 1024,
|
||||
text_states_dim_t5 = 2048,
|
||||
text_len = 77,
|
||||
text_len_t5 = 256,
|
||||
qk_norm = True,# See http://arxiv.org/abs/2302.05442 for details.
|
||||
size_cond = False,
|
||||
use_style_cond = False,
|
||||
learn_sigma = True,
|
||||
norm = "layer",
|
||||
log_fn: callable = print,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.log_fn = log_fn
|
||||
self.depth = depth
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.text_states_dim = text_states_dim
|
||||
self.text_states_dim_t5 = text_states_dim_t5
|
||||
self.text_len = text_len
|
||||
self.text_len_t5 = text_len_t5
|
||||
self.size_cond = size_cond
|
||||
self.use_style_cond = use_style_cond
|
||||
self.norm = norm
|
||||
self.dtype = dtype
|
||||
#import pdb
|
||||
#pdb.set_trace()
|
||||
|
||||
self.mlp_t5 = nn.Sequential(
|
||||
operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
# learnable replace
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device))
|
||||
|
||||
# Attention pooling
|
||||
pooler_out_dim = 1024
|
||||
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# Dimension of the extra input vectors
|
||||
self.extra_in_dim = pooler_out_dim
|
||||
|
||||
if self.size_cond:
|
||||
# Image size and crop size conditions
|
||||
self.extra_in_dim += 6 * 256
|
||||
|
||||
if self.use_style_cond:
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device)
|
||||
self.extra_in_dim += hidden_size
|
||||
|
||||
# Text embedding for `add`
|
||||
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.extra_embedder = nn.Sequential(
|
||||
operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList([
|
||||
HunYuanDiTBlock(hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
text_states_dim=self.text_states_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_type=self.norm,
|
||||
skip=layer > depth // 2,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for layer in range(depth)
|
||||
])
|
||||
|
||||
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
self.unpatchify_channels = self.out_channels
|
||||
|
||||
|
||||
|
||||
def forward(self,
|
||||
x,
|
||||
t,
|
||||
context,#encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
return_dict=False,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(B, D, H, W)
|
||||
t: torch.Tensor
|
||||
(B)
|
||||
encoder_hidden_states: torch.Tensor
|
||||
CLIP text embedding, (B, L_clip, D)
|
||||
text_embedding_mask: torch.Tensor
|
||||
CLIP text embedding mask, (B, L_clip)
|
||||
encoder_hidden_states_t5: torch.Tensor
|
||||
T5 text embedding, (B, L_t5, D)
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
T5 text embedding mask, (B, L_t5)
|
||||
image_meta_size: torch.Tensor
|
||||
(B, 6)
|
||||
style: torch.Tensor
|
||||
(B)
|
||||
cos_cis_img: torch.Tensor
|
||||
sin_cis_img: torch.Tensor
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
encoder_hidden_states = context
|
||||
text_states = encoder_hidden_states # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
text_states_mask = text_embedding_mask.bool() # 2,77
|
||||
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
|
||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||
|
||||
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||
|
||||
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
|
||||
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])
|
||||
|
||||
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024
|
||||
# clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1)
|
||||
|
||||
_, _, oh, ow = x.shape
|
||||
th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size
|
||||
|
||||
|
||||
# Get image RoPE embedding according to `reso`lution.
|
||||
freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) #(cos_cis_img, sin_cis_img)
|
||||
|
||||
# ========================= Build time and image embedding =========================
|
||||
t = self.t_embedder(t, dtype=x.dtype)
|
||||
x = self.x_embedder(x)
|
||||
|
||||
# ========================= Concatenate all extra vectors =========================
|
||||
# Build text tokens with pooling
|
||||
extra_vec = self.pooler(encoder_hidden_states_t5)
|
||||
|
||||
# Build image meta size tokens if applicable
|
||||
if self.size_cond:
|
||||
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype) # [B * 6, 256]
|
||||
image_meta_size = image_meta_size.view(-1, 6 * 256)
|
||||
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
|
||||
|
||||
# Build style tokens
|
||||
if self.use_style_cond:
|
||||
if style is None:
|
||||
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
|
||||
style_embedding = self.style_embedder(style, out_dtype=x.dtype)
|
||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
|
||||
controls = None
|
||||
if control:
|
||||
controls = control.get("output", None)
|
||||
# ========================= Forward pass through HunYuanDiT blocks =========================
|
||||
skips = []
|
||||
for layer, block in enumerate(self.blocks):
|
||||
if layer > self.depth // 2:
|
||||
if controls is not None:
|
||||
skip = skips.pop() + controls.pop().to(dtype=x.dtype)
|
||||
else:
|
||||
skip = skips.pop()
|
||||
else:
|
||||
skip = None
|
||||
|
||||
if ("double_block", layer) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], args["vec"], args["txt"], args["pe"], args["skip"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", layer)]({"img": x, "txt": text_states, "vec": c, "pe": freqs_cis_img, "skip": skip}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
|
||||
|
||||
|
||||
if layer < (self.depth // 2 - 1):
|
||||
skips.append(x)
|
||||
if controls is not None and len(controls) != 0:
|
||||
raise ValueError("The number of controls is not equal to the number of skip connections.")
|
||||
|
||||
# ========================= Final layer =========================
|
||||
x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, th, tw) # (N, out_channels, H, W)
|
||||
|
||||
if return_dict:
|
||||
return {'x': x}
|
||||
if self.learn_sigma:
|
||||
return x[:,:self.out_channels // 2,:oh,:ow]
|
||||
return x[:,:,:oh,:ow]
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.unpatchify_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
# h = w = int(x.shape[1] ** 0.5)
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
36
comfy/ldm/hydit/poolers.py
Normal file
36
comfy/ldm/hydit/poolers.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
|
||||
class AttentionPool(nn.Module):
|
||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(torch.empty(spacial_dim + 1, embed_dim, dtype=dtype, device=device))
|
||||
self.k_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.q_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.v_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.c_proj = operations.Linear(embed_dim, output_dim or embed_dim, dtype=dtype, device=device)
|
||||
self.num_heads = num_heads
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def forward(self, x):
|
||||
x = x[:,:self.positional_embedding.shape[0] - 1]
|
||||
x = x.permute(1, 0, 2) # NLC -> LNC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
|
||||
x = x + comfy.ops.cast_to_input(self.positional_embedding[:, None, :], x) # (L+1)NC
|
||||
|
||||
q = self.q_proj(x[:1])
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
|
||||
batch_size = q.shape[1]
|
||||
head_dim = self.embed_dim // self.num_heads
|
||||
q = q.view(1, batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
k = k.view(k.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
v = v.view(v.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
|
||||
attn_output = optimized_attention(q, k, v, self.num_heads, skip_reshape=True).transpose(0, 1)
|
||||
|
||||
attn_output = self.c_proj(attn_output)
|
||||
return attn_output.squeeze(0)
|
||||
224
comfy/ldm/hydit/posemb_layers.py
Normal file
224
comfy/ldm/hydit/posemb_layers.py
Normal file
@@ -0,0 +1,224 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
|
||||
|
||||
def _to_tuple(x):
|
||||
if isinstance(x, int):
|
||||
return x, x
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
def get_fill_resize_and_crop(src, tgt):
|
||||
th, tw = _to_tuple(tgt)
|
||||
h, w = _to_tuple(src)
|
||||
|
||||
tr = th / tw # base resolution
|
||||
r = h / w # target resolution
|
||||
|
||||
# resize
|
||||
if r > tr:
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h)) # resize the target resolution down based on the base resolution
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
def get_meshgrid(start, *args):
|
||||
if len(args) == 0:
|
||||
# start is grid_size
|
||||
num = _to_tuple(start)
|
||||
start = (0, 0)
|
||||
stop = num
|
||||
elif len(args) == 1:
|
||||
# start is start, args[0] is stop, step is 1
|
||||
start = _to_tuple(start)
|
||||
stop = _to_tuple(args[0])
|
||||
num = (stop[0] - start[0], stop[1] - start[1])
|
||||
elif len(args) == 2:
|
||||
# start is start, args[0] is stop, args[1] is num
|
||||
start = _to_tuple(start)
|
||||
stop = _to_tuple(args[0])
|
||||
num = _to_tuple(args[1])
|
||||
else:
|
||||
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
|
||||
|
||||
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32)
|
||||
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
return grid
|
||||
|
||||
#################################################################################
|
||||
# Sine/Cosine Positional Embedding Functions #
|
||||
#################################################################################
|
||||
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
||||
|
||||
def get_2d_sincos_pos_embed(embed_dim, start, *args, cls_token=False, extra_tokens=0):
|
||||
"""
|
||||
grid_size: int of the grid height and width
|
||||
return:
|
||||
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||
"""
|
||||
grid = get_meshgrid(start, *args) # [2, H, w]
|
||||
# grid_h = np.arange(grid_size, dtype=np.float32)
|
||||
# grid_w = np.arange(grid_size, dtype=np.float32)
|
||||
# grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
# grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
||||
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||
if cls_token and extra_tokens > 0:
|
||||
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||||
assert embed_dim % 2 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||
|
||||
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||||
"""
|
||||
embed_dim: output dimension for each position
|
||||
pos: a list of positions to be encoded: size (W,H)
|
||||
out: (M, D)
|
||||
"""
|
||||
assert embed_dim % 2 == 0
|
||||
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
||||
omega /= embed_dim / 2.
|
||||
omega = 1. / 10000**omega # (D/2,)
|
||||
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||||
|
||||
emb_sin = np.sin(out) # (M, D/2)
|
||||
emb_cos = np.cos(out) # (M, D/2)
|
||||
|
||||
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||
return emb
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Rotary Positional Embedding Functions #
|
||||
#################################################################################
|
||||
# https://github.com/facebookresearch/llama/blob/main/llama/model.py#L443
|
||||
|
||||
def get_2d_rotary_pos_embed(embed_dim, start, *args, use_real=True):
|
||||
"""
|
||||
This is a 2d version of precompute_freqs_cis, which is a RoPE for image tokens with 2d structure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embed_dim: int
|
||||
embedding dimension size
|
||||
start: int or tuple of int
|
||||
If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, step is 1;
|
||||
If len(args) == 2, start is start, args[0] is stop, args[1] is num.
|
||||
use_real: bool
|
||||
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos_embed: torch.Tensor
|
||||
[HW, D/2]
|
||||
"""
|
||||
grid = get_meshgrid(start, *args) # [2, H, w]
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]]) # Returns a sampling matrix with the same resolution as the target resolution
|
||||
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
||||
assert embed_dim % 4 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
|
||||
if use_real:
|
||||
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
|
||||
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
|
||||
return cos, sin
|
||||
else:
|
||||
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
|
||||
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
||||
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
||||
The returned tensor contains complex values in complex64 data type.
|
||||
|
||||
Args:
|
||||
dim (int): Dimension of the frequency tensor.
|
||||
pos (np.ndarray, int): Position indices for the frequency tensor. [S] or scalar
|
||||
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
||||
use_real (bool, optional): If True, return real part and imaginary part separately.
