Compare commits
419 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8ce2a1052c | ||
|
|
f82314fcfc | ||
|
|
0075c6d096 | ||
|
|
83ca891118 | ||
|
|
f9f9faface | ||
|
|
471cd3eace | ||
|
|
a68bbafddb | ||
|
|
73e3a9e676 | ||
|
|
518c0dc2fe | ||
|
|
ce0542e10b | ||
|
|
8473019d40 | ||
|
|
89f15894dd | ||
|
|
67158994a4 | ||
|
|
7390ff3b1e | ||
|
|
0bedfb26af | ||
|
|
f71cfd2687 | ||
|
|
c695c4af7f | ||
|
|
0dbba9f751 | ||
|
|
f584758271 | ||
|
|
95b7cf9bbe | ||
|
|
191a0d56b4 | ||
|
|
3c60ecd7a8 | ||
|
|
7ae6626723 | ||
|
|
6632365e16 | ||
|
|
ad07796777 | ||
|
|
1b80895285 | ||
|
|
5f9d5a244b | ||
|
|
14eba07acd | ||
|
|
4b2f0d9413 | ||
|
|
25eac1d780 | ||
|
|
e38c94228b | ||
|
|
203942c8b2 | ||
|
|
3c72c89a52 | ||
|
|
614377abd6 | ||
|
|
8dfa0cc552 | ||
|
|
e5ecdfdd2d | ||
|
|
7d29fbf74b | ||
|
|
2c641e64ad | ||
|
|
7d2467e830 | ||
|
|
6f021d8aa0 | ||
|
|
d854ed0bcf | ||
|
|
abcd006b8c | ||
|
|
d985d1d7dc | ||
|
|
d1cdf51e1b | ||
|
|
b4626ab93e | ||
|
|
a9e459c2a4 | ||
|
|
3bb4dec720 | ||
|
|
8733191563 | ||
|
|
83b01f960a | ||
|
|
d72e871cfa | ||
|
|
037c3159b6 | ||
|
|
bdd4a22a2e | ||
|
|
fdf37566ef | ||
|
|
08c8968482 | ||
|
|
479a427a48 | ||
|
|
3a0eeee320 | ||
|
|
447da7ea86 | ||
|
|
9c41bc8d10 | ||
|
|
6ad0ddbae4 | ||
|
|
a55142f904 | ||
|
|
5718ef69bb | ||
|
|
13ecf10a92 | ||
|
|
7a415f47a9 | ||
|
|
89fa2fca24 | ||
|
|
364b69e931 | ||
|
|
dc96a1ae19 | ||
|
|
2d810b081e | ||
|
|
9f7e9f0547 | ||
|
|
a355f38ecc | ||
|
|
38c69080c7 | ||
|
|
70a708d726 | ||
|
|
e7d4782736 | ||
|
|
3326bdfd4e | ||
|
|
68bb885d22 | ||
|
|
ad66f7c7d8 | ||
|
|
de8e8e3b0d | ||
|
|
a1e71cfad1 | ||
|
|
0bfc7cc998 | ||
|
|
7183fd1665 | ||
|
|
254838f23c | ||
|
|
0b7dfa986d | ||
|
|
d514bb38ee | ||
|
|
0849c80e2a | ||
|
|
56e8f5e4fd | ||
|
|
e813abbb2c | ||
|
|
5e68a4ce67 | ||
|
|
ca08597670 | ||
|
|
f48e390032 | ||
|
|
369a6dd2c4 | ||
|
|
b3ce8fb9fd | ||
|
|
cf80d28689 | ||
|
|
6fb44c4b7c | ||
|
|
d2247c1e61 | ||
|
|
cb12ad7049 | ||
|
|
f6b7194f64 | ||
|
|
7c6eb4fb29 | ||
|
|
b962db9952 | ||
|
|
d0b7ab88ba | ||
|
|
405b529545 | ||
|
|
9d720187f1 | ||
|
|
d247bc5a9c | ||
|
|
9f4daca9d9 | ||
|
|
b5d0f2a908 | ||
|
|
e760bf5c40 | ||
|
|
36c83cdbba | ||
|
|
81778a7feb | ||
|
|
bc94662b31 | ||
|
|
9fa8faa44a | ||
|
|
9a7444e39f | ||
|
|
54fca4a218 | ||
|
|
cd4955367e | ||
|
|
8354203d95 | ||
|
|
e0b41243b4 | ||
|
|
619263d4a6 | ||
|
|
e3b0402bb7 | ||
|
|
967867d48c | ||
|
|
cbaac71bf5 | ||
|
|
3ab3516e46 | ||
|
|
9c5fca75f4 | ||
|
|
a5da4d0b3e | ||
|
|
32a60a7bac | ||
|
|
bb52934ba4 | ||
|
|
8aabd7c8c0 | ||
|
|
a09b29ca11 | ||
|
|
9bfee68773 | ||
|
|
ea77750759 | ||
|
|
c27ebeb1c2 | ||
|
|
0c7c98a965 | ||
|
|
dc2eb75b85 | ||
|
|
fa34efe3bd | ||
|
|
5cbaa9e07c | ||
|
|
c7427375ee | ||
|
|
22d1241a50 | ||
|
|
f04229b84d | ||
|
|
f067ad15d1 | ||
|
|
483004dd1d | ||
|
|
00a5d08103 | ||
|
|
d043997d30 | ||
|
|
f1c2301697 | ||
|
|
8d31a6632f | ||
|
|
b643eae08b | ||
|
|
baa6b4dc36 | ||
|
|
d4aeefc297 | ||
|
|
587e7ca654 | ||
|
|
c90459eba0 | ||
|
|
04278afb10 | ||
|
|
935ae153e1 | ||
|
|
e91662e784 | ||
|
|
63fafaef45 | ||
|
|
ec28cd9136 | ||
|
|
6eb5d64522 | ||
|
|
10a79e9898 | ||
|
|
ea3f39bd69 | ||
|
|
b33cd61070 | ||
|
|
34eda0f853 | ||
|
|
d31e226650 | ||
|
|
b79fd7d92c | ||
|
|
38c22e631a | ||
|
|
6bbdcd28ae | ||
|
|
ab130001a8 | ||
|
|
ca4b8f30e0 | ||
|
|
70b84058c1 | ||
|
|
2ca8f6e23d | ||
|
|
7985ff88b9 | ||
|
|
c6812947e9 | ||
|
|
9230f65823 | ||
|
|
6ab1e6fd4a | ||
|
|
07dcbc3a3e | ||
|
|
8ae23d8e80 | ||
|
|
7df42b9a23 | ||
|
|
5d8bbb7281 | ||
|
|
2c1d2375d6 | ||
|
|
64ccb3c7e3 | ||
|
|
9465b23432 | ||
|
|
bb4416dd5b | ||
|
|
c0b0da264b | ||
|
|
c26ca27207 | ||
|
|
7c6bb84016 | ||
|
|
c54d3ed5e6 | ||
|
|
c7ee4b37a1 | ||
|
|
7b70b266d8 | ||
|
|
8f60d093ba | ||
|
|
dafbe321d2 | ||
|
|
5f84ea63e8 | ||
|
|
843a7ff70c | ||
|
|
a60620dcea | ||
|
|
015f73dc49 | ||
|
|
904bf58e7d | ||
|
|
5f50263088 | ||
|
|
5e806f555d | ||
|
|
f07e5bb522 | ||
|
|
03ec517afb | ||
|
|
f257fc999f | ||
|
|
bb50e69839 | ||
|
|
510f3438c1 | ||
|
|
ea63b1c092 | ||
|
|
9953f22fce | ||
|
|
d1a6bd6845 | ||
|
|
83dbac28eb | ||
|
|
538cb068bc | ||
|
|
1b3eee672c | ||
|
|
5a69f84c3c | ||
|
|
9eee470244 | ||
|
|
045377ea89 | ||
|
|
4d341b78e8 | ||
|
|
6138f92084 | ||
|
|
be0726c1ed | ||
|
|
766ae119a8 | ||
|
|
fc90ceb6ba | ||
|
|
4506ddc86a | ||
|
|
20ace7c853 | ||
|
|
b29b3b86c5 | ||
|
|
22ec02afc0 | ||
|
|
39f114c44b | ||
|
|
6730f3e1a3 | ||
|
|
73332160c8 | ||
|
|
2622c55aff | ||
|
|
1beb348ee2 | ||
|
|
9aa39e743c | ||
|
|
d31df04c8a | ||
|
|
e68763f40c | ||
|
|
310ad09258 | ||
|
|
4f7a3cb6fb | ||
|
|
bb222ceddb | ||
|
|
14af129c55 | ||
|
|
fca42836f2 | ||
|
|
858d51f91a | ||
|
|
cd5017c1c9 | ||
|
|
83f343146a | ||
|
|
b021cf67c7 | ||
|
|
1770fc77ed | ||
|
|
05a9f3faa1 | ||
|
|
86c5970ac0 | ||
|
|
bfc214f434 | ||
|
|
3f5939add6 | ||
|
|
5960f946a9 | ||
|
|
5cfe38f41c | ||
|
|
0f9c2a7822 | ||
|
|
153d0a8142 | ||
|
|
ab4dd19b91 | ||
|
|
f1d6cef71c | ||
|
|
33fb282d5c | ||
|
|
50bf66e5c4 | ||
|
|
e60e19b175 | ||
|
|
a5af64d3ce | ||
|
|
3e52e0364c | ||
|
|
34608de2e9 | ||
|
|
39fb74c5bd | ||
|
|
74e124f4d7 | ||
|
|
a562c17e8a | ||
|
|
5942c17d55 | ||
|
|
c032b11e07 | ||
|
|
b8ffb2937f | ||
|
|
ce37c11164 | ||
|
|
b5c3906b38 | ||
|
|
5d43e75e5b | ||
|
|
517f4a94e4 | ||
|
|
52a471c5c7 | ||
|
|
ad76574cb8 | ||
|
|
9acfe4df41 | ||
|
|
9829b013ea | ||
|
|
5c69cde037 | ||
|
|
e9589d6d92 | ||
|
|
0d82a798a5 | ||
|
|
925fff26fd | ||
|
|
75b9b55b22 | ||
|
|
1765f1c60c | ||
|
|
1de69fe4d5 | ||
|
|
ae197f651b | ||
|
|
1b5b8ca81a | ||
|
|
6678d5cf65 | ||
|
|
e172564eea | ||
|
|
a3cc326748 | ||
|
|
86a97e91fc | ||
|
|
5acdadc9f3 | ||
|
|
55ad9d5f8c | ||
|
|
a9f04edc58 | ||
|
|
a475ec2300 | ||
|
|
06eb9fb426 | ||
|
|
413322645e | ||
|
|
11200de970 | ||
|
|
037c38eb0f | ||
|
|
1e11d2d1f5 | ||
|
|
65ea6be38f | ||
|
|
5df6f57b5d | ||
|
|
6588bfdef9 | ||
|
|
50ed2879ef | ||
|
|
66d4233210 | ||
|
|
591010b7ef | ||
|
|
08f92d55e9 | ||
|
|
8115d8cce9 | ||
|
|
6969fc9ba4 | ||
|
|
cb7c4b4be3 | ||
|
|
1208863eca | ||
|
|
e1c528196e | ||
|
|
17030fd4c0 | ||
|
|
c19dcd362f | ||
|
|
1c08bf35b4 | ||
|
|
2a02546e20 | ||
|
|
b334605a66 | ||
|
|
de17a9755e | ||
|
|
c14ac98fed | ||
|
|
2894511893 | ||
|
|
f3bc40223a | ||
|
|
841e74ac40 | ||
|
|
2d75df45e6 | ||
|
|
1abc9c8703 | ||
|
|
8edbcf5209 | ||
|
|
e545a636ba | ||
|
|
33e5203a2a | ||
|
|
a178e25912 | ||
|
|
78e133d041 | ||
|
|
7afa985fba | ||
|
|
ddb6a9f47c | ||
|
|
3b71f84b50 | ||
|
|
0a6b008117 | ||
|
|
56f3c660bf | ||
|
|
f7a5107784 | ||
|
|
91be9c2867 | ||
|
|
03c5018c98 | ||
|
|
2ba5cc8b86 | ||
|
|
1e68002b87 | ||
|
|
ba9095e5bd | ||
|
|
f123328b82 | ||
|
|
63a7e8edba | ||
|
|
0eea47d580 | ||
|
|
7cd0cdfce6 | ||
|
|
ea03c9dcd2 | ||
|
|
3a9ee995cf | ||
|
|
47da42d928 | ||
|
|
17bbd83176 | ||
|
|
bfb52de866 | ||
|
|
eca962c6da | ||
|
|
c1696cd1b5 | ||
|
|
369f459b20 | ||
|
|
ce9ac2fe05 | ||
|
|
e638f2858a | ||
|
|
a531001cc7 | ||
|
|
d420bc792a | ||
|
|
d965474aaa | ||
|
|
1c61361fd2 | ||
|
|
a6decf1e62 | ||
|
|
48eb1399c0 | ||
|
|
b4f6ebb2e8 | ||
|
|
d7430a1651 | ||
|
|
f2b80f95d2 | ||
|
|
1aa9cf3292 | ||
|
|
2f88d19ef3 | ||
|
|
eb96c3bd82 | ||
|
|
5f98de7697 | ||
|
|
8d34211a7a | ||
|
|
1589b58d3e | ||
|
|
7ad574bffd | ||
|
|
e2382b6adb | ||
|
|
c24f897352 | ||
|
|
a5991a7aa6 | ||
|
|
2c038ccef0 | ||
|
|
b85216a3c0 | ||
|
|
82cae45d44 | ||
|
|
25853d0be8 | ||
|
|
79040635da | ||
|
|
66d35c07ce | ||
|
|
c75b50607b | ||
|
|
4ba7fa0244 | ||
|
|
ab76abc767 | ||
|
|
9300058026 | ||
|
|
f82d09c9b4 | ||
|
|
e6829e7ac5 | ||
|
|
07f6a1a685 | ||
|
|
e746965c50 | ||
|
|
45a2842d7f | ||
|
|
17b41f622e | ||
|
|
cf4418b806 | ||
|
|
6225a7827c | ||
|
|
b6779d8df3 | ||
|
|
8328a2d8cd | ||
|
|
afe732bef9 | ||
|
|
a9ac56fc0d | ||
|
|
25b51b1a8b | ||
|
|
61a2b00bc2 | ||
|
|
a5f4292f9f | ||
|
|
f87810cd3e | ||
|
|
10c919f4c7 | ||
|
|
ce80e69fb8 | ||
|
|
19944ad252 | ||
|
|
10b43ceea5 | ||
|
|
0a4c49c57c | ||
|
|
88ed893034 | ||
|
|
334ba48cea | ||
|
|
14764aa2e2 | ||
|
|
b2c995f623 | ||
|
|
4151fbfa8a | ||
|
|
6045ed31f8 | ||
|
|
f836e69346 | ||
|
|
5b69cfe7c3 | ||
|
|
95fa9545f1 | ||
|
|
11b74147ee | ||
|
|
6ab8cad22e | ||
|
|
011b11d8d7 | ||
|
|
ff6ca2a892 | ||
|
|
374e093e09 | ||
|
|
855789403b | ||
|
|
6f7869f365 | ||
|
|
281ad42df4 | ||
|
|
1cde6b2eff | ||
|
|
c5a48b15bd | ||
|
|
f2298799ba | ||
|
|
60383f3b64 | ||
|
|
8270c62530 | ||
|
|
821f93872e | ||
|
|
e1630391d6 | ||
|
|
99458e8aca | ||
|
|
33346fd9b8 | ||
|
|
136c93cb47 | ||
|
|
1305fb294c | ||
|
|
7914c47d5a | ||
|
|
79547efb65 | ||
|
|
a3dffc447a | ||
|
|
ce2473bb01 |
@@ -62,12 +62,38 @@ except:
|
||||
|
||||
print("checking out master branch")
|
||||
branch = repo.lookup_branch('master')
|
||||
ref = repo.lookup_reference(branch.name)
|
||||
repo.checkout(ref)
|
||||
if branch is None:
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
repo.checkout(ref)
|
||||
branch = repo.lookup_branch('master')
|
||||
if branch is None:
|
||||
repo.create_branch('master', repo.get(ref.target))
|
||||
else:
|
||||
ref = repo.lookup_reference(branch.name)
|
||||
repo.checkout(ref)
|
||||
|
||||
print("pulling latest changes")
|
||||
pull(repo)
|
||||
|
||||
if "--stable" in sys.argv:
|
||||
def latest_tag(repo):
|
||||
versions = []
|
||||
for k in repo.references:
|
||||
try:
|
||||
prefix = "refs/tags/v"
|
||||
if k.startswith(prefix):
|
||||
version = list(map(int, k[len(prefix):].split(".")))
|
||||
versions.append((version[0] * 10000000000 + version[1] * 100000 + version[2], k))
|
||||
except:
|
||||
pass
|
||||
versions.sort()
|
||||
if len(versions) > 0:
|
||||
return versions[-1][1]
|
||||
return None
|
||||
latest_tag = latest_tag(repo)
|
||||
if latest_tag is not None:
|
||||
repo.checkout(latest_tag)
|
||||
|
||||
print("Done!")
|
||||
|
||||
self_update = True
|
||||
@@ -108,3 +134,13 @@ if not os.path.exists(req_path) or not files_equal(repo_req_path, req_path):
|
||||
shutil.copy(repo_req_path, req_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
stable_update_script = os.path.join(repo_path, ".ci/update_windows/update_comfyui_stable.bat")
|
||||
stable_update_script_to = os.path.join(cur_path, "update_comfyui_stable.bat")
|
||||
|
||||
try:
|
||||
if not file_size(stable_update_script_to) > 10:
|
||||
shutil.copy(stable_update_script, stable_update_script_to)
|
||||
except:
|
||||
pass
|
||||
|
||||
8
.ci/update_windows/update_comfyui_stable.bat
Executable file
8
.ci/update_windows/update_comfyui_stable.bat
Executable file
@@ -0,0 +1,8 @@
|
||||
@echo off
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --stable
|
||||
if exist update_new.py (
|
||||
move /y update_new.py update.py
|
||||
echo Running updater again since it got updated.
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --skip_self_update --stable
|
||||
)
|
||||
if "%~1"=="" pause
|
||||
@@ -14,7 +14,7 @@ run_cpu.bat
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/blob/main/v1-5-pruned-emaonly-fp16.safetensors
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
|
||||
2
.ci/windows_nightly_base_files/run_nvidia_gpu_fast.bat
Normal file
2
.ci/windows_nightly_base_files/run_nvidia_gpu_fast.bat
Normal file
@@ -0,0 +1,2 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast
|
||||
pause
|
||||
2
.gitattributes
vendored
Normal file
2
.gitattributes
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
/web/assets/** linguist-generated
|
||||
/web/** linguist-vendored
|
||||
3
.github/ISSUE_TEMPLATE/config.yml
vendored
3
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,5 +1,8 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: ComfyUI Frontend Issues
|
||||
url: https://github.com/Comfy-Org/ComfyUI_frontend/issues
|
||||
about: Issues related to the ComfyUI frontend (display issues, user interaction bugs), please go to the frontend repo to file the issue
|
||||
- name: ComfyUI Matrix Space
|
||||
url: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
|
||||
about: The ComfyUI Matrix Space is available for support and general discussion related to ComfyUI (Matrix is like Discord but open source).
|
||||
|
||||
53
.github/workflows/pullrequest-ci-run.yml
vendored
Normal file
53
.github/workflows/pullrequest-ci-run.yml
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
# This is the GitHub Workflow that drives full-GPU-enabled tests of pull requests to ComfyUI, when the 'Run-CI-Test' label is added
|
||||
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
|
||||
name: Pull Request CI Workflow Runs
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [labeled]
|
||||
|
||||
jobs:
|
||||
pr-test-stable:
|
||||
if: ${{ github.event.label.name == 'Run-CI-Test' }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux, windows]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
- os: windows
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
use_prior_commit: 'true'
|
||||
comment:
|
||||
if: ${{ github.event.label.name == 'Run-CI-Test' }}
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.createComment({
|
||||
issue_number: context.issue.number,
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
body: '(Automated Bot Message) CI Tests are running, you can view the results at https://ci.comfy.org/?branch=${{ github.event.pull_request.number }}%2Fmerge'
|
||||
})
|
||||
23
.github/workflows/pylint.yml
vendored
Normal file
23
.github/workflows/pylint.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Python Linting
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
pylint:
|
||||
name: Run Pylint
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.x
|
||||
|
||||
- name: Install Pylint
|
||||
run: pip install pylint
|
||||
|
||||
- name: Run Pylint
|
||||
run: pylint --rcfile=.pylintrc $(find . -type f -name "*.py")
|
||||
95
.github/workflows/stable-release.yml
vendored
95
.github/workflows/stable-release.yml
vendored
@@ -2,9 +2,28 @@
|
||||
name: "Release Stable Version"
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
cu:
|
||||
description: 'CUDA version'
|
||||
required: true
|
||||
type: string
|
||||
default: "124"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "7"
|
||||
|
||||
|
||||
jobs:
|
||||
package_comfy_windows:
|
||||
@@ -13,69 +32,44 @@ jobs:
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
runs-on: windows-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python_version: [3.11.8]
|
||||
cuda_version: [121]
|
||||
steps:
|
||||
- name: Calculate Minor Version
|
||||
shell: bash
|
||||
run: |
|
||||
# Extract the minor version from the Python version
|
||||
MINOR_VERSION=$(echo "${{ matrix.python_version }}" | cut -d'.' -f2)
|
||||
echo "MINOR_VERSION=$MINOR_VERSION" >> $GITHUB_ENV
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.git_tag }}
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
- uses: actions/cache/restore@v4
|
||||
id: cache
|
||||
with:
|
||||
path: |
|
||||
cu${{ inputs.cu }}_python_deps.tar
|
||||
update_comfyui_and_python_dependencies.bat
|
||||
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
|
||||
- shell: bash
|
||||
run: |
|
||||
echo "@echo off
|
||||
call update_comfyui.bat nopause
|
||||
echo -
|
||||
echo This will try to update pytorch and all python dependencies.
|
||||
echo -
|
||||
echo If you just want to update normally, close this and run update_comfyui.bat instead.
|
||||
echo -
|
||||
pause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu${{ matrix.cuda_version }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu${{ matrix.cuda_version }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
mv temp_wheel_dir cu${{ matrix.cuda_version }}_python_deps
|
||||
mv cu${{ matrix.cuda_version }}_python_deps ../
|
||||
mv cu${{ inputs.cu }}_python_deps.tar ../
|
||||
mv update_comfyui_and_python_dependencies.bat ../
|
||||
cd ..
|
||||
tar xf cu${{ inputs.cu }}_python_deps.tar
|
||||
pwd
|
||||
ls
|
||||
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
cd ..
|
||||
cp -r ComfyUI ComfyUI_copy
|
||||
curl https://www.python.org/ftp/python/${{ matrix.python_version }}/python-${{ matrix.python_version }}-embed-amd64.zip -o python_embeded.zip
|
||||
curl https://www.python.org/ftp/python/3.${{ inputs.python_minor }}.${{ inputs.python_patch }}/python-3.${{ inputs.python_minor }}.${{ inputs.python_patch }}-embed-amd64.zip -o python_embeded.zip
|
||||
unzip python_embeded.zip -d python_embeded
|
||||
cd python_embeded
|
||||
echo ${{ env.MINOR_VERSION }}
|
||||
echo 'import site' >> ./python3${{ env.MINOR_VERSION }}._pth
|
||||
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe --version
|
||||
echo "Pip version:"
|
||||
./python.exe -m pip --version
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
|
||||
set PATH=$PWD/Scripts:$PATH
|
||||
echo $PATH
|
||||
./python.exe -s -m pip install ../cu${{ matrix.cuda_version }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ env.MINOR_VERSION }}._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
@@ -104,6 +98,7 @@ jobs:
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia.7z
|
||||
tag: ${{ github.ref }}
|
||||
tag: ${{ inputs.git_tag }}
|
||||
overwrite: true
|
||||
|
||||
prerelease: true
|
||||
make_latest: false
|
||||
|
||||
21
.github/workflows/stale-issues.yml
vendored
Normal file
21
.github/workflows/stale-issues.yml
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
name: 'Close stale issues'
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 430 am PT
|
||||
- cron: '30 11 * * *'
|
||||
permissions:
|
||||
issues: write
|
||||
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
stale-issue-message: "This issue is being marked stale because it has not had any activity for 30 days. Reply below within 7 days if your issue still isn't solved, and it will be left open. Otherwise, the issue will be closed automatically."
|
||||
days-before-stale: 30
|
||||
days-before-close: 7
|
||||
stale-issue-label: 'Stale'
|
||||
only-labels: 'User Support'
|
||||
exempt-all-assignees: true
|
||||
exempt-all-milestones: true
|
||||
76
.github/workflows/test-browser.yml
vendored
76
.github/workflows/test-browser.yml
vendored
@@ -1,76 +0,0 @@
|
||||
# This is a temporary action during frontend TS migration.
|
||||
# This file should be removed after TS migration is completed.
|
||||
# The browser test is here to ensure TS repo is working the same way as the
|
||||
# current JS code.
|
||||
# If you are adding UI feature, please sync your changes to the TS repo:
|
||||
# huchenlei/ComfyUI_frontend and update test expectation files accordingly.
|
||||
name: Playwright Browser Tests CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout ComfyUI
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "comfyanonymous/ComfyUI"
|
||||
path: "ComfyUI"
|
||||
- name: Checkout ComfyUI_frontend
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "huchenlei/ComfyUI_frontend"
|
||||
path: "ComfyUI_frontend"
|
||||
ref: "fcc54d803e5b6a9b08a462a1d94899318c96dcbb"
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: lts/*
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
pip install wait-for-it
|
||||
working-directory: ComfyUI
|
||||
- name: Start ComfyUI server
|
||||
run: |
|
||||
python main.py --cpu 2>&1 | tee console_output.log &
|
||||
wait-for-it --service 127.0.0.1:8188 -t 600
|
||||
working-directory: ComfyUI
|
||||
- name: Install ComfyUI_frontend dependencies
|
||||
run: |
|
||||
npm ci
|
||||
working-directory: ComfyUI_frontend
|
||||
- name: Install Playwright Browsers
|
||||
run: npx playwright install --with-deps
|
||||
working-directory: ComfyUI_frontend
|
||||
- name: Run Playwright tests
|
||||
run: npx playwright test
|
||||
working-directory: ComfyUI_frontend
|
||||
- name: Check for unhandled exceptions in server log
|
||||
run: |
|
||||
if grep -qE "Exception|Error" console_output.log; then
|
||||
echo "Unhandled exception/error found in server log."
|
||||
exit 1
|
||||
fi
|
||||
working-directory: ComfyUI
|
||||
- uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: playwright-report
|
||||
path: ComfyUI_frontend/playwright-report/
|
||||
retention-days: 30
|
||||
- uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: console-output
|
||||
path: ComfyUI/console_output.log
|
||||
retention-days: 30
|
||||
95
.github/workflows/test-ci.yml
vendored
Normal file
95
.github/workflows/test-ci.yml
vendored
Normal file
@@ -0,0 +1,95 @@
|
||||
# This is the GitHub Workflow that drives automatic full-GPU-enabled tests of all new commits to the master branch of ComfyUI
|
||||
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
|
||||
name: Full Comfy CI Workflow Runs
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths-ignore:
|
||||
- 'app/**'
|
||||
- 'input/**'
|
||||
- 'output/**'
|
||||
- 'notebooks/**'
|
||||
- 'script_examples/**'
|
||||
- '.github/**'
|
||||
- 'web/**'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
test-stable:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux, windows]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
- os: windows
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
|
||||
test-win-nightly:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [windows]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: windows
|
||||
runner_label: [self-hosted, Windows]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
|
||||
test-unix-nightly:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux]
|
||||
python_version: ["3.11"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
runs-on: ${{ matrix.runner_label }}
|
||||
steps:
|
||||
- name: Test Workflows
|
||||
uses: comfy-org/comfy-action@main
|
||||
with:
|
||||
os: ${{ matrix.os }}
|
||||
python_version: ${{ matrix.python_version }}
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
45
.github/workflows/test-launch.yml
vendored
Normal file
45
.github/workflows/test-launch.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: Test server launches without errors
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout ComfyUI
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "comfyanonymous/ComfyUI"
|
||||
path: "ComfyUI"
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.8'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
pip install wait-for-it
|
||||
working-directory: ComfyUI
|
||||
- name: Start ComfyUI server
|
||||
run: |
|
||||
python main.py --cpu 2>&1 | tee console_output.log &
|
||||
wait-for-it --service 127.0.0.1:8188 -t 600
|
||||
working-directory: ComfyUI
|
||||
- name: Check for unhandled exceptions in server log
|
||||
run: |
|
||||
if grep -qE "Exception|Error" console_output.log; then
|
||||
echo "Unhandled exception/error found in server log."