|
||||
Otherwise, return complex numbers.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
||||
|
||||
"""
|
||||
if isinstance(pos, int):
|
||||
pos = np.arange(pos)
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
|
||||
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
|
||||
if use_real:
|
||||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
||||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
else:
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||||
return freqs_cis
|
||||
|
||||
|
||||
|
||||
def calc_sizes(rope_img, patch_size, th, tw):
|
||||
if rope_img == 'extend':
|
||||
# Expansion mode
|
||||
sub_args = [(th, tw)]
|
||||
elif rope_img.startswith('base'):
|
||||
# Based on the specified dimensions, other dimensions are obtained through interpolation.
|
||||
base_size = int(rope_img[4:]) // 8 // patch_size
|
||||
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
||||
sub_args = [start, stop, (th, tw)]
|
||||
else:
|
||||
raise ValueError(f"Unknown rope_img: {rope_img}")
|
||||
return sub_args
|
||||
|
||||
|
||||
def init_image_posemb(rope_img,
|
||||
resolutions,
|
||||
patch_size,
|
||||
hidden_size,
|
||||
num_heads,
|
||||
log_fn,
|
||||
rope_real=True,
|
||||
):
|
||||
freqs_cis_img = {}
|
||||
for reso in resolutions:
|
||||
th, tw = reso.height // 8 // patch_size, reso.width // 8 // patch_size
|
||||
sub_args = calc_sizes(rope_img, patch_size, th, tw)
|
||||
freqs_cis_img[str(reso)] = get_2d_rotary_pos_embed(hidden_size // num_heads, *sub_args, use_real=rope_real)
|
||||
log_fn(f" Using image RoPE ({rope_img}) ({'real' if rope_real else 'complex'}): {sub_args} | ({reso}) "
|
||||
f"{freqs_cis_img[str(reso)][0].shape if rope_real else freqs_cis_img[str(reso)].shape}")
|
||||
return freqs_cis_img
|
||||
527
comfy/ldm/lightricks/model.py
Normal file
527
comfy/ldm/lightricks/model.py
Normal file
@@ -0,0 +1,527 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import comfy.ldm.modules.attention
|
||||
from comfy.ldm.genmo.joint_model.layers import RMSNorm
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
import math
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
from .symmetric_patchifier import SymmetricPatchifier
|
||||
|
||||
|
||||
def get_timestep_embedding(
|
||||
timesteps: torch.Tensor,
|
||||
embedding_dim: int,
|
||||
flip_sin_to_cos: bool = False,
|
||||
downscale_freq_shift: float = 1,
|
||||
scale: float = 1,
|
||||
max_period: int = 10000,
|
||||
):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
||||
|
||||
Args
|
||||
timesteps (torch.Tensor):
|
||||
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
||||
embedding_dim (int):
|
||||
the dimension of the output.
|
||||
flip_sin_to_cos (bool):
|
||||
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
||||
downscale_freq_shift (float):
|
||||
Controls the delta between frequencies between dimensions
|
||||
scale (float):
|
||||
Scaling factor applied to the embeddings.
|
||||
max_period (int):
|
||||
Controls the maximum frequency of the embeddings
|
||||
Returns
|
||||
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
exponent = -math.log(max_period) * torch.arange(
|
||||
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
||||
)
|
||||
exponent = exponent / (half_dim - downscale_freq_shift)
|
||||
|
||||
emb = torch.exp(exponent)
|
||||
emb = timesteps[:, None].float() * emb[None, :]
|
||||
|
||||
# scale embeddings
|
||||
emb = scale * emb
|
||||
|
||||
# concat sine and cosine embeddings
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
||||
|
||||
# flip sine and cosine embeddings
|
||||
if flip_sin_to_cos:
|
||||
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
||||
|
||||
# zero pad
|
||||
if embedding_dim % 2 == 1:
|
||||
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||
return emb
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
time_embed_dim: int,
|
||||
act_fn: str = "silu",
|
||||
out_dim: int = None,
|
||||
post_act_fn: Optional[str] = None,
|
||||
cond_proj_dim=None,
|
||||
sample_proj_bias=True,
|
||||
dtype=None, device=None, operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.linear_1 = operations.Linear(in_channels, time_embed_dim, sample_proj_bias, dtype=dtype, device=device)
|
||||
|
||||
if cond_proj_dim is not None:
|
||||
self.cond_proj = operations.Linear(cond_proj_dim, in_channels, bias=False, dtype=dtype, device=device)
|
||||
else:
|
||||
self.cond_proj = None
|
||||
|
||||
self.act = nn.SiLU()
|
||||
|
||||
if out_dim is not None:
|
||||
time_embed_dim_out = out_dim
|
||||
else:
|
||||
time_embed_dim_out = time_embed_dim
|
||||
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
|
||||
|
||||
if post_act_fn is None:
|
||||
self.post_act = None
|
||||
# else:
|
||||
# self.post_act = get_activation(post_act_fn)
|
||||
|
||||
def forward(self, sample, condition=None):
|
||||
if condition is not None:
|
||||
sample = sample + self.cond_proj(condition)
|
||||
sample = self.linear_1(sample)
|
||||
|
||||
if self.act is not None:
|
||||
sample = self.act(sample)
|
||||
|
||||
sample = self.linear_2(sample)
|
||||
|
||||
if self.post_act is not None:
|
||||
sample = self.post_act(sample)
|
||||
return sample
|
||||
|
||||
|
||||
class Timesteps(nn.Module):
|
||||
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
|
||||
super().__init__()
|
||||
self.num_channels = num_channels
|
||||
self.flip_sin_to_cos = flip_sin_to_cos
|
||||
self.downscale_freq_shift = downscale_freq_shift
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, timesteps):
|
||||
t_emb = get_timestep_embedding(
|
||||
timesteps,
|
||||
self.num_channels,
|
||||
flip_sin_to_cos=self.flip_sin_to_cos,
|
||||
downscale_freq_shift=self.downscale_freq_shift,
|
||||
scale=self.scale,
|
||||
)
|
||||
return t_emb
|
||||
|
||||
|
||||
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
|
||||
"""
|
||||
For PixArt-Alpha.
|
||||
|
||||
Reference:
|
||||
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.outdim = size_emb_dim
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
||||
return timesteps_emb
|
||||
|
||||
|
||||
class AdaLayerNormSingle(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm single (adaLN-single).
|
||||
|
||||
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
||||
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
timestep: torch.Tensor,
|
||||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||||
batch_size: Optional[int] = None,
|
||||
hidden_dtype: Optional[torch.dtype] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
# No modulation happening here.
|
||||
added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
|
||||
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
|
||||
return self.linear(self.silu(embedded_timestep)), embedded_timestep
|
||||
|
||||
class PixArtAlphaTextProjection(nn.Module):
|
||||
"""
|
||||
Projects caption embeddings. Also handles dropout for classifier-free guidance.
|
||||
|
||||
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
||||
"""
|
||||
|
||||
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
if out_features is None:
|
||||
out_features = hidden_size
|
||||
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
|
||||
if act_fn == "gelu_tanh":
|
||||
self.act_1 = nn.GELU(approximate="tanh")
|
||||
elif act_fn == "silu":
|
||||
self.act_1 = nn.SiLU()
|
||||
else:
|
||||
raise ValueError(f"Unknown activation function: {act_fn}")
|
||||
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, caption):
|
||||
hidden_states = self.linear_1(caption)
|
||||
hidden_states = self.act_1(hidden_states)
|
||||
hidden_states = self.linear_2(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GELU_approx(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.proj = operations.Linear(dim_in, dim_out, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.nn.functional.gelu(self.proj(x), approximate="tanh")
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
|
||||
cos_freqs = freqs_cis[0]
|
||||
sin_freqs = freqs_cis[1]
|
||||
|
||||
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
|
||||
t1, t2 = t_dup.unbind(dim=-1)
|
||||
t_dup = torch.stack((-t2, t1), dim=-1)
|
||||
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
|
||||
|
||||
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = query_dim if context_dim is None else context_dim
|
||||
self.attn_precision = attn_precision
|
||||
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x, context=None, mask=None, pe=None):
|
||||
q = self.to_q(x)
|
||||
context = x if context is None else context
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
if pe is not None:
|
||||
q = apply_rotary_emb(q, pe)
|
||||
k = apply_rotary_emb(k, pe)
|
||||
|
||||
if mask is None:
|
||||
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
|
||||
else:
|
||||
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.attn_precision = attn_precision
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
|
||||
|
||||
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
|
||||
|
||||
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
|
||||
|
||||
x += self.attn2(x, context=context, mask=attention_mask)
|
||||
|
||||
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
|
||||
x += self.ff(y) * gate_mlp
|
||||
|
||||
return x
|
||||
|
||||
def get_fractional_positions(indices_grid, max_pos):
|
||||
fractional_positions = torch.stack(
|
||||
[
|
||||
indices_grid[:, i] / max_pos[i]
|
||||
for i in range(3)
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
return fractional_positions
|
||||
|
||||
|
||||
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
|
||||
dtype = torch.float32 #self.dtype
|
||||
|
||||
fractional_positions = get_fractional_positions(indices_grid, max_pos)
|
||||
|
||||
start = 1
|
||||
end = theta
|
||||
device = fractional_positions.device
|
||||
|
||||
indices = theta ** (
|
||||
torch.linspace(
|
||||
math.log(start, theta),
|
||||
math.log(end, theta),
|
||||
dim // 6,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
indices = indices.to(dtype=dtype)
|
||||
|
||||
indices = indices * math.pi / 2
|
||||
|
||||
freqs = (
|
||||
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
|
||||
.transpose(-1, -2)
|
||||
.flatten(2)
|
||||
)
|
||||
|
||||
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
||||
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
||||
if dim % 6 != 0:
|
||||
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
||||
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
||||
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
||||
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
||||
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
|
||||
|
||||
|
||||
class LTXVModel(torch.nn.Module):
|
||||
def __init__(self,
|
||||
in_channels=128,
|
||||
cross_attention_dim=2048,
|
||||
attention_head_dim=64,
|
||||
num_attention_heads=32,
|
||||
|
||||
caption_channels=4096,
|
||||
num_layers=28,
|
||||
|
||||
|
||||
positional_embedding_theta=10000.0,
|
||||
positional_embedding_max_pos=[20, 2048, 2048],
|
||||
dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.generator = None
|
||||
self.dtype = dtype
|
||||
self.out_channels = in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
self.adaln_single = AdaLayerNormSingle(
|
||||
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
self.caption_projection = PixArtAlphaTextProjection(
|
||||
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
self.inner_dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
context_dim=cross_attention_dim,
|
||||
# attn_precision=attn_precision,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for d in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
|
||||
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
|
||||
|
||||
self.patchifier = SymmetricPatchifier(1)
|
||||
|
||||
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latent_noise_scale=0, transformer_options={}, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
|
||||
indices_grid = self.patchifier.get_grid(
|
||||
orig_num_frames=x.shape[2],
|
||||
orig_height=x.shape[3],
|
||||
orig_width=x.shape[4],
|
||||
batch_size=x.shape[0],
|
||||
scale_grid=((1 / frame_rate) * 8, 32, 32),
|
||||
device=x.device,
|
||||
)
|
||||
|
||||
if guiding_latent is not None:
|
||||