|
||||
exit 1
|
||||
fi
|
||||
working-directory: ComfyUI
|
||||
- uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: console-output
|
||||
path: ComfyUI/console_output.log
|
||||
retention-days: 30
|
||||
26
.github/workflows/test-ui.yaml
vendored
26
.github/workflows/test-ui.yaml
vendored
@@ -1,26 +0,0 @@
|
||||
name: Tests CI
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
- name: Run Tests
|
||||
run: |
|
||||
npm ci
|
||||
npm run test:generate
|
||||
npm test -- --verbose
|
||||
working-directory: ./tests-ui
|
||||
30
.github/workflows/test-unit.yml
vendored
Normal file
30
.github/workflows/test-unit.yml
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
name: Unit Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
runs-on: ${{ matrix.os }}
|
||||
continue-on-error: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
- name: Run Unit Tests
|
||||
run: |
|
||||
pip install -r tests-unit/requirements.txt
|
||||
python -m pytest tests-unit
|
||||
@@ -8,23 +8,28 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
extra_dependencies:
|
||||
description: 'extra dependencies'
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
cu:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "121"
|
||||
default: "124"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "8"
|
||||
default: "7"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -51,7 +56,7 @@ jobs:
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "3"
|
||||
default: "4"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -49,13 +49,13 @@ jobs:
|
||||
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
python -m pip wheel torch torchvision torchaudio mpmath==1.3.0 numpy==1.26.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
ls ../temp_wheel_dir
|
||||
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable_nightly_pytorch
|
||||
@@ -67,6 +67,7 @@ jobs:
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
|
||||
|
||||
echo "call update_comfyui.bat nopause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
|
||||
@@ -7,19 +7,19 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "121"
|
||||
default: "124"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "11"
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "8"
|
||||
default: "7"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -66,7 +66,7 @@ jobs:
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -12,9 +12,12 @@ extra_model_paths.yaml
|
||||
.vscode/
|
||||
.idea/
|
||||
venv/
|
||||
.venv/
|
||||
/web/extensions/*
|
||||
!/web/extensions/logging.js.example
|
||||
!/web/extensions/core/
|
||||
/tests-ui/data/object_info.json
|
||||
/user/
|
||||
*.log
|
||||
*.log
|
||||
web_custom_versions/
|
||||
.DS_Store
|
||||
|
||||
112
README.md
112
README.md
@@ -1,8 +1,35 @@
|
||||
ComfyUI
|
||||
=======
|
||||
The most powerful and modular stable diffusion GUI and backend.
|
||||
-----------
|
||||
<div align="center">
|
||||
|
||||
# ComfyUI
|
||||
**The most powerful and modular diffusion model GUI and backend.**
|
||||
|
||||
|
||||
[![Website][website-shield]][website-url]
|
||||
[![Dynamic JSON Badge][discord-shield]][discord-url]
|
||||
[![Matrix][matrix-shield]][matrix-url]
|
||||
<br>
|
||||
[![][github-release-shield]][github-release-link]
|
||||
[![][github-release-date-shield]][github-release-link]
|
||||
[![][github-downloads-shield]][github-downloads-link]
|
||||
[![][github-downloads-latest-shield]][github-downloads-link]
|
||||
|
||||
[matrix-shield]: https://img.shields.io/badge/Matrix-000000?style=flat&logo=matrix&logoColor=white
|
||||
[matrix-url]: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
|
||||
[website-shield]: https://img.shields.io/badge/ComfyOrg-4285F4?style=flat
|
||||
[website-url]: https://www.comfy.org/
|
||||
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
|
||||
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
|
||||
[discord-url]: https://www.comfy.org/discord
|
||||
|
||||
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
|
||||
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
|
||||
[github-release-date-shield]: https://img.shields.io/github/release-date/comfyanonymous/ComfyUI?style=flat
|
||||
[github-downloads-shield]: https://img.shields.io/github/downloads/comfyanonymous/ComfyUI/total?style=flat
|
||||
[github-downloads-latest-shield]: https://img.shields.io/github/downloads/comfyanonymous/ComfyUI/latest/total?style=flat&label=downloads%40latest
|
||||
[github-downloads-link]: https://github.com/comfyanonymous/ComfyUI/releases
|
||||
|
||||

|
||||
</div>
|
||||
|
||||
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
|
||||
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
@@ -12,6 +39,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
||||
@@ -32,6 +60,8 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
|
||||
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
|
||||
- [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
|
||||
- [AuraFlow](https://comfyanonymous.github.io/ComfyUI_examples/aura_flow/)
|
||||
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
|
||||
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
|
||||
- Starts up very fast.
|
||||
- Works fully offline: will never download anything.
|
||||
@@ -45,6 +75,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|
||||
| Ctrl + Enter | Queue up current graph for generation |
|
||||
| Ctrl + Shift + Enter | Queue up current graph as first for generation |
|
||||
| Ctrl + Alt + Enter | Cancel current generation |
|
||||
| Ctrl + Z/Ctrl + Y | Undo/Redo |
|
||||
| Ctrl + S | Save workflow |
|
||||
| Ctrl + O | Load workflow |
|
||||
@@ -63,10 +94,14 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
| Alt + `+` | Canvas Zoom in |
|
||||
| Alt + `-` | Canvas Zoom out |
|
||||
| Ctrl + Shift + LMB + Vertical drag | Canvas Zoom in/out |
|
||||
| P | Pin/Unpin selected nodes |
|
||||
| Ctrl + G | Group selected nodes |
|
||||
| Q | Toggle visibility of the queue |
|
||||
| H | Toggle visibility of history |
|
||||
| R | Refresh graph |
|
||||
| Double-Click LMB | Open node quick search palette |
|
||||
| Shift + Drag | Move multiple wires at once |
|
||||
| Ctrl + Alt + LMB | Disconnect all wires from clicked slot |
|
||||
|
||||
Ctrl can also be replaced with Cmd instead for macOS users
|
||||
|
||||
@@ -76,7 +111,7 @@ Ctrl can also be replaced with Cmd instead for macOS users
|
||||
|
||||
There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases).
|
||||
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_cu121_or_cpu.7z)
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
|
||||
|
||||
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
|
||||
|
||||
@@ -92,6 +127,8 @@ To run it on services like paperspace, kaggle or colab you can use my [Jupyter N
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Note that some dependencies do not yet support python 3.13 so using 3.12 is recommended.
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
|
||||
@@ -102,17 +139,17 @@ Put your VAE in: models/vae
|
||||
### AMD GPUs (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.0 which might have some performance improvements:
|
||||
This is the command to install the nightly with ROCm 6.2 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.1```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.2```
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements:
|
||||
|
||||
@@ -162,20 +199,6 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
|
||||
|
||||
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
|
||||
### I already have another UI for Stable Diffusion installed do I really have to install all of these dependencies?
|
||||
|
||||
You don't. If you have another UI installed and working with its own python venv you can use that venv to run ComfyUI. You can open up your favorite terminal and activate it:
|
||||
|
||||
```source path_to_other_sd_gui/venv/bin/activate```
|
||||
|
||||
or on Windows:
|
||||
|
||||
With Powershell: ```"path_to_other_sd_gui\venv\Scripts\Activate.ps1"```
|
||||
|
||||
With cmd.exe: ```"path_to_other_sd_gui\venv\Scripts\activate.bat"```
|
||||
|
||||
And then you can use that terminal to run ComfyUI without installing any dependencies. Note that the venv folder might be called something else depending on the SD UI.
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
@@ -211,7 +234,7 @@ To use a textual inversion concepts/embeddings in a text prompt put them in the
|
||||
|
||||
Use ```--preview-method auto``` to enable previews.
|
||||
|
||||
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth) (for SD1.x and SD2.x) and [taesdxl_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesdxl_decoder.pth) (for SDXL) models and place them in the `models/vae_approx` folder. Once they're installed, restart ComfyUI to enable high-quality previews.
|
||||
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_decoder.pth, taesdxl_decoder.pth, taesd3_decoder.pth and taef1_decoder.pth](https://github.com/madebyollin/taesd/) and place them in the `models/vae_approx` folder. Once they're installed, restart ComfyUI and launch it with `--preview-method taesd` to enable high-quality previews.
|
||||
|
||||
## How to use TLS/SSL?
|
||||
Generate a self-signed certificate (not appropriate for shared/production use) and key by running the command: `openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -sha256 -days 3650 -nodes -subj "/C=XX/ST=StateName/L=CityName/O=CompanyName/OU=CompanySectionName/CN=CommonNameOrHostname"`
|
||||
@@ -227,6 +250,47 @@ Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app w
|
||||
|
||||
See also: [https://www.comfy.org/](https://www.comfy.org/)
|
||||
|
||||
## Frontend Development
|
||||
|
||||
As of August 15, 2024, we have transitioned to a new frontend, which is now hosted in a separate repository: [ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend). This repository now hosts the compiled JS (from TS/Vue) under the `web/` directory.
|
||||
|
||||
### Reporting Issues and Requesting Features
|
||||
|
||||
For any bugs, issues, or feature requests related to the frontend, please use the [ComfyUI Frontend repository](https://github.com/Comfy-Org/ComfyUI_frontend). This will help us manage and address frontend-specific concerns more efficiently.
|
||||
|
||||
### Using the Latest Frontend
|
||||
|
||||
The new frontend is now the default for ComfyUI. However, please note:
|
||||
|
||||
1. The frontend in the main ComfyUI repository is updated weekly.
|
||||
2. Daily releases are available in the separate frontend repository.
|
||||
|
||||
To use the most up-to-date frontend version:
|
||||
|
||||
1. For the latest daily release, launch ComfyUI with this command line argument:
|
||||
|
||||
```
|
||||
--front-end-version Comfy-Org/ComfyUI_frontend@latest
|
||||
```
|
||||
|
||||
2. For a specific version, replace `latest` with the desired version number:
|
||||
|
||||
```
|
||||
--front-end-version Comfy-Org/ComfyUI_frontend@1.2.2
|
||||
```
|
||||
|
||||
This approach allows you to easily switch between the stable weekly release and the cutting-edge daily updates, or even specific versions for testing purposes.
|
||||
|
||||
### Accessing the Legacy Frontend
|
||||
|
||||
If you need to use the legacy frontend for any reason, you can access it using the following command line argument:
|
||||
|
||||
```
|
||||
--front-end-version Comfy-Org/ComfyUI_legacy_frontend@latest
|
||||
```
|
||||
|
||||
This will use a snapshot of the legacy frontend preserved in the [ComfyUI Legacy Frontend repository](https://github.com/Comfy-Org/ComfyUI_legacy_frontend).
|
||||
|
||||
# QA
|
||||
|
||||
### Which GPU should I buy for this?
|
||||
|
||||
0
api_server/__init__.py
Normal file
0
api_server/__init__.py
Normal file
0
api_server/routes/__init__.py
Normal file
0
api_server/routes/__init__.py
Normal file
3
api_server/routes/internal/README.md
Normal file
3
api_server/routes/internal/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# ComfyUI Internal Routes
|
||||
|
||||
All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.
|
||||
0
api_server/routes/internal/__init__.py
Normal file
0
api_server/routes/internal/__init__.py
Normal file
51
api_server/routes/internal/internal_routes.py
Normal file
51
api_server/routes/internal/internal_routes.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from aiohttp import web
|
||||
from typing import Optional
|
||||
from folder_paths import models_dir, user_directory, output_directory, folder_names_and_paths
|
||||
from api_server.services.file_service import FileService
|
||||
import app.logger
|
||||
|
||||
class InternalRoutes:
|
||||
'''
|
||||
The top level web router for internal routes: /internal/*
|
||||
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
|
||||
Check README.md for more information.
|
||||
|
||||
'''
|
||||
def __init__(self):
|
||||
self.routes: web.RouteTableDef = web.RouteTableDef()
|
||||
self._app: Optional[web.Application] = None
|
||||
self.file_service = FileService({
|
||||
"models": models_dir,
|
||||
"user": user_directory,
|
||||
"output": output_directory
|
||||
})
|
||||
|
||||
def setup_routes(self):
|
||||
@self.routes.get('/files')
|
||||
async def list_files(request):
|
||||
directory_key = request.query.get('directory', '')
|
||||
try:
|
||||
file_list = self.file_service.list_files(directory_key)
|
||||
return web.json_response({"files": file_list})
|
||||
except ValueError as e:
|
||||
return web.json_response({"error": str(e)}, status=400)
|
||||
except Exception as e:
|
||||
return web.json_response({"error": str(e)}, status=500)
|
||||
|
||||
@self.routes.get('/logs')
|
||||
async def get_logs(request):
|
||||
return web.json_response(app.logger.get_logs())
|
||||
|
||||
@self.routes.get('/folder_paths')
|
||||
async def get_folder_paths(request):
|
||||
response = {}
|
||||
for key in folder_names_and_paths:
|
||||
response[key] = folder_names_and_paths[key][0]
|
||||
return web.json_response(response)
|
||||
|
||||
def get_app(self):
|
||||
if self._app is None:
|
||||
self._app = web.Application()
|
||||
self.setup_routes()
|
||||
self._app.add_routes(self.routes)
|
||||
return self._app
|
||||
0
api_server/services/__init__.py
Normal file
0
api_server/services/__init__.py
Normal file
13
api_server/services/file_service.py
Normal file
13
api_server/services/file_service.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from typing import Dict, List, Optional
|
||||
from api_server.utils.file_operations import FileSystemOperations, FileSystemItem
|
||||
|
||||
class FileService:
|
||||
def __init__(self, allowed_directories: Dict[str, str], file_system_ops: Optional[FileSystemOperations] = None):
|
||||
self.allowed_directories: Dict[str, str] = allowed_directories
|
||||
self.file_system_ops: FileSystemOperations = file_system_ops or FileSystemOperations()
|
||||
|
||||
def list_files(self, directory_key: str) -> List[FileSystemItem]:
|
||||
if directory_key not in self.allowed_directories:
|
||||
raise ValueError("Invalid directory key")
|
||||
directory_path: str = self.allowed_directories[directory_key]
|
||||
return self.file_system_ops.walk_directory(directory_path)
|
||||
42
api_server/utils/file_operations.py
Normal file
42
api_server/utils/file_operations.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
from typing import List, Union, TypedDict, Literal
|
||||
from typing_extensions import TypeGuard
|
||||
class FileInfo(TypedDict):
|
||||
name: str
|
||||
path: str
|
||||
type: Literal["file"]
|
||||
size: int
|
||||
|
||||
class DirectoryInfo(TypedDict):
|
||||
name: str
|
||||
path: str
|
||||
type: Literal["directory"]
|
||||
|
||||
FileSystemItem = Union[FileInfo, DirectoryInfo]
|
||||
|
||||
def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
|
||||
return item["type"] == "file"
|
||||
|
||||
class FileSystemOperations:
|
||||
@staticmethod
|
||||
def walk_directory(directory: str) -> List[FileSystemItem]:
|
||||
file_list: List[FileSystemItem] = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for name in files:
|
||||
file_path = os.path.join(root, name)
|
||||
relative_path = os.path.relpath(file_path, directory)
|
||||
file_list.append({
|
||||
"name": name,
|
||||
"path": relative_path,
|
||||
"type": "file",
|
||||
"size": os.path.getsize(file_path)
|
||||
})
|
||||
for name in dirs:
|
||||
dir_path = os.path.join(root, name)
|
||||
relative_path = os.path.relpath(dir_path, directory)
|
||||
file_list.append({
|
||||
"name": name,
|
||||
"path": relative_path,
|
||||
"type": "directory"
|
||||
})
|
||||
return file_list
|
||||
0
app/__init__.py
Normal file
0
app/__init__.py
Normal file
208
app/frontend_management.py
Normal file
208
app/frontend_management.py
Normal file
@@ -0,0 +1,208 @@
|
||||
from __future__ import annotations
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
import zipfile
|
||||
from dataclasses import dataclass
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import TypedDict, Optional
|
||||
|
||||
import requests
|
||||
from typing_extensions import NotRequired
|
||||
from comfy.cli_args import DEFAULT_VERSION_STRING
|
||||
|
||||
|
||||
REQUEST_TIMEOUT = 10 # seconds
|
||||
|
||||
|
||||
class Asset(TypedDict):
|
||||
url: str
|
||||
|
||||
|
||||
class Release(TypedDict):
|
||||
id: int
|
||||
tag_name: str
|
||||
name: str
|
||||
prerelease: bool
|
||||
created_at: str
|
||||
published_at: str
|
||||
body: str
|
||||
assets: NotRequired[list[Asset]]
|
||||
|
||||
|
||||
@dataclass
|
||||
class FrontEndProvider:
|
||||
owner: str
|
||||
repo: str
|
||||
|
||||
@property
|
||||
def folder_name(self) -> str:
|
||||
return f"{self.owner}_{self.repo}"
|
||||
|
||||
@property
|
||||
def release_url(self) -> str:
|
||||
return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
|
||||
|
||||
@cached_property
|
||||
def all_releases(self) -> list[Release]:
|
||||
releases = []
|
||||
api_url = self.release_url
|
||||
while api_url:
|
||||
response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
|
||||
response.raise_for_status() # Raises an HTTPError if the response was an error
|
||||
releases.extend(response.json())
|
||||
# GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
|
||||
if "next" in response.links:
|
||||
api_url = response.links["next"]["url"]
|
||||
else:
|
||||
api_url = None
|
||||
return releases
|
||||
|
||||
@cached_property
|
||||
def latest_release(self) -> Release:
|
||||
latest_release_url = f"{self.release_url}/latest"
|
||||
response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
|
||||
response.raise_for_status() # Raises an HTTPError if the response was an error
|
||||
return response.json()
|
||||
|
||||
def get_release(self, version: str) -> Release:
|
||||
if version == "latest":
|
||||
return self.latest_release
|
||||
else:
|
||||
for release in self.all_releases:
|
||||
if release["tag_name"] in [version, f"v{version}"]:
|
||||
return release
|
||||
raise ValueError(f"Version {version} not found in releases")
|
||||
|
||||
|
||||
def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
||||
"""Download dist.zip from github release."""
|
||||
asset_url = None
|
||||
for asset in release.get("assets", []):
|
||||
if asset["name"] == "dist.zip":
|
||||
asset_url = asset["url"]
|
||||
break
|
||||
|
||||
if not asset_url:
|
||||
raise ValueError("dist.zip not found in the release assets")
|
||||
|
||||
# Use a temporary file to download the zip content
|
||||
with tempfile.TemporaryFile() as tmp_file:
|
||||
headers = {"Accept": "application/octet-stream"}
|
||||
response = requests.get(
|
||||
asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
|
||||
)
|
||||
response.raise_for_status() # Ensure we got a successful response
|
||||
|
||||
# Write the content to the temporary file
|
||||
tmp_file.write(response.content)
|
||||
|
||||
# Go back to the beginning of the temporary file
|
||||
tmp_file.seek(0)
|
||||
|
||||
# Extract the zip file content to the destination path
|
||||
with zipfile.ZipFile(tmp_file, "r") as zip_ref:
|
||||
zip_ref.extractall(destination_path)
|
||||
|
||||
|
||||
class FrontendManager:
|
||||
DEFAULT_FRONTEND_PATH = str(Path(__file__).parents[1] / "web")
|
||||
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
||||
|
||||
@classmethod
|
||||
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
||||
"""
|
||||
Args:
|
||||
value (str): The version string to parse.
|
||||
|
||||
Returns:
|
||||
tuple[str, str]: A tuple containing provider name and version.
|
||||
|
||||
Raises:
|
||||
argparse.ArgumentTypeError: If the version string is invalid.
|
||||
"""
|
||||
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
|
||||
match_result = re.match(VERSION_PATTERN, value)
|
||||
if match_result is None:
|
||||
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
|
||||
|
||||
return match_result.group(1), match_result.group(2), match_result.group(3)
|
||||
|
||||
@classmethod
|
||||
def init_frontend_unsafe(cls, version_string: str, provider: Optional[FrontEndProvider] = None) -> str:
|
||||
"""
|
||||
Initializes the frontend for the specified version.
|
||||
|
||||
Args:
|
||||
version_string (str): The version string.
|
||||
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
|
||||
|
||||
Returns:
|
||||
str: The path to the initialized frontend.
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error during the initialization process.
|
||||
main error source might be request timeout or invalid URL.
|
||||
"""
|
||||
if version_string == DEFAULT_VERSION_STRING:
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
|
||||
if version.startswith("v"):
|
||||
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
|
||||
if os.path.exists(expected_path):
|
||||
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
|
||||
return expected_path
|
||||
|
||||
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
|
||||
|
||||
provider = provider or FrontEndProvider(repo_owner, repo_name)
|
||||
release = provider.get_release(version)
|
||||
|
||||
semantic_version = release["tag_name"].lstrip("v")
|
||||
web_root = str(
|
||||
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
|
||||
)
|
||||
if not os.path.exists(web_root):
|
||||
# Use tmp path until complete to avoid path exists check passing from interrupted downloads
|
||||
tmp_path = web_root + ".tmp"
|
||||
try:
|
||||
os.makedirs(tmp_path, exist_ok=True)
|
||||
logging.info(
|
||||
"Downloading frontend(%s) version(%s) to (%s)",
|
||||
provider.folder_name,
|
||||
semantic_version,
|
||||
tmp_path,
|
||||
)
|
||||
logging.debug(release)
|
||||
download_release_asset_zip(release, destination_path=tmp_path)
|
||||
if os.listdir(tmp_path):
|
||||
os.rename(tmp_path, web_root)
|
||||
finally:
|
||||
# Clean up the directory if it is empty, i.e. the download failed
|
||||
if not os.listdir(web_root):
|
||||
os.rmdir(web_root)
|
||||
|
||||
return web_root
|
||||
|
||||
@classmethod
|
||||
def init_frontend(cls, version_string: str) -> str:
|
||||
"""
|
||||
Initializes the frontend with the specified version string.
|
||||
|
||||
Args:
|
||||
version_string (str): The version string to initialize the frontend with.
|
||||
|
||||
Returns:
|
||||
str: The path of the initialized frontend.
|
||||
"""
|
||||
try:
|
||||
return cls.init_frontend_unsafe(version_string)
|
||||
except Exception as e:
|
||||
logging.error("Failed to initialize frontend: %s", e)
|
||||
logging.info("Falling back to the default frontend.")
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
31
app/logger.py
Normal file
31
app/logger.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import logging
|
||||
from logging.handlers import MemoryHandler
|
||||
from collections import deque
|
||||
|
||||
logs = None
|
||||
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
||||
|
||||
|
||||
def get_logs():
|
||||
return "\n".join([formatter.format(x) for x in logs])
|
||||
|
||||
|
||||
def setup_logger(log_level: str = 'INFO', capacity: int = 300):
|
||||
global logs
|
||||
if logs:
|
||||
return
|
||||
|
||||
# Setup default global logger
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(log_level)
|
||||
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setFormatter(logging.Formatter("%(message)s"))
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
# Create a memory handler with a deque as its buffer
|
||||
logs = deque(maxlen=capacity)
|
||||
memory_handler = MemoryHandler(capacity, flushLevel=logging.INFO)
|
||||
memory_handler.buffer = logs
|
||||
memory_handler.setFormatter(formatter)
|
||||
logger.addHandler(memory_handler)
|
||||
@@ -5,17 +5,17 @@ import uuid
|
||||
import glob
|
||||
import shutil
|
||||
from aiohttp import web
|
||||
from urllib import parse
|
||||
from comfy.cli_args import args
|
||||
from folder_paths import user_directory
|
||||
import folder_paths
|
||||
from .app_settings import AppSettings
|
||||
|
||||
default_user = "default"
|
||||
users_file = os.path.join(user_directory, "users.json")
|
||||
|
||||
|
||||
class UserManager():
|
||||
def __init__(self):
|
||||
global user_directory
|
||||
user_directory = folder_paths.get_user_directory()
|
||||
|
||||
self.settings = AppSettings(self)
|
||||
if not os.path.exists(user_directory):
|
||||
@@ -25,14 +25,17 @@ class UserManager():
|
||||
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
||||
|
||||
if args.multi_user:
|
||||
if os.path.isfile(users_file):
|
||||
with open(users_file) as f:
|
||||
if os.path.isfile(self.get_users_file()):
|
||||
with open(self.get_users_file()) as f:
|
||||
self.users = json.load(f)
|
||||
else:
|
||||
self.users = {}
|
||||
else:
|
||||
self.users = {"default": "default"}
|
||||
|
||||
def get_users_file(self):
|
||||
return os.path.join(folder_paths.get_user_directory(), "users.json")
|
||||
|
||||
def get_request_user_id(self, request):
|
||||
user = "default"
|
||||
if args.multi_user and "comfy-user" in request.headers:
|
||||
@@ -44,7 +47,7 @@ class UserManager():
|
||||
return user
|
||||
|
||||
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
|
||||
global user_directory
|
||||
user_directory = folder_paths.get_user_directory()
|
||||
|
||||
if type == "userdata":
|
||||
root_dir = user_directory
|
||||
@@ -59,6 +62,10 @@ class UserManager():
|
||||
return None
|
||||
|
||||
if file is not None:
|
||||
# Check if filename is url encoded
|
||||
if "%" in file:
|
||||
file = parse.unquote(file)
|
||||
|
||||
# prevent leaving /{type}/{user}
|
||||
path = os.path.abspath(os.path.join(user_root, file))
|
||||
if os.path.commonpath((user_root, path)) != user_root:
|
||||
@@ -80,8 +87,7 @@ class UserManager():
|
||||
|
||||
self.users[user_id] = name
|
||||
|
||||
global users_file
|
||||
with open(users_file, "w") as f:
|
||||
with open(self.get_users_file(), "w") as f:
|
||||
json.dump(self.users, f)
|
||||
|
||||
return user_id
|
||||
@@ -112,25 +118,69 @@ class UserManager():
|
||||
|
||||
@routes.get("/userdata")
|
||||
async def listuserdata(request):
|
||||
"""
|
||||
List user data files in a specified directory.
|
||||
|
||||
This endpoint allows listing files in a user's data directory, with options for recursion,
|
||||
full file information, and path splitting.
|
||||
|
||||
Query Parameters:
|
||||
- dir (required): The directory to list files from.
|
||||
- recurse (optional): If "true", recursively list files in subdirectories.
|
||||
- full_info (optional): If "true", return detailed file information (path, size, modified time).
|
||||
- split (optional): If "true", split file paths into components (only applies when full_info is false).
|
||||
|
||||
Returns:
|
||||
- 400: If 'dir' parameter is missing.
|
||||
- 403: If the requested path is not allowed.
|
||||
- 404: If the requested directory does not exist.
|
||||
- 200: JSON response with the list of files or file information.
|
||||
|
||||
The response format depends on the query parameters:
|
||||
- Default: List of relative file paths.
|
||||
- full_info=true: List of dictionaries with file details.
|
||||
- split=true (and full_info=false): List of lists, each containing path components.