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
|
||||
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
|
||||
ts *= input_ts
|
||||
ts[:, :, 0] = guiding_latent_noise_scale * (input_ts[:, :, 0] ** 2)
|
||||
timestep = self.patchifier.patchify(ts)
|
||||
input_x = x.clone()
|
||||
x[:, :, 0] = guiding_latent[:, :, 0]
|
||||
if guiding_latent_noise_scale > 0:
|
||||
if self.generator is None:
|
||||
self.generator = torch.Generator(device=x.device).manual_seed(42)
|
||||
elif self.generator.device != x.device:
|
||||
self.generator = torch.Generator(device=x.device).set_state(self.generator.get_state())
|
||||
|
||||
noise_shape = [guiding_latent.shape[0], guiding_latent.shape[1], 1, guiding_latent.shape[3], guiding_latent.shape[4]]
|
||||
scale = guiding_latent_noise_scale * (input_ts ** 2)
|
||||
guiding_noise = scale * torch.randn(size=noise_shape, device=x.device, generator=self.generator)
|
||||
|
||||
x[:, :, 0] = guiding_noise[:, :, 0] + x[:, :, 0] * (1.0 - scale[:, :, 0])
|
||||
|
||||
|
||||
orig_shape = list(x.shape)
|
||||
|
||||
x = self.patchifier.patchify(x)
|
||||
|
||||
x = self.patchify_proj(x)
|
||||
timestep = timestep * 1000.0
|
||||
|
||||
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
|
||||
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
|
||||
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
|
||||
|
||||
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
|
||||
|
||||
batch_size = x.shape[0]
|
||||
timestep, embedded_timestep = self.adaln_single(
|
||||
timestep.flatten(),
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=x.dtype,
|
||||
)
|
||||
# Second dimension is 1 or number of tokens (if timestep_per_token)
|
||||
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
||||
embedded_timestep = embedded_timestep.view(
|
||||
batch_size, -1, embedded_timestep.shape[-1]
|
||||
)
|
||||
|
||||
# 2. Blocks
|
||||
if self.caption_projection is not None:
|
||||
batch_size = x.shape[0]
|
||||
context = self.caption_projection(context)
|
||||
context = context.view(
|
||||
batch_size, -1, x.shape[-1]
|
||||
)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(
|
||||
x,
|
||||
context=context,
|
||||
attention_mask=attention_mask,
|
||||
timestep=timestep,
|
||||
pe=pe
|
||||
)
|
||||
|
||||
# 3. Output
|
||||
scale_shift_values = (
|
||||
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
|
||||
)
|
||||
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
||||
x = self.norm_out(x)
|
||||
# Modulation
|
||||
x = x * (1 + scale) + shift
|
||||
x = self.proj_out(x)
|
||||
|
||||
x = self.patchifier.unpatchify(
|
||||
latents=x,
|
||||
output_height=orig_shape[3],
|
||||
output_width=orig_shape[4],
|
||||
output_num_frames=orig_shape[2],
|
||||
out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
|
||||
)
|
||||
|
||||
if guiding_latent is not None:
|
||||
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]
|
||||
|
||||
# print("res", x)
|
||||
return x
|
||||
105
comfy/ldm/lightricks/symmetric_patchifier.py
Normal file
105
comfy/ldm/lightricks/symmetric_patchifier.py
Normal file
@@ -0,0 +1,105 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
if dims_to_append < 0:
|
||||
raise ValueError(
|
||||
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
||||
)
|
||||
elif dims_to_append == 0:
|
||||
return x
|
||||
return x[(...,) + (None,) * dims_to_append]
|
||||
|
||||
|
||||
class Patchifier(ABC):
|
||||
def __init__(self, patch_size: int):
|
||||
super().__init__()
|
||||
self._patch_size = (1, patch_size, patch_size)
|
||||
|
||||
@abstractmethod
|
||||
def patchify(
|
||||
self, latents: Tensor, frame_rates: Tensor, scale_grid: bool
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def unpatchify(
|
||||
self,
|
||||
latents: Tensor,
|
||||
output_height: int,
|
||||
output_width: int,
|
||||
output_num_frames: int,
|
||||
out_channels: int,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
pass
|
||||
|
||||
@property
|
||||
def patch_size(self):
|
||||
return self._patch_size
|
||||
|
||||
def get_grid(
|
||||
self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device
|
||||
):
|
||||
f = orig_num_frames // self._patch_size[0]
|
||||
h = orig_height // self._patch_size[1]
|
||||
w = orig_width // self._patch_size[2]
|
||||
grid_h = torch.arange(h, dtype=torch.float32, device=device)
|
||||
grid_w = torch.arange(w, dtype=torch.float32, device=device)
|
||||
grid_f = torch.arange(f, dtype=torch.float32, device=device)
|
||||
grid = torch.meshgrid(grid_f, grid_h, grid_w)
|
||||
grid = torch.stack(grid, dim=0)
|
||||
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
|
||||
|
||||
if scale_grid is not None:
|
||||
for i in range(3):
|
||||
if isinstance(scale_grid[i], Tensor):
|
||||
scale = append_dims(scale_grid[i], grid.ndim - 1)
|
||||
else:
|
||||
scale = scale_grid[i]
|
||||
grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i]
|
||||
|
||||
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size)
|
||||
return grid
|
||||
|
||||
|
||||
class SymmetricPatchifier(Patchifier):
|
||||
def patchify(
|
||||
self,
|
||||
latents: Tensor,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
latents = rearrange(
|
||||
latents,
|
||||
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
|
||||
p1=self._patch_size[0],
|
||||
p2=self._patch_size[1],
|
||||
p3=self._patch_size[2],
|
||||
)
|
||||
return latents
|
||||
|
||||
def unpatchify(
|
||||
self,
|
||||
latents: Tensor,
|
||||
output_height: int,
|
||||
output_width: int,
|
||||
output_num_frames: int,
|
||||
out_channels: int,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
output_height = output_height // self._patch_size[1]
|
||||
output_width = output_width // self._patch_size[2]
|
||||
latents = rearrange(
|
||||
latents,
|
||||
"b (f h w) (c p q) -> b c f (h p) (w q) ",
|
||||
f=output_num_frames,
|
||||
h=output_height,
|
||||
w=output_width,
|
||||
p=self._patch_size[1],
|
||||
q=self._patch_size[2],
|
||||
)
|
||||
return latents
|
||||
64
comfy/ldm/lightricks/vae/causal_conv3d.py
Normal file
64
comfy/ldm/lightricks/vae/causal_conv3d.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
class CausalConv3d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size: int = 3,
|
||||
stride: Union[int, Tuple[int]] = 1,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
kernel_size = (kernel_size, kernel_size, kernel_size)
|
||||
self.time_kernel_size = kernel_size[0]
|
||||
|
||||
dilation = (dilation, 1, 1)
|
||||
|
||||
height_pad = kernel_size[1] // 2
|
||||
width_pad = kernel_size[2] // 2
|
||||
padding = (0, height_pad, width_pad)
|
||||
|
||||
self.conv = ops.Conv3d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
padding_mode="zeros",
|
||||
groups=groups,
|
||||
)
|
||||
|
||||
def forward(self, x, causal: bool = True):
|
||||
if causal:
|
||||
first_frame_pad = x[:, :, :1, :, :].repeat(
|
||||
(1, 1, self.time_kernel_size - 1, 1, 1)
|
||||
)
|
||||
x = torch.concatenate((first_frame_pad, x), dim=2)
|
||||
else:
|
||||
first_frame_pad = x[:, :, :1, :, :].repeat(
|
||||
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
||||
)
|
||||
last_frame_pad = x[:, :, -1:, :, :].repeat(
|
||||
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
||||
)
|
||||
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.conv.weight
|
||||
698
comfy/ldm/lightricks/vae/causal_video_autoencoder.py
Normal file
698
comfy/ldm/lightricks/vae/causal_video_autoencoder.py
Normal file
@@ -0,0 +1,698 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from functools import partial
|
||||
import math
|
||||
from einops import rearrange
|
||||
from typing import Optional, Tuple, Union
|
||||
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
||||
from .pixel_norm import PixelNorm
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
r"""
|
||||
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
||||
|
||||
Args:
|
||||
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
||||
The number of dimensions to use in convolutions.
|
||||
in_channels (`int`, *optional*, defaults to 3):
|
||||
The number of input channels.
|
||||
out_channels (`int`, *optional*, defaults to 3):
|
||||
The number of output channels.
|
||||
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
||||
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
||||
base_channels (`int`, *optional*, defaults to 128):
|
||||
The number of output channels for the first convolutional layer.
|
||||
norm_num_groups (`int`, *optional*, defaults to 32):
|
||||
The number of groups for normalization.
|
||||
patch_size (`int`, *optional*, defaults to 1):
|
||||
The patch size to use. Should be a power of 2.
|
||||
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
||||
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
||||
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
||||
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: Union[int, Tuple[int, int]] = 3,
|
||||
in_channels: int = 3,
|
||||
out_channels: int = 3,
|
||||
blocks=[("res_x", 1)],
|
||||
base_channels: int = 128,
|
||||
norm_num_groups: int = 32,
|
||||
patch_size: Union[int, Tuple[int]] = 1,
|
||||
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
||||
latent_log_var: str = "per_channel",
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.norm_layer = norm_layer
|
||||
self.latent_channels = out_channels
|
||||
self.latent_log_var = latent_log_var
|
||||
self.blocks_desc = blocks
|
||||
|
||||
in_channels = in_channels * patch_size**2
|
||||
output_channel = base_channels
|
||||
|
||||
self.conv_in = make_conv_nd(
|
||||
dims=dims,
|
||||
in_channels=in_channels,
|
||||
out_channels=output_channel,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
causal=True,
|
||||
)
|
||||
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
|
||||
for block_name, block_params in blocks:
|
||||
input_channel = output_channel
|
||||
if isinstance(block_params, int):
|
||||
block_params = {"num_layers": block_params}
|
||||
|
||||
if block_name == "res_x":
|
||||
block = UNetMidBlock3D(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
num_layers=block_params["num_layers"],
|
||||
resnet_eps=1e-6,
|
||||
resnet_groups=norm_num_groups,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
elif block_name == "res_x_y":
|
||||
output_channel = block_params.get("multiplier", 2) * output_channel
|
||||
block = ResnetBlock3D(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
eps=1e-6,
|
||||
groups=norm_num_groups,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
elif block_name == "compress_time":
|
||||
block = make_conv_nd(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
kernel_size=3,
|
||||
stride=(2, 1, 1),
|
||||
causal=True,
|
||||
)
|
||||
elif block_name == "compress_space":
|
||||
block = make_conv_nd(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
kernel_size=3,
|
||||
stride=(1, 2, 2),
|
||||
causal=True,
|
||||
)
|
||||
elif block_name == "compress_all":
|
||||
block = make_conv_nd(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
kernel_size=3,
|
||||
stride=(2, 2, 2),
|
||||
causal=True,
|
||||
)
|
||||
elif block_name == "compress_all_x_y":
|
||||
output_channel = block_params.get("multiplier", 2) * output_channel
|
||||
block = make_conv_nd(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
kernel_size=3,
|
||||
stride=(2, 2, 2),
|
||||
causal=True,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown block: {block_name}")
|
||||
|
||||
self.down_blocks.append(block)
|
||||
|
||||
# out
|
||||
if norm_layer == "group_norm":
|
||||
self.conv_norm_out = nn.GroupNorm(
|
||||
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
||||
)
|
||||
elif norm_layer == "pixel_norm":
|
||||
self.conv_norm_out = PixelNorm()
|
||||
elif norm_layer == "layer_norm":
|
||||
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
||||
|
||||
self.conv_act = nn.SiLU()
|
||||
|
||||
conv_out_channels = out_channels
|
||||
if latent_log_var == "per_channel":
|
||||
conv_out_channels *= 2
|
||||
elif latent_log_var == "uniform":
|
||||
conv_out_channels += 1
|
||||
elif latent_log_var != "none":
|
||||
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
||||
self.conv_out = make_conv_nd(
|
||||
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
||||
r"""The forward method of the `Encoder` class."""