|
||||
"""
|
||||
directory = request.rel_url.query.get('dir', '')
|
||||
if not directory:
|
||||
return web.Response(status=400)
|
||||
|
||||
return web.Response(status=400, text="Directory not provided")
|
||||
|
||||
path = self.get_request_user_filepath(request, directory)
|
||||
if not path:
|
||||
return web.Response(status=403)
|
||||
|
||||
return web.Response(status=403, text="Invalid directory")
|
||||
|
||||
if not os.path.exists(path):
|
||||
return web.Response(status=404)
|
||||
|
||||
return web.Response(status=404, text="Directory not found")
|
||||
|
||||
recurse = request.rel_url.query.get('recurse', '').lower() == "true"
|
||||
results = glob.glob(os.path.join(
|
||||
glob.escape(path), '**/*'), recursive=recurse)
|
||||
results = [os.path.relpath(x, path) for x in results if os.path.isfile(x)]
|
||||
|
||||
full_info = request.rel_url.query.get('full_info', '').lower() == "true"
|
||||
|
||||
# Use different patterns based on whether we're recursing or not
|
||||
if recurse:
|
||||
pattern = os.path.join(glob.escape(path), '**', '*')
|
||||
else:
|
||||
pattern = os.path.join(glob.escape(path), '*')
|
||||
|
||||
results = glob.glob(pattern, recursive=recurse)
|
||||
|
||||
if full_info:
|
||||
results = [
|
||||
{
|
||||
'path': os.path.relpath(x, path).replace(os.sep, '/'),
|
||||
'size': os.path.getsize(x),
|
||||
'modified': os.path.getmtime(x)
|
||||
} for x in results if os.path.isfile(x)
|
||||
]
|
||||
else:
|
||||
results = [
|
||||
os.path.relpath(x, path).replace(os.sep, '/')
|
||||
for x in results
|
||||
if os.path.isfile(x)
|
||||
]
|
||||
|
||||
split_path = request.rel_url.query.get('split', '').lower() == "true"
|
||||
if split_path:
|
||||
results = [[x] + x.split(os.sep) for x in results]
|
||||
if split_path and not full_info:
|
||||
results = [[x] + x.split('/') for x in results]
|
||||
|
||||
return web.json_response(results)
|
||||
|
||||
@@ -138,14 +188,14 @@ class UserManager():
|
||||
file = request.match_info.get(param, None)
|
||||
if not file:
|
||||
return web.Response(status=400)
|
||||
|
||||
|
||||
path = self.get_request_user_filepath(request, file)
|
||||
if not path:
|
||||
return web.Response(status=403)
|
||||
|
||||
|
||||
if check_exists and not os.path.exists(path):
|
||||
return web.Response(status=404)
|
||||
|
||||
|
||||
return path
|
||||
|
||||
@routes.get("/userdata/{file}")
|
||||
@@ -153,7 +203,7 @@ class UserManager():
|
||||
path = get_user_data_path(request, check_exists=True)
|
||||
if not isinstance(path, str):
|
||||
return path
|
||||
|
||||
|
||||
return web.FileResponse(path)
|
||||
|
||||
@routes.post("/userdata/{file}")
|
||||
@@ -161,7 +211,7 @@ class UserManager():
|
||||
path = get_user_data_path(request)
|
||||
if not isinstance(path, str):
|
||||
return path
|
||||
|
||||
|
||||
overwrite = request.query["overwrite"] != "false"
|
||||
if not overwrite and os.path.exists(path):
|
||||
return web.Response(status=409)
|
||||
@@ -170,7 +220,7 @@ class UserManager():
|
||||
|
||||
with open(path, "wb") as f:
|
||||
f.write(body)
|
||||
|
||||
|
||||
resp = os.path.relpath(path, self.get_request_user_filepath(request, None))
|
||||
return web.json_response(resp)
|
||||
|
||||
@@ -181,7 +231,7 @@ class UserManager():
|
||||
return path
|
||||
|
||||
os.remove(path)
|
||||
|
||||
|
||||
return web.Response(status=204)
|
||||
|
||||
@routes.post("/userdata/{file}/move/{dest}")
|
||||
@@ -189,17 +239,17 @@ class UserManager():
|
||||
source = get_user_data_path(request, check_exists=True)
|
||||
if not isinstance(source, str):
|
||||
return source
|
||||
|
||||
|
||||
dest = get_user_data_path(request, check_exists=False, param="dest")
|
||||
if not isinstance(source, str):
|
||||
return dest
|
||||
|
||||
|
||||
overwrite = request.query["overwrite"] != "false"
|
||||
if not overwrite and os.path.exists(dest):
|
||||
return web.Response(status=409)
|
||||
|
||||
print(f"moving '{source}' -> '{dest}'")
|
||||
shutil.move(source, dest)
|
||||
|
||||
|
||||
resp = os.path.relpath(dest, self.get_request_user_filepath(request, None))
|
||||
return web.json_response(resp)
|
||||
|
||||
@@ -13,6 +13,7 @@ from ..ldm.modules.diffusionmodules.util import (
|
||||
from ..ldm.modules.attention import SpatialTransformer
|
||||
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
||||
from ..ldm.util import exists
|
||||
from .control_types import UNION_CONTROLNET_TYPES
|
||||
from collections import OrderedDict
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
@@ -92,7 +93,7 @@ class ControlNet(nn.Module):
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
attn_precision=None,
|
||||
union_controlnet=False,
|
||||
union_controlnet_num_control_type=None,
|
||||
device=None,
|
||||
operations=comfy.ops.disable_weight_init,
|
||||
**kwargs,
|
||||
@@ -320,8 +321,8 @@ class ControlNet(nn.Module):
|
||||
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
||||
self._feature_size += ch
|
||||
|
||||
if union_controlnet:
|
||||
self.num_control_type = 6
|
||||
if union_controlnet_num_control_type is not None:
|
||||
self.num_control_type = union_controlnet_num_control_type
|
||||
num_trans_channel = 320
|
||||
num_trans_head = 8
|
||||
num_trans_layer = 1
|
||||
@@ -361,7 +362,7 @@ class ControlNet(nn.Module):
|
||||
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
||||
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
||||
if idx < len(control_type):
|
||||
feat_seq += self.task_embedding[control_type[idx]]
|
||||
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
||||
|
||||
inputs.append(feat_seq.unsqueeze(1))
|
||||
condition_list.append(controlnet_cond)
|
||||
@@ -390,6 +391,18 @@ class ControlNet(nn.Module):
|
||||
if self.control_add_embedding is not None: #Union Controlnet
|
||||
control_type = kwargs.get("control_type", [])
|
||||
|
||||
if any([c >= self.num_control_type for c in control_type]):
|
||||
max_type = max(control_type)
|
||||
max_type_name = {
|
||||
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
||||
}[max_type]
|
||||
raise ValueError(
|
||||
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
||||
f"({self.num_control_type}) supported.\n" +
|
||||
"Please consider using the ProMax ControlNet Union model.\n" +
|
||||
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
||||
)
|
||||
|
||||
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
||||
if len(control_type) > 0:
|
||||
if len(hint.shape) < 5:
|
||||
|
||||
10
comfy/cldm/control_types.py
Normal file
10
comfy/cldm/control_types.py
Normal file
@@ -0,0 +1,10 @@
|
||||
UNION_CONTROLNET_TYPES = {
|
||||
"openpose": 0,
|
||||
"depth": 1,
|
||||
"hed/pidi/scribble/ted": 2,
|
||||
"canny/lineart/anime_lineart/mlsd": 3,
|
||||
"normal": 4,
|
||||
"segment": 5,
|
||||
"tile": 6,
|
||||
"repaint": 7,
|
||||
}
|
||||
@@ -6,6 +6,7 @@ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
||||
def __init__(
|
||||
self,
|
||||
num_blocks = None,
|
||||
control_latent_channels = None,
|
||||
dtype = None,
|
||||
device = None,
|
||||
operations = None,
|
||||
@@ -17,10 +18,13 @@ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
||||
for _ in range(len(self.joint_blocks)):
|
||||
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
||||
|
||||
if control_latent_channels is None:
|
||||
control_latent_channels = self.in_channels
|
||||
|
||||
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
||||
None,
|
||||
self.patch_size,
|
||||
self.in_channels,
|
||||
control_latent_channels,
|
||||
self.hidden_size,
|
||||
bias=True,
|
||||
strict_img_size=False,
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
import argparse
|
||||
import enum
|
||||
import os
|
||||
from typing import Optional
|
||||
import comfy.options
|
||||
|
||||
|
||||
class EnumAction(argparse.Action):
|
||||
"""
|
||||
Argparse action for handling Enums
|
||||
@@ -33,7 +36,7 @@ class EnumAction(argparse.Action):
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
||||
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
||||
@@ -89,6 +92,12 @@ class LatentPreviewMethod(enum.Enum):
|
||||
|
||||
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
||||
|
||||
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
||||
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
||||
@@ -109,9 +118,14 @@ vram_group.add_argument("--lowvram", action="store_true", help="Split the unet i
|
||||
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
||||
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
||||
|
||||
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reverved depending on your OS.")
|
||||
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
||||
parser.add_argument("--fast", action="store_true", help="Enable some untested and potentially quality deteriorating optimizations.")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
@@ -122,8 +136,42 @@ parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Dis
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
|
||||
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
|
||||
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
||||
|
||||
# The default built-in provider hosted under web/
|
||||
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
||||
|
||||
parser.add_argument(
|
||||
"--front-end-version",
|
||||
type=str,
|
||||
default=DEFAULT_VERSION_STRING,
|
||||
help="""
|
||||
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
||||
download available frontend implementations from GitHub releases.
|
||||
|
||||
The version string should be in the format of:
|
||||
[repoOwner]/[repoName]@[version]
|
||||
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
||||
""",
|
||||
)
|
||||
|
||||
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
||||
"""Validate if the given path is a directory."""
|
||||
if path is None:
|
||||
return None
|
||||
|
||||
if not os.path.isdir(path):
|
||||
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
||||
return path
|
||||
|
||||
parser.add_argument(
|
||||
"--front-end-root",
|
||||
type=is_valid_directory,
|
||||
default=None,
|
||||
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
||||
)
|
||||
|
||||
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path.")
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
@@ -135,10 +183,3 @@ if args.windows_standalone_build:
|
||||
|
||||
if args.disable_auto_launch:
|
||||
args.auto_launch = False
|
||||
|
||||
import logging
|
||||
logging_level = logging.INFO
|
||||
if args.verbose:
|
||||
logging_level = logging.DEBUG
|
||||
|
||||
logging.basicConfig(format="%(message)s", level=logging_level)
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"initializer_factor": 1.0,
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
@@ -71,13 +72,13 @@ class CLIPEncoder(torch.nn.Module):
|
||||
return x, intermediate
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens):
|
||||
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
||||
def forward(self, input_tokens, dtype=torch.float32):
|
||||
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
||||
|
||||
|
||||
class CLIPTextModel_(torch.nn.Module):
|
||||
@@ -87,14 +88,16 @@ class CLIPTextModel_(torch.nn.Module):
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
num_positions = config_dict["max_position_embeddings"]
|
||||
self.eos_token_id = config_dict["eos_token_id"]
|
||||
|
||||
super().__init__()
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
x = self.embeddings(input_tokens)
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
||||
x = self.embeddings(input_tokens, dtype=dtype)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
@@ -111,7 +114,7 @@ class CLIPTextModel_(torch.nn.Module):
|
||||
if i is not None and final_layer_norm_intermediate:
|
||||
i = self.final_layer_norm(i)
|
||||
|
||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
||||
return x, i, pooled_output
|
||||
|
||||
class CLIPTextModel(torch.nn.Module):
|
||||
@@ -121,7 +124,6 @@ class CLIPTextModel(torch.nn.Module):
|
||||
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
||||
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
@@ -153,11 +155,11 @@ class CLIPVisionEmbeddings(torch.nn.Module):
|
||||
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
num_positions = num_patches + 1
|
||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, pixel_values):
|
||||
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
||||
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
|
||||
return torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
||||
|
||||
|
||||
class CLIPVision(torch.nn.Module):
|
||||
@@ -169,7 +171,7 @@ class CLIPVision(torch.nn.Module):
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=dtype, device=device, operations=operations)
|
||||
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.post_layernorm = operations.LayerNorm(embed_dim)
|
||||
|
||||
@@ -34,6 +34,7 @@ class ClipVisionModel():
|
||||
with open(json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
@@ -50,7 +51,7 @@ class ClipVisionModel():
|
||||
|
||||
def encode_image(self, image):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device)).float()
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
||||
|
||||
outputs = Output()
|
||||
@@ -93,7 +94,10 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
if sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
@@ -105,8 +109,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k not in u:
|
||||
t = sd.pop(k)
|
||||
del t
|
||||
sd.pop(k)
|
||||
return clip
|
||||
|
||||
def load(ckpt_path):
|
||||
|
||||
18
comfy/clip_vision_config_vitl_336.json
Normal file
18
comfy/clip_vision_config_vitl_336.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"image_size": 336,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-5,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
@@ -1,4 +1,24 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
from enum import Enum
|
||||
import math
|
||||
import os
|
||||
import logging
|
||||
@@ -13,6 +33,8 @@ import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.ldm.cascade.controlnet
|
||||
import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
@@ -33,6 +55,10 @@ def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class StrengthType(Enum):
|
||||
CONSTANT = 1
|
||||
LINEAR_UP = 2
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
self.cond_hint_original = None
|
||||
@@ -45,18 +71,29 @@ class ControlBase:
|
||||
self.timestep_range = None
|
||||
self.compression_ratio = 8
|
||||
self.upscale_algorithm = 'nearest-exact'
|
||||
self.extra_args = {}
|
||||
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.extra_conds = []
|
||||
self.strength_type = StrengthType.CONSTANT
|
||||
self.concat_mask = False
|
||||
self.extra_concat_orig = []
|
||||
self.extra_concat = None
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None):
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
if self.latent_format is not None:
|
||||
if vae is None:
|
||||
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
|
||||
self.vae = vae
|
||||
self.extra_concat_orig = extra_concat.copy()
|
||||
if self.concat_mask and len(self.extra_concat_orig) == 0:
|
||||
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
@@ -71,9 +108,9 @@ class ControlBase:
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
|
||||
self.cond_hint = None
|
||||
self.extra_concat = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
@@ -90,7 +127,12 @@ class ControlBase:
|
||||
c.compression_ratio = self.compression_ratio
|
||||
c.upscale_algorithm = self.upscale_algorithm
|
||||
c.latent_format = self.latent_format
|
||||
c.extra_args = self.extra_args.copy()
|
||||
c.vae = self.vae
|
||||
c.extra_conds = self.extra_conds.copy()
|
||||
c.strength_type = self.strength_type
|
||||
c.concat_mask = self.concat_mask
|
||||
c.extra_concat_orig = self.extra_concat_orig.copy()
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
if self.previous_controlnet is not None:
|
||||
@@ -111,9 +153,12 @@ class ControlBase:
|
||||
|
||||
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
|
||||
applied_to.add(x)
|
||||
x *= self.strength
|
||||
if self.strength_type == StrengthType.CONSTANT:
|
||||
x *= self.strength
|
||||
elif self.strength_type == StrengthType.LINEAR_UP:
|
||||
x *= (self.strength ** float(len(control_output) - i))
|
||||
|
||||
if x.dtype != output_dtype:
|
||||
if output_dtype is not None and x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
@@ -135,8 +180,12 @@ class ControlBase:
|
||||
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
|
||||
return out
|
||||
|
||||
def set_extra_arg(self, argument, value=None):
|
||||
self.extra_args[argument] = value
|
||||
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None):
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.load_device = load_device
|
||||
@@ -148,6 +197,9 @@ class ControlNet(ControlBase):
|
||||
self.model_sampling_current = None
|
||||
self.manual_cast_dtype = manual_cast_dtype
|
||||
self.latent_format = latent_format
|
||||
self.extra_conds += extra_conds
|
||||
self.strength_type = strength_type
|
||||
self.concat_mask = concat_mask
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
@@ -165,7 +217,6 @@ class ControlNet(ControlBase):
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
@@ -173,6 +224,9 @@ class ControlNet(ControlBase):
|
||||
compression_ratio = self.compression_ratio
|
||||
if self.vae is not None:
|
||||
compression_ratio *= self.vae.downscale_ratio
|
||||
else:
|
||||
if self.latent_format is not None:
|
||||
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
||||
if self.vae is not None:
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
@@ -180,19 +234,30 @@ class ControlNet(ControlBase):
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
if self.latent_format is not None:
|
||||
self.cond_hint = self.latent_format.process_in(self.cond_hint)
|
||||
if len(self.extra_concat_orig) > 0:
|
||||
to_concat = []
|
||||
for c in self.extra_concat_orig:
|
||||
c = c.to(self.cond_hint.device)
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
||||
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
||||
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
||||
|
||||
self.cond_hint = self.cond_hint.to(device=self.device, dtype=dtype)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
||||
y = cond.get('y', None)
|
||||
if y is not None:
|
||||
y = y.to(dtype)
|
||||
extra = self.extra_args.copy()
|
||||
for c in self.extra_conds:
|
||||
temp = cond.get(c, None)
|
||||
if temp is not None:
|
||||
extra[c] = temp.to(dtype)
|
||||
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
|
||||
return self.control_merge(control, control_prev, output_dtype)
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
||||
return self.control_merge(control, control_prev, output_dtype=None)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
@@ -276,10 +341,11 @@ class ControlLoraOps:
|
||||
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
||||
def __init__(self, control_weights, global_average_pooling=False, device=None, model_options={}): #TODO? model_options
|
||||
ControlBase.__init__(self, device)
|
||||
self.control_weights = control_weights
|
||||
self.global_average_pooling = global_average_pooling
|
||||
self.extra_conds += ["y"]
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
@@ -332,43 +398,114 @@ class ControlLora(ControlNet):
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def load_controlnet_mmdit(sd):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config = comfy.model_detection.model_config_from_unet(new_sd, "", True)
|
||||
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
def controlnet_config(sd, model_options={}):
|
||||
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
|
||||
|
||||
supported_inference_dtypes = model_config.supported_inference_dtypes
|
||||
unet_dtype = model_options.get("dtype", None)
|
||||
if unet_dtype is None:
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None:
|
||||
supported_inference_dtypes.append(weight_dtype)
|
||||
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
controlnet_config = model_config.unet_config
|
||||
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
if manual_cast_dtype is not None:
|
||||
operations = comfy.ops.manual_cast
|
||||
else:
|
||||
operations = comfy.ops.disable_weight_init
|
||||
|
||||
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, operations=operations, device=load_device, dtype=unet_dtype, **controlnet_config)
|
||||
missing, unexpected = control_model.load_state_dict(new_sd, strict=False)
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
offload_device = comfy.model_management.unet_offload_device()
|
||||
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
|
||||
|
||||
def controlnet_load_state_dict(control_model, sd):
|
||||
missing, unexpected = control_model.load_state_dict(sd, strict=False)
|
||||
|
||||
if len(missing) > 0:
|
||||
logging.warning("missing controlnet keys: {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
||||
return control_model
|
||||
|
||||
def load_controlnet_mmdit(sd, model_options={}):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
||||
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
concat_mask = False
|
||||
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
|
||||
if control_latent_channels == 17: #inpaint controlnet
|
||||
concat_mask = True
|
||||
|
||||
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.SD3()
|
||||
latent_format.shift_factor = 0 #SD3 controlnet weirdness
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
|
||||
|
||||
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
|
||||
control_model = controlnet_load_state_dict(control_model, controlnet_data)
|
||||
|
||||
latent_format = comfy.latent_formats.SDXL()
|
||||
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_instantx(sd, model_options={}):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
num_union_modes = 0
|
||||
union_cnet = "controlnet_mode_embedder.weight"
|
||||
if union_cnet in new_sd:
|
||||
num_union_modes = new_sd[union_cnet].shape[0]
|
||||
|
||||
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
|
||||
concat_mask = False
|
||||
if control_latent_channels == 17:
|
||||
concat_mask = True
|
||||
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.Flux()
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
|
||||
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
controlnet_data = state_dict
|
||||
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
|
||||
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
|
||||
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
return ControlLora(controlnet_data, model_options=model_options)
|
||||
|
||||
controlnet_config = None
|
||||
supported_inference_dtypes = None
|
||||
@@ -414,7 +551,7 @@ def load_controlnet(ckpt_path, model=None):
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
|
||||
controlnet_config["union_controlnet"] = True
|
||||
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
|
||||
for k in list(controlnet_data.keys()):
|
||||
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
|
||||
new_sd[new_k] = controlnet_data.pop(k)
|
||||
@@ -423,8 +560,15 @@ def load_controlnet(ckpt_path, model=None):
|
||||
if len(leftover_keys) > 0:
|
||||
logging.warning("leftover keys: {}".format(leftover_keys))
|
||||
controlnet_data = new_sd
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
|
||||
return load_controlnet_mmdit(controlnet_data)
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data:
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
||||
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
|
||||
elif "pos_embed_input.proj.weight" in controlnet_data:
|
||||
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
@@ -436,26 +580,38 @@ def load_controlnet(ckpt_path, model=None):
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
net = load_t2i_adapter(controlnet_data, model_options=model_options)
|
||||
if net is None:
|
||||
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
||||
logging.error("error could not detect control model type.")
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
||||
supported_inference_dtypes = model_config.supported_inference_dtypes
|
||||
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
||||
controlnet_config = model_config.unet_config
|
||||
|
||||
unet_dtype = model_options.get("dtype", None)
|
||||
if unet_dtype is None:
|
||||
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
|
||||
|
||||
if supported_inference_dtypes is None:
|
||||
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
|
||||
|
||||
if weight_dtype is not None:
|
||||
supported_inference_dtypes.append(weight_dtype)
|
||||
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
if supported_inference_dtypes is None:
|
||||
unet_dtype = comfy.model_management.unet_dtype()
|
||||
else:
|
||||
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
if manual_cast_dtype is not None:
|
||||
controlnet_config["operations"] = comfy.ops.manual_cast
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
|
||||
|
||||
controlnet_config["operations"] = operations
|
||||
controlnet_config["dtype"] = unet_dtype
|
||||
controlnet_config["device"] = comfy.model_management.unet_offload_device()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
@@ -489,14 +645,21 @@ def load_controlnet(ckpt_path, model=None):
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
||||
|
||||
global_average_pooling = False
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
global_average_pooling = True
|
||||
|
||||
global_average_pooling = model_options.get("global_average_pooling", False)
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
def load_controlnet(ckpt_path, model=None, model_options={}):
|
||||
if "global_average_pooling" not in model_options:
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
model_options["global_average_pooling"] = True
|
||||
|
||||
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
|
||||
if cnet is None:
|
||||
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
||||
return cnet
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
||||
super().__init__(device)
|
||||
@@ -552,7 +715,7 @@ class T2IAdapter(ControlBase):
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
|
||||
compression_ratio = 8
|
||||
upscale_algorithm = 'nearest-exact'
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_dire
|
||||
if text_encoder2_path is not None:
|
||||
text_encoder_paths.append(text_encoder2_path)
|
||||
|
||||
unet = comfy.sd.load_unet(unet_path)
|
||||
unet = comfy.sd.load_diffusion_model(unet_path)
|
||||
|
||||
clip = None
|
||||
if output_clip:
|
||||
|
||||
67
comfy/float.py
Normal file
67
comfy/float.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import torch
|
||||
|
||||
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
||||
mantissa_scaled = torch.where(
|
||||
normal_mask,
|
||||
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
||||
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
||||
)
|
||||
|
||||
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
|
||||
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
|
||||
|
||||
#Not 100% sure about this
|
||||
def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
|
||||
elif dtype == torch.float8_e5m2:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
|
||||
else:
|
||||
raise ValueError("Unsupported dtype")
|
||||
|
||||
x = x.half()
|
||||
sign = torch.sign(x)
|
||||
abs_x = x.abs()
|
||||
sign = torch.where(abs_x == 0, 0, sign)
|
||||
|
||||
# Combine exponent calculation and clamping
|
||||
exponent = torch.clamp(
|
||||
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
|
||||
0, 2**EXPONENT_BITS - 1
|
||||
)
|
||||
|
||||
# Combine mantissa calculation and rounding
|
||||
normal_mask = ~(exponent == 0)
|
||||
|
||||
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
|
||||
|
||||
sign *= torch.where(
|
||||
normal_mask,
|
||||
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
|
||||
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
||||
)
|
||||
|
||||
inf = torch.finfo(dtype)
|
||||
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
|
||||
return sign
|
||||
|
||||
|
||||
|
||||
def stochastic_rounding(value, dtype, seed=0):
|
||||
if dtype == torch.float32:
|
||||
return value.to(dtype=torch.float32)
|
||||
if dtype == torch.float16:
|
||||
return value.to(dtype=torch.float16)
|
||||
if dtype == torch.bfloat16:
|
||||
return value.to(dtype=torch.bfloat16)
|
||||
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
||||
generator = torch.Generator(device=value.device)
|
||||
generator.manual_seed(seed)
|
||||
output = torch.empty_like(value, dtype=dtype)
|
||||
num_slices = max(1, (value.numel() / (4096 * 4096)))
|
||||
slice_size = max(1, round(value.shape[0] / num_slices))
|
||||
for i in range(0, value.shape[0], slice_size):
|
||||
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
|
||||
return output
|
||||
|
||||
return value.to(dtype=dtype)
|
||||
@@ -9,6 +9,7 @@ from tqdm.auto import trange, tqdm
|
||||
from . import utils
|
||||
from . import deis
|
||||
import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
def append_zero(x):
|
||||
return torch.cat([x, x.new_zeros([1])])
|
||||
@@ -43,6 +44,17 @@ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
||||
return append_zero(sigmas)
|
||||
|
||||
|
||||
def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
|
||||
"""Constructs the noise schedule proposed by Tiankai et al. (2024). """
|
||||
epsilon = 1e-5 # avoid log(0)
|
||||
x = torch.linspace(0, 1, n, device=device)
|
||||
clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
|
||||
lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
|
||||
sigmas = clamp(torch.exp(lmb))
|
||||
return sigmas
|
||||
|
||||
|
||||
|
||||
def to_d(x, sigma, denoised):
|
||||
"""Converts a denoiser output to a Karras ODE derivative."""
|
||||
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
||||
@@ -509,6 +521,9 @@ def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callbac
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
||||
return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
||||
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
@@ -541,6 +556,55 @@ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None,
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
|
||||
lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
|
||||
|
||||
# logged_x = x.unsqueeze(0)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
||||
sigma_down = sigmas[i+1] * downstep_ratio
|
||||
alpha_ip1 = 1 - sigmas[i+1]
|
||||
alpha_down = 1 - sigma_down
|
||||
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
||||
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
# Euler method
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
else:
|
||||
# DPM-Solver++(2S)
|
||||
if sigmas[i] == 1.0:
|
||||
sigma_s = 0.9999
|
||||
else:
|
||||
t_i, t_down = lambda_fn(sigmas[i]), lambda_fn(sigma_down)
|
||||
r = 1 / 2
|
||||
h = t_down - t_i
|
||||
s = t_i + r * h
|
||||
sigma_s = sigma_fn(s)
|
||||
# sigma_s = sigmas[i+1]
|
||||
sigma_s_i_ratio = sigma_s / sigmas[i]
|
||||
u = sigma_s_i_ratio * x + (1 - sigma_s_i_ratio) * denoised
|
||||
D_i = model(u, sigma_s * s_in, **extra_args)
|
||||
sigma_down_i_ratio = sigma_down / sigmas[i]
|
||||
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * D_i
|
||||
# print("sigma_i", sigmas[i], "sigma_ip1", sigmas[i+1],"sigma_down", sigma_down, "sigma_down_i_ratio", sigma_down_i_ratio, "sigma_s_i_ratio", sigma_s_i_ratio, "renoise_coeff", renoise_coeff)
|
||||
# Noise addition
|
||||
if sigmas[i + 1] > 0 and eta > 0:
|
||||
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
"""DPM-Solver++ (stochastic)."""
|
||||
@@ -1016,7 +1080,6 @@ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
d = to_d(x, sigma_hat, temp[0])
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
# Euler method
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
return x
|
||||
@@ -1043,8 +1106,81 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = denoised + d * sigma_down
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||
|
||||
temp = [0]
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigma_down == 0:
|
||||
# Euler method
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
x = denoised + d * sigma_down
|
||||
else:
|
||||
# DPM-Solver++(2S)
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
||||
# r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird
|
||||
r = 1 / 2
|
||||
h = t_next - t
|
||||
s = t + r * h
|
||||
x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised
|
||||
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
||||
x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2
|
||||
# Noise addition
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
"""DPM-Solver++(2M)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
|
||||
old_uncond_denoised = None
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
||||
h = t_next - t
|
||||
if old_uncond_denoised is None or sigmas[i + 1] == 0:
|
||||
denoised_mix = -torch.exp(-h) * uncond_denoised
|
||||
else:
|
||||
h_last = t - t_fn(sigmas[i - 1])
|
||||
r = h_last / h
|
||||
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
|
||||
x = denoised + denoised_mix + torch.exp(-h) * x
|
||||
old_uncond_denoised = uncond_denoised
|
||||
return x
|
||||
|
||||
@@ -4,6 +4,7 @@ class LatentFormat:
|
||||
scale_factor = 1.0
|
||||
latent_channels = 4
|
||||
latent_rgb_factors = None
|
||||
latent_rgb_factors_bias = None
|
||||
taesd_decoder_name = None
|
||||
|
||||
def process_in(self, latent):
|
||||
@@ -30,11 +31,13 @@ class SDXL(LatentFormat):
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3920, 0.4054, 0.4549],
|
||||
[-0.2634, -0.0196, 0.0653],
|
||||
[ 0.0568, 0.1687, -0.0755],
|
||||
[-0.3112, -0.2359, -0.2076]
|
||||
[ 0.3651, 0.4232, 0.4341],
|
||||
[-0.2533, -0.0042, 0.1068],
|
||||
[ 0.1076, 0.1111, -0.0362],
|
||||
[-0.3165, -0.2492, -0.2188]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
|
||||
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
class SDXL_Playground_2_5(LatentFormat):
|
||||
@@ -112,23 +115,24 @@ class SD3(LatentFormat):
|
||||
self.scale_factor = 1.5305
|
||||
self.shift_factor = 0.0609
|
||||
self.latent_rgb_factors = [
|
||||
[-0.0645, 0.0177, 0.1052],
|
||||
[ 0.0028, 0.0312, 0.0650],
|
||||
[ 0.1848, 0.0762, 0.0360],
|
||||
[ 0.0944, 0.0360, 0.0889],
|
||||
[ 0.0897, 0.0506, -0.0364],
|
||||
[-0.0020, 0.1203, 0.0284],
|
||||
[ 0.0855, 0.0118, 0.0283],
|
||||
[-0.0539, 0.0658, 0.1047],
|
||||
[-0.0057, 0.0116, 0.0700],
|
||||
[-0.0412, 0.0281, -0.0039],
|
||||
[ 0.1106, 0.1171, 0.1220],
|
||||
[-0.0248, 0.0682, -0.0481],
|
||||
[ 0.0815, 0.0846, 0.1207],
|
||||
[-0.0120, -0.0055, -0.0867],
|
||||
[-0.0749, -0.0634, -0.0456],
|
||||
[-0.1418, -0.1457, -0.1259]
|
||||
[-0.0922, -0.0175, 0.0749],
|
||||
[ 0.0311, 0.0633, 0.0954],
|
||||
[ 0.1994, 0.0927, 0.0458],
|
||||
[ 0.0856, 0.0339, 0.0902],
|
||||
[ 0.0587, 0.0272, -0.0496],
|
||||
[-0.0006, 0.1104, 0.0309],
|
||||
[ 0.0978, 0.0306, 0.0427],
|
||||
[-0.0042, 0.1038, 0.1358],
|
||||
[-0.0194, 0.0020, 0.0669],
|
||||
[-0.0488, 0.0130, -0.0268],
|
||||
[ 0.0922, 0.0988, 0.0951],
|
||||
[-0.0278, 0.0524, -0.0542],
|
||||
[ 0.0332, 0.0456, 0.0895],
|
||||
[-0.0069, -0.0030, -0.0810],
|
||||
[-0.0596, -0.0465, -0.0293],
|
||||
[-0.1448, -0.1463, -0.1189]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
|
||||
self.taesd_decoder_name = "taesd3_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
@@ -139,3 +143,35 @@ class SD3(LatentFormat):
|
||||
|
||||
class StableAudio1(LatentFormat):
|
||||
latent_channels = 64
|
||||
|
||||
class Flux(SD3):
|
||||
latent_channels = 16
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.3611
|
||||
self.shift_factor = 0.1159
|
||||
self.latent_rgb_factors =[
|
||||
[-0.0346, 0.0244, 0.0681],
|
||||
[ 0.0034, 0.0210, 0.0687],
|
||||
[ 0.0275, -0.0668, -0.0433],
|
||||
[-0.0174, 0.0160, 0.0617],
|
||||
[ 0.0859, 0.0721, 0.0329],
|
||||
[ 0.0004, 0.0383, 0.0115],
|
||||
[ 0.0405, 0.0861, 0.0915],
|
||||
[-0.0236, -0.0185, -0.0259],
|
||||
[-0.0245, 0.0250, 0.1180],
|
||||
[ 0.1008, 0.0755, -0.0421],
|
||||
[-0.0515, 0.0201, 0.0011],
|
||||
[ 0.0428, -0.0012, -0.0036],
|
||||
[ 0.0817, 0.0765, 0.0749],
|
||||
[-0.1264, -0.0522, -0.1103],
|
||||
[-0.0280, -0.0881, -0.0499],
|
||||
[-0.1262, -0.0982, -0.0778]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
||||
self.taesd_decoder_name = "taef1_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
return (latent - self.shift_factor) * self.scale_factor
|
||||
|
||||
def process_out(self, latent):
|
||||
return (latent / self.scale_factor) + self.shift_factor
|
||||
|
||||
@@ -9,6 +9,7 @@ from einops import rearrange
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import math
|
||||
import comfy.ops
|
||||
|
||||
class FourierFeatures(nn.Module):
|
||||
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
|
||||
@@ -18,7 +19,7 @@ class FourierFeatures(nn.Module):
|
||||
[out_features // 2, in_features], dtype=dtype, device=device))
|
||||
|
||||
def forward(self, input):
|
||||
f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device)
|
||||
f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
|
||||
return torch.cat([f.cos(), f.sin()], dim=-1)
|
||||
|
||||
# norms
|
||||
@@ -38,9 +39,9 @@ class LayerNorm(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
beta = self.beta
|
||||
if self.beta is not None:
|
||||
beta = beta.to(dtype=x.dtype, device=x.device)
|
||||
return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta)
|
||||
if beta is not None:
|
||||
beta = comfy.ops.cast_to_input(beta, x)
|
||||
return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)
|
||||
|
||||
class GLU(nn.Module):
|
||||
def __init__(
|
||||
@@ -123,7 +124,9 @@ class RotaryEmbedding(nn.Module):
|
||||
scale_base = 512,
|
||||
interpolation_factor = 1.,
|
||||
base = 10000,
|
||||
base_rescale_factor = 1.
|
||||
base_rescale_factor = 1.,
|
||||
dtype=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||
@@ -131,8 +134,8 @@ class RotaryEmbedding(nn.Module):
|
||||
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
base *= base_rescale_factor ** (dim / (dim - 2))
|
||||
|
||||
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer('inv_freq', inv_freq)
|
||||
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
|
||||
|
||||
assert interpolation_factor >= 1.
|
||||
self.interpolation_factor = interpolation_factor
|
||||
@@ -161,14 +164,14 @@ class RotaryEmbedding(nn.Module):
|
||||
|
||||
t = t / self.interpolation_factor
|
||||
|
||||
freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device))
|
||||
freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
|
||||
freqs = torch.cat((freqs, freqs), dim = -1)
|
||||
|
||||
if self.scale is None:
|
||||
return freqs, 1.
|
||||
|
||||
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
||||
scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1')
|
||||
scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
|
||||
scale = torch.cat((scale, scale), dim = -1)
|
||||
|
||||
return freqs, scale
|
||||
@@ -568,7 +571,7 @@ class ContinuousTransformer(nn.Module):
|
||||
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
|
||||
|
||||
if rotary_pos_emb:
|
||||
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
||||
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
|
||||
else:
|
||||
self.rotary_pos_emb = None
|
||||
|
||||
|
||||
@@ -8,6 +8,8 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
@@ -406,10 +408,7 @@ class MMDiT(nn.Module):
|
||||
|
||||
def patchify(self, x):
|
||||
B, C, H, W = x.size()
|
||||
pad_h = (self.patch_size - H % self.patch_size) % self.patch_size
|
||||
pad_w = (self.patch_size - W % self.patch_size) % self.patch_size
|
||||
|
||||
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
x = x.view(
|
||||
B,
|
||||
C,
|
||||
@@ -427,7 +426,7 @@ class MMDiT(nn.Module):
|
||||
max_dim = max(h, w)
|
||||
|
||||
cur_dim = self.h_max
|
||||
pos_encoding = self.positional_encoding.reshape(1, cur_dim, cur_dim, -1).to(device=x.device, dtype=x.dtype)
|
||||
pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)
|
||||
|
||||
if max_dim > cur_dim:
|
||||
pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
|
||||
@@ -455,7 +454,7 @@ class MMDiT(nn.Module):
|
||||
t = timestep
|
||||
|
||||
c = self.cond_seq_linear(c_seq) # B, T_c, D
|
||||
c = torch.cat([self.register_tokens.to(device=c.device, dtype=c.dtype).repeat(c.size(0), 1, 1), c], dim=1)
|
||||
c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)
|
||||
|
||||
global_cond = self.t_embedder(t, x.dtype) # B, D
|
||||
|
||||
|
||||
@@ -19,14 +19,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
class Linear(torch.nn.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
import comfy.ops
|
||||
|
||||
class OptimizedAttention(nn.Module):
|
||||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
@@ -78,13 +71,13 @@ class GlobalResponseNorm(nn.Module):
|
||||
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
||||
def __init__(self, dim, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x):
|
||||
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
||||
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||
return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x
|
||||
return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
|
||||
21
comfy/ldm/common_dit.py
Normal file
21
comfy/ldm/common_dit.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and torch.jit.is_tracing() or torch.jit.is_scripting():
|
||||
padding_mode = "reflect"
|
||||
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
|
||||
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]
|
||||
return torch.nn.functional.pad(img, (0, pad_w, 0, pad_h), mode=padding_mode)
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
def rms_norm(x, weight, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
return (x * rrms) * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
205
comfy/ldm/flux/controlnet.py
Normal file
205
comfy/ldm/flux/controlnet.py
Normal file
@@ -0,0 +1,205 @@
|
||||
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
|
||||
#modified to support different types of flux controlnets
|
||||
|
||||
import torch
|
||||
import math
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
MLPEmbedder, SingleStreamBlock,
|
||||
timestep_embedding)
|
||||
|
||||
from .model import Flux
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
class MistolineCondDownsamplBlock(nn.Module):
|
||||
def __init__(self, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.encoder(x)
|
||||
|
||||
class MistolineControlnetBlock(nn.Module):
|
||||
def __init__(self, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear = operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.linear(x))
|
||||
|
||||
|
||||
class ControlNetFlux(Flux):
|
||||
def __init__(self, latent_input=False, num_union_modes=0, mistoline=False, control_latent_channels=None, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
|
||||
self.main_model_double = 19
|
||||
self.main_model_single = 38
|
||||
|
||||
self.mistoline = mistoline
|
||||
# add ControlNet blocks
|
||||
if self.mistoline:
|
||||
control_block = lambda : MistolineControlnetBlock(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
control_block = lambda : operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth):
|
||||
self.controlnet_blocks.append(control_block())
|
||||
|
||||
self.controlnet_single_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth_single_blocks):
|
||||
self.controlnet_single_blocks.append(control_block())
|
||||
|
||||
self.num_union_modes = num_union_modes
|
||||
self.controlnet_mode_embedder = None
|
||||
if self.num_union_modes > 0:
|
||||
self.controlnet_mode_embedder = operations.Embedding(self.num_union_modes, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.latent_input = latent_input
|
||||
if control_latent_channels is None:
|
||||
control_latent_channels = self.in_channels
|
||||
else:
|
||||
control_latent_channels *= 2 * 2 #patch size
|
||||
|
||||
self.pos_embed_input = operations.Linear(control_latent_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
if not self.latent_input:
|
||||
if self.mistoline:
|
||||
self.input_cond_block = MistolineCondDownsamplBlock(dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.input_hint_block = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
controlnet_cond: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control_type: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
controlnet_cond = self.pos_embed_input(controlnet_cond)
|
||||
img = img + controlnet_cond
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
if self.controlnet_mode_embedder is not None and len(control_type) > 0:
|
||||
control_cond = self.controlnet_mode_embedder(torch.tensor(control_type, device=img.device), out_dtype=img.dtype).unsqueeze(0).repeat((txt.shape[0], 1, 1))
|
||||
txt = torch.cat([control_cond, txt], dim=1)
|
||||
txt_ids = torch.cat([txt_ids[:,:1], txt_ids], dim=1)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
controlnet_double = ()
|
||||
|
||||
for i in range(len(self.double_blocks)):
|
||||
img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
|
||||
controlnet_double = controlnet_double + (self.controlnet_blocks[i](img),)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
controlnet_single = ()
|
||||
|
||||
for i in range(len(self.single_blocks)):
|
||||
img = self.single_blocks[i](img, vec=vec, pe=pe)
|
||||
controlnet_single = controlnet_single + (self.controlnet_single_blocks[i](img[:, txt.shape[1] :, ...]),)
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(controlnet_double))
|
||||
if self.latent_input:
|
||||
out_input = ()
|
||||
for x in controlnet_double:
|
||||
out_input += (x,) * repeat
|
||||
else:
|
||||
out_input = (controlnet_double * repeat)
|
||||
|
||||
out = {"input": out_input[:self.main_model_double]}
|
||||
if len(controlnet_single) > 0:
|
||||
repeat = math.ceil(self.main_model_single / len(controlnet_single))
|
||||
out_output = ()
|
||||
if self.latent_input:
|
||||
for x in controlnet_single:
|
||||
out_output += (x,) * repeat
|
||||
else:
|
||||
out_output = (controlnet_single * repeat)
|
||||
out["output"] = out_output[:self.main_model_single]
|
||||
return out
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
patch_size = 2
|
||||
if self.latent_input:
|
||||
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
|
||||
elif self.mistoline:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_cond_block(hint)
|
||||
else:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_hint_block(hint)
|
||||
|
||||
hint = rearrange(hint, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance, control_type=kwargs.get("control_type", []))
|
||||
249
comfy/ldm/flux/layers.py
Normal file
249
comfy/ldm/flux/layers.py
Normal file
@@ -0,0 +1,249 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .math import attention, rope
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: Tensor) -> Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
|
||||
return emb.unsqueeze(1)
|
||||
|
||||
|
||||
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
t = time_factor * t
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
|
||||
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(t)
|
||||
return embedding
|
||||
|
||||
class MLPEmbedder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.silu = nn.SiLU()
|
||||
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.out_layer(self.silu(self.in_layer(x)))
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||
q = self.query_norm(q)
|
||||
k = self.key_norm(k)
|
||||
return q.to(v), k.to(v)
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModulationOut:
|
||||
shift: Tensor
|
||||
scale: Tensor
|
||||
gate: Tensor
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.is_double = double
|
||||
self.multiplier = 6 if double else 3
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
ModulationOut(*out[:3]),
|
||||
ModulationOut(*out[3:]) if self.is_double else None,
|
||||
)
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2), pe=pe)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
35
comfy/ldm/flux/math.py
Normal file
35
comfy/ldm/flux/math.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
||||
q, k = apply_rope(q, k, pe)
|
||||
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True)
|
||||
return x
|
||||
|
||||
|
||||
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
assert dim % 2 == 0
|
||||
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu():
|
||||
device = torch.device("cpu")
|
||||
else:
|
||||
device = pos.device
|
||||
|
||||
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device)
|
||||
omega = 1.0 / (theta**scale)
|
||||
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega)
|
||||
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
||||
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
||||
return out.to(dtype=torch.float32, device=pos.device)
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
160
comfy/ldm/flux/model.py
Normal file
160
comfy/ldm/flux/model.py
Normal file
@@ -0,0 +1,160 @@
|
||||
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
EmbedND,
|
||||
LastLayer,
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
@dataclass
|
||||
class FluxParams:
|
||||
in_channels: int
|
||||
vec_in_dim: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = FluxParams(**kwargs)
|
||||
self.params = params
|
||||
self.in_channels = params.in_channels * 2 * 2
|
||||
self.out_channels = self.in_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control=None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
||||
if self.params.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
img = block(img, vec=vec, pe=pe)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance, control=None, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control)
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
218
comfy/ldm/hydit/attn_layers.py
Normal file
218
comfy/ldm/hydit/attn_layers.py
Normal file
@@ -0,0 +1,218 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Tuple, Union, Optional
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
|
||||
"""
|
||||
Reshape frequency tensor for broadcasting it with another tensor.
|
||||
|
||||
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
||||
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
||||
|
||||
Args:
|
||||
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
|
||||
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
||||
head_first (bool): head dimension first (except batch dim) or not.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Reshaped frequency tensor.
|
||||
|
||||
Raises:
|
||||
AssertionError: If the frequency tensor doesn't match the expected shape.
|
||||
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
||||
"""
|
||||
ndim = x.ndim
|
||||
assert 0 <= 1 < ndim
|
||||
|
||||
if isinstance(freqs_cis, tuple):
|
||||
# freqs_cis: (cos, sin) in real space
|
||||
if head_first:
|
||||
assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
else:
|
||||
assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
|
||||
else:
|
||||
# freqs_cis: values in complex space
|
||||
if head_first:
|
||||
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
else:
|
||||
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: Optional[torch.Tensor],
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
head_first: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor.
|
||||
|
||||
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
||||
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
||||
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
||||
returned as real tensors.
|
||||
|
||||
Args:
|
||||
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
|
||||
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
|
||||
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Precomputed frequency tensor for complex exponentials.
|
||||
head_first (bool): head dimension first (except batch dim) or not.
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||
|
||||
"""
|
||||
xk_out = None
|
||||
if isinstance(freqs_cis, tuple):
|
||||
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
|
||||
xq_out = (xq * cos + rotate_half(xq) * sin)
|
||||
if xk is not None:
|
||||
xk_out = (xk * cos + rotate_half(xk) * sin)
|
||||
else:
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
|
||||
if xk is not None:
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2]
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
|
||||
|
||||
return xq_out, xk_out
|
||||
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
"""
|
||||
Use QK Normalization.
|
||||
"""
|
||||
def __init__(self,
|
||||
qdim,
|
||||
kdim,
|
||||
num_heads,
|
||||
qkv_bias=True,
|
||||
qk_norm=False,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
attn_precision=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.attn_precision = attn_precision
|
||||
self.qdim = qdim
|
||||
self.kdim = kdim
|
||||
self.num_heads = num_heads
|
||||
assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
|
||||
self.head_dim = self.qdim // num_heads
|
||||
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
self.q_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
|
||||
self.kv_proj = operations.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)
|
||||
|
||||
# TODO: eps should be 1 / 65530 if using fp16
|
||||
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.out_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, y, freqs_cis_img=None):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim)
|
||||
y: torch.Tensor
|
||||
(batch, seqlen2, hidden_dim2)
|
||||
freqs_cis_img: torch.Tensor
|
||||
(batch, hidden_dim // 2), RoPE for image
|
||||
"""
|
||||
b, s1, c = x.shape # [b, s1, D]
|
||||
_, s2, c = y.shape # [b, s2, 1024]
|
||||
|
||||
q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim) # [b, s1, h, d]
|
||||
kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim) # [b, s2, 2, h, d]
|
||||
k, v = kv.unbind(dim=2) # [b, s, h, d]
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if freqs_cis_img is not None:
|
||||
qq, _ = apply_rotary_emb(q, None, freqs_cis_img)
|
||||
assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}'
|
||||
q = qq
|
||||
|
||||
q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C
|
||||
k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2
|
||||
v = v.transpose(-2, -3).contiguous()
|
||||
|
||||
context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
|
||||
|
||||
out = self.out_proj(context) # context.reshape - B, L1, -1
|
||||
out = self.proj_drop(out)
|
||||
|
||||
out_tuple = (out,)
|
||||
|
||||
return out_tuple
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
We rename some layer names to align with flash attention
|
||||
"""
|
||||
def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0., attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.attn_precision = attn_precision
|
||||
self.dim = dim
|
||||
self.num_heads = num_heads
|
||||
assert self.dim % num_heads == 0, 'dim should be divisible by num_heads'
|
||||
self.head_dim = self.dim // num_heads
|
||||
# This assertion is aligned with flash attention
|
||||
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
# qkv --> Wqkv
|
||||
self.Wqkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
# TODO: eps should be 1 / 65530 if using fp16
|
||||
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.out_proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, freqs_cis_img=None):
|
||||
B, N, C = x.shape
|
||||
qkv = self.Wqkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) # [3, b, h, s, d]
|
||||
q, k, v = qkv.unbind(0) # [b, h, s, d]
|
||||
q = self.q_norm(q) # [b, h, s, d]
|
||||
k = self.k_norm(k) # [b, h, s, d]
|
||||
|
||||
# Apply RoPE if needed
|
||||
if freqs_cis_img is not None:
|
||||
qq, kk = apply_rotary_emb(q, k, freqs_cis_img, head_first=True)
|
||||
assert qq.shape == q.shape and kk.shape == k.shape, \
|
||||
f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
|
||||
q, k = qq, kk
|
||||
|
||||
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
|
||||
x = self.out_proj(x)
|
||||
x = self.proj_drop(x)
|
||||
|
||||
out_tuple = (x,)
|
||||
|
||||
return out_tuple
|
||||
321
comfy/ldm/hydit/controlnet.py
Normal file
321
comfy/ldm/hydit/controlnet.py
Normal file
@@ -0,0 +1,321 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch.utils import checkpoint
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import (
|
||||
Mlp,
|
||||
TimestepEmbedder,
|
||||
PatchEmbed,
|
||||
RMSNorm,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from .poolers import AttentionPool
|
||||
|
||||
import comfy.latent_formats
|
||||
from .models import HunYuanDiTBlock, calc_rope
|
||||
|
||||
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
|
||||
|
||||
|
||||
class HunYuanControlNet(nn.Module):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args: argparse.Namespace
|
||||
The arguments parsed by argparse.
|
||||
input_size: tuple
|
||||
The size of the input image.
|
||||
patch_size: int
|
||||
The size of the patch.
|
||||
in_channels: int
|
||||
The number of input channels.
|
||||
hidden_size: int
|
||||
The hidden size of the transformer backbone.
|
||||
depth: int
|
||||
The number of transformer blocks.
|
||||
num_heads: int
|
||||
The number of attention heads.
|
||||
mlp_ratio: float
|
||||
The ratio of the hidden size of the MLP in the transformer block.
|
||||
log_fn: callable
|
||||
The logging function.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: tuple = 128,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
hidden_size: int = 1408,
|
||||
depth: int = 40,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.3637,
|
||||
text_states_dim=1024,
|
||||
text_states_dim_t5=2048,
|
||||
text_len=77,
|
||||
text_len_t5=256,
|
||||
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
|
||||
size_cond=False,
|
||||
use_style_cond=False,
|
||||
learn_sigma=True,
|
||||
norm="layer",
|
||||
log_fn: callable = print,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.log_fn = log_fn
|
||||
self.depth = depth
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.text_states_dim = text_states_dim
|
||||
self.text_states_dim_t5 = text_states_dim_t5
|
||||
self.text_len = text_len
|
||||
self.text_len_t5 = text_len_t5
|
||||
self.size_cond = size_cond
|
||||
self.use_style_cond = use_style_cond
|
||||
self.norm = norm
|
||||
self.dtype = dtype
|
||||
self.latent_format = comfy.latent_formats.SDXL
|
||||
|
||||
self.mlp_t5 = nn.Sequential(
|
||||
nn.Linear(
|
||||
self.text_states_dim_t5,
|
||||
self.text_states_dim_t5 * 4,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
nn.SiLU(),
|
||||
nn.Linear(
|
||||
self.text_states_dim_t5 * 4,
|
||||
self.text_states_dim,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
# learnable replace
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.randn(
|
||||
self.text_len + self.text_len_t5,
|
||||
self.text_states_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
# Attention pooling
|
||||
pooler_out_dim = 1024
|
||||
self.pooler = AttentionPool(
|
||||
self.text_len_t5,
|
||||
self.text_states_dim_t5,
|
||||
num_heads=8,
|
||||
output_dim=pooler_out_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
# Dimension of the extra input vectors
|
||||
self.extra_in_dim = pooler_out_dim
|
||||
|
||||
if self.size_cond:
|
||||
# Image size and crop size conditions
|
||||
self.extra_in_dim += 6 * 256
|
||||
|
||||
if self.use_style_cond:
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = nn.Embedding(
|
||||
1, hidden_size, dtype=dtype, device=device
|
||||
)
|
||||
self.extra_in_dim += hidden_size
|
||||
|
||||
# Text embedding for `add`
|
||||
self.x_embedder = PatchEmbed(
|
||||
input_size,
|
||||
patch_size,
|
||||
in_channels,
|
||||
hidden_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.extra_embedder = nn.Sequential(
|
||||
operations.Linear(
|
||||
self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device
|
||||
),
|
||||
nn.SiLU(),
|
||||
operations.Linear(
|
||||
hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
|
||||
# Image embedding
|
||||
num_patches = self.x_embedder.num_patches
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
HunYuanDiTBlock(
|
||||
hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
text_states_dim=self.text_states_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_type=self.norm,
|
||||
skip=False,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for _ in range(19)
|
||||
]
|
||||
)
|
||||
|
||||
# Input zero linear for the first block
|
||||
self.before_proj = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
|
||||
# Output zero linear for the every block
|
||||
self.after_proj_list = nn.ModuleList(
|
||||
[
|
||||
|
||||
operations.Linear(
|
||||
self.hidden_size, self.hidden_size, dtype=dtype, device=device
|
||||
)
|
||||
for _ in range(len(self.blocks))
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
hint,
|
||||
timesteps,
|
||||
context,#encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
return_dict=False,
|
||||
**kwarg,
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(B, D, H, W)
|
||||
t: torch.Tensor
|
||||
(B)
|
||||
encoder_hidden_states: torch.Tensor
|
||||
CLIP text embedding, (B, L_clip, D)
|
||||
text_embedding_mask: torch.Tensor
|
||||
CLIP text embedding mask, (B, L_clip)
|
||||
encoder_hidden_states_t5: torch.Tensor
|
||||
T5 text embedding, (B, L_t5, D)
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
T5 text embedding mask, (B, L_t5)
|
||||
image_meta_size: torch.Tensor
|
||||
(B, 6)
|
||||
style: torch.Tensor
|
||||
(B)
|
||||
cos_cis_img: torch.Tensor
|
||||
sin_cis_img: torch.Tensor
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
condition = hint
|
||||
if condition.shape[0] == 1:
|
||||
condition = torch.repeat_interleave(condition, x.shape[0], dim=0)
|
||||
|
||||
text_states = context # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
text_states_mask = text_embedding_mask.bool() # 2,77
|
||||
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
|
||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||
|
||||
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||
|
||||
text_states[:, -self.text_len :] = torch.where(
|
||||
text_states_mask[:, -self.text_len :].unsqueeze(2),
|
||||
text_states[:, -self.text_len :],
|
||||
padding[: self.text_len],
|
||||
)
|
||||
text_states_t5[:, -self.text_len_t5 :] = torch.where(
|
||||
text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2),
|
||||
text_states_t5[:, -self.text_len_t5 :],
|
||||
padding[self.text_len :],
|
||||
)
|
||||
|
||||
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024
|
||||
|
||||
# _, _, oh, ow = x.shape
|
||||
# th, tw = oh // self.patch_size, ow // self.patch_size
|
||||
|
||||
# Get image RoPE embedding according to `reso`lution.
|
||||
freqs_cis_img = calc_rope(
|
||||
x, self.patch_size, self.hidden_size // self.num_heads
|
||||
) # (cos_cis_img, sin_cis_img)
|
||||
|
||||
# ========================= Build time and image embedding =========================
|
||||
t = self.t_embedder(timesteps, dtype=self.dtype)
|
||||
x = self.x_embedder(x)
|
||||
|
||||
# ========================= Concatenate all extra vectors =========================
|
||||
# Build text tokens with pooling
|
||||
extra_vec = self.pooler(encoder_hidden_states_t5)
|
||||
|
||||
# Build image meta size tokens if applicable
|
||||
# if image_meta_size is not None:
|
||||
# image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256]
|
||||
# if image_meta_size.dtype != self.dtype:
|
||||
# image_meta_size = image_meta_size.half()
|
||||
# image_meta_size = image_meta_size.view(-1, 6 * 256)
|
||||
# extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
|
||||
|
||||
# Build style tokens
|
||||
if style is not None:
|
||||
style_embedding = self.style_embedder(style)
|
||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
# ========================= Deal with Condition =========================
|
||||
condition = self.x_embedder(condition)
|
||||
|
||||
# ========================= Forward pass through HunYuanDiT blocks =========================
|
||||
controls = []
|
||||
x = x + self.before_proj(condition) # add condition
|
||||
for layer, block in enumerate(self.blocks):
|
||||
x = block(x, c, text_states, freqs_cis_img)
|
||||
controls.append(self.after_proj_list[layer](x)) # zero linear for output
|
||||
|
||||
return {"output": controls}
|
||||
410
comfy/ldm/hydit/models.py
Normal file
410
comfy/ldm/hydit/models.py
Normal file
@@ -0,0 +1,410 @@
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from torch.utils import checkpoint
|
||||
|
||||
from .attn_layers import Attention, CrossAttention
|
||||
from .poolers import AttentionPool
|
||||
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
|
||||
|
||||
def calc_rope(x, patch_size, head_size):
|
||||
th = (x.shape[2] + (patch_size // 2)) // patch_size
|
||||
tw = (x.shape[3] + (patch_size // 2)) // patch_size
|
||||
base_size = 512 // 8 // patch_size
|
||||
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
||||
sub_args = [start, stop, (th, tw)]
|
||||
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
|
||||
rope = get_2d_rotary_pos_embed(head_size, *sub_args)
|
||||
rope = (rope[0].to(x), rope[1].to(x))
|
||||
return rope
|
||||
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
class HunYuanDiTBlock(nn.Module):
|
||||
"""
|
||||
A HunYuanDiT block with `add` conditioning.