|
||||
|
||||
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
||||
sample = self.conv_in(sample)
|
||||
|
||||
checkpoint_fn = (
|
||||
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
||||
if self.gradient_checkpointing and self.training
|
||||
else lambda x: x
|
||||
)
|
||||
|
||||
for down_block in self.down_blocks:
|
||||
sample = checkpoint_fn(down_block)(sample)
|
||||
|
||||
sample = self.conv_norm_out(sample)
|
||||
sample = self.conv_act(sample)
|
||||
sample = self.conv_out(sample)
|
||||
|
||||
if self.latent_log_var == "uniform":
|
||||
last_channel = sample[:, -1:, ...]
|
||||
num_dims = sample.dim()
|
||||
|
||||
if num_dims == 4:
|
||||
# For shape (B, C, H, W)
|
||||
repeated_last_channel = last_channel.repeat(
|
||||
1, sample.shape[1] - 2, 1, 1
|
||||
)
|
||||
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
||||
elif num_dims == 5:
|
||||
# For shape (B, C, F, H, W)
|
||||
repeated_last_channel = last_channel.repeat(
|
||||
1, sample.shape[1] - 2, 1, 1, 1
|
||||
)
|
||||
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
||||
else:
|
||||
raise ValueError(f"Invalid input shape: {sample.shape}")
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
r"""
|
||||
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
||||
|
||||
Args:
|
||||
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
||||
The number of dimensions to use in convolutions.
|
||||
in_channels (`int`, *optional*, defaults to 3):
|
||||
The number of input channels.
|
||||
out_channels (`int`, *optional*, defaults to 3):
|
||||
The number of output channels.
|
||||
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
||||
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
||||
base_channels (`int`, *optional*, defaults to 128):
|
||||
The number of output channels for the first convolutional layer.
|
||||
norm_num_groups (`int`, *optional*, defaults to 32):
|
||||
The number of groups for normalization.
|
||||
patch_size (`int`, *optional*, defaults to 1):
|
||||
The patch size to use. Should be a power of 2.
|
||||
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
||||
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
||||
causal (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use causal convolutions or not.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims,
|
||||
in_channels: int = 3,
|
||||
out_channels: int = 3,
|
||||
blocks=[("res_x", 1)],
|
||||
base_channels: int = 128,
|
||||
layers_per_block: int = 2,
|
||||
norm_num_groups: int = 32,
|
||||
patch_size: int = 1,
|
||||
norm_layer: str = "group_norm",
|
||||
causal: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.layers_per_block = layers_per_block
|
||||
out_channels = out_channels * patch_size**2
|
||||
self.causal = causal
|
||||
self.blocks_desc = blocks
|
||||
|
||||
# Compute output channel to be product of all channel-multiplier blocks
|
||||
output_channel = base_channels
|
||||
for block_name, block_params in list(reversed(blocks)):
|
||||
block_params = block_params if isinstance(block_params, dict) else {}
|
||||
if block_name == "res_x_y":
|
||||
output_channel = output_channel * block_params.get("multiplier", 2)
|
||||
|
||||
self.conv_in = make_conv_nd(
|
||||
dims,
|
||||
in_channels,
|
||||
output_channel,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
causal=True,
|
||||
)
|
||||
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
|
||||
for block_name, block_params in list(reversed(blocks)):
|
||||
input_channel = output_channel
|
||||
if isinstance(block_params, int):
|
||||
block_params = {"num_layers": block_params}
|
||||
|
||||
if block_name == "res_x":
|
||||
block = UNetMidBlock3D(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
num_layers=block_params["num_layers"],
|
||||
resnet_eps=1e-6,
|
||||
resnet_groups=norm_num_groups,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
elif block_name == "res_x_y":
|
||||
output_channel = output_channel // block_params.get("multiplier", 2)
|
||||
block = ResnetBlock3D(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
eps=1e-6,
|
||||
groups=norm_num_groups,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
elif block_name == "compress_time":
|
||||
block = DepthToSpaceUpsample(
|
||||
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
|
||||
)
|
||||
elif block_name == "compress_space":
|
||||
block = DepthToSpaceUpsample(
|
||||
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
|
||||
)
|
||||
elif block_name == "compress_all":
|
||||
block = DepthToSpaceUpsample(
|
||||
dims=dims,
|
||||
in_channels=input_channel,
|
||||
stride=(2, 2, 2),
|
||||
residual=block_params.get("residual", False),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown layer: {block_name}")
|
||||
|
||||
self.up_blocks.append(block)
|
||||
|
||||
if norm_layer == "group_norm":
|
||||
self.conv_norm_out = nn.GroupNorm(
|
||||
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
||||
)
|
||||
elif norm_layer == "pixel_norm":
|
||||
self.conv_norm_out = PixelNorm()
|
||||
elif norm_layer == "layer_norm":
|
||||
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
||||
|
||||
self.conv_act = nn.SiLU()
|
||||
self.conv_out = make_conv_nd(
|
||||
dims, output_channel, out_channels, 3, padding=1, causal=True
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
||||
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
||||
r"""The forward method of the `Decoder` class."""
|
||||
# assert target_shape is not None, "target_shape must be provided"
|
||||
|
||||
sample = self.conv_in(sample, causal=self.causal)
|
||||
|
||||
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
||||
|
||||
checkpoint_fn = (
|
||||
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
||||
if self.gradient_checkpointing and self.training
|
||||
else lambda x: x
|
||||
)
|
||||
|
||||
sample = sample.to(upscale_dtype)
|
||||
|
||||
for up_block in self.up_blocks:
|
||||
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
||||
|
||||
sample = self.conv_norm_out(sample)
|
||||
sample = self.conv_act(sample)
|
||||
sample = self.conv_out(sample, causal=self.causal)
|
||||
|
||||
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class UNetMidBlock3D(nn.Module):
|
||||
"""
|
||||
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
||||
|
||||
Args:
|
||||
in_channels (`int`): The number of input channels.
|
||||
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
||||
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
||||
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
||||
resnet_groups (`int`, *optional*, defaults to 32):
|
||||
The number of groups to use in the group normalization layers of the resnet blocks.
|
||||
|
||||
Returns:
|
||||
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
||||
in_channels, height, width)`.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: Union[int, Tuple[int, int]],
|
||||
in_channels: int,
|
||||
dropout: float = 0.0,
|
||||
num_layers: int = 1,
|
||||
resnet_eps: float = 1e-6,
|
||||
resnet_groups: int = 32,
|
||||
norm_layer: str = "group_norm",
|
||||
):
|
||||
super().__init__()
|
||||
resnet_groups = (
|
||||
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||||
)
|
||||
|
||||
self.res_blocks = nn.ModuleList(
|
||||
[
|
||||
ResnetBlock3D(
|
||||
dims=dims,
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
norm_layer=norm_layer,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, hidden_states: torch.FloatTensor, causal: bool = True
|
||||
) -> torch.FloatTensor:
|
||||
for resnet in self.res_blocks:
|
||||
hidden_states = resnet(hidden_states, causal=causal)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DepthToSpaceUpsample(nn.Module):
|
||||
def __init__(self, dims, in_channels, stride, residual=False):
|
||||
super().__init__()
|
||||
self.stride = stride
|
||||
self.out_channels = math.prod(stride) * in_channels
|
||||
self.conv = make_conv_nd(
|
||||
dims=dims,
|
||||
in_channels=in_channels,
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
causal=True,
|
||||
)
|
||||
self.residual = residual
|
||||
|
||||
def forward(self, x, causal: bool = True):
|
||||
if self.residual:
|
||||
# Reshape and duplicate the input to match the output shape
|
||||
x_in = rearrange(
|
||||
x,
|
||||
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
||||
p1=self.stride[0],
|
||||
p2=self.stride[1],
|
||||
p3=self.stride[2],
|
||||
)
|
||||
x_in = x_in.repeat(1, math.prod(self.stride), 1, 1, 1)
|
||||
if self.stride[0] == 2:
|
||||
x_in = x_in[:, :, 1:, :, :]
|
||||
x = self.conv(x, causal=causal)
|
||||
x = rearrange(
|
||||
x,
|
||||
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
||||
p1=self.stride[0],
|
||||
p2=self.stride[1],
|
||||
p3=self.stride[2],
|
||||
)
|
||||
if self.stride[0] == 2:
|
||||
x = x[:, :, 1:, :, :]
|
||||
if self.residual:
|
||||
x = x + x_in
|
||||
return x
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
||||
|
||||
def forward(self, x):
|
||||
x = rearrange(x, "b c d h w -> b d h w c")
|
||||
x = self.norm(x)
|
||||
x = rearrange(x, "b d h w c -> b c d h w")
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock3D(nn.Module):
|
||||
r"""
|
||||
A Resnet block.
|
||||
|
||||
Parameters:
|
||||
in_channels (`int`): The number of channels in the input.