|
||||
"""
|
||||
def __init__(self,
|
||||
hidden_size,
|
||||
c_emb_size,
|
||||
num_heads,
|
||||
mlp_ratio=4.0,
|
||||
text_states_dim=1024,
|
||||
qk_norm=False,
|
||||
norm_type="layer",
|
||||
skip=False,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
use_ele_affine = True
|
||||
|
||||
if norm_type == "layer":
|
||||
norm_layer = operations.LayerNorm
|
||||
elif norm_type == "rms":
|
||||
norm_layer = RMSNorm
|
||||
else:
|
||||
raise ValueError(f"Unknown norm_type: {norm_type}")
|
||||
|
||||
# ========================= Self-Attention =========================
|
||||
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# ========================= FFN =========================
|
||||
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# ========================= Add =========================
|
||||
# Simply use add like SDXL.
|
||||
self.default_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
# ========================= Cross-Attention =========================
|
||||
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
|
||||
qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
# ========================= Skip Connection =========================
|
||||
if skip:
|
||||
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
else:
|
||||
self.skip_linear = None
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
|
||||
# Long Skip Connection
|
||||
if self.skip_linear is not None:
|
||||
cat = torch.cat([x, skip], dim=-1)
|
||||
if cat.dtype != x.dtype:
|
||||
cat = cat.to(x.dtype)
|
||||
cat = self.skip_norm(cat)
|
||||
x = self.skip_linear(cat)
|
||||
|
||||
# Self-Attention
|
||||
shift_msa = self.default_modulation(c).unsqueeze(dim=1)
|
||||
attn_inputs = (
|
||||
self.norm1(x) + shift_msa, freq_cis_img,
|
||||
)
|
||||
x = x + self.attn1(*attn_inputs)[0]
|
||||
|
||||
# Cross-Attention
|
||||
cross_inputs = (
|
||||
self.norm3(x), text_states, freq_cis_img
|
||||
)
|
||||
x = x + self.attn2(*cross_inputs)[0]
|
||||
|
||||
# FFN Layer
|
||||
mlp_inputs = self.norm2(x)
|
||||
x = x + self.mlp(mlp_inputs)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip)
|
||||
return self._forward(x, c, text_states, freq_cis_img, skip)
|
||||
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of HunYuanDiT.
|
||||
"""
|
||||
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class HunYuanDiT(nn.Module):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args: argparse.Namespace
|
||||
The arguments parsed by argparse.
|
||||
input_size: tuple
|
||||
The size of the input image.
|
||||
patch_size: int
|
||||
The size of the patch.
|
||||
in_channels: int
|
||||
The number of input channels.
|
||||
hidden_size: int
|
||||
The hidden size of the transformer backbone.
|
||||
depth: int
|
||||
The number of transformer blocks.
|
||||
num_heads: int
|
||||
The number of attention heads.
|
||||
mlp_ratio: float
|
||||
The ratio of the hidden size of the MLP in the transformer block.
|
||||
log_fn: callable
|
||||
The logging function.
|
||||
"""
|
||||
#@register_to_config
|
||||
def __init__(self,
|
||||
input_size: tuple = 32,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
hidden_size: int = 1152,
|
||||
depth: int = 28,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.0,
|
||||
text_states_dim = 1024,
|
||||
text_states_dim_t5 = 2048,
|
||||
text_len = 77,
|
||||
text_len_t5 = 256,
|
||||
qk_norm = True,# See http://arxiv.org/abs/2302.05442 for details.
|
||||
size_cond = False,
|
||||
use_style_cond = False,
|
||||
learn_sigma = True,
|
||||
norm = "layer",
|
||||
log_fn: callable = print,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.log_fn = log_fn
|
||||
self.depth = depth
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.text_states_dim = text_states_dim
|
||||
self.text_states_dim_t5 = text_states_dim_t5
|
||||
self.text_len = text_len
|
||||
self.text_len_t5 = text_len_t5
|
||||
self.size_cond = size_cond
|
||||
self.use_style_cond = use_style_cond
|
||||
self.norm = norm
|
||||
self.dtype = dtype
|
||||
#import pdb
|
||||
#pdb.set_trace()
|
||||
|
||||
self.mlp_t5 = nn.Sequential(
|
||||
operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
# learnable replace
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device))
|
||||
|
||||
# Attention pooling
|
||||
pooler_out_dim = 1024
|
||||
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# Dimension of the extra input vectors
|
||||
self.extra_in_dim = pooler_out_dim
|
||||
|
||||
if self.size_cond:
|
||||
# Image size and crop size conditions
|
||||
self.extra_in_dim += 6 * 256
|
||||
|
||||
if self.use_style_cond:
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device)
|
||||
self.extra_in_dim += hidden_size
|
||||
|
||||
# Text embedding for `add`
|
||||
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.extra_embedder = nn.Sequential(
|
||||
operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
# Image embedding
|
||||
num_patches = self.x_embedder.num_patches
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList([
|
||||
HunYuanDiTBlock(hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
text_states_dim=self.text_states_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_type=self.norm,
|
||||
skip=layer > depth // 2,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for layer in range(depth)
|
||||
])
|
||||
|
||||
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
self.unpatchify_channels = self.out_channels
|
||||
|
||||
|
||||
|
||||
def forward(self,
|
||||
x,
|
||||
t,
|
||||
context,#encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
return_dict=False,
|
||||
control=None,
|
||||
transformer_options=None,
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(B, D, H, W)
|
||||
t: torch.Tensor
|
||||
(B)
|
||||
encoder_hidden_states: torch.Tensor
|
||||
CLIP text embedding, (B, L_clip, D)
|
||||
text_embedding_mask: torch.Tensor
|
||||
CLIP text embedding mask, (B, L_clip)
|
||||
encoder_hidden_states_t5: torch.Tensor
|
||||
T5 text embedding, (B, L_t5, D)
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
T5 text embedding mask, (B, L_t5)
|
||||
image_meta_size: torch.Tensor
|
||||
(B, 6)
|
||||
style: torch.Tensor
|
||||
(B)
|
||||
cos_cis_img: torch.Tensor
|
||||
sin_cis_img: torch.Tensor
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
#import pdb
|
||||
#pdb.set_trace()
|
||||
encoder_hidden_states = context
|
||||
text_states = encoder_hidden_states # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
text_states_mask = text_embedding_mask.bool() # 2,77
|
||||
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
|
||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||
|
||||
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||
|
||||
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
|
||||
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])
|
||||
|
||||
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024
|
||||
# clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1)
|
||||
|
||||
_, _, oh, ow = x.shape
|
||||
th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size
|
||||
|
||||
|
||||
# Get image RoPE embedding according to `reso`lution.
|
||||
freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) #(cos_cis_img, sin_cis_img)
|
||||
|
||||
# ========================= Build time and image embedding =========================
|
||||
t = self.t_embedder(t, dtype=x.dtype)
|
||||
x = self.x_embedder(x)
|
||||
|
||||
# ========================= Concatenate all extra vectors =========================
|
||||
# Build text tokens with pooling
|
||||
extra_vec = self.pooler(encoder_hidden_states_t5)
|
||||
|
||||
# Build image meta size tokens if applicable
|
||||
if self.size_cond:
|
||||
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype) # [B * 6, 256]
|
||||
image_meta_size = image_meta_size.view(-1, 6 * 256)
|
||||
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
|
||||
|
||||
# Build style tokens
|
||||
if self.use_style_cond:
|
||||
if style is None:
|
||||
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
|
||||
style_embedding = self.style_embedder(style, out_dtype=x.dtype)
|
||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
controls = None
|
||||
if control:
|
||||
controls = control.get("output", None)
|
||||
# ========================= Forward pass through HunYuanDiT blocks =========================
|
||||
skips = []
|
||||
for layer, block in enumerate(self.blocks):
|
||||
if layer > self.depth // 2:
|
||||
if controls is not None:
|
||||
skip = skips.pop() + controls.pop().to(dtype=x.dtype)
|
||||
else:
|
||||
skip = skips.pop()
|
||||
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
|
||||
else:
|
||||
x = block(x, c, text_states, freqs_cis_img) # (N, L, D)
|
||||
|
||||
if layer < (self.depth // 2 - 1):
|
||||
skips.append(x)
|
||||
if controls is not None and len(controls) != 0:
|
||||
raise ValueError("The number of controls is not equal to the number of skip connections.")
|
||||
|
||||
# ========================= Final layer =========================
|
||||
x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, th, tw) # (N, out_channels, H, W)
|
||||
|
||||
if return_dict:
|
||||
return {'x': x}
|
||||
if self.learn_sigma:
|
||||
return x[:,:self.out_channels // 2,:oh,:ow]
|
||||
return x[:,:,:oh,:ow]
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.unpatchify_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
# h = w = int(x.shape[1] ** 0.5)
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
37
comfy/ldm/hydit/poolers.py
Normal file
37
comfy/ldm/hydit/poolers.py
Normal file
@@ -0,0 +1,37 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
|
||||
class AttentionPool(nn.Module):
|
||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(torch.empty(spacial_dim + 1, embed_dim, dtype=dtype, device=device))
|
||||
self.k_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.q_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.v_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.c_proj = operations.Linear(embed_dim, output_dim or embed_dim, dtype=dtype, device=device)
|
||||
self.num_heads = num_heads
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def forward(self, x):
|
||||
x = x[:,:self.positional_embedding.shape[0] - 1]
|
||||
x = x.permute(1, 0, 2) # NLC -> LNC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
|
||||
x = x + comfy.ops.cast_to_input(self.positional_embedding[:, None, :], x) # (L+1)NC
|
||||
|
||||
q = self.q_proj(x[:1])
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
|
||||
batch_size = q.shape[1]
|
||||
head_dim = self.embed_dim // self.num_heads
|
||||
q = q.view(1, batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
k = k.view(k.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
v = v.view(v.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
|
||||
attn_output = optimized_attention(q, k, v, self.num_heads, skip_reshape=True).transpose(0, 1)
|
||||
|
||||
attn_output = self.c_proj(attn_output)
|
||||
return attn_output.squeeze(0)
|
||||
224
comfy/ldm/hydit/posemb_layers.py
Normal file
224
comfy/ldm/hydit/posemb_layers.py
Normal file
@@ -0,0 +1,224 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
|
||||
|
||||
def _to_tuple(x):
|
||||
if isinstance(x, int):
|
||||
return x, x
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
def get_fill_resize_and_crop(src, tgt):
|
||||
th, tw = _to_tuple(tgt)
|
||||
h, w = _to_tuple(src)
|
||||
|
||||
tr = th / tw # base resolution
|
||||
r = h / w # target resolution
|
||||
|
||||
# resize
|
||||
if r > tr:
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h)) # resize the target resolution down based on the base resolution
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
def get_meshgrid(start, *args):
|
||||
if len(args) == 0:
|
||||
# start is grid_size
|
||||
num = _to_tuple(start)
|
||||
start = (0, 0)
|
||||
stop = num
|
||||
elif len(args) == 1:
|
||||
# start is start, args[0] is stop, step is 1
|
||||
start = _to_tuple(start)
|
||||
stop = _to_tuple(args[0])
|
||||
num = (stop[0] - start[0], stop[1] - start[1])
|
||||
elif len(args) == 2:
|
||||
# start is start, args[0] is stop, args[1] is num
|
||||
start = _to_tuple(start)
|
||||
stop = _to_tuple(args[0])
|
||||
num = _to_tuple(args[1])
|
||||
else:
|
||||
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
|
||||
|
||||
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32)
|
||||
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
return grid
|
||||
|
||||
#################################################################################
|
||||
# Sine/Cosine Positional Embedding Functions #
|
||||
#################################################################################
|
||||
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
||||
|
||||
def get_2d_sincos_pos_embed(embed_dim, start, *args, cls_token=False, extra_tokens=0):
|
||||
"""
|
||||
grid_size: int of the grid height and width
|
||||
return:
|
||||
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||
"""
|
||||
grid = get_meshgrid(start, *args) # [2, H, w]
|
||||
# grid_h = np.arange(grid_size, dtype=np.float32)
|
||||
# grid_w = np.arange(grid_size, dtype=np.float32)
|
||||
# grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
# grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
||||
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||
if cls_token and extra_tokens > 0:
|
||||
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||||
assert embed_dim % 2 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||
|
||||
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||||
"""
|
||||
embed_dim: output dimension for each position
|
||||
pos: a list of positions to be encoded: size (W,H)
|
||||
out: (M, D)
|
||||
"""
|
||||
assert embed_dim % 2 == 0
|
||||
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
||||
omega /= embed_dim / 2.
|
||||
omega = 1. / 10000**omega # (D/2,)
|
||||
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||||
|
||||
emb_sin = np.sin(out) # (M, D/2)
|
||||
emb_cos = np.cos(out) # (M, D/2)
|
||||
|
||||
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||
return emb
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Rotary Positional Embedding Functions #
|
||||
#################################################################################
|
||||
# https://github.com/facebookresearch/llama/blob/main/llama/model.py#L443
|
||||
|
||||
def get_2d_rotary_pos_embed(embed_dim, start, *args, use_real=True):
|
||||
"""
|
||||
This is a 2d version of precompute_freqs_cis, which is a RoPE for image tokens with 2d structure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embed_dim: int
|
||||
embedding dimension size
|
||||
start: int or tuple of int
|
||||
If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, step is 1;
|
||||
If len(args) == 2, start is start, args[0] is stop, args[1] is num.
|
||||
use_real: bool
|
||||
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos_embed: torch.Tensor
|
||||
[HW, D/2]
|
||||
"""
|
||||
grid = get_meshgrid(start, *args) # [2, H, w]
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]]) # Returns a sampling matrix with the same resolution as the target resolution
|
||||
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
||||
assert embed_dim % 4 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
|
||||
if use_real:
|
||||
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
|
||||
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
|
||||
return cos, sin
|
||||
else:
|
||||
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
|
||||
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
||||
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
||||
The returned tensor contains complex values in complex64 data type.
|
||||
|
||||
Args:
|
||||
dim (int): Dimension of the frequency tensor.
|
||||
pos (np.ndarray, int): Position indices for the frequency tensor. [S] or scalar
|
||||
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
||||
use_real (bool, optional): If True, return real part and imaginary part separately.
|
||||
Otherwise, return complex numbers.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
||||
|
||||
"""
|
||||
if isinstance(pos, int):
|
||||
pos = np.arange(pos)
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
|
||||
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
|
||||
if use_real:
|
||||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
||||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
else:
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||||
return freqs_cis
|
||||
|
||||
|
||||
|
||||
def calc_sizes(rope_img, patch_size, th, tw):
|
||||
if rope_img == 'extend':
|
||||
# Expansion mode
|
||||
sub_args = [(th, tw)]
|
||||
elif rope_img.startswith('base'):
|
||||
# Based on the specified dimensions, other dimensions are obtained through interpolation.
|
||||
base_size = int(rope_img[4:]) // 8 // patch_size
|
||||
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
||||
sub_args = [start, stop, (th, tw)]
|
||||
else:
|
||||
raise ValueError(f"Unknown rope_img: {rope_img}")
|
||||
return sub_args
|
||||
|
||||
|
||||
def init_image_posemb(rope_img,
|
||||
resolutions,
|
||||
patch_size,
|
||||
hidden_size,
|
||||
num_heads,
|
||||
log_fn,
|
||||
rope_real=True,
|
||||
):
|
||||
freqs_cis_img = {}
|
||||
for reso in resolutions:
|
||||
th, tw = reso.height // 8 // patch_size, reso.width // 8 // patch_size
|
||||
sub_args = calc_sizes(rope_img, patch_size, th, tw)
|
||||
freqs_cis_img[str(reso)] = get_2d_rotary_pos_embed(hidden_size // num_heads, *sub_args, use_real=rope_real)
|
||||
log_fn(f" Using image RoPE ({rope_img}) ({'real' if rope_real else 'complex'}): {sub_args} | ({reso}) "
|
||||
f"{freqs_cis_img[str(reso)][0].shape if rope_real else freqs_cis_img[str(reso)].shape}")
|
||||
return freqs_cis_img
|
||||
@@ -358,7 +358,7 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
|
||||
disabled_xformers = True
|
||||
|
||||
if disabled_xformers:
|
||||
return attention_pytorch(q, k, v, heads, mask)
|
||||
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
|
||||
|
||||
if skip_reshape:
|
||||
q, k, v = map(
|
||||
|
||||
@@ -7,6 +7,9 @@ import torch
|
||||
import torch.nn as nn
|
||||
from .. import attention
|
||||
from einops import rearrange, repeat
|
||||
from .util import timestep_embedding
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
def default(x, y):
|
||||
if x is not None:
|
||||
@@ -68,12 +71,14 @@ class PatchEmbed(nn.Module):
|
||||
bias: bool = True,
|
||||
strict_img_size: bool = True,
|
||||
dynamic_img_pad: bool = True,
|
||||
padding_mode='circular',
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = (patch_size, patch_size)
|
||||
self.padding_mode = padding_mode
|
||||
if img_size is not None:
|
||||
self.img_size = (img_size, img_size)
|
||||
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
|
||||
@@ -107,9 +112,7 @@ class PatchEmbed(nn.Module):
|
||||
# f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
|
||||
# )
|
||||
if self.dynamic_img_pad:
|
||||
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
||||
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
||||
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode=self.padding_mode)
|
||||
x = self.proj(x)
|
||||
if self.flatten:
|
||||
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
|
||||
@@ -230,34 +233,8 @@ class TimestepEmbedder(nn.Module):
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period)
|
||||
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
||||
/ half
|
||||
)
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(dtype=t.dtype)
|
||||
return embedding
|
||||
|
||||
def forward(self, t, dtype, **kwargs):
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
||||
t_freq = timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
@@ -378,29 +355,9 @@ class RMSNorm(torch.nn.Module):
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
|
||||
def _norm(self, x):
|
||||
"""
|
||||
Apply the RMSNorm normalization to the input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The normalized tensor.
|
||||
"""
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass through the RMSNorm layer.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The output tensor after applying RMSNorm.
|
||||
"""
|
||||
x = self._norm(x)
|
||||
if self.learnable_scale:
|
||||
return x * self.weight.to(device=x.device, dtype=x.dtype)
|
||||
else:
|
||||
return x
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
|
||||
|
||||
|
||||
class SwiGLUFeedForward(nn.Module):
|
||||
@@ -949,7 +906,7 @@ class MMDiT(nn.Module):
|
||||
context = self.context_processor(context)
|
||||
|
||||
hw = x.shape[-2:]
|
||||
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
||||
x = self.x_embedder(x) + comfy.ops.cast_to_input(self.cropped_pos_embed(hw, device=x.device), x)
|
||||
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
|
||||
if y is not None and self.y_embedder is not None:
|
||||
y = self.y_embedder(y) # (N, D)
|
||||
|
||||
@@ -809,7 +809,7 @@ class UNetModel(nn.Module):
|
||||
self.out = nn.Sequential(
|
||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
||||
operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
@@ -842,6 +842,11 @@ class UNetModel(nn.Module):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if "emb_patch" in transformer_patches:
|
||||
patch = transformer_patches["emb_patch"]
|
||||
for p in patch:
|
||||
emb = p(emb, self.model_channels, transformer_options)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
324
comfy/lora.py
324
comfy/lora.py
@@ -1,5 +1,27 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_base
|
||||
import logging
|
||||
import torch
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
@@ -179,9 +201,13 @@ def load_lora(lora, to_load):
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
for k in sdk:
|
||||
if k.endswith(".weight"):
|
||||
key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
clip_g_present = False
|
||||
for b in range(32): #TODO: clean up
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
@@ -205,6 +231,7 @@ def model_lora_keys_clip(model, key_map={}):
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
clip_g_present = True
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
@@ -218,11 +245,25 @@ def model_lora_keys_clip(model, key_map={}):
|
||||
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
|
||||
key_map[lora_key] = k
|
||||
|
||||
for k in sdk: #OneTrainer SD3 lora
|
||||
if k.startswith("t5xxl.transformer.") and k.endswith(".weight"):
|
||||
l_key = k[len("t5xxl.transformer."):-len(".weight")]
|
||||
lora_key = "lora_te3_{}".format(l_key.replace(".", "_"))
|
||||
key_map[lora_key] = k
|
||||
for k in sdk:
|
||||
if k.endswith(".weight"):
|
||||
if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora
|
||||
l_key = k[len("t5xxl.transformer."):-len(".weight")]
|
||||
t5_index = 1
|
||||
if clip_g_present:
|
||||
t5_index += 1
|
||||
if clip_l_present:
|
||||
t5_index += 1
|
||||
if t5_index == 2:
|
||||
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux
|
||||
t5_index += 1
|
||||
|
||||
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k
|
||||
elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
|
||||
l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
|
||||
lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
|
||||
key_map[lora_key] = k
|
||||
|
||||
|
||||
k = "clip_g.transformer.text_projection.weight"
|
||||
if k in sdk:
|
||||
@@ -245,6 +286,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
|
||||
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
@@ -252,6 +294,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
@@ -274,4 +317,275 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
|
||||
key_map[key_lora] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
|
||||
diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
|
||||
key_map[key_lora] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.HunyuanDiT):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format
|
||||
|
||||
if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux
|
||||
diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): The original tensor to be padded.
|
||||
new_shape (List[int]): The desired shape of the padded tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A new tensor padded with zeros to the specified shape.
|
||||
|
||||
Note:
|
||||
If the new shape is smaller than the original tensor in any dimension,
|
||||
the original tensor will be truncated in that dimension.
|
||||
"""
|
||||
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
|
||||
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
|
||||
|
||||
if len(new_shape) != len(tensor.shape):
|
||||
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
|
||||
|
||||
# Create a new tensor filled with zeros
|
||||
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
|
||||
|
||||
# Create slicing tuples for both tensors
|
||||
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
|
||||
# Copy the original tensor into the new tensor
|
||||
padded_tensor[new_slices] = tensor[orig_slices]
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
v = p[1]
|
||||
strength_model = p[2]
|
||||
offset = p[3]
|
||||
function = p[4]
|
||||
if function is None:
|
||||
function = lambda a: a
|
||||
|
||||
old_weight = None
|
||||
if offset is not None:
|
||||
old_weight = weight
|
||||
weight = weight.narrow(offset[0], offset[1], offset[2])
|
||||
|
||||
if strength_model != 1.0:
|
||||
weight *= strength_model
|
||||
|
||||
if isinstance(v, list):
|
||||
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
elif len(v) == 2:
|
||||
patch_type = v[0]
|
||||
v = v[1]
|
||||
|
||||
if patch_type == "diff":
|
||||
diff: torch.Tensor = v[0]
|
||||
# An extra flag to pad the weight if the diff's shape is larger than the weight
|
||||
do_pad_weight = len(v) > 1 and v[1]['pad_weight']
|
||||
if do_pad_weight and diff.shape != weight.shape:
|
||||
logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape))
|
||||
weight = pad_tensor_to_shape(weight, diff.shape)
|
||||
|
||||
if strength != 0.0:
|
||||
if diff.shape != weight.shape:
|
||||
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
|
||||
else:
|
||||
weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
dora_scale = v[4]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
if old_weight is not None:
|
||||
weight = old_weight
|
||||
|
||||
return weight
|
||||
|
||||
@@ -1,3 +1,21 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
@@ -7,8 +25,11 @@ from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugme
|
||||
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
|
||||
import comfy.ldm.aura.mmdit
|
||||
import comfy.ldm.hydit.models
|
||||
import comfy.ldm.audio.dit
|
||||
import comfy.ldm.audio.embedders
|
||||
import comfy.ldm.flux.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.conds
|
||||
import comfy.ops
|
||||
@@ -25,6 +46,7 @@ class ModelType(Enum):
|
||||
EDM = 5
|
||||
FLOW = 6
|
||||
V_PREDICTION_CONTINUOUS = 7
|
||||
FLUX = 8
|
||||
|
||||
|
||||
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
|
||||
@@ -52,6 +74,9 @@ def model_sampling(model_config, model_type):
|
||||
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
|
||||
c = V_PREDICTION
|
||||
s = ModelSamplingContinuousV
|
||||
elif model_type == ModelType.FLUX:
|
||||
c = comfy.model_sampling.CONST
|
||||
s = comfy.model_sampling.ModelSamplingFlux
|
||||
|
||||
class ModelSampling(s, c):
|
||||
pass
|
||||
@@ -67,16 +92,19 @@ class BaseModel(torch.nn.Module):
|
||||
self.latent_format = model_config.latent_format
|
||||
self.model_config = model_config
|
||||
self.manual_cast_dtype = model_config.manual_cast_dtype
|
||||
self.device = device
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if self.manual_cast_dtype is not None:
|
||||
operations = comfy.ops.manual_cast
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
else:
|
||||
operations = comfy.ops.disable_weight_init
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
if comfy.model_management.force_channels_last():
|
||||
self.diffusion_model.to(memory_format=torch.channels_last)
|
||||
logging.debug("using channels last mode for diffusion model")
|
||||
logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype))
|
||||
self.model_type = model_type
|
||||
self.model_sampling = model_sampling(model_config, model_type)
|
||||
|
||||
@@ -87,6 +115,7 @@ class BaseModel(torch.nn.Module):
|
||||
self.concat_keys = ()
|
||||
logging.info("model_type {}".format(model_type.name))
|
||||
logging.debug("adm {}".format(self.adm_channels))
|
||||
self.memory_usage_factor = model_config.memory_usage_factor
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
@@ -216,6 +245,10 @@ class BaseModel(torch.nn.Module):
|
||||
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
|
||||
|
||||
unet_state_dict = self.diffusion_model.state_dict()
|
||||
|
||||
if self.model_config.scaled_fp8 is not None:
|
||||
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
|
||||
if self.model_type == ModelType.V_PREDICTION:
|
||||
@@ -245,11 +278,11 @@ class BaseModel(torch.nn.Module):
|
||||
dtype = self.manual_cast_dtype
|
||||
#TODO: this needs to be tweaked
|
||||
area = input_shape[0] * math.prod(input_shape[2:])
|
||||
return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
|
||||
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
|
||||
else:
|
||||
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
||||
area = input_shape[0] * math.prod(input_shape[2:])
|
||||
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
||||
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
|
||||
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
|
||||
@@ -347,6 +380,7 @@ class SDXL(BaseModel):
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
|
||||
class SVD_img2vid(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
@@ -587,17 +621,6 @@ class SD3(BaseModel):
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
||||
dtype = self.get_dtype()
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
#TODO: this probably needs to be tweaked
|
||||
area = input_shape[0] * input_shape[2] * input_shape[3]
|
||||
return (area * comfy.model_management.dtype_size(dtype) * 0.012) * (1024 * 1024)
|
||||
else:
|
||||
area = input_shape[0] * input_shape[2] * input_shape[3]
|
||||
return (area * 0.3) * (1024 * 1024)
|
||||
|
||||
class AuraFlow(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
@@ -648,3 +671,50 @@ class StableAudio1(BaseModel):
|
||||
for l in s:
|
||||
sd["{}{}".format(k, l)] = s[l]
|
||||
return sd
|
||||
|
||||
class HunyuanDiT(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
out['text_embedding_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
|
||||
conditioning_mt5xl = kwargs.get("conditioning_mt5xl", None)
|
||||
if conditioning_mt5xl is not None:
|
||||
out['encoder_hidden_states_t5'] = comfy.conds.CONDRegular(conditioning_mt5xl)
|
||||
|
||||
attention_mask_mt5xl = kwargs.get("attention_mask_mt5xl", None)
|
||||
if attention_mask_mt5xl is not None:
|
||||
out['text_embedding_mask_t5'] = comfy.conds.CONDRegular(attention_mask_mt5xl)
|
||||
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
target_width = kwargs.get("target_width", width)
|
||||
target_height = kwargs.get("target_height", height)
|
||||
|
||||
out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
|
||||
return out
|
||||
|
||||
class Flux(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
|
||||
return out
|
||||
|
||||
@@ -109,8 +109,42 @@ def detect_unet_config(state_dict, key_prefix):
|
||||
unet_config = {}
|
||||
unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1]
|
||||
unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1]
|
||||
double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.')
|
||||
single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.')