|
||||
out_channels (`int`, *optional*, default to be `None`):
|
||||
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
||||
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
||||
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
||||
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: Union[int, Tuple[int, int]],
|
||||
in_channels: int,
|
||||
out_channels: Optional[int] = None,
|
||||
dropout: float = 0.0,
|
||||
groups: int = 32,
|
||||
eps: float = 1e-6,
|
||||
norm_layer: str = "group_norm",
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
if norm_layer == "group_norm":
|
||||
self.norm1 = nn.GroupNorm(
|
||||
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
||||
)
|
||||
elif norm_layer == "pixel_norm":
|
||||
self.norm1 = PixelNorm()
|
||||
elif norm_layer == "layer_norm":
|
||||
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
||||
|
||||
self.non_linearity = nn.SiLU()
|
||||
|
||||
self.conv1 = make_conv_nd(
|
||||
dims,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
causal=True,
|
||||
)
|
||||
|
||||
if norm_layer == "group_norm":
|
||||
self.norm2 = nn.GroupNorm(
|
||||
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
||||
)
|
||||
elif norm_layer == "pixel_norm":
|
||||
self.norm2 = PixelNorm()
|
||||
elif norm_layer == "layer_norm":
|
||||
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
||||
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
|
||||
self.conv2 = make_conv_nd(
|
||||
dims,
|
||||
out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
causal=True,
|
||||
)
|
||||
|
||||
self.conv_shortcut = (
|
||||
make_linear_nd(
|
||||
dims=dims, in_channels=in_channels, out_channels=out_channels
|
||||
)
|
||||
if in_channels != out_channels
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
self.norm3 = (
|
||||
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
||||
if in_channels != out_channels
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_tensor: torch.FloatTensor,
|
||||
causal: bool = True,
|
||||
) -> torch.FloatTensor:
|
||||
hidden_states = input_tensor
|
||||
|
||||
hidden_states = self.norm1(hidden_states)
|
||||
|
||||
hidden_states = self.non_linearity(hidden_states)
|
||||
|
||||
hidden_states = self.conv1(hidden_states, causal=causal)
|
||||
|
||||
hidden_states = self.norm2(hidden_states)
|
||||
|
||||
hidden_states = self.non_linearity(hidden_states)
|
||||
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
|
||||
hidden_states = self.conv2(hidden_states, causal=causal)
|
||||
|
||||
input_tensor = self.norm3(input_tensor)
|
||||
|
||||
input_tensor = self.conv_shortcut(input_tensor)
|
||||
|
||||
output_tensor = input_tensor + hidden_states
|
||||
|
||||
return output_tensor
|
||||
|
||||
|
||||
def patchify(x, patch_size_hw, patch_size_t=1):
|
||||
if patch_size_hw == 1 and patch_size_t == 1:
|
||||
return x
|
||||
if x.dim() == 4:
|
||||
x = rearrange(
|
||||
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
||||
)
|
||||
elif x.dim() == 5:
|
||||
x = rearrange(
|
||||
x,
|
||||
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
||||
p=patch_size_t,
|
||||
q=patch_size_hw,
|
||||
r=patch_size_hw,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid input shape: {x.shape}")
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
||||
if patch_size_hw == 1 and patch_size_t == 1:
|
||||
return x
|
||||
|
||||
if x.dim() == 4:
|
||||
x = rearrange(
|
||||
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
||||
)
|
||||
elif x.dim() == 5:
|
||||
x = rearrange(
|
||||
x,
|
||||
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
||||
p=patch_size_t,
|
||||
q=patch_size_hw,
|
||||
r=patch_size_hw,
|
||||
)
|
||||
|
||||
return x
|
||||
|
||||
class processor(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.register_buffer("std-of-means", torch.empty(128))
|
||||
self.register_buffer("mean-of-means", torch.empty(128))
|
||||
self.register_buffer("mean-of-stds", torch.empty(128))
|
||||
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
|
||||
self.register_buffer("channel", torch.empty(128))
|
||||
|
||||
def un_normalize(self, x):
|
||||
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
|
||||
|
||||
def normalize(self, x):
|
||||
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
|
||||
|
||||
class VideoVAE(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
config = {
|
||||
"_class_name": "CausalVideoAutoencoder",
|
||||
"dims": 3,
|
||||
"in_channels": 3,
|
||||
"out_channels": 3,
|
||||
"latent_channels": 128,
|
||||
"blocks": [
|
||||
["res_x", 4],
|
||||
["compress_all", 1],
|
||||
["res_x_y", 1],
|
||||
["res_x", 3],
|
||||
["compress_all", 1],
|
||||
["res_x_y", 1],
|
||||
["res_x", 3],
|
||||
["compress_all", 1],
|
||||
["res_x", 3],
|
||||
["res_x", 4],
|
||||
],
|
||||
"scaling_factor": 1.0,
|
||||
"norm_layer": "pixel_norm",
|
||||
"patch_size": 4,
|
||||
"latent_log_var": "uniform",
|
||||
"use_quant_conv": False,
|
||||
"causal_decoder": False,
|
||||
}
|
||||
|
||||
double_z = config.get("double_z", True)
|
||||
latent_log_var = config.get(
|
||||
"latent_log_var", "per_channel" if double_z else "none"
|
||||
)
|
||||
|
||||
self.encoder = Encoder(
|
||||
dims=config["dims"],
|
||||
in_channels=config.get("in_channels", 3),
|
||||
out_channels=config["latent_channels"],
|
||||
blocks=config.get("encoder_blocks", config.get("blocks")),
|
||||
patch_size=config.get("patch_size", 1),
|
||||
latent_log_var=latent_log_var,
|
||||
norm_layer=config.get("norm_layer", "group_norm"),
|
||||
)
|
||||
|
||||
self.decoder = Decoder(
|
||||
dims=config["dims"],
|
||||
in_channels=config["latent_channels"],
|
||||
out_channels=config.get("out_channels", 3),
|
||||
blocks=config.get("decoder_blocks", config.get("blocks")),
|
||||
patch_size=config.get("patch_size", 1),
|
||||
norm_layer=config.get("norm_layer", "group_norm"),
|
||||
causal=config.get("causal_decoder", False),
|
||||
)
|
||||
|
||||
self.per_channel_statistics = processor()
|
||||
|
||||
def encode(self, x):
|
||||
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
|
||||
return self.per_channel_statistics.normalize(means)
|
||||
|
||||
def decode(self, x):
|
||||
return self.decoder(self.per_channel_statistics.un_normalize(x))
|
||||
|
||||
82
comfy/ldm/lightricks/vae/conv_nd_factory.py
Normal file
82
comfy/ldm/lightricks/vae/conv_nd_factory.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
|
||||
from .dual_conv3d import DualConv3d
|
||||
from .causal_conv3d import CausalConv3d
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def make_conv_nd(
|
||||
dims: Union[int, Tuple[int, int]],
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
causal=False,
|
||||
):
|
||||
if dims == 2:
|
||||
return ops.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
bias=bias,
|
||||
)
|
||||
elif dims == 3:
|
||||
if causal:
|
||||
return CausalConv3d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
bias=bias,
|
||||
)
|
||||
return ops.Conv3d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
bias=bias,
|
||||
)
|
||||
elif dims == (2, 1):
|
||||
return DualConv3d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias=bias,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def make_linear_nd(
|
||||
dims: int,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
bias=True,
|
||||
):
|
||||
if dims == 2:
|
||||
return ops.Conv2d(
|
||||
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
||||
)
|
||||
elif dims == 3 or dims == (2, 1):
|
||||
return ops.Conv3d(
|
||||
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
195
comfy/ldm/lightricks/vae/dual_conv3d.py
Normal file
195
comfy/ldm/lightricks/vae/dual_conv3d.py
Normal file
@@ -0,0 +1,195 @@
|
||||
import math
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
class DualConv3d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride: Union[int, Tuple[int, int, int]] = 1,
|
||||
padding: Union[int, Tuple[int, int, int]] = 0,
|
||||
dilation: Union[int, Tuple[int, int, int]] = 1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
):
|
||||
super(DualConv3d, self).__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
||||
if isinstance(kernel_size, int):
|
||||
kernel_size = (kernel_size, kernel_size, kernel_size)
|
||||
if kernel_size == (1, 1, 1):
|
||||
raise ValueError(
|
||||
"kernel_size must be greater than 1. Use make_linear_nd instead."
|
||||
)
|
||||
if isinstance(stride, int):
|
||||
stride = (stride, stride, stride)
|
||||
if isinstance(padding, int):
|
||||
padding = (padding, padding, padding)
|
||||
if isinstance(dilation, int):
|
||||
dilation = (dilation, dilation, dilation)
|
||||
|
||||
# Set parameters for convolutions
|
||||
self.groups = groups
|
||||
self.bias = bias
|
||||
|
||||
# Define the size of the channels after the first convolution
|
||||
intermediate_channels = (
|
||||
out_channels if in_channels < out_channels else in_channels
|
||||
)
|
||||
|
||||
# Define parameters for the first convolution
|
||||
self.weight1 = nn.Parameter(
|
||||
torch.Tensor(
|
||||
intermediate_channels,
|
||||
in_channels // groups,
|
||||
1,
|
||||
kernel_size[1],
|
||||
kernel_size[2],
|
||||
)
|
||||
)
|
||||
self.stride1 = (1, stride[1], stride[2])
|
||||
self.padding1 = (0, padding[1], padding[2])
|
||||
self.dilation1 = (1, dilation[1], dilation[2])
|
||||
if bias:
|
||||
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
||||
else:
|
||||
self.register_parameter("bias1", None)
|
||||
|
||||
# Define parameters for the second convolution
|
||||
self.weight2 = nn.Parameter(
|
||||
torch.Tensor(
|
||||
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
|
||||
)
|
||||
)
|
||||
self.stride2 = (stride[0], 1, 1)
|
||||
self.padding2 = (padding[0], 0, 0)
|
||||
self.dilation2 = (dilation[0], 1, 1)
|
||||
if bias:
|
||||
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
||||
else:
|
||||
self.register_parameter("bias2", None)
|
||||
|
||||
# Initialize weights and biases
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
||||
if self.bias:
|
||||
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
||||
bound1 = 1 / math.sqrt(fan_in1)
|
||||
nn.init.uniform_(self.bias1, -bound1, bound1)
|
||||
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
||||
bound2 = 1 / math.sqrt(fan_in2)
|
||||
nn.init.uniform_(self.bias2, -bound2, bound2)
|
||||
|
||||
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
||||
if use_conv3d:
|
||||
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
||||
else:
|
||||
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
||||
|
||||
def forward_with_3d(self, x, skip_time_conv):
|
||||
# First convolution
|
||||
x = F.conv3d(
|
||||
x,
|
||||
self.weight1,
|
||||
self.bias1,
|
||||
self.stride1,
|
||||
self.padding1,
|
||||
self.dilation1,
|
||||
self.groups,
|
||||
)
|
||||
|
||||
if skip_time_conv:
|
||||
return x
|
||||
|
||||
# Second convolution
|
||||
x = F.conv3d(
|
||||
x,
|
||||
self.weight2,
|
||||
self.bias2,
|
||||
self.stride2,
|
||||
self.padding2,
|
||||
self.dilation2,
|
||||
self.groups,
|
||||
)
|
||||
|
||||
return x
|
||||
|
||||
def forward_with_2d(self, x, skip_time_conv):
|
||||
b, c, d, h, w = x.shape
|
||||
|
||||
# First 2D convolution
|
||||
x = rearrange(x, "b c d h w -> (b d) c h w")
|
||||
# Squeeze the depth dimension out of weight1 since it's 1
|
||||
weight1 = self.weight1.squeeze(2)
|
||||
# Select stride, padding, and dilation for the 2D convolution
|
||||
stride1 = (self.stride1[1], self.stride1[2])
|
||||
padding1 = (self.padding1[1], self.padding1[2])
|
||||
dilation1 = (self.dilation1[1], self.dilation1[2])
|
||||
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
||||
|
||||
_, _, h, w = x.shape
|
||||
|
||||
if skip_time_conv:
|
||||
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
||||
return x
|
||||
|
||||
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
||||
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
||||
|
||||
# Reshape weight2 to match the expected dimensions for conv1d
|
||||
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
||||
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
||||
stride2 = self.stride2[0]
|
||||
padding2 = self.padding2[0]
|
||||
dilation2 = self.dilation2[0]
|
||||
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
||||
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
||||
|
||||
return x
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.weight2
|
||||
|
||||
|
||||
def test_dual_conv3d_consistency():
|
||||
# Initialize parameters
|
||||
in_channels = 3
|
||||
out_channels = 5
|
||||
kernel_size = (3, 3, 3)
|
||||
stride = (2, 2, 2)
|
||||
padding = (1, 1, 1)
|
||||
|
||||
# Create an instance of the DualConv3d class
|
||||
dual_conv3d = DualConv3d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias=True,
|
||||
)
|
||||
|
||||
# Example input tensor
|
||||
test_input = torch.randn(1, 3, 10, 10, 10)
|
||||
|
||||
# Perform forward passes with both 3D and 2D settings
|
||||
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
||||
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
||||
|
||||
# Assert that the outputs from both methods are sufficiently close
|
||||
assert torch.allclose(
|
||||
output_conv3d, output_2d, atol=1e-6
|
||||
), "Outputs are not consistent between 3D and 2D convolutions."
|
||||
12
comfy/ldm/lightricks/vae/pixel_norm.py
Normal file
12
comfy/ldm/lightricks/vae/pixel_norm.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class PixelNorm(nn.Module):
|
||||
def __init__(self, dim=1, eps=1e-8):
|
||||
super(PixelNorm, self).__init__()
|
||||
self.dim = dim
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x):
|
||||
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
|
||||
@@ -1,10 +1,12 @@
|
||||
import logging
|
||||
import math
|
||||
import torch
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Tuple, Union
|
||||
|
||||
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.ldm.util import get_obj_from_str, instantiate_from_config
|
||||
from comfy.ldm.modules.ema import LitEma
|
||||
import comfy.ops
|
||||
|
||||
@@ -52,7 +54,7 @@ class AbstractAutoencoder(torch.nn.Module):
|
||||
|
||||
if self.use_ema:
|
||||
self.model_ema = LitEma(self, decay=ema_decay)
|
||||
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
logging.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
|
||||
def get_input(self, batch) -> Any:
|
||||
raise NotImplementedError()
|
||||
@@ -68,14 +70,14 @@ class AbstractAutoencoder(torch.nn.Module):
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
logpy.info(f"{context}: Switched to EMA weights")
|
||||
logging.info(f"{context}: Switched to EMA weights")
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
logpy.info(f"{context}: Restored training weights")
|
||||
logging.info(f"{context}: Restored training weights")
|
||||
|
||||
def encode(self, *args, **kwargs) -> torch.Tensor:
|
||||
raise NotImplementedError("encode()-method of abstract base class called")
|
||||
@@ -84,7 +86,7 @@ class AbstractAutoencoder(torch.nn.Module):
|
||||
raise NotImplementedError("decode()-method of abstract base class called")
|
||||
|
||||
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
||||
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
||||
logging.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
||||
return get_obj_from_str(cfg["target"])(
|
||||
params, lr=lr, **cfg.get("params", dict())
|
||||
)
|
||||
@@ -112,7 +114,7 @@ class AutoencodingEngine(AbstractAutoencoder):
|
||||
|
||||
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
|
||||
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
|
||||
self.regularization: AbstractRegularizer = instantiate_from_config(
|
||||
self.regularization = instantiate_from_config(
|
||||
regularizer_config
|
||||
)
|
||||
|
||||
@@ -160,12 +162,19 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
|
||||
},
|
||||
**kwargs,
|
||||
)
|
||||
self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
|
||||
|
||||
if ddconfig.get("conv3d", False):
|
||||
conv_op = comfy.ops.disable_weight_init.Conv3d
|
||||
else:
|
||||
conv_op = comfy.ops.disable_weight_init.Conv2d
|
||||
|
||||
self.quant_conv = conv_op(
|
||||
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
||||
(1 + ddconfig["double_z"]) * embed_dim,
|
||||
1,
|
||||
)
|
||||
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
|
||||
self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def get_autoencoder_params(self) -> list:
|
||||
|
||||
@@ -15,6 +15,9 @@ if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
if model_management.sage_attention_enabled():
|
||||
from sageattention import sageattn
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
@@ -157,8 +160,6 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
|
||||
b, _, dim_head = query.shape
|
||||
dim_head //= heads
|
||||
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
if skip_reshape:
|
||||
query = query.reshape(b * heads, -1, dim_head)
|
||||
value = value.reshape(b * heads, -1, dim_head)
|
||||
@@ -177,9 +178,8 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
batch_x_heads, q_tokens, _ = query.shape
|
||||
_, _, k_tokens = key.shape
|
||||
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||
|
||||
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
||||
mem_free_total, _ = model_management.get_free_memory(query.device, True)
|
||||
|
||||
kv_chunk_size_min = None
|
||||
kv_chunk_size = None
|
||||
@@ -230,7 +230,6 @@ def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
|
||||
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
h = heads
|
||||
if skip_reshape:
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b * heads, -1, dim_head),
|
||||
@@ -298,6 +297,9 @@ def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
|
||||
if mask is not None:
|
||||
if len(mask.shape) == 2:
|
||||
s1 += mask[i:end]
|
||||
else:
|
||||
if mask.shape[1] == 1:
|
||||
s1 += mask
|
||||
else:
|
||||
s1 += mask[:, i:end]
|
||||
|
||||
@@ -341,12 +343,9 @@ except:
|
||||
pass
|
||||
|
||||
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
|
||||
b = q.shape[0]
|
||||
dim_head = q.shape[-1]
|
||||
# check to make sure xformers isn't broken
|
||||
disabled_xformers = False
|
||||
|
||||
if BROKEN_XFORMERS:
|
||||
@@ -358,41 +357,57 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
|
||||
disabled_xformers = True
|
||||
|
||||
if disabled_xformers:
|
||||
return attention_pytorch(q, k, v, heads, mask)
|
||||
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
|
||||
|
||||
if skip_reshape:
|
||||
# b h k d -> b k h d
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b * heads, -1, dim_head),
|
||||
lambda t: t.permute(0, 2, 1, 3),
|
||||
(q, k, v),
|
||||
)
|
||||
# actually do the reshaping
|
||||
else:
|
||||
dim_head //= heads
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b, -1, heads, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
pad = 8 - q.shape[1] % 8
|
||||
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
|
||||
mask_out[:, :, :mask.shape[-1]] = mask
|
||||
mask = mask_out[:, :, :mask.shape[-1]]
|
||||
# add a singleton batch dimension
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
# add a singleton heads dimension
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
# pad to a multiple of 8
|
||||
pad = 8 - mask.shape[-1] % 8
|
||||
# the xformers docs says that it's allowed to have a mask of shape (1, Nq, Nk)
|
||||
# but when using separated heads, the shape has to be (B, H, Nq, Nk)
|
||||
# in flux, this matrix ends up being over 1GB
|
||||
# here, we create a mask with the same batch/head size as the input mask (potentially singleton or full)
|
||||
mask_out = torch.empty([mask.shape[0], mask.shape[1], q.shape[1], mask.shape[-1] + pad], dtype=q.dtype, device=q.device)
|
||||
|
||||
mask_out[..., :mask.shape[-1]] = mask
|
||||
# doesn't this remove the padding again??
|
||||
mask = mask_out[..., :mask.shape[-1]]
|
||||
mask = mask.expand(b, heads, -1, -1)
|
||||
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
|
||||
|
||||
if skip_reshape:
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
else:
|
||||
out = (
|
||||
out.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
|
||||
return out
|
||||
|
||||
if model_management.is_nvidia(): #pytorch 2.3 and up seem to have this issue.
|
||||
SDP_BATCH_LIMIT = 2**15
|
||||
else:
|
||||
#TODO: other GPUs ?
|
||||
SDP_BATCH_LIMIT = 2**31
|
||||
|
||||
|
||||
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
@@ -404,27 +419,85 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
# add a heads dimension if there isn't already one
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if SDP_BATCH_LIMIT >= b:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
else:
|
||||
out = torch.empty((b, q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device)
|
||||
for i in range(0, b, SDP_BATCH_LIMIT):
|
||||
m = mask
|
||||
if mask is not None:
|
||||
if mask.shape[0] > 1:
|
||||
m = mask[i : i + SDP_BATCH_LIMIT]
|
||||
|
||||
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(
|
||||
q[i : i + SDP_BATCH_LIMIT],
|
||||
k[i : i + SDP_BATCH_LIMIT],
|
||||
v[i : i + SDP_BATCH_LIMIT],
|
||||
attn_mask=m,
|
||||
dropout_p=0.0, is_causal=False
|
||||
).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
|
||||
return out
|
||||
|
||||
|
||||
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
tensor_layout="HND"
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, heads, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
tensor_layout="NHD"
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
# add a heads dimension if there isn't already one
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
if tensor_layout == "HND":
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
else:
|
||||
out = out.reshape(b, -1, heads * dim_head)
|
||||
return out
|
||||
|
||||
|
||||
optimized_attention = attention_basic
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
logging.info("Using xformers cross attention")
|
||||
if model_management.sage_attention_enabled():
|
||||
logging.info("Using sage attention")
|
||||
optimized_attention = attention_sage
|
||||
elif model_management.xformers_enabled():
|
||||
logging.info("Using xformers attention")
|
||||
optimized_attention = attention_xformers
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
logging.info("Using pytorch cross attention")
|
||||
logging.info("Using pytorch attention")
|
||||
optimized_attention = attention_pytorch
|
||||
else:
|
||||
if args.use_split_cross_attention:
|
||||
logging.info("Using split optimization for cross attention")
|
||||
logging.info("Using split optimization for attention")
|
||||
optimized_attention = attention_split
|
||||
else:
|
||||
logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
logging.info("Using sub quadratic optimization for attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
optimized_attention = attention_sub_quad
|
||||
|
||||
optimized_attention_masked = optimized_attention
|
||||
|
||||
@@ -1,12 +1,14 @@
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, Optional
|
||||
from functools import partial
|
||||
from typing import Dict, Optional, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from .. import attention
|
||||
from ..attention import optimized_attention
|
||||
from einops import rearrange, repeat
|
||||
from .util import timestep_embedding
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
def default(x, y):
|
||||
if x is not None:
|
||||
@@ -68,48 +70,36 @@ class PatchEmbed(nn.Module):
|
||||
bias: bool = True,
|
||||
strict_img_size: bool = True,
|
||||
dynamic_img_pad: bool = True,
|
||||
padding_mode='circular',
|
||||
conv3d=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = (patch_size, patch_size)
|
||||
if img_size is not None:
|
||||
self.img_size = (img_size, img_size)
|
||||
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
|
||||
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
||||
try:
|
||||
len(patch_size)
|
||||
self.patch_size = patch_size
|
||||
except:
|
||||
if conv3d:
|
||||
self.patch_size = (patch_size, patch_size, patch_size)
|
||||
else:
|
||||
self.img_size = None
|
||||
self.grid_size = None
|
||||
self.num_patches = None
|
||||
self.patch_size = (patch_size, patch_size)
|
||||
self.padding_mode = padding_mode
|
||||
|
||||
# flatten spatial dim and transpose to channels last, kept for bwd compat
|
||||
self.flatten = flatten
|
||||
self.strict_img_size = strict_img_size
|
||||
self.dynamic_img_pad = dynamic_img_pad
|
||||
|
||||
if conv3d:
|
||||
self.proj = operations.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj = operations.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device)
|
||||
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
# if self.img_size is not None:
|
||||
# if self.strict_img_size:
|
||||
# _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
|
||||
# _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).")
|
||||
# elif not self.dynamic_img_pad:
|
||||
# _assert(
|
||||
# H % self.patch_size[0] == 0,
|
||||
# f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
|
||||
# )
|
||||
# _assert(
|
||||
# W % self.patch_size[1] == 0,
|
||||
# f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
|
||||
# )
|
||||
if self.dynamic_img_pad:
|
||||
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
||||
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
||||
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode=self.padding_mode)
|
||||
x = self.proj(x)
|
||||
if self.flatten:
|
||||
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
|
||||
@@ -230,34 +220,8 @@ class TimestepEmbedder(nn.Module):
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period)
|
||||
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
||||
/ half
|
||||
)
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(dtype=t.dtype)
|
||||
return embedding
|
||||
|
||||
def forward(self, t, dtype, **kwargs):
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
||||
t_freq = timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
@@ -289,8 +253,6 @@ def split_qkv(qkv, head_dim):
|
||||
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
|
||||
return qkv[0], qkv[1], qkv[2]
|
||||
|
||||
def optimized_attention(qkv, num_heads):
|
||||
return attention.optimized_attention(qkv[0], qkv[1], qkv[2], num_heads)
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
|
||||
@@ -349,9 +311,9 @@ class SelfAttention(nn.Module):
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
qkv = self.pre_attention(x)
|
||||
q, k, v = self.pre_attention(x)
|
||||
x = optimized_attention(
|
||||
qkv, num_heads=self.num_heads
|
||||
q, k, v, heads=self.num_heads
|
||||
)
|
||||
x = self.post_attention(x)
|
||||
return x
|
||||
@@ -378,29 +340,9 @@ class RMSNorm(torch.nn.Module):
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
|
||||
def _norm(self, x):
|
||||
"""
|
||||
Apply the RMSNorm normalization to the input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The normalized tensor.