|
||||
unet_config["n_double_layers"] = double_layers
|
||||
unet_config["n_layers"] = double_layers + single_layers
|
||||
return unet_config
|
||||
|
||||
if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: #Hunyuan DiT
|
||||
unet_config = {}
|
||||
unet_config["image_model"] = "hydit"
|
||||
unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
|
||||
unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0]
|
||||
if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: #DiT-g/2
|
||||
unet_config["mlp_ratio"] = 4.3637
|
||||
if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968:
|
||||
unet_config["size_cond"] = True
|
||||
unet_config["use_style_cond"] = True
|
||||
unet_config["image_model"] = "hydit1"
|
||||
return unet_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "flux"
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["vec_in_dim"] = 768
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["num_heads"] = 24
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["qkv_bias"] = True
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
@@ -252,18 +286,33 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
|
||||
return None
|
||||
model_config = model_config_from_unet_config(unet_config, state_dict)
|
||||
if model_config is None and use_base_if_no_match:
|
||||
return comfy.supported_models_base.BASE(unet_config)
|
||||
else:
|
||||
return model_config
|
||||
model_config = comfy.supported_models_base.BASE(unet_config)
|
||||
|
||||
scaled_fp8_weight = state_dict.get("{}scaled_fp8".format(unet_key_prefix), None)
|
||||
if scaled_fp8_weight is not None:
|
||||
model_config.scaled_fp8 = scaled_fp8_weight.dtype
|
||||
if model_config.scaled_fp8 == torch.float32:
|
||||
model_config.scaled_fp8 = torch.float8_e4m3fn
|
||||
|
||||
return model_config
|
||||
|
||||
def unet_prefix_from_state_dict(state_dict):
|
||||
if "model.model.postprocess_conv.weight" in state_dict: #audio models
|
||||
unet_key_prefix = "model.model."
|
||||
elif "model.double_layers.0.attn.w1q.weight" in state_dict: #aura flow
|
||||
unet_key_prefix = "model."
|
||||
candidates = ["model.diffusion_model.", #ldm/sgm models
|
||||
"model.model.", #audio models
|
||||
]
|
||||
counts = {k: 0 for k in candidates}
|
||||
for k in state_dict:
|
||||
for c in candidates:
|
||||
if k.startswith(c):
|
||||
counts[c] += 1
|
||||
break
|
||||
|
||||
top = max(counts, key=counts.get)
|
||||
if counts[top] > 5:
|
||||
return top
|
||||
else:
|
||||
unet_key_prefix = "model.diffusion_model."
|
||||
return unet_key_prefix
|
||||
return "model." #aura flow and others
|
||||
|
||||
|
||||
def convert_config(unet_config):
|
||||
new_config = unet_config.copy()
|
||||
@@ -429,9 +478,15 @@ def unet_config_from_diffusers_unet(state_dict, dtype=None):
|
||||
'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False,
|
||||
'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD15_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
|
||||
'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
|
||||
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p]
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
|
||||
|
||||
for unet_config in supported_models:
|
||||
matches = True
|
||||
@@ -450,37 +505,55 @@ def model_config_from_diffusers_unet(state_dict):
|
||||
return None
|
||||
|
||||
def convert_diffusers_mmdit(state_dict, output_prefix=""):
|
||||
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
if num_blocks > 0:
|
||||
out_sd = {}
|
||||
|
||||
if 'transformer_blocks.0.attn.norm_added_k.weight' in state_dict: #Flux
|
||||
depth = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
||||
hidden_size = state_dict["x_embedder.bias"].shape[0]
|
||||
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix)
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
|
||||
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
|
||||
out_sd = {}
|
||||
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
|
||||
for k in sd_map:
|
||||
weight = state_dict.get(k, None)
|
||||
if weight is not None:
|
||||
t = sd_map[k]
|
||||
elif 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow
|
||||
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
|
||||
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
||||
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
|
||||
else:
|
||||
return None
|
||||
|
||||
if not isinstance(t, str):
|
||||
if len(t) > 2:
|
||||
fun = t[2]
|
||||
else:
|
||||
fun = lambda a: a
|
||||
offset = t[1]
|
||||
if offset is not None:
|
||||
old_weight = out_sd.get(t[0], None)
|
||||
if old_weight is None:
|
||||
old_weight = torch.empty_like(weight)
|
||||
old_weight = old_weight.repeat([3] + [1] * (len(old_weight.shape) - 1))
|
||||
for k in sd_map:
|
||||
weight = state_dict.get(k, None)
|
||||
if weight is not None:
|
||||
t = sd_map[k]
|
||||
|
||||
w = old_weight.narrow(offset[0], offset[1], offset[2])
|
||||
else:
|
||||
old_weight = weight
|
||||
w = weight
|
||||
w[:] = fun(weight)
|
||||
t = t[0]
|
||||
out_sd[t] = old_weight
|
||||
if not isinstance(t, str):
|
||||
if len(t) > 2:
|
||||
fun = t[2]
|
||||
else:
|
||||
out_sd[t] = weight
|
||||
state_dict.pop(k)
|
||||
fun = lambda a: a
|
||||
offset = t[1]
|
||||
if offset is not None:
|
||||
old_weight = out_sd.get(t[0], None)
|
||||
if old_weight is None:
|
||||
old_weight = torch.empty_like(weight)
|
||||
if old_weight.shape[offset[0]] < offset[1] + offset[2]:
|
||||
exp = list(weight.shape)
|
||||
exp[offset[0]] = offset[1] + offset[2]
|
||||
new = torch.empty(exp, device=weight.device, dtype=weight.dtype)
|
||||
new[:old_weight.shape[0]] = old_weight
|
||||
old_weight = new
|
||||
|
||||
w = old_weight.narrow(offset[0], offset[1], offset[2])
|
||||
else:
|
||||
old_weight = weight
|
||||
w = weight
|
||||
w[:] = fun(weight)
|
||||
t = t[0]
|
||||
out_sd[t] = old_weight
|
||||
else:
|
||||
out_sd[t] = weight
|
||||
state_dict.pop(k)
|
||||
|
||||
return out_sd
|
||||
|
||||
@@ -1,3 +1,21 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import psutil
|
||||
import logging
|
||||
from enum import Enum
|
||||
@@ -26,9 +44,15 @@ cpu_state = CPUState.GPU
|
||||
|
||||
total_vram = 0
|
||||
|
||||
lowvram_available = True
|
||||
xpu_available = False
|
||||
torch_version = ""
|
||||
try:
|
||||
torch_version = torch.version.__version__
|
||||
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
|
||||
except:
|
||||
pass
|
||||
|
||||
lowvram_available = True
|
||||
if args.deterministic:
|
||||
logging.info("Using deterministic algorithms for pytorch")
|
||||
torch.use_deterministic_algorithms(True, warn_only=True)
|
||||
@@ -48,10 +72,10 @@ if args.directml is not None:
|
||||
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
if torch.xpu.is_available():
|
||||
xpu_available = True
|
||||
_ = torch.xpu.device_count()
|
||||
xpu_available = torch.xpu.is_available()
|
||||
except:
|
||||
pass
|
||||
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
|
||||
|
||||
try:
|
||||
if torch.backends.mps.is_available():
|
||||
@@ -121,7 +145,7 @@ total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
||||
|
||||
try:
|
||||
logging.info("pytorch version: {}".format(torch.version.__version__))
|
||||
logging.info("pytorch version: {}".format(torch_version))
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -171,7 +195,6 @@ VAE_DTYPES = [torch.float32]
|
||||
|
||||
try:
|
||||
if is_nvidia():
|
||||
torch_version = torch.version.__version__
|
||||
if int(torch_version[0]) >= 2:
|
||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
@@ -273,9 +296,12 @@ class LoadedModel:
|
||||
def model_memory(self):
|
||||
return self.model.model_size()
|
||||
|
||||
def model_offloaded_memory(self):
|
||||
return self.model.model_size() - self.model.loaded_size()
|
||||
|
||||
def model_memory_required(self, device):
|
||||
if device == self.model.current_device:
|
||||
return 0
|
||||
if device == self.model.current_loaded_device():
|
||||
return self.model_offloaded_memory()
|
||||
else:
|
||||
return self.model_memory()
|
||||
|
||||
@@ -287,38 +313,78 @@ class LoadedModel:
|
||||
|
||||
load_weights = not self.weights_loaded
|
||||
|
||||
try:
|
||||
if lowvram_model_memory > 0 and load_weights:
|
||||
self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
|
||||
else:
|
||||
self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
|
||||
except Exception as e:
|
||||
self.model.unpatch_model(self.model.offload_device)
|
||||
self.model_unload()
|
||||
raise e
|
||||
if self.model.loaded_size() > 0:
|
||||
use_more_vram = lowvram_model_memory
|
||||
if use_more_vram == 0:
|
||||
use_more_vram = 1e32
|
||||
self.model_use_more_vram(use_more_vram)
|
||||
else:
|
||||
try:
|
||||
self.real_model = self.model.patch_model(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, load_weights=load_weights, force_patch_weights=force_patch_weights)
|
||||
except Exception as e:
|
||||
self.model.unpatch_model(self.model.offload_device)
|
||||
self.model_unload()
|
||||
raise e
|
||||
|
||||
if is_intel_xpu() and not args.disable_ipex_optimize:
|
||||
self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
|
||||
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and self.real_model is not None:
|
||||
with torch.no_grad():
|
||||
self.real_model = ipex.optimize(self.real_model.eval(), inplace=True, graph_mode=True, concat_linear=True)
|
||||
|
||||
self.weights_loaded = True
|
||||
return self.real_model
|
||||
|
||||
def should_reload_model(self, force_patch_weights=False):
|
||||
if force_patch_weights and self.model.lowvram_patch_counter > 0:
|
||||
if force_patch_weights and self.model.lowvram_patch_counter() > 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def model_unload(self, unpatch_weights=True):
|
||||
def model_unload(self, memory_to_free=None, unpatch_weights=True):
|
||||
if memory_to_free is not None:
|
||||
if memory_to_free < self.model.loaded_size():
|
||||
freed = self.model.partially_unload(self.model.offload_device, memory_to_free)
|
||||
if freed >= memory_to_free:
|
||||
return False
|
||||
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
|
||||
self.model.model_patches_to(self.model.offload_device)
|
||||
self.weights_loaded = self.weights_loaded and not unpatch_weights
|
||||
self.real_model = None
|
||||
return True
|
||||
|
||||
def model_use_more_vram(self, extra_memory):
|
||||
return self.model.partially_load(self.device, extra_memory)
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.model is other.model
|
||||
|
||||
def use_more_memory(extra_memory, loaded_models, device):
|
||||
for m in loaded_models:
|
||||
if m.device == device:
|
||||
extra_memory -= m.model_use_more_vram(extra_memory)
|
||||
if extra_memory <= 0:
|
||||
break
|
||||
|
||||
def offloaded_memory(loaded_models, device):
|
||||
offloaded_mem = 0
|
||||
for m in loaded_models:
|
||||
if m.device == device:
|
||||
offloaded_mem += m.model_offloaded_memory()
|
||||
return offloaded_mem
|
||||
|
||||
WINDOWS = any(platform.win32_ver())
|
||||
|
||||
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
|
||||
if WINDOWS:
|
||||
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
||||
|
||||
if args.reserve_vram is not None:
|
||||
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
|
||||
logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024)))
|
||||
|
||||
def extra_reserved_memory():
|
||||
return EXTRA_RESERVED_VRAM
|
||||
|
||||
def minimum_inference_memory():
|
||||
return (1024 * 1024 * 1024)
|
||||
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
|
||||
|
||||
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
|
||||
to_unload = []
|
||||
@@ -342,6 +408,8 @@ def unload_model_clones(model, unload_weights_only=True, force_unload=True):
|
||||
if not force_unload:
|
||||
if unload_weights_only and unload_weight == False:
|
||||
return None
|
||||
else:
|
||||
unload_weight = True
|
||||
|
||||
for i in to_unload:
|
||||
logging.debug("unload clone {} {}".format(i, unload_weight))
|
||||
@@ -352,24 +420,29 @@ def unload_model_clones(model, unload_weights_only=True, force_unload=True):
|
||||
def free_memory(memory_required, device, keep_loaded=[]):
|
||||
unloaded_model = []
|
||||
can_unload = []
|
||||
unloaded_models = []
|
||||
|
||||
for i in range(len(current_loaded_models) -1, -1, -1):
|
||||
shift_model = current_loaded_models[i]
|
||||
if shift_model.device == device:
|
||||
if shift_model not in keep_loaded:
|
||||
can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
||||
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
||||
shift_model.currently_used = False
|
||||
|
||||
for x in sorted(can_unload):
|
||||
i = x[-1]
|
||||
memory_to_free = None
|
||||
if not DISABLE_SMART_MEMORY:
|
||||
if get_free_memory(device) > memory_required:
|
||||
free_mem = get_free_memory(device)
|
||||
if free_mem > memory_required:
|
||||
break
|
||||
current_loaded_models[i].model_unload()
|
||||
unloaded_model.append(i)
|
||||
memory_to_free = memory_required - free_mem
|
||||
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
|
||||
if current_loaded_models[i].model_unload(memory_to_free):
|
||||
unloaded_model.append(i)
|
||||
|
||||
for i in sorted(unloaded_model, reverse=True):
|
||||
current_loaded_models.pop(i)
|
||||
unloaded_models.append(current_loaded_models.pop(i))
|
||||
|
||||
if len(unloaded_model) > 0:
|
||||
soft_empty_cache()
|
||||
@@ -378,12 +451,17 @@ def free_memory(memory_required, device, keep_loaded=[]):
|
||||
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
|
||||
if mem_free_torch > mem_free_total * 0.25:
|
||||
soft_empty_cache()
|
||||
return unloaded_models
|
||||
|
||||
def load_models_gpu(models, memory_required=0, force_patch_weights=False):
|
||||
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
|
||||
global vram_state
|
||||
|
||||
inference_memory = minimum_inference_memory()
|
||||
extra_mem = max(inference_memory, memory_required)
|
||||
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
|
||||
if minimum_memory_required is None:
|
||||
minimum_memory_required = extra_mem
|
||||
else:
|
||||
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
|
||||
|
||||
models = set(models)
|
||||
|
||||
@@ -416,25 +494,36 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False):
|
||||
devs = set(map(lambda a: a.device, models_already_loaded))
|
||||
for d in devs:
|
||||
if d != torch.device("cpu"):
|
||||
free_memory(extra_mem, d, models_already_loaded)
|
||||
return
|
||||
free_memory(extra_mem + offloaded_memory(models_already_loaded, d), d, models_already_loaded)
|
||||
free_mem = get_free_memory(d)
|
||||
if free_mem < minimum_memory_required:
|
||||
logging.info("Unloading models for lowram load.") #TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
|
||||
models_to_load = free_memory(minimum_memory_required, d)
|
||||
logging.info("{} models unloaded.".format(len(models_to_load)))
|
||||
else:
|
||||
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
|
||||
if len(models_to_load) == 0:
|
||||
return
|
||||
|
||||
logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
|
||||
|
||||
total_memory_required = {}
|
||||
for loaded_model in models_to_load:
|
||||
if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
|
||||
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
||||
unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) #unload clones where the weights are different
|
||||
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
||||
|
||||
for device in total_memory_required:
|
||||
if device != torch.device("cpu"):
|
||||
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
|
||||
for loaded_model in models_already_loaded:
|
||||
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
||||
|
||||
for loaded_model in models_to_load:
|
||||
weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
|
||||
if weights_unloaded is not None:
|
||||
loaded_model.weights_loaded = not weights_unloaded
|
||||
|
||||
for device in total_memory_required:
|
||||
if device != torch.device("cpu"):
|
||||
free_memory(total_memory_required[device] * 1.1 + extra_mem, device, models_already_loaded)
|
||||
|
||||
for loaded_model in models_to_load:
|
||||
model = loaded_model.model
|
||||
torch_dev = model.load_device
|
||||
@@ -443,11 +532,11 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False):
|
||||
else:
|
||||
vram_set_state = vram_state
|
||||
lowvram_model_memory = 0
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load:
|
||||
model_size = loaded_model.model_memory_required(torch_dev)
|
||||
current_free_mem = get_free_memory(torch_dev)
|
||||
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
|
||||
if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary
|
||||
lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory()))
|
||||
if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary
|
||||
lowvram_model_memory = 0
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
@@ -455,6 +544,14 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False):
|
||||
|
||||
cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
|
||||
current_loaded_models.insert(0, loaded_model)
|
||||
|
||||
|
||||
devs = set(map(lambda a: a.device, models_already_loaded))
|
||||
for d in devs:
|
||||
if d != torch.device("cpu"):
|
||||
free_mem = get_free_memory(d)
|
||||
if free_mem > minimum_memory_required:
|
||||
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
|
||||
return
|
||||
|
||||
|
||||
@@ -474,7 +571,9 @@ def loaded_models(only_currently_used=False):
|
||||
def cleanup_models(keep_clone_weights_loaded=False):
|
||||
to_delete = []
|
||||
for i in range(len(current_loaded_models)):
|
||||
if sys.getrefcount(current_loaded_models[i].model) <= 2:
|
||||
#TODO: very fragile function needs improvement
|
||||
num_refs = sys.getrefcount(current_loaded_models[i].model)
|
||||
if num_refs <= 2:
|
||||
if not keep_clone_weights_loaded:
|
||||
to_delete = [i] + to_delete
|
||||
#TODO: find a less fragile way to do this.
|
||||
@@ -523,7 +622,12 @@ def unet_inital_load_device(parameters, dtype):
|
||||
else:
|
||||
return cpu_dev
|
||||
|
||||
def maximum_vram_for_weights(device=None):
|
||||
return (get_total_memory(device) * 0.88 - minimum_inference_memory())
|
||||
|
||||
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
||||
if model_params < 0:
|
||||
model_params = 1000000000000000000000
|
||||
if args.bf16_unet:
|
||||
return torch.bfloat16
|
||||
if args.fp16_unet:
|
||||
@@ -532,12 +636,40 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
return torch.float8_e4m3fn
|
||||
if args.fp8_e5m2_unet:
|
||||
return torch.float8_e5m2
|
||||
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
|
||||
if torch.float16 in supported_dtypes:
|
||||
return torch.float16
|
||||
if should_use_bf16(device, model_params=model_params, manual_cast=True):
|
||||
if torch.bfloat16 in supported_dtypes:
|
||||
return torch.bfloat16
|
||||
|
||||
fp8_dtype = None
|
||||
try:
|
||||
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
if dtype in supported_dtypes:
|
||||
fp8_dtype = dtype
|
||||
break
|
||||
except:
|
||||
pass
|
||||
|
||||
if fp8_dtype is not None:
|
||||
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
||||
return fp8_dtype
|
||||
|
||||
free_model_memory = maximum_vram_for_weights(device)
|
||||
if model_params * 2 > free_model_memory:
|
||||
return fp8_dtype
|
||||
|
||||
for dt in supported_dtypes:
|
||||
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
|
||||
if torch.float16 in supported_dtypes:
|
||||
return torch.float16
|
||||
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params):
|
||||
if torch.bfloat16 in supported_dtypes:
|
||||
return torch.bfloat16
|
||||
|
||||
for dt in supported_dtypes:
|
||||
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True):
|
||||
if torch.float16 in supported_dtypes:
|
||||
return torch.float16
|
||||
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True):
|
||||
if torch.bfloat16 in supported_dtypes:
|
||||
return torch.bfloat16
|
||||
|
||||
return torch.float32
|
||||
|
||||
# None means no manual cast
|
||||
@@ -553,13 +685,14 @@ def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.flo
|
||||
if bf16_supported and weight_dtype == torch.bfloat16:
|
||||
return None
|
||||
|
||||
if fp16_supported and torch.float16 in supported_dtypes:
|
||||
return torch.float16
|
||||
fp16_supported = should_use_fp16(inference_device, prioritize_performance=True)
|
||||
for dt in supported_dtypes:
|
||||
if dt == torch.float16 and fp16_supported:
|
||||
return torch.float16
|
||||
if dt == torch.bfloat16 and bf16_supported:
|
||||
return torch.bfloat16
|
||||
|
||||
elif bf16_supported and torch.bfloat16 in supported_dtypes:
|
||||
return torch.bfloat16
|
||||
else:
|
||||
return torch.float32
|
||||
return torch.float32
|
||||
|
||||
def text_encoder_offload_device():
|
||||
if args.gpu_only:
|
||||
@@ -578,6 +711,20 @@ def text_encoder_device():
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def text_encoder_initial_device(load_device, offload_device, model_size=0):
|
||||
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
|
||||
return offload_device
|
||||
|
||||
if is_device_mps(load_device):
|
||||
return offload_device
|
||||
|
||||
mem_l = get_free_memory(load_device)
|
||||
mem_o = get_free_memory(offload_device)
|
||||
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
|
||||
return load_device
|
||||
else:
|
||||
return offload_device
|
||||
|
||||
def text_encoder_dtype(device=None):
|
||||
if args.fp8_e4m3fn_text_enc:
|
||||
return torch.float8_e4m3fn
|
||||
@@ -649,18 +796,29 @@ def supports_cast(device, dtype): #TODO
|
||||
return True
|
||||
if dtype == torch.float16:
|
||||
return True
|
||||
if is_device_mps(device):
|
||||
return False
|
||||
if directml_enabled: #TODO: test this
|
||||
return False
|
||||
if dtype == torch.bfloat16:
|
||||
return True
|
||||
if is_device_mps(device):
|
||||
return False
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
return True
|
||||
if dtype == torch.float8_e5m2:
|
||||
return True
|
||||
return False
|
||||
|
||||
def pick_weight_dtype(dtype, fallback_dtype, device=None):
|
||||
if dtype is None:
|
||||
dtype = fallback_dtype
|
||||
elif dtype_size(dtype) > dtype_size(fallback_dtype):
|
||||
dtype = fallback_dtype
|
||||
|
||||
if not supports_cast(device, dtype):
|
||||
dtype = fallback_dtype
|
||||
|
||||
return dtype
|
||||
|
||||
def device_supports_non_blocking(device):
|
||||
if is_device_mps(device):
|
||||
return False #pytorch bug? mps doesn't support non blocking
|
||||
@@ -685,27 +843,21 @@ def force_channels_last():
|
||||
#TODO
|
||||
return False
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
||||
if device is None or weight.device == device:
|
||||
if not copy:
|
||||
if dtype is None or weight.dtype == dtype:
|
||||
return weight
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
return r
|
||||
|
||||
def cast_to_device(tensor, device, dtype, copy=False):
|
||||
device_supports_cast = False
|
||||
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
|
||||
device_supports_cast = True
|
||||
elif tensor.dtype == torch.bfloat16:
|
||||
if hasattr(device, 'type') and device.type.startswith("cuda"):
|
||||
device_supports_cast = True
|
||||
elif is_intel_xpu():
|
||||
device_supports_cast = True
|
||||
non_blocking = device_supports_non_blocking(device)
|
||||
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
non_blocking = device_should_use_non_blocking(device)
|
||||
|
||||
if device_supports_cast:
|
||||
if copy:
|
||||
if tensor.device == device:
|
||||
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
|
||||
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
||||
else:
|
||||
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
||||
else:
|
||||
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
|
||||
|
||||
def xformers_enabled():
|
||||
global directml_enabled
|
||||
@@ -743,7 +895,8 @@ def pytorch_attention_flash_attention():
|
||||
def force_upcast_attention_dtype():
|
||||
upcast = args.force_upcast_attention
|
||||
try:
|
||||
if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5
|
||||
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
||||
if (14, 5) <= macos_version <= (15, 0, 1): # black image bug on recent versions of macOS
|
||||
upcast = True
|
||||
except:
|
||||
pass
|
||||
@@ -839,24 +992,24 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
if torch.version.hip:
|
||||
return True
|
||||
|
||||
props = torch.cuda.get_device_properties("cuda")
|
||||
props = torch.cuda.get_device_properties(device)
|
||||
if props.major >= 8:
|
||||
return True
|
||||
|
||||
if props.major < 6:
|
||||
return False
|
||||
|
||||
fp16_works = False
|
||||
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
|
||||
#when the model doesn't actually fit on the card
|
||||
#TODO: actually test if GP106 and others have the same type of behavior
|
||||
#FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32
|
||||
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
|
||||
for x in nvidia_10_series:
|
||||
if x in props.name.lower():
|
||||
fp16_works = True
|
||||
if WINDOWS or manual_cast:
|
||||
return True
|
||||
else:
|
||||
return False #weird linux behavior where fp32 is faster
|
||||
|
||||
if fp16_works or manual_cast:
|
||||
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
|
||||
if manual_cast:
|
||||
free_model_memory = maximum_vram_for_weights(device)
|
||||
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
||||
return True
|
||||
|
||||
@@ -876,9 +1029,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
|
||||
return False
|
||||
|
||||
if device is not None: #TODO not sure about mps bf16 support
|
||||
if device is not None:
|
||||
if is_device_mps(device):
|
||||
return False
|
||||
return True
|
||||
|
||||
if FORCE_FP32:
|
||||
return False
|
||||
@@ -886,15 +1039,15 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
if directml_enabled:
|
||||
return False
|
||||
|
||||
if cpu_mode() or mps_mode():
|
||||
if mps_mode():
|
||||
return True
|
||||
|
||||
if cpu_mode():
|
||||
return False
|
||||
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
|
||||
if device is None:
|
||||
device = torch.device("cuda")
|
||||
|
||||
props = torch.cuda.get_device_properties(device)
|
||||
if props.major >= 8:
|
||||
return True
|
||||
@@ -902,12 +1055,33 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
bf16_works = torch.cuda.is_bf16_supported()
|
||||
|
||||
if bf16_works or manual_cast:
|
||||
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
|
||||
free_model_memory = maximum_vram_for_weights(device)
|
||||
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def supports_fp8_compute(device=None):
|
||||
if not is_nvidia():
|
||||
return False
|
||||
|
||||
props = torch.cuda.get_device_properties(device)
|
||||
if props.major >= 9:
|
||||
return True
|
||||
if props.major < 8:
|
||||
return False
|
||||
if props.minor < 9:
|
||||
return False
|
||||
|
||||
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
|
||||
return False
|
||||
|
||||
if WINDOWS:
|
||||
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def soft_empty_cache(force=False):
|
||||
global cpu_state
|
||||
if cpu_state == CPUState.MPS:
|
||||
|
||||
@@ -1,34 +1,47 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import copy
|
||||
import inspect
|
||||
import logging
|
||||
import uuid
|
||||
import collections
|
||||
import math
|
||||
|
||||
import comfy.utils
|
||||
import comfy.float
|
||||
import comfy.model_management
|
||||
from comfy.types import UnetWrapperFunction
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + lora_diff.type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
import comfy.lora
|
||||
from comfy.comfy_types import UnetWrapperFunction
|
||||
|
||||
def string_to_seed(data):
|
||||
crc = 0xFFFFFFFF
|
||||
for byte in data:
|
||||
if isinstance(byte, str):
|
||||
byte = ord(byte)
|
||||
crc ^= byte
|
||||
for _ in range(8):
|
||||
if crc & 1:
|
||||
crc = (crc >> 1) ^ 0xEDB88320
|
||||
else:
|
||||
crc >>= 1
|
||||
return crc ^ 0xFFFFFFFF
|
||||
|
||||
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
|
||||
to = model_options["transformer_options"].copy()
|
||||
@@ -63,10 +76,59 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
|
||||
model_options["disable_cfg1_optimization"] = True
|
||||
return model_options
|
||||
|
||||
def wipe_lowvram_weight(m):
|
||||
if hasattr(m, "prev_comfy_cast_weights"):
|
||||
m.comfy_cast_weights = m.prev_comfy_cast_weights
|
||||
del m.prev_comfy_cast_weights
|
||||
m.weight_function = None
|
||||
m.bias_function = None
|
||||
|
||||
class LowVramPatch:
|
||||
def __init__(self, key, patches):
|
||||
self.key = key
|
||||
self.patches = patches
|
||||
def __call__(self, weight):
|
||||
intermediate_dtype = weight.dtype
|
||||
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
|
||||
intermediate_dtype = torch.float32
|
||||
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
||||
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
|
||||
def get_key_weight(model, key):
|
||||
set_func = None
|
||||
convert_func = None
|
||||
op_keys = key.rsplit('.', 1)
|
||||
if len(op_keys) < 2:
|
||||
weight = comfy.utils.get_attr(model, key)
|
||||
else:
|
||||
op = comfy.utils.get_attr(model, op_keys[0])
|
||||
try:
|
||||
set_func = getattr(op, "set_{}".format(op_keys[1]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
weight = getattr(op, op_keys[1])
|
||||
if convert_func is not None:
|
||||
weight = comfy.utils.get_attr(model, key)
|
||||
|
||||
return weight, set_func, convert_func
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
|
||||
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
|
||||
self.size = size
|
||||
self.model = model
|
||||
if not hasattr(self.model, 'device'):
|
||||
logging.debug("Model doesn't have a device attribute.")