|
||||
"""
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass through the RMSNorm layer.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The output tensor after applying RMSNorm.
|
||||
"""
|
||||
x = self._norm(x)
|
||||
if self.learnable_scale:
|
||||
return x * self.weight.to(device=x.device, dtype=x.dtype)
|
||||
else:
|
||||
return x
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
|
||||
|
||||
|
||||
class SwiGLUFeedForward(nn.Module):
|
||||
@@ -460,6 +402,7 @@ class DismantledBlock(nn.Module):
|
||||
scale_mod_only: bool = False,
|
||||
swiglu: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
x_block_self_attn: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
@@ -483,6 +426,24 @@ class DismantledBlock(nn.Module):
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if x_block_self_attn:
|
||||
assert not pre_only
|
||||
assert not scale_mod_only
|
||||
self.x_block_self_attn = True
|
||||
self.attn2 = SelfAttention(
|
||||
dim=hidden_size,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=False,
|
||||
qk_norm=qk_norm,
|
||||
rmsnorm=rmsnorm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
else:
|
||||
self.x_block_self_attn = False
|
||||
if not pre_only:
|
||||
if not rmsnorm:
|
||||
self.norm2 = operations.LayerNorm(
|
||||
@@ -509,7 +470,11 @@ class DismantledBlock(nn.Module):
|
||||
multiple_of=256,
|
||||
)
|
||||
self.scale_mod_only = scale_mod_only
|
||||
if not scale_mod_only:
|
||||
if x_block_self_attn:
|
||||
assert not pre_only
|
||||
assert not scale_mod_only
|
||||
n_mods = 9
|
||||
elif not scale_mod_only:
|
||||
n_mods = 6 if not pre_only else 2
|
||||
else:
|
||||
n_mods = 4 if not pre_only else 1
|
||||
@@ -570,12 +535,62 @@ class DismantledBlock(nn.Module):
|
||||
)
|
||||
return x
|
||||
|
||||
def pre_attention_x(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
|
||||
assert self.x_block_self_attn
|
||||
(
|
||||
shift_msa,
|
||||
scale_msa,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
shift_msa2,
|
||||
scale_msa2,
|
||||
gate_msa2,
|
||||
) = self.adaLN_modulation(c).chunk(9, dim=1)
|
||||
x_norm = self.norm1(x)
|
||||
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
|
||||
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
|
||||
return qkv, qkv2, (
|
||||
x,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
gate_msa2,
|
||||
)
|
||||
|
||||
def post_attention_x(self, attn, attn2, x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2):
|
||||
assert not self.pre_only
|
||||
attn1 = self.attn.post_attention(attn)
|
||||
attn2 = self.attn2.post_attention(attn2)
|
||||
out1 = gate_msa.unsqueeze(1) * attn1
|
||||
out2 = gate_msa2.unsqueeze(1) * attn2
|
||||
x = x + out1
|
||||
x = x + out2
|
||||
x = x + gate_mlp.unsqueeze(1) * self.mlp(
|
||||
modulate(self.norm2(x), shift_mlp, scale_mlp)
|
||||
)
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
|
||||
assert not self.pre_only
|
||||
if self.x_block_self_attn:
|
||||
qkv, qkv2, intermediates = self.pre_attention_x(x, c)
|
||||
attn, _ = optimized_attention(
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
num_heads=self.attn.num_heads,
|
||||
)
|
||||
attn2, _ = optimized_attention(
|
||||
qkv2[0], qkv2[1], qkv2[2],
|
||||
num_heads=self.attn2.num_heads,
|
||||
)
|
||||
return self.post_attention_x(attn, attn2, *intermediates)
|
||||
else:
|
||||
qkv, intermediates = self.pre_attention(x, c)
|
||||
attn = optimized_attention(
|
||||
qkv,
|
||||
num_heads=self.attn.num_heads,
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
heads=self.attn.num_heads,
|
||||
)
|
||||
return self.post_attention(attn, *intermediates)
|
||||
|
||||
@@ -592,6 +607,9 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
|
||||
def _block_mixing(context, x, context_block, x_block, c):
|
||||
context_qkv, context_intermediates = context_block.pre_attention(context, c)
|
||||
|
||||
if x_block.x_block_self_attn:
|
||||
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
|
||||
else:
|
||||
x_qkv, x_intermediates = x_block.pre_attention(x, c)
|
||||
|
||||
o = []
|
||||
@@ -600,8 +618,8 @@ def _block_mixing(context, x, context_block, x_block, c):
|
||||
qkv = tuple(o)
|
||||
|
||||
attn = optimized_attention(
|
||||
qkv,
|
||||
num_heads=x_block.attn.num_heads,
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
heads=x_block.attn.num_heads,
|
||||
)
|
||||
context_attn, x_attn = (
|
||||
attn[:, : context_qkv[0].shape[1]],
|
||||
@@ -613,6 +631,13 @@ def _block_mixing(context, x, context_block, x_block, c):
|
||||
|
||||
else:
|
||||
context = None
|
||||
if x_block.x_block_self_attn:
|
||||
attn2 = optimized_attention(
|
||||
x_qkv2[0], x_qkv2[1], x_qkv2[2],
|
||||
heads=x_block.attn2.num_heads,
|
||||
)
|
||||
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
|
||||
else:
|
||||
x = x_block.post_attention(x_attn, *x_intermediates)
|
||||
return context, x
|
||||
|
||||
@@ -628,8 +653,13 @@ class JointBlock(nn.Module):
|
||||
super().__init__()
|
||||
pre_only = kwargs.pop("pre_only")
|
||||
qk_norm = kwargs.pop("qk_norm", None)
|
||||
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
|
||||
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
|
||||
self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs)
|
||||
self.x_block = DismantledBlock(*args,
|
||||
pre_only=False,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn=x_block_self_attn,
|
||||
**kwargs)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return block_mixing(
|
||||
@@ -685,7 +715,7 @@ class SelfAttentionContext(nn.Module):
|
||||
def forward(self, x):
|
||||
qkv = self.qkv(x)
|
||||
q, k, v = split_qkv(qkv, self.dim_head)
|
||||
x = optimized_attention((q.reshape(q.shape[0], q.shape[1], -1), k, v), self.heads)
|
||||
x = optimized_attention(q.reshape(q.shape[0], q.shape[1], -1), k, v, heads=self.heads)
|
||||
return self.proj(x)
|
||||
|
||||
class ContextProcessorBlock(nn.Module):
|
||||
@@ -744,9 +774,12 @@ class MMDiT(nn.Module):
|
||||
qk_norm: Optional[str] = None,
|
||||
qkv_bias: bool = True,
|
||||
context_processor_layers = None,
|
||||
x_block_self_attn: bool = False,
|
||||
x_block_self_attn_layers: Optional[List[int]] = [],
|
||||
context_size = 4096,
|
||||
num_blocks = None,
|
||||
final_layer = True,
|
||||
skip_blocks = False,
|
||||
dtype = None, #TODO
|
||||
device = None,
|
||||
operations = None,
|
||||
@@ -761,6 +794,7 @@ class MMDiT(nn.Module):
|
||||
self.pos_embed_scaling_factor = pos_embed_scaling_factor
|
||||
self.pos_embed_offset = pos_embed_offset
|
||||
self.pos_embed_max_size = pos_embed_max_size
|
||||
self.x_block_self_attn_layers = x_block_self_attn_layers
|
||||
|
||||
# hidden_size = default(hidden_size, 64 * depth)
|
||||
# num_heads = default(num_heads, hidden_size // 64)
|
||||
@@ -818,6 +852,7 @@ class MMDiT(nn.Module):
|
||||
self.pos_embed = None
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
if not skip_blocks:
|
||||
self.joint_blocks = nn.ModuleList(
|
||||
[
|
||||
JointBlock(
|
||||
@@ -831,9 +866,10 @@ class MMDiT(nn.Module):
|
||||
scale_mod_only=scale_mod_only,
|
||||
swiglu=swiglu,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn=(i in self.x_block_self_attn_layers) or x_block_self_attn,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(num_blocks)
|
||||
]
|
||||
@@ -900,7 +936,9 @@ class MMDiT(nn.Module):
|
||||
c_mod: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
) -> torch.Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if self.register_length > 0:
|
||||
context = torch.cat(
|
||||
(
|
||||
@@ -912,8 +950,19 @@ class MMDiT(nn.Module):
|
||||
|
||||
# context is B, L', D
|
||||
# x is B, L, D
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
blocks = len(self.joint_blocks)
|
||||
for i in range(blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap})
|
||||
context = out["txt"]
|
||||
x = out["img"]
|
||||
else:
|
||||
context, x = self.joint_blocks[i](
|
||||
context,
|
||||
x,
|
||||
@@ -937,6 +986,7 @@ class MMDiT(nn.Module):
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of DiT.