|
||||
self.model.device = offload_device
|
||||
elif self.model.device is None:
|
||||
self.model.device = offload_device
|
||||
|
||||
self.patches = {}
|
||||
self.backup = {}
|
||||
self.object_patches = {}
|
||||
@@ -75,24 +137,32 @@ class ModelPatcher:
|
||||
self.model_size()
|
||||
self.load_device = load_device
|
||||
self.offload_device = offload_device
|
||||
if current_device is None:
|
||||
self.current_device = self.offload_device
|
||||
else:
|
||||
self.current_device = current_device
|
||||
|
||||
self.weight_inplace_update = weight_inplace_update
|
||||
self.model_lowvram = False
|
||||
self.lowvram_patch_counter = 0
|
||||
self.patches_uuid = uuid.uuid4()
|
||||
|
||||
if not hasattr(self.model, 'model_loaded_weight_memory'):
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
|
||||
if not hasattr(self.model, 'lowvram_patch_counter'):
|
||||
self.model.lowvram_patch_counter = 0
|
||||
|
||||
if not hasattr(self.model, 'model_lowvram'):
|
||||
self.model.model_lowvram = False
|
||||
|
||||
def model_size(self):
|
||||
if self.size > 0:
|
||||
return self.size
|
||||
self.size = comfy.model_management.module_size(self.model)
|
||||
return self.size
|
||||
|
||||
def loaded_size(self):
|
||||
return self.model.model_loaded_weight_memory
|
||||
|
||||
def lowvram_patch_counter(self):
|
||||
return self.model.lowvram_patch_counter
|
||||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
|
||||
n.patches = {}
|
||||
for k in self.patches:
|
||||
n.patches[k] = self.patches[k][:]
|
||||
@@ -242,17 +312,23 @@ class ModelPatcher:
|
||||
return list(p)
|
||||
|
||||
def get_key_patches(self, filter_prefix=None):
|
||||
comfy.model_management.unload_model_clones(self)
|
||||
model_sd = self.model_state_dict()
|
||||
p = {}
|
||||
for k in model_sd:
|
||||
if filter_prefix is not None:
|
||||
if not k.startswith(filter_prefix):
|
||||
continue
|
||||
bk = self.backup.get(k, None)
|
||||
weight, set_func, convert_func = get_key_weight(self.model, k)
|
||||
if bk is not None:
|
||||
weight = bk.weight
|
||||
if convert_func is None:
|
||||
convert_func = lambda a, **kwargs: a
|
||||
|
||||
if k in self.patches:
|
||||
p[k] = [model_sd[k]] + self.patches[k]
|
||||
p[k] = [(weight, convert_func)] + self.patches[k]
|
||||
else:
|
||||
p[k] = (model_sd[k],)
|
||||
p[k] = [(weight, convert_func)]
|
||||
return p
|
||||
|
||||
def model_state_dict(self, filter_prefix=None):
|
||||
@@ -264,67 +340,57 @@ class ModelPatcher:
|
||||
sd.pop(k)
|
||||
return sd
|
||||
|
||||
def patch_weight_to_device(self, key, device_to=None):
|
||||
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
|
||||
if key not in self.patches:
|
||||
return
|
||||
|
||||
weight = comfy.utils.get_attr(self.model, key)
|
||||
|
||||
inplace_update = self.weight_inplace_update
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
inplace_update = self.weight_inplace_update or inplace_update
|
||||
|
||||
if key not in self.backup:
|
||||
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
|
||||
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
|
||||
|
||||
if device_to is not None:
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
||||
if inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, out_weight)
|
||||
if convert_func is not None:
|
||||
temp_weight = convert_func(temp_weight, inplace=True)
|
||||
|
||||
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
|
||||
if set_func is None:
|
||||
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
||||
if inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, out_weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, out_weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, out_weight)
|
||||
|
||||
def patch_model(self, device_to=None, patch_weights=True):
|
||||
for k in self.object_patches:
|
||||
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
|
||||
if k not in self.object_patches_backup:
|
||||
self.object_patches_backup[k] = old
|
||||
|
||||
if patch_weights:
|
||||
model_sd = self.model_state_dict()
|
||||
for key in self.patches:
|
||||
if key not in model_sd:
|
||||
logging.warning("could not patch. key doesn't exist in model: {}".format(key))
|
||||
continue
|
||||
|
||||
self.patch_weight_to_device(key, device_to)
|
||||
|
||||
if device_to is not None:
|
||||
self.model.to(device_to)
|
||||
self.current_device = device_to
|
||||
|
||||
return self.model
|
||||
|
||||
def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
|
||||
self.patch_model(device_to, patch_weights=False)
|
||||
|
||||
logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
|
||||
class LowVramPatch:
|
||||
def __init__(self, key, model_patcher):
|
||||
self.key = key
|
||||
self.model_patcher = model_patcher
|
||||
def __call__(self, weight):
|
||||
return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)
|
||||
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
||||
|
||||
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
||||
mem_counter = 0
|
||||
patch_counter = 0
|
||||
lowvram_counter = 0
|
||||
loading = []
|
||||
for n, m in self.model.named_modules():
|
||||
if hasattr(m, "comfy_cast_weights") or hasattr(m, "weight"):
|
||||
loading.append((comfy.model_management.module_size(m), n, m))
|
||||
|
||||
load_completely = []
|
||||
loading.sort(reverse=True)
|
||||
for x in loading:
|
||||
n = x[1]
|
||||
m = x[2]
|
||||
module_mem = x[0]
|
||||
|
||||
lowvram_weight = False
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
|
||||
if not full_load and hasattr(m, "comfy_cast_weights"):
|
||||
if mem_counter + module_mem >= lowvram_model_memory:
|
||||
lowvram_weight = True
|
||||
lowvram_counter += 1
|
||||
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
|
||||
continue
|
||||
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
@@ -334,227 +400,173 @@ class ModelPatcher:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(weight_key)
|
||||
else:
|
||||
m.weight_function = LowVramPatch(weight_key, self)
|
||||
m.weight_function = LowVramPatch(weight_key, self.patches)
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(bias_key)
|
||||
else:
|
||||
m.bias_function = LowVramPatch(bias_key, self)
|
||||
m.bias_function = LowVramPatch(bias_key, self.patches)
|
||||
patch_counter += 1
|
||||
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
else:
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
if m.comfy_cast_weights:
|
||||
wipe_lowvram_weight(m)
|
||||
|
||||
if hasattr(m, "weight"):
|
||||
self.patch_weight_to_device(weight_key, device_to)
|
||||
self.patch_weight_to_device(bias_key, device_to)
|
||||
m.to(device_to)
|
||||
mem_counter += comfy.model_management.module_size(m)
|
||||
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
||||
mem_counter += module_mem
|
||||
load_completely.append((module_mem, n, m))
|
||||
|
||||
self.model_lowvram = True
|
||||
self.lowvram_patch_counter = patch_counter
|
||||
load_completely.sort(reverse=True)
|
||||
for x in load_completely:
|
||||
n = x[1]
|
||||
m = x[2]
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
if hasattr(m, "comfy_patched_weights"):
|
||||
if m.comfy_patched_weights == True:
|
||||
continue
|
||||
|
||||
self.patch_weight_to_device(weight_key, device_to=device_to)
|
||||
self.patch_weight_to_device(bias_key, device_to=device_to)
|
||||
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
||||
m.comfy_patched_weights = True
|
||||
|
||||
for x in load_completely:
|
||||
x[2].to(device_to)
|
||||
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
if full_load:
|
||||
self.model.to(device_to)
|
||||
mem_counter = self.model_size()
|
||||
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.device = device_to
|
||||
self.model.model_loaded_weight_memory = mem_counter
|
||||
|
||||
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
|
||||
for k in self.object_patches:
|
||||
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
|
||||
if k not in self.object_patches_backup:
|
||||
self.object_patches_backup[k] = old
|
||||
|
||||
if lowvram_model_memory == 0:
|
||||
full_load = True
|
||||
else:
|
||||
full_load = False
|
||||
|
||||
if load_weights:
|
||||
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
|
||||
return self.model
|
||||
|
||||
def calculate_weight(self, patches, weight, key):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
v = p[1]
|
||||
strength_model = p[2]
|
||||
offset = p[3]
|
||||
function = p[4]
|
||||
if function is None:
|
||||
function = lambda a: a
|
||||
|
||||
old_weight = None
|
||||
if offset is not None:
|
||||
old_weight = weight
|
||||
weight = weight.narrow(offset[0], offset[1], offset[2])
|
||||
|
||||
if strength_model != 1.0:
|
||||
weight *= strength_model
|
||||
|
||||
if isinstance(v, list):
|
||||
v = (self.calculate_weight(v[1:], v[0].clone(), key), )
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
elif len(v) == 2:
|
||||
patch_type = v[0]
|
||||
v = v[1]
|
||||
|
||||
if patch_type == "diff":
|
||||
w1 = v[0]
|
||||
if strength != 0.0:
|
||||
if w1.shape != weight.shape:
|
||||
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += function(strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
dora_scale = v[4]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / v[0].shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
dora_scale = v[5]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
|
||||
|
||||
try:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
if old_weight is not None:
|
||||
weight = old_weight
|
||||
|
||||
return weight
|
||||
|
||||
def unpatch_model(self, device_to=None, unpatch_weights=True):
|
||||
if unpatch_weights:
|
||||
if self.model_lowvram:
|
||||
if self.model.model_lowvram:
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, "prev_comfy_cast_weights"):
|
||||
m.comfy_cast_weights = m.prev_comfy_cast_weights
|
||||
del m.prev_comfy_cast_weights
|
||||
m.weight_function = None
|
||||
m.bias_function = None
|
||||
wipe_lowvram_weight(m)
|
||||
|
||||
self.model_lowvram = False
|
||||
self.lowvram_patch_counter = 0
|
||||
self.model.model_lowvram = False
|
||||
self.model.lowvram_patch_counter = 0
|
||||
|
||||
keys = list(self.backup.keys())
|
||||
|
||||
if self.weight_inplace_update:
|
||||
for k in keys:
|
||||
comfy.utils.copy_to_param(self.model, k, self.backup[k])
|
||||
else:
|
||||
for k in keys:
|
||||
comfy.utils.set_attr_param(self.model, k, self.backup[k])
|
||||
for k in keys:
|
||||
bk = self.backup[k]
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, k, bk.weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, k, bk.weight)
|
||||
|
||||
self.backup.clear()
|
||||
|
||||
if device_to is not None:
|
||||
self.model.to(device_to)
|
||||
self.current_device = device_to
|
||||
self.model.device = device_to
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, "comfy_patched_weights"):
|
||||
del m.comfy_patched_weights
|
||||
|
||||
keys = list(self.object_patches_backup.keys())
|
||||
for k in keys:
|
||||
comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
|
||||
|
||||
self.object_patches_backup.clear()
|
||||
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
memory_freed = 0
|
||||
patch_counter = 0
|
||||
unload_list = []
|
||||
|
||||
for n, m in self.model.named_modules():
|
||||
shift_lowvram = False
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
unload_list.append((module_mem, n, m))
|
||||
|
||||
unload_list.sort()
|
||||
for unload in unload_list:
|
||||
if memory_to_free < memory_freed:
|
||||
break
|
||||
module_mem = unload[0]
|
||||
n = unload[1]
|
||||
m = unload[2]
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
|
||||
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
|
||||
for key in [weight_key, bias_key]:
|
||||
bk = self.backup.get(key, None)
|
||||
if bk is not None:
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, bk.weight)
|
||||
self.backup.pop(key)
|
||||
|
||||
m.to(device_to)
|
||||
if weight_key in self.patches:
|
||||
m.weight_function = LowVramPatch(weight_key, self.patches)
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
m.bias_function = LowVramPatch(bias_key, self.patches)
|
||||
patch_counter += 1
|
||||
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
m.comfy_patched_weights = False
|
||||
memory_freed += module_mem
|
||||
logging.debug("freed {}".format(n))
|
||||
|
||||
self.model.model_lowvram = True
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.model_loaded_weight_memory -= memory_freed
|
||||
return memory_freed
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0):
|
||||
self.unpatch_model(unpatch_weights=False)
|
||||
self.patch_model(load_weights=False)
|
||||
full_load = False
|
||||
if self.model.model_lowvram == False:
|
||||
return 0
|
||||
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
|
||||
full_load = True
|
||||
current_used = self.model.model_loaded_weight_memory
|
||||
self.load(device_to, lowvram_model_memory=current_used + extra_memory, full_load=full_load)
|
||||
return self.model.model_loaded_weight_memory - current_used
|
||||
|
||||
def current_loaded_device(self):
|
||||
return self.model.device
|
||||
|
||||
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
|
||||
print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
|
||||
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
|
||||
|
||||
@@ -59,8 +59,9 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
||||
beta_schedule = sampling_settings.get("beta_schedule", "linear")
|
||||
linear_start = sampling_settings.get("linear_start", 0.00085)
|
||||
linear_end = sampling_settings.get("linear_end", 0.012)
|
||||
timesteps = sampling_settings.get("timesteps", 1000)
|
||||
|
||||
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
|
||||
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
|
||||
self.sigma_data = 1.0
|
||||
|
||||
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||
@@ -271,3 +272,43 @@ class StableCascadeSampling(ModelSamplingDiscrete):
|
||||
|
||||
percent = 1.0 - percent
|
||||
return self.sigma(torch.tensor(percent))
|
||||
|
||||
|
||||
def flux_time_shift(mu: float, sigma: float, t):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
class ModelSamplingFlux(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
self.set_parameters(shift=sampling_settings.get("shift", 1.15))
|
||||
|
||||
def set_parameters(self, shift=1.15, timesteps=10000):
|
||||
self.shift = shift
|
||||
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
|
||||
self.register_buffer('sigmas', ts)
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
return sigma
|
||||
|
||||
def sigma(self, timestep):
|
||||
return flux_time_shift(self.shift, 1.0, timestep)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 1.0
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
return 1.0 - percent
|
||||
|
||||
170
comfy/ops.py
170
comfy/ops.py
@@ -18,16 +18,34 @@
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args
|
||||
import comfy.float
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
if input is not None:
|
||||
if dtype is None:
|
||||
dtype = input.dtype
|
||||
if bias_dtype is None:
|
||||
bias_dtype = dtype
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
def cast_bias_weight(s, input):
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_should_use_non_blocking(input.device)
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
||||
if s.bias_function is not None:
|
||||
has_function = s.bias_function is not None
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
if has_function:
|
||||
bias = s.bias_function(bias)
|
||||
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
||||
if s.weight_function is not None:
|
||||
|
||||
has_function = s.weight_function is not None
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
if has_function:
|
||||
weight = s.weight_function(weight)
|
||||
return weight, bias
|
||||
|
||||
@@ -168,6 +186,26 @@ class disable_weight_init:
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Embedding(torch.nn.Embedding, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
self.bias = None
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input, out_dtype=None):
|
||||
output_dtype = out_dtype
|
||||
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
||||
out_dtype = None
|
||||
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
if "out_dtype" in kwargs:
|
||||
kwargs.pop("out_dtype")
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def conv_nd(s, dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
@@ -202,3 +240,123 @@ class manual_cast(disable_weight_init):
|
||||
|
||||
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Embedding(disable_weight_init.Embedding):
|
||||
comfy_cast_weights = True
|
||||
|
||||
|
||||
def fp8_linear(self, input):
|
||||
dtype = self.weight.dtype
|
||||
if dtype not in [torch.float8_e4m3fn]:
|
||||
return None
|
||||
|
||||
tensor_2d = False
|
||||
if len(input.shape) == 2:
|
||||
tensor_2d = True
|
||||
input = input.unsqueeze(1)
|
||||
|
||||
|
||||
if len(input.shape) == 3:
|
||||
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
|
||||
w = w.t()
|
||||
|
||||
scale_weight = self.scale_weight
|
||||
scale_input = self.scale_input
|
||||
if scale_weight is None:
|
||||
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
inn = input.reshape(-1, input.shape[2]).to(dtype)
|
||||
else:
|
||||
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
else:
|
||||
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight)
|
||||
|
||||
if isinstance(o, tuple):
|
||||
o = o[0]
|
||||
|
||||
if tensor_2d:
|
||||
return o.reshape(input.shape[0], -1)
|
||||
|
||||
return o.reshape((-1, input.shape[1], self.weight.shape[0]))
|
||||
|
||||
return None
|
||||
|
||||
class fp8_ops(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def reset_parameters(self):
|
||||
self.scale_weight = None
|
||||
self.scale_input = None
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
class scaled_fp8_op(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
if override_dtype is not None:
|
||||
kwargs['dtype'] = override_dtype
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def reset_parameters(self):
|
||||
if not hasattr(self, 'scale_weight'):
|
||||
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
|
||||
if not scale_input:
|
||||
self.scale_input = None
|
||||
|
||||
if not hasattr(self, 'scale_input'):
|
||||
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if fp8_matrix_mult:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
|
||||
if weight.numel() < input.numel(): #TODO: optimize
|
||||
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
||||
|
||||
def convert_weight(self, weight, inplace=False, **kwargs):
|
||||
if inplace:
|
||||
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
return weight
|
||||
else:
|
||||
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
|
||||
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
|
||||
if inplace_update:
|
||||
self.weight.data.copy_(weight)
|
||||
else:
|
||||
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
||||
|
||||
return scaled_fp8_op
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
|
||||
|
||||
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
|
||||
return fp8_ops
|
||||
|
||||
if compute_dtype is None or weight_dtype == compute_dtype:
|
||||
return disable_weight_init
|
||||
|
||||
return manual_cast
|
||||
|
||||
@@ -61,7 +61,9 @@ def prepare_sampling(model, noise_shape, conds):
|
||||
device = model.load_device
|
||||
real_model = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
|
||||
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||||
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||||
real_model = model.model
|
||||
|
||||
return real_model, conds, models
|
||||
|
||||
@@ -6,6 +6,8 @@ from comfy import model_management
|
||||
import math
|
||||
import logging
|
||||
import comfy.sampler_helpers
|
||||
import scipy.stats
|
||||
import numpy
|
||||
|
||||
def get_area_and_mult(conds, x_in, timestep_in):
|
||||
dims = tuple(x_in.shape[2:])
|
||||
@@ -169,7 +171,7 @@ def calc_cond_batch(model, conds, x_in, timestep, model_options):
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) < free_memory:
|
||||
if model.memory_required(input_shape) * 1.5 < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
|
||||
@@ -311,13 +313,18 @@ def simple_scheduler(model_sampling, steps):
|
||||
def ddim_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
ss = max(len(s.sigmas) // steps, 1)
|
||||
x = 1
|
||||
if math.isclose(float(s.sigmas[x]), 0, abs_tol=0.00001):
|
||||
steps += 1
|
||||
sigs = []
|
||||
else:
|
||||
sigs = [0.0]
|
||||
|
||||
ss = max(len(s.sigmas) // steps, 1)
|
||||
while x < len(s.sigmas):
|
||||
sigs += [float(s.sigmas[x])]
|
||||
x += ss
|
||||
sigs = sigs[::-1]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
||||
@@ -325,15 +332,37 @@ def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
||||
start = s.timestep(s.sigma_max)
|
||||
end = s.timestep(s.sigma_min)
|
||||
|
||||
append_zero = True
|
||||
if sgm:
|
||||
timesteps = torch.linspace(start, end, steps + 1)[:-1]
|
||||
else:
|
||||
if math.isclose(float(s.sigma(end)), 0, abs_tol=0.00001):
|
||||
steps += 1
|
||||
append_zero = False
|
||||
timesteps = torch.linspace(start, end, steps)
|
||||
|
||||
sigs = []
|
||||
for x in range(len(timesteps)):
|
||||
ts = timesteps[x]
|
||||
sigs.append(s.sigma(ts))
|
||||
sigs.append(float(s.sigma(ts)))
|
||||
|
||||
if append_zero:
|
||||
sigs += [0.0]
|
||||
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
# Implemented based on: https://arxiv.org/abs/2407.12173
|
||||
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
|
||||
total_timesteps = (len(model_sampling.sigmas) - 1)
|
||||
ts = 1 - numpy.linspace(0, 1, steps, endpoint=False)
|
||||
ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)
|
||||
|
||||
sigs = []
|
||||
last_t = -1
|
||||
for t in ts:
|
||||
if t != last_t:
|
||||
sigs += [float(model_sampling.sigmas[int(t)])]
|
||||
last_t = t
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
@@ -544,8 +573,8 @@ class Sampler:
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
@@ -703,7 +732,7 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
|
||||
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta"]
|
||||
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def calculate_sigmas(model_sampling, scheduler_name, steps):
|
||||
@@ -719,6 +748,8 @@ def calculate_sigmas(model_sampling, scheduler_name, steps):
|
||||
sigmas = ddim_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "sgm_uniform":
|
||||
sigmas = normal_scheduler(model_sampling, steps, sgm=True)
|
||||
elif scheduler_name == "beta":
|
||||
sigmas = beta_scheduler(model_sampling, steps)
|
||||
else:
|
||||
logging.error("error invalid scheduler {}".format(scheduler_name))
|
||||
return sigmas
|
||||
|
||||
254
comfy/sd.py
254
comfy/sd.py
@@ -17,16 +17,18 @@ from . import diffusers_convert
|
||||
from . import model_detection
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
from . import sd3_clip
|
||||
from . import sa_t5
|
||||
import comfy.text_encoders.sd2_clip
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.text_encoders.sa_t5
|
||||
import comfy.text_encoders.aura_t5
|
||||
import comfy.text_encoders.hydit
|
||||
import comfy.text_encoders.flux
|
||||
import comfy.text_encoders.long_clipl
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.supported_models_base
|
||||
import comfy.taesd.taesd
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
@@ -60,29 +62,38 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
|
||||
|
||||
class CLIP:
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False):
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
|
||||
if no_init:
|
||||
return
|
||||
params = target.params.copy()
|
||||
clip = target.clip
|
||||
tokenizer = target.tokenizer
|
||||
|
||||
load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
params['device'] = offload_device
|
||||
dtype = model_management.text_encoder_dtype(load_device)
|
||||
load_device = model_options.get("load_device", model_management.text_encoder_device())
|
||||
offload_device = model_options.get("offload_device", model_management.text_encoder_offload_device())
|
||||
dtype = model_options.get("dtype", None)
|
||||
if dtype is None:
|
||||
dtype = model_management.text_encoder_dtype(load_device)
|
||||
|
||||
params['dtype'] = dtype
|
||||
params['device'] = model_options.get("initial_device", model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype)))
|
||||
params['model_options'] = model_options
|
||||
|
||||
self.cond_stage_model = clip(**(params))
|
||||
|
||||
for dt in self.cond_stage_model.dtypes:
|
||||
if not model_management.supports_cast(load_device, dt):
|
||||
load_device = offload_device
|
||||
if params['device'] != offload_device:
|
||||
self.cond_stage_model.to(offload_device)
|
||||
logging.warning("Had to shift TE back.")