|
||||
@@ -949,7 +999,7 @@ class MMDiT(nn.Module):
|
||||
context = self.context_processor(context)
|
||||
|
||||
hw = x.shape[-2:]
|
||||
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
||||
x = self.x_embedder(x) + comfy.ops.cast_to_input(self.cropped_pos_embed(hw, device=x.device), x)
|
||||
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
|
||||
if y is not None and self.y_embedder is not None:
|
||||
y = self.y_embedder(y) # (N, D)
|
||||
@@ -958,7 +1008,7 @@ class MMDiT(nn.Module):
|
||||
if context is not None:
|
||||
context = self.context_embedder(context)
|
||||
|
||||
x = self.forward_core_with_concat(x, c, context, control)
|
||||
x = self.forward_core_with_concat(x, c, context, control, transformer_options)
|
||||
|
||||
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
|
||||
return x[:,:,:hw[-2],:hw[-1]]
|
||||
@@ -972,7 +1022,8 @@ class OpenAISignatureMMDITWrapper(MMDiT):
|
||||
context: Optional[torch.Tensor] = None,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
return super().forward(x, timesteps, context=context, y=y, control=control)
|
||||
return super().forward(x, timesteps, context=context, y=y, control=control, transformer_options=transformer_options)
|
||||
|
||||
|
||||
@@ -3,7 +3,6 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from typing import Optional, Any
|
||||
import logging
|
||||
|
||||
from comfy import model_management
|
||||
@@ -44,51 +43,100 @@ def Normalize(in_channels, num_groups=32):
|
||||
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class VideoConv3d(nn.Module):
|
||||
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.padding_mode = padding_mode
|
||||
if padding != 0:
|
||||
padding = (padding, padding, padding, padding, kernel_size - 1, 0)
|
||||
else:
|
||||
kwargs["padding"] = padding
|
||||
|
||||
self.padding = padding
|
||||
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
if self.padding != 0:
|
||||
x = torch.nn.functional.pad(x, self.padding, mode=self.padding_mode)
|
||||
return self.conv(x)
|
||||
|
||||
def interpolate_up(x, scale_factor):
|
||||
try:
|
||||
return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest")
|
||||
except: #operation not implemented for bf16
|
||||
orig_shape = list(x.shape)
|
||||
out_shape = orig_shape[:2]
|
||||
for i in range(len(orig_shape) - 2):
|
||||
out_shape.append(round(orig_shape[i + 2] * scale_factor[i]))
|
||||
out = torch.empty(out_shape, dtype=x.dtype, layout=x.layout, device=x.device)
|
||||
split = 8
|
||||
l = out.shape[1] // split
|
||||
for i in range(0, out.shape[1], l):
|
||||
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=scale_factor, mode="nearest").to(x.dtype)
|
||||
return out
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
def __init__(self, in_channels, with_conv, conv_op=ops.Conv2d, scale_factor=2.0):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
self.scale_factor = scale_factor
|
||||
|
||||
if self.with_conv:
|
||||
self.conv = ops.Conv2d(in_channels,
|
||||
self.conv = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
try:
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
except: #operation not implemented for bf16
|
||||
b, c, h, w = x.shape
|
||||
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
|
||||
split = 8
|
||||
l = out.shape[1] // split
|
||||
for i in range(0, out.shape[1], l):
|
||||
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
|
||||
del x
|
||||
x = out
|
||||
scale_factor = self.scale_factor
|
||||
if isinstance(scale_factor, (int, float)):
|
||||
scale_factor = (scale_factor,) * (x.ndim - 2)
|
||||
|
||||
if x.ndim == 5 and scale_factor[0] > 1.0:
|
||||
t = x.shape[2]
|
||||
if t > 1:
|
||||
a, b = x.split((1, t - 1), dim=2)
|
||||
del x
|
||||
b = interpolate_up(b, scale_factor)
|
||||
else:
|
||||
a = x
|
||||
|
||||
a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)
|
||||
if t > 1:
|
||||
x = torch.cat((a, b), dim=2)
|
||||
else:
|
||||
x = a
|
||||
else:
|
||||
x = interpolate_up(x, scale_factor)
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
def __init__(self, in_channels, with_conv, stride=2, conv_op=ops.Conv2d):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = ops.Conv2d(in_channels,
|
||||
self.conv = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
stride=stride,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
if x.ndim == 4:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
mode = "constant"
|
||||
x = torch.nn.functional.pad(x, pad, mode=mode, value=0)
|
||||
elif x.ndim == 5:
|
||||
pad = (1, 1, 1, 1, 2, 0)
|
||||
mode = "replicate"
|
||||
x = torch.nn.functional.pad(x, pad, mode=mode)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
@@ -97,7 +145,7 @@ class Downsample(nn.Module):
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||
dropout, temb_channels=512):
|
||||
dropout, temb_channels=512, conv_op=ops.Conv2d):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
@@ -106,7 +154,7 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = ops.Conv2d(in_channels,
|
||||
self.conv1 = conv_op(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@@ -116,20 +164,20 @@ class ResnetBlock(nn.Module):
|
||||
out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
||||
self.conv2 = ops.Conv2d(out_channels,
|
||||
self.conv2 = conv_op(out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = ops.Conv2d(in_channels,
|
||||
self.conv_shortcut = conv_op(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
else:
|
||||
self.nin_shortcut = ops.Conv2d(in_channels,
|
||||
self.nin_shortcut = conv_op(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
@@ -163,7 +211,6 @@ def slice_attention(q, k, v):
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
@@ -196,21 +243,25 @@ def slice_attention(q, k, v):
|
||||
|
||||
def normal_attention(q, k, v):
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
orig_shape = q.shape
|
||||
b = orig_shape[0]
|
||||
c = orig_shape[1]
|
||||
|
||||
q = q.reshape(b,c,h*w)
|
||||
q = q.reshape(b, c, -1)
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b,c,h*w) # b,c,hw
|
||||
v = v.reshape(b,c,h*w)
|
||||
k = k.reshape(b, c, -1) # b,c,hw
|
||||
v = v.reshape(b, c, -1)
|
||||
|
||||
r1 = slice_attention(q, k, v)
|
||||
h_ = r1.reshape(b,c,h,w)
|
||||
h_ = r1.reshape(orig_shape)
|
||||
del r1
|
||||
return h_
|
||||
|
||||
def xformers_attention(q, k, v):
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
orig_shape = q.shape
|
||||
B = orig_shape[0]
|
||||
C = orig_shape[1]
|
||||
q, k, v = map(
|
||||
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
|
||||
(q, k, v),
|
||||
@@ -218,14 +269,16 @@ def xformers_attention(q, k, v):
|
||||
|
||||
try:
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||
out = out.transpose(1, 2).reshape(B, C, H, W)
|
||||
except NotImplementedError as e:
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
||||
out = out.transpose(1, 2).reshape(orig_shape)
|
||||
except NotImplementedError:
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
|
||||
return out
|
||||
|
||||
def pytorch_attention(q, k, v):
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
orig_shape = q.shape
|
||||
B = orig_shape[0]
|
||||
C = orig_shape[1]
|
||||
q, k, v = map(
|
||||
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
||||
(q, k, v),
|
||||
@@ -233,35 +286,35 @@ def pytorch_attention(q, k, v):
|
||||
|
||||
try:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(2, 3).reshape(B, C, H, W)
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
out = out.transpose(2, 3).reshape(orig_shape)
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
|
||||
return out
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
def __init__(self, in_channels, conv_op=ops.Conv2d):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = ops.Conv2d(in_channels,
|
||||
self.q = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = ops.Conv2d(in_channels,
|
||||
self.k = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = ops.Conv2d(in_channels,
|
||||
self.v = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = ops.Conv2d(in_channels,
|
||||
self.proj_out = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
@@ -291,8 +344,8 @@ class AttnBlock(nn.Module):
|
||||
return x+h_
|
||||
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
return AttnBlock(in_channels)
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None, conv_op=ops.Conv2d):
|
||||
return AttnBlock(in_channels, conv_op=conv_op)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
@@ -451,6 +504,7 @@ class Encoder(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
||||
conv3d=False, time_compress=None,
|
||||
**ignore_kwargs):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
@@ -461,8 +515,15 @@ class Encoder(nn.Module):
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
if conv3d:
|
||||
conv_op = VideoConv3d
|
||||
mid_attn_conv_op = ops.Conv3d
|
||||
else:
|
||||
conv_op = ops.Conv2d
|
||||
mid_attn_conv_op = ops.Conv2d
|
||||
|
||||
# downsampling
|
||||
self.conv_in = ops.Conv2d(in_channels,
|
||||
self.conv_in = conv_op(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@@ -481,15 +542,20 @@ class Encoder(nn.Module):
|
||||
block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
dropout=dropout,
|
||||
conv_op=conv_op))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
attn.append(make_attn(block_in, attn_type=attn_type, conv_op=conv_op))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions-1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
stride = 2
|
||||
if time_compress is not None:
|
||||
if (self.num_resolutions - 1 - i_level) > math.log2(time_compress):
|
||||
stride = (1, 2, 2)
|
||||
down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
@@ -498,16 +564,18 @@ class Encoder(nn.Module):
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
dropout=dropout,
|
||||
conv_op=conv_op)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, conv_op=mid_attn_conv_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
dropout=dropout,
|
||||
conv_op=conv_op)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = ops.Conv2d(block_in,
|
||||
self.conv_out = conv_op(block_in,
|
||||
2*z_channels if double_z else z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@@ -545,9 +613,10 @@ class Decoder(nn.Module):
|
||||
conv_out_op=ops.Conv2d,
|
||||
resnet_op=ResnetBlock,
|
||||
attn_op=AttnBlock,
|
||||
conv3d=False,
|
||||
time_compress=None,
|
||||
**ignorekwargs):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
@@ -557,8 +626,15 @@ class Decoder(nn.Module):
|
||||
self.give_pre_end = give_pre_end
|
||||
self.tanh_out = tanh_out
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
if conv3d:
|
||||
conv_op = VideoConv3d
|
||||
conv_out_op = VideoConv3d
|
||||
mid_attn_conv_op = ops.Conv3d
|
||||
else:
|
||||
conv_op = ops.Conv2d
|
||||
mid_attn_conv_op = ops.Conv2d
|
||||
|
||||
# compute block_in and curr_res at lowest res
|
||||
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||
@@ -566,7 +642,7 @@ class Decoder(nn.Module):
|
||||
self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = ops.Conv2d(z_channels,
|
||||
self.conv_in = conv_op(z_channels,
|
||||
block_in,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@@ -577,12 +653,14 @@ class Decoder(nn.Module):
|
||||
self.mid.block_1 = resnet_op(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = attn_op(block_in)
|
||||
dropout=dropout,
|
||||
conv_op=conv_op)
|
||||
self.mid.attn_1 = attn_op(block_in, conv_op=mid_attn_conv_op)
|
||||
self.mid.block_2 = resnet_op(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
dropout=dropout,
|
||||
conv_op=conv_op)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
@@ -594,15 +672,21 @@ class Decoder(nn.Module):
|
||||
block.append(resnet_op(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
dropout=dropout,
|
||||
conv_op=conv_op))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(attn_op(block_in))
|
||||
attn.append(attn_op(block_in, conv_op=conv_op))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
scale_factor = 2.0
|
||||
if time_compress is not None:
|
||||
if i_level > math.log2(time_compress):
|
||||
scale_factor = (1.0, 2.0, 2.0)
|
||||
|
||||
up.upsample = Upsample(block_in, resamp_with_conv, conv_op=conv_op, scale_factor=scale_factor)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
|
||||
@@ -9,12 +9,12 @@ import logging
|
||||
from .util import (
|
||||
checkpoint,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
AlphaBlender,
|
||||
)
|
||||
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
||||
from comfy.ldm.util import exists
|
||||
import comfy.patcher_extension
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
@@ -47,6 +47,15 @@ def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, out
|
||||
elif isinstance(layer, Upsample):
|
||||
x = layer(x, output_shape=output_shape)
|
||||
else:
|
||||
if "patches" in transformer_options and "forward_timestep_embed_patch" in transformer_options["patches"]:
|
||||
found_patched = False
|
||||
for class_type, handler in transformer_options["patches"]["forward_timestep_embed_patch"]:
|
||||
if isinstance(layer, class_type):
|
||||
x = handler(layer, x, emb, context, transformer_options, output_shape, time_context, num_video_frames, image_only_indicator)
|
||||
found_patched = True
|
||||
break
|
||||
if found_patched:
|
||||
continue
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
@@ -809,7 +818,7 @@ class UNetModel(nn.Module):
|
||||
self.out = nn.Sequential(
|
||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
||||
operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
@@ -819,6 +828,13 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timesteps, context, y, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
@@ -842,6 +858,11 @@ class UNetModel(nn.Module):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if "emb_patch" in transformer_patches:
|
||||
patch = transformer_patches["emb_patch"]
|
||||
for p in patch:
|
||||
emb = p(emb, self.model_channels, transformer_options)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
@@ -4,7 +4,6 @@ import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from .util import extract_into_tensor, make_beta_schedule
|
||||
from comfy.ldm.util import default
|
||||
|
||||
|
||||
class AbstractLowScaleModel(nn.Module):
|
||||
|
||||
@@ -8,7 +8,6 @@
|
||||
# thanks!
|
||||
|
||||
|
||||
import os
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user