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
if params['device'] == load_device:
|
||||
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
||||
self.layer_idx = None
|
||||
logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device))
|
||||
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
|
||||
|
||||
def clone(self):
|
||||
n = CLIP(no_init=True)
|
||||
@@ -135,7 +146,11 @@ class CLIP:
|
||||
return self.cond_stage_model.load_sd(sd)
|
||||
|
||||
def get_sd(self):
|
||||
return self.cond_stage_model.state_dict()
|
||||
sd_clip = self.cond_stage_model.state_dict()
|
||||
sd_tokenizer = self.tokenizer.state_dict()
|
||||
for k in sd_tokenizer:
|
||||
sd_clip[k] = sd_tokenizer[k]
|
||||
return sd_clip
|
||||
|
||||
def load_model(self):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
@@ -332,7 +347,7 @@ class VAE:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = int(free_memory / max(1, memory_used))
|
||||
batch_number = max(1, batch_number)
|
||||
samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device)
|
||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||
@@ -381,11 +396,55 @@ class CLIPType(Enum):
|
||||
STABLE_CASCADE = 2
|
||||
SD3 = 3
|
||||
STABLE_AUDIO = 4
|
||||
HUNYUAN_DIT = 5
|
||||
FLUX = 6
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION):
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
|
||||
|
||||
|
||||
class TEModel(Enum):
|
||||
CLIP_L = 1
|
||||
CLIP_H = 2
|
||||
CLIP_G = 3
|
||||
T5_XXL = 4
|
||||
T5_XL = 5
|
||||
T5_BASE = 6
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_G
|
||||
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_H
|
||||
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_L
|
||||
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
if weight.shape[-1] == 4096:
|
||||
return TEModel.T5_XXL
|
||||
elif weight.shape[-1] == 2048:
|
||||
return TEModel.T5_XL
|
||||
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
||||
return TEModel.T5_BASE
|
||||
return None
|
||||
|
||||
|
||||
def t5xxl_detect(clip_data):
|
||||
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||
|
||||
dtype_t5 = None
|
||||
for sd in clip_data:
|
||||
if weight_name in sd:
|
||||
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = state_dicts
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
@@ -400,43 +459,61 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
if len(clip_data) == 1:
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
|
||||
te_model = detect_te_model(clip_data[0])
|
||||
if te_model == TEModel.CLIP_G:
|
||||
if clip_type == CLIPType.STABLE_CASCADE:
|
||||
clip_target.clip = sdxl_clip.StableCascadeClipModel
|
||||
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
|
||||
elif clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
|
||||
clip_target.clip = sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
||||
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]:
|
||||
weight = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
dtype_t5 = weight.dtype
|
||||
if weight.shape[-1] == 4096:
|
||||
clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5)
|
||||
clip_target.tokenizer = sd3_clip.SD3Tokenizer
|
||||
elif weight.shape[-1] == 2048:
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
||||
elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
|
||||
clip_target.clip = sa_t5.SAT5Model
|
||||
clip_target.tokenizer = sa_t5.SAT5Tokenizer
|
||||
elif te_model == TEModel.CLIP_H:
|
||||
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
|
||||
elif te_model == TEModel.T5_XXL:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif te_model == TEModel.T5_XL:
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
||||
elif te_model == TEModel.T5_BASE:
|
||||
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
elif len(clip_data) == 2:
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = sd3_clip.SD3Tokenizer
|
||||
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HUNYUAN_DIT:
|
||||
clip_target.clip = comfy.text_encoders.hydit.HyditModel
|
||||
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
|
||||
elif clip_type == CLIPType.FLUX:
|
||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif len(clip_data) == 3:
|
||||
clip_target.clip = sd3_clip.SD3ClipModel
|
||||
clip_target.tokenizer = sd3_clip.SD3Tokenizer
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
parameters = 0
|
||||
tokenizer_data = {}
|
||||
for c in clip_data:
|
||||
parameters += comfy.utils.calculate_parameters(c)
|
||||
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
|
||||
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
|
||||
for c in clip_data:
|
||||
m, u = clip.load_sd(c)
|
||||
if len(m) > 0:
|
||||
@@ -478,25 +555,39 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
|
||||
return (model, clip, vae)
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
|
||||
if out is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
return out
|
||||
|
||||
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
||||
clip = None
|
||||
clipvision = None
|
||||
vae = None
|
||||
model = None
|
||||
model_patcher = None
|
||||
clip_target = None
|
||||
|
||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
|
||||
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
|
||||
load_device = model_management.get_torch_device()
|
||||
|
||||
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
|
||||
if model_config is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
return None
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
||||
|
||||
if unet_dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
|
||||
@@ -506,7 +597,6 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
|
||||
if output_model:
|
||||
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
|
||||
offload_device = model_management.unet_offload_device()
|
||||
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
|
||||
model.load_model_weights(sd, diffusion_model_prefix)
|
||||
|
||||
@@ -520,7 +610,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
if clip_target is not None:
|
||||
clip_sd = model_config.process_clip_state_dict(sd)
|
||||
if len(clip_sd) > 0:
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
parameters = comfy.utils.calculate_parameters(clip_sd)
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
|
||||
m, u = clip.load_sd(clip_sd, full_model=True)
|
||||
if len(m) > 0:
|
||||
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
||||
@@ -539,15 +630,16 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
logging.debug("left over keys: {}".format(left_over))
|
||||
|
||||
if output_model:
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
logging.info("loaded straight to GPU")
|
||||
model_management.load_model_gpu(model_patcher)
|
||||
model_management.load_models_gpu([model_patcher], force_full_load=True)
|
||||
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_unet_state_dict(sd): #load unet in diffusers or regular format
|
||||
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
|
||||
dtype = model_options.get("dtype", None)
|
||||
|
||||
#Allow loading unets from checkpoint files
|
||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||
@@ -556,37 +648,49 @@ def load_unet_state_dict(sd): #load unet in diffusers or regular format
|
||||
sd = temp_sd
|
||||
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters)
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
load_device = model_management.get_torch_device()
|
||||
model_config = model_detection.model_config_from_unet(sd, "")
|
||||
|
||||
if model_config is not None:
|
||||
new_sd = sd
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in sd: #MMDIT SD3
|
||||
else:
|
||||
new_sd = model_detection.convert_diffusers_mmdit(sd, "")
|
||||
if new_sd is None:
|
||||
return None
|
||||
model_config = model_detection.model_config_from_unet(new_sd, "")
|
||||
if model_config is None:
|
||||
return None
|
||||
else: #diffusers
|
||||
model_config = model_detection.model_config_from_diffusers_unet(sd)
|
||||
if model_config is None:
|
||||
return None
|
||||
if new_sd is not None: #diffusers mmdit
|
||||
model_config = model_detection.model_config_from_unet(new_sd, "")
|
||||
if model_config is None:
|
||||
return None
|
||||
else: #diffusers unet
|
||||
model_config = model_detection.model_config_from_diffusers_unet(sd)
|
||||
if model_config is None:
|
||||
return None
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in sd:
|
||||
new_sd[diffusers_keys[k]] = sd.pop(k)
|
||||
else:
|
||||
logging.warning("{} {}".format(diffusers_keys[k], k))
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in sd:
|
||||
new_sd[diffusers_keys[k]] = sd.pop(k)
|
||||
else:
|
||||
logging.warning("{} {}".format(diffusers_keys[k], k))
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
if dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
else:
|
||||
unet_dtype = dtype
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
||||
if model_options.get("fp8_optimizations", False):
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
@@ -595,24 +699,36 @@ def load_unet_state_dict(sd): #load unet in diffusers or regular format
|
||||
logging.info("left over keys in unet: {}".format(left_over))
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
def load_unet(unet_path):
|
||||
|
||||
def load_diffusion_model(unet_path, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
model = load_unet_state_dict(sd)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
return model
|
||||
|
||||
def load_unet(unet_path, dtype=None):
|
||||
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
||||
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
||||
|
||||
def load_unet_state_dict(sd, dtype=None):
|
||||
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
||||
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
||||
|
||||
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
||||
clip_sd = None
|
||||
load_models = [model]
|
||||
if clip is not None:
|
||||
load_models.append(clip.load_model())
|
||||
clip_sd = clip.get_sd()
|
||||
vae_sd = None
|
||||
if vae is not None:
|
||||
vae_sd = vae.get_sd()
|
||||
|
||||
model_management.load_models_gpu(load_models, force_patch_weights=True)
|
||||
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
|
||||
sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd)
|
||||
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
|
||||
for k in extra_keys:
|
||||
sd[k] = extra_keys[k]
|
||||
|
||||
|
||||
@@ -75,16 +75,15 @@ class ClipTokenWeightEncoder:
|
||||
return r
|
||||
|
||||
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
||||
LAYERS = [
|
||||
"last",
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
||||
def __init__(self, device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
|
||||
return_projected_pooled=True, return_attention_masks=False): # clip-vit-base-patch32
|
||||
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
|
||||
@@ -94,7 +93,21 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
with open(textmodel_json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast)
|
||||
operations = model_options.get("custom_operations", None)
|
||||
scaled_fp8 = None
|
||||
|
||||
if operations is None:
|
||||
scaled_fp8 = model_options.get("scaled_fp8", None)
|
||||
if scaled_fp8 is not None:
|
||||
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
|
||||
else:
|
||||
operations = comfy.ops.manual_cast
|
||||
|
||||
self.operations = operations
|
||||
self.transformer = model_class(config, dtype, device, self.operations)
|
||||
if scaled_fp8 is not None:
|
||||
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
|
||||
|
||||
self.num_layers = self.transformer.num_layers
|
||||
|
||||
self.max_length = max_length
|
||||
@@ -140,15 +153,13 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
def set_up_textual_embeddings(self, tokens, current_embeds):
|
||||
out_tokens = []
|
||||
next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
|
||||
next_new_token = token_dict_size = current_embeds.weight.shape[0]
|
||||
embedding_weights = []
|
||||
|
||||
for x in tokens:
|
||||
tokens_temp = []
|
||||
for y in x:
|
||||
if isinstance(y, numbers.Integral):
|
||||
if y == token_dict_size: #EOS token
|
||||
y = -1
|
||||
tokens_temp += [int(y)]
|
||||
else:
|
||||
if y.shape[0] == current_embeds.weight.shape[1]:
|
||||
@@ -163,12 +174,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
n = token_dict_size
|
||||
if len(embedding_weights) > 0:
|
||||
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
||||
new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
|
||||
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
||||
new_embedding.weight[:token_dict_size] = current_embeds.weight
|
||||
for x in embedding_weights:
|
||||
new_embedding.weight[n] = x
|
||||
n += 1
|
||||
new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
|
||||
self.transformer.set_input_embeddings(new_embedding)
|
||||
|
||||
processed_tokens = []
|
||||
@@ -197,7 +207,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
if self.enable_attention_masks:
|
||||
attention_mask_model = attention_mask
|
||||
|
||||
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
|
||||
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
self.transformer.set_input_embeddings(backup_embeds)
|
||||
|
||||
if self.layer == "last":
|
||||
@@ -315,6 +325,17 @@ def expand_directory_list(directories):
|
||||
dirs.add(root)
|
||||
return list(dirs)
|
||||
|
||||
def bundled_embed(embed, prefix, suffix): #bundled embedding in lora format
|
||||
i = 0
|
||||
out_list = []
|
||||
for k in embed:
|
||||
if k.startswith(prefix) and k.endswith(suffix):
|
||||
out_list.append(embed[k])
|
||||
if len(out_list) == 0:
|
||||
return None
|
||||
|
||||
return torch.cat(out_list, dim=0)
|
||||
|
||||
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
|
||||
if isinstance(embedding_directory, str):
|
||||
embedding_directory = [embedding_directory]
|
||||
@@ -381,12 +402,16 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
elif embed_key is not None and embed_key in embed:
|
||||
embed_out = embed[embed_key]
|
||||
else:
|
||||
values = embed.values()
|
||||
embed_out = next(iter(values))
|
||||
embed_out = bundled_embed(embed, 'bundle_emb.', '.string_to_param.*')
|
||||
if embed_out is None:
|
||||
embed_out = bundled_embed(embed, 'bundle_emb.', '.{}'.format(embed_key))
|
||||
if embed_out is None:
|
||||
values = embed.values()
|
||||
embed_out = next(iter(values))
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
|
||||
@@ -519,12 +544,15 @@ class SDTokenizer:
|
||||
def untokenize(self, token_weight_pair):
|
||||
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SD1Tokenizer:
|
||||
def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer):
|
||||
self.clip_name = clip_name
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))
|
||||
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
|
||||
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
@@ -534,9 +562,15 @@ class SD1Tokenizer:
|
||||
def untokenize(self, token_weight_pair):
|
||||
return getattr(self, self.clip).untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SD1CheckpointClipModel(SDClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, return_projected_pooled=False, dtype=dtype, model_options=model_options)
|
||||
|
||||
class SD1ClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, name=None, **kwargs):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, clip_name="l", clip_model=SD1CheckpointClipModel, name=None, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
if name is not None:
|
||||
@@ -546,7 +580,8 @@ class SD1ClipModel(torch.nn.Module):
|
||||
self.clip_name = clip_name
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
|
||||
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
|
||||
|
||||
self.dtypes = set()
|
||||
if dtype is not None:
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
|
||||
@@ -3,26 +3,27 @@ import torch
|
||||
import os
|
||||
|
||||
class SDXLClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None, model_options={}):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return super().load_sd(sd)
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
|
||||
|
||||
class SDXLTokenizer:
|
||||
def __init__(self, embedding_directory=None):
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
@@ -34,11 +35,15 @@ class SDXLTokenizer:
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes = set([dtype])
|
||||
|
||||
def set_clip_options(self, options):
|
||||
@@ -54,7 +59,8 @@ class SDXLClipModel(torch.nn.Module):
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
return torch.cat([l_out, g_out], dim=-1), g_pooled
|
||||
cut_to = min(l_out.shape[1], g_out.shape[1])
|
||||
return torch.cat([l_out[:,:cut_to], g_out[:,:cut_to]], dim=-1), g_pooled
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@@ -63,27 +69,27 @@ class SDXLClipModel(torch.nn.Module):
|
||||
return self.clip_l.load_sd(sd)
|
||||
|
||||
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG, model_options=model_options)
|
||||
|
||||
|
||||
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
|
||||
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
super().__init__(embedding_directory=embedding_directory, clip_name="g", tokenizer=StableCascadeClipGTokenizer)
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="g", tokenizer=StableCascadeClipGTokenizer)
|
||||
|
||||
class StableCascadeClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True)
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return super().load_sd(sd)
|
||||
|
||||
class StableCascadeClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG, model_options=model_options)
|
||||
|
||||
@@ -3,11 +3,13 @@ from . import model_base
|
||||
from . import utils
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
from . import sd3_clip
|
||||
from . import sa_t5
|
||||
import comfy.text_encoders.sd2_clip
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.text_encoders.sa_t5
|
||||
import comfy.text_encoders.aura_t5
|
||||
import comfy.text_encoders.hydit
|
||||
import comfy.text_encoders.flux
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
@@ -29,6 +31,7 @@ class SD15(supported_models_base.BASE):
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
k = list(state_dict.keys())
|
||||
@@ -75,6 +78,7 @@ class SD20(supported_models_base.BASE):
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
def model_type(self, state_dict, prefix=""):
|
||||
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
|
||||
@@ -100,7 +104,7 @@ class SD20(supported_models_base.BASE):
|
||||
return state_dict
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sd2_clip.SD2Tokenizer, comfy.text_encoders.sd2_clip.SD2ClipModel)
|
||||
|
||||
class SD21UnclipL(SD20):
|
||||
unet_config = {
|
||||
@@ -138,6 +142,7 @@ class SDXLRefiner(supported_models_base.BASE):
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SDXLRefiner(self, device=device)
|
||||
@@ -176,6 +181,8 @@ class SDXL(supported_models_base.BASE):
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
|
||||
memory_usage_factor = 0.8
|
||||
|
||||
def model_type(self, state_dict, prefix=""):
|
||||
if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
|
||||
self.latent_format = latent_formats.SDXL_Playground_2_5()
|
||||
@@ -503,6 +510,9 @@ class SD3(supported_models_base.BASE):
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.SD3
|
||||
|
||||
memory_usage_factor = 1.2
|
||||
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
@@ -519,12 +529,11 @@ class SD3(supported_models_base.BASE):
|
||||
clip_l = True
|
||||
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
|
||||
clip_g = True
|
||||
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
|
||||
if t5_key in state_dict:
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
if "dtype_t5" in t5_detect:
|
||||
t5 = True
|
||||
dtype_t5 = state_dict[t5_key].dtype
|
||||
|
||||
return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect))
|
||||
|
||||
class StableAudio(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
@@ -555,7 +564,7 @@ class StableAudio(supported_models_base.BASE):
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(sa_t5.SAT5Tokenizer, sa_t5.SAT5Model)
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sa_t5.SAT5Tokenizer, comfy.text_encoders.sa_t5.SAT5Model)
|
||||
|
||||
class AuraFlow(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
@@ -580,6 +589,88 @@ class AuraFlow(supported_models_base.BASE):
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.aura_t5.AuraT5Tokenizer, comfy.text_encoders.aura_t5.AuraT5Model)
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow]
|
||||
class HunyuanDiT(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hydit",
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"attn_precision": torch.float32,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"linear_start": 0.00085,
|
||||
"linear_end": 0.018,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HunyuanDiT(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hydit.HyditTokenizer, comfy.text_encoders.hydit.HyditModel)
|
||||
|
||||
class HunyuanDiT1(HunyuanDiT):
|
||||
unet_config = {
|
||||
"image_model": "hydit1",
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
|
||||
sampling_settings = {
|
||||
"linear_start" : 0.00085,
|
||||
"linear_end" : 0.03,
|
||||
}
|
||||
|
||||
class Flux(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "flux",
|
||||
"guidance_embed": True,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 2.8
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Flux(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
|
||||
|
||||
class FluxSchnell(Flux):
|
||||
unet_config = {
|
||||
"image_model": "flux",
|
||||
"guidance_embed": False,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 1.0,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
|
||||
return out
|
||||
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@@ -1,3 +1,21 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from . import model_base
|
||||
from . import utils
|
||||
@@ -27,7 +45,12 @@ class BASE:
|
||||
text_encoder_key_prefix = ["cond_stage_model."]
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
memory_usage_factor = 2.0
|
||||
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
scaled_fp8 = None
|
||||
optimizations = {"fp8": False}
|
||||
|
||||
@classmethod
|
||||
def matches(s, unet_config, state_dict=None):
|
||||
@@ -50,6 +73,7 @@ class BASE:
|
||||
self.unet_config = unet_config.copy()
|
||||
self.sampling_settings = self.sampling_settings.copy()
|
||||
self.latent_format = self.latent_format()
|
||||
self.optimizations = self.optimizations.copy()
|
||||
for x in self.unet_extra_config:
|
||||
self.unet_config[x] = self.unet_extra_config[x]
|
||||
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
from comfy import sd1_clip
|
||||
from .llama_tokenizer import LLAMATokenizer
|
||||
import comfy.t5
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
|
||||
class PT5XlModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_config_xl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 2, "pad": 1}, model_class=comfy.t5.T5, enable_attention_masks=True, zero_out_masked=True)
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 2, "pad": 1}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True, model_options=model_options)
|
||||
|
||||
class PT5XlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=LLAMATokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
|
||||
|
||||
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
super().__init__(embedding_directory=embedding_directory, clip_name="pile_t5xl", tokenizer=PT5XlTokenizer)
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="pile_t5xl", tokenizer=PT5XlTokenizer)
|
||||
|
||||
class AuraT5Model(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, name="pile_t5xl", clip_model=PT5XlModel, **kwargs)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, name="pile_t5xl", clip_model=PT5XlModel, **kwargs)
|
||||
|
||||
140
comfy/text_encoders/bert.py
Normal file
140
comfy/text_encoders/bert.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
class BertAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
self.heads = heads
|
||||
self.query = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.key = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.value = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
q = self.query(x)
|
||||
k = self.key(x)
|
||||
v = self.value(x)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads, mask)
|
||||
return out
|
||||
|
||||
class BertOutput(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
|
||||
self.LayerNorm = operations.LayerNorm(output_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
# self.dropout = nn.Dropout(0.0)
|
||||
|
||||
def forward(self, x, y):
|
||||
x = self.dense(x)
|
||||
# hidden_states = self.dropout(hidden_states)
|
||||
x = self.LayerNorm(x + y)
|
||||
return x
|
||||
|
||||
class BertAttentionBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.self = BertAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.output = BertOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
y = self.self(x, mask, optimized_attention)
|
||||
return self.output(y, x)
|
||||
|
||||
class BertIntermediate(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(embed_dim, intermediate_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense(x)
|
||||
return torch.nn.functional.gelu(x)
|
||||
|
||||
|
||||
class BertBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = BertAttentionBlock(embed_dim, heads, layer_norm_eps, dtype, device, operations)
|
||||
self.intermediate = BertIntermediate(embed_dim, intermediate_dim, dtype, device, operations)
|
||||
self.output = BertOutput(intermediate_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
x = self.attention(x, mask, optimized_attention)
|
||||
y = self.intermediate(x)
|
||||
return self.output(y, x)
|
||||
|
||||
class BertEncoder(torch.nn.Module):
|
||||
def __init__(self, num_layers, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList([BertBlock(embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layer) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layer):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
class BertEmbeddings(torch.nn.Module):
|
||||
def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.word_embeddings = operations.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device)
|
||||
self.position_embeddings = operations.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device)
|
||||
self.token_type_embeddings = operations.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, token_type_ids=None, dtype=None):
|
||||
x = self.word_embeddings(input_tokens, out_dtype=dtype)
|
||||
x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
|
||||
if token_type_ids is not None:
|
||||
x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
|
||||
else:
|
||||
x += comfy.ops.cast_to_input(self.token_type_embeddings.weight[0], x)
|
||||
x = self.LayerNorm(x)
|
||||
return x
|
||||
|
||||
|
||||
class BertModel_(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
layer_norm_eps = config_dict["layer_norm_eps"]
|
||||
|
||||
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||
x = self.embeddings(input_tokens, dtype=dtype)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
||||
|
||||
x, i = self.encoder(x, mask, intermediate_output)
|
||||
return x, i
|
||||
|
||||
|
||||
class BertModel(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.bert = BertModel_(config_dict, dtype, device, operations)
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.bert.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.bert.embeddings.word_embeddings = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.bert(*args, **kwargs)
|
||||
72
comfy/text_encoders/flux.py
Normal file
72
comfy/text_encoders/flux.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.model_management
|
||||
from transformers import T5TokenizerFast
|
||||
import torch
|
||||
import os
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
|
||||
|
||||
class FluxTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_l.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
|
||||
class FluxClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_t5])
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.clip_l.set_clip_options(options)
|
||||
self.t5xxl.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.clip_l.reset_clip_options()
|
||||
self.t5xxl.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
|
||||
|
||||
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
return t5_out, l_pooled
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
return self.clip_l.load_sd(sd)
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class FluxClipModel_(FluxClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
|
||||
return FluxClipModel_
|
||||
79
comfy/text_encoders/hydit.py
Normal file
79
comfy/text_encoders/hydit.py
Normal file
@@ -0,0 +1,79 @@
|
||||
from comfy import sd1_clip
|
||||
from transformers import BertTokenizer
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
from .bert import BertModel
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
import torch
|
||||
|
||||
class HyditBertModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
|
||||
|
||||
|
||||
class MT5XLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class HyditTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
|
||||
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
|
||||
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
|
||||
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.hydit_clip.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {"mt5xl.spiece_model": self.mt5xl.state_dict()["spiece_model"]}
|
||||
|
||||
class HyditModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.hydit_clip = HyditBertModel(dtype=dtype, model_options=model_options)
|
||||
self.mt5xl = MT5XLModel(dtype=dtype, model_options=model_options)
|
||||
|
||||
self.dtypes = set()
|
||||
if dtype is not None:
|
||||
self.dtypes.add(dtype)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
hydit_out = self.hydit_clip.encode_token_weights(token_weight_pairs["hydit_clip"])
|
||||
mt5_out = self.mt5xl.encode_token_weights(token_weight_pairs["mt5xl"])
|
||||
return hydit_out[0], hydit_out[1], {"attention_mask": hydit_out[2]["attention_mask"], "conditioning_mt5xl": mt5_out[0], "attention_mask_mt5xl": mt5_out[2]["attention_mask"]}
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "bert.encoder.layer.0.attention.self.query.weight" in sd:
|
||||
return self.hydit_clip.load_sd(sd)
|
||||
else:
|
||||
return self.mt5xl.load_sd(sd)
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.hydit_clip.set_clip_options(options)
|
||||
self.mt5xl.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.hydit_clip.reset_clip_options()
|
||||
self.mt5xl.reset_clip_options()
|
||||
35
comfy/text_encoders/hydit_clip.json
Normal file
35
comfy/text_encoders/hydit_clip.json
Normal file
@@ -0,0 +1,35 @@
|
||||
{
|
||||
"_name_or_path": "hfl/chinese-roberta-wwm-ext-large",
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classifier_dropout": null,
|
||||
"directionality": "bidi",
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 1024,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"output_past": true,
|
||||
"pad_token_id": 0,
|
||||
"pooler_fc_size": 768,
|
||||
"pooler_num_attention_heads": 12,
|
||||
"pooler_num_fc_layers": 3,
|
||||
"pooler_size_per_head": 128,
|
||||
"pooler_type": "first_token_transform",
|
||||
"position_embedding_type": "absolute",
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.22.1",
|
||||
"type_vocab_size": 2,
|
||||
"use_cache": true,
|
||||
"vocab_size": 47020
|
||||
}
|
||||
|
||||
@@ -0,0 +1,7 @@
|
||||
{
|
||||
"cls_token": "[CLS]",
|
||||
"mask_token": "[MASK]",
|
||||
"pad_token": "[PAD]",
|
||||
"sep_token": "[SEP]",
|
||||
"unk_token": "[UNK]"
|
||||
}
|
||||
@@ -0,0 +1,16 @@
|
||||
{
|
||||
"cls_token": "[CLS]",
|
||||
"do_basic_tokenize": true,
|
||||
"do_lower_case": true,
|
||||
"mask_token": "[MASK]",
|
||||
"name_or_path": "hfl/chinese-roberta-wwm-ext",
|
||||
"never_split": null,
|
||||
"pad_token": "[PAD]",
|
||||
"sep_token": "[SEP]",
|
||||
"special_tokens_map_file": "/home/chenweifeng/.cache/huggingface/hub/models--hfl--chinese-roberta-wwm-ext/snapshots/5c58d0b8ec1d9014354d691c538661bf00bfdb44/special_tokens_map.json",
|
||||
"strip_accents": null,
|
||||
"tokenize_chinese_chars": true,
|
||||
"tokenizer_class": "BertTokenizer",
|
||||
"unk_token": "[UNK]",
|
||||
"model_max_length": 77
|
||||
}
|
||||
47020
comfy/text_encoders/hydit_clip_tokenizer/vocab.txt
Normal file
47020
comfy/text_encoders/hydit_clip_tokenizer/vocab.txt
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,22 +0,0 @@
|
||||
import os
|
||||
|
||||
class LLAMATokenizer:
|
||||
@staticmethod
|
||||
def from_pretrained(path):
|
||||
return LLAMATokenizer(path)
|
||||
|
||||
def __init__(self, tokenizer_path):
|
||||
import sentencepiece
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path)
|
||||
self.end = self.tokenizer.eos_id()
|
||||
|
||||
def get_vocab(self):
|
||||
out = {}
|
||||
for i in range(self.tokenizer.get_piece_size()):
|
||||
out[self.tokenizer.id_to_piece(i)] = i
|
||||
return out
|
||||
|
||||
def __call__(self, string):
|
||||
out = self.tokenizer.encode(string)
|
||||
out += [self.end]
|
||||
return {"input_ids": out}
|
||||
25
comfy/text_encoders/long_clipl.json
Normal file
25
comfy/text_encoders/long_clipl.json
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 248,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.24.0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
30
comfy/text_encoders/long_clipl.py
Normal file
30
comfy/text_encoders/long_clipl.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from comfy import sd1_clip
|
||||
import os
|
||||
|
||||
class LongClipTokenizer_(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
class LongClipModel_(sd1_clip.SDClipModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
|
||||
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
|
||||
|
||||
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
|
||||
|
||||
class LongClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
|
||||
|
||||
def model_options_long_clip(sd, tokenizer_data, model_options):
|
||||
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
|
||||
if w is None:
|
||||
w = sd.get("text_model.embeddings.position_embedding.weight", None)
|
||||
if w is not None and w.shape[0] == 248:
|
||||
tokenizer_data = tokenizer_data.copy()
|
||||
model_options = model_options.copy()
|
||||
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
|
||||
model_options["clip_l_class"] = LongClipModel_
|
||||
return tokenizer_data, model_options
|
||||
22
comfy/text_encoders/mt5_config_xl.json
Normal file
22
comfy/text_encoders/mt5_config_xl.json
Normal file
@@ -0,0 +1,22 @@
|
||||
{
|
||||
"d_ff": 5120,
|
||||
"d_kv": 64,
|
||||
"d_model": 2048,
|
||||
"decoder_start_token_id": 0,
|
||||
"dropout_rate": 0.1,
|
||||
"eos_token_id": 1,
|
||||
"dense_act_fn": "gelu_pytorch_tanh",
|
||||
"initializer_factor": 1.0,
|
||||
"is_encoder_decoder": true,
|
||||
"is_gated_act": true,
|
||||
"layer_norm_epsilon": 1e-06,
|
||||
"model_type": "mt5",
|
||||
"num_decoder_layers": 24,
|
||||
"num_heads": 32,
|
||||
"num_layers": 24,
|
||||
"output_past": true,
|
||||
"pad_token_id": 0,
|
||||
"relative_attention_num_buckets": 32,
|
||||
"tie_word_embeddings": false,
|
||||
"vocab_size": 250112
|
||||
}
|
||||
@@ -1,22 +1,22 @@
|
||||
from comfy import sd1_clip
|
||||
from transformers import T5TokenizerFast
|
||||
import comfy.t5
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
|
||||
class T5BaseModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_base.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5, enable_attention_masks=True, zero_out_masked=True)
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, model_options=model_options, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True)
|
||||
|
||||
class T5BaseTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
|
||||
|
||||
class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
super().__init__(embedding_directory=embedding_directory, clip_name="t5base", tokenizer=T5BaseTokenizer)
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5base", tokenizer=T5BaseTokenizer)
|
||||
|
||||
class SAT5Model(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, name="t5base", clip_model=T5BaseModel, **kwargs)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, name="t5base", clip_model=T5BaseModel, **kwargs)
|
||||
@@ -2,22 +2,22 @@ from comfy import sd1_clip
|
||||
import os
|
||||
|
||||
class SD2ClipHModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None):
|
||||
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None, model_options={}):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0})
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
|
||||
|
||||
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer)
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="h", tokenizer=SD2ClipHTokenizer)
|
||||
|
||||
class SD2ClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_name="h", clip_model=SD2ClipHModel, **kwargs)
|
||||
@@ -5,7 +5,7 @@
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1024,
|
||||
"initializer_factor": 1.0,
|
||||
@@ -1,35 +1,45 @@
|
||||
from comfy import sd1_clip
|
||||
from comfy import sdxl_clip
|
||||
from transformers import T5TokenizerFast
|
||||
import comfy.t5
|
||||
import comfy.text_encoders.t5
|
||||
import torch
|
||||
import os
|
||||
import comfy.model_management
|
||||
import logging
|
||||
|
||||
class T5XXLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5)
|
||||
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
|
||||
if t5xxl_scaled_fp8 is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
def t5_xxl_detect(state_dict, prefix=""):
|
||||
out = {}
|
||||
t5_key = "{}encoder.final_layer_norm.weight".format(prefix)
|
||||
if t5_key in state_dict:
|
||||
out["dtype_t5"] = state_dict[t5_key].dtype
|
||||
|
||||
scaled_fp8_key = "{}scaled_fp8".format(prefix)
|
||||
if scaled_fp8_key in state_dict:
|
||||
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
|
||||
|
||||
return out
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
||||
|
||||
class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
class SDT5XXLModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs)
|
||||
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
||||
|
||||
|
||||
class SD3Tokenizer:
|
||||
def __init__(self, embedding_directory=None):
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
@@ -43,32 +53,30 @@ class SD3Tokenizer:
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SD3ClipModel(torch.nn.Module):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None):
|
||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.dtypes = set()
|
||||
if clip_l:
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_l = None
|
||||
|
||||
if clip_g:
|
||||
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype)
|
||||
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes.add(dtype)
|
||||
else:
|
||||
self.clip_g = None
|
||||
|
||||
if t5:
|
||||
if dtype_t5 is None:
|
||||
dtype_t5 = dtype
|
||||
elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype):
|
||||
dtype_t5 = dtype
|
||||
|
||||
if not comfy.model_management.supports_cast(device, dtype_t5):
|
||||
dtype_t5 = dtype
|
||||
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5)
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
self.t5_attention_mask = t5_attention_mask
|
||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=self.t5_attention_mask)
|
||||
self.dtypes.add(dtype_t5)
|
||||
else:
|
||||
self.t5xxl = None
|
||||
@@ -94,10 +102,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
token_weight_pars_t5 = token_weight_pairs["t5xxl"]
|
||||
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
|
||||
lg_out = None
|
||||
pooled = None
|
||||
out = None
|
||||
extra = {}
|
||||
|
||||
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
|
||||
if self.clip_l is not None:
|
||||
@@ -108,7 +117,8 @@ class SD3ClipModel(torch.nn.Module):
|
||||
if self.clip_g is not None:
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
if lg_out is not None:
|
||||
lg_out = torch.cat([lg_out, g_out], dim=-1)
|
||||
cut_to = min(lg_out.shape[1], g_out.shape[1])
|
||||
lg_out = torch.cat([lg_out[:,:cut_to], g_out[:,:cut_to]], dim=-1)
|
||||
else:
|
||||
lg_out = torch.nn.functional.pad(g_out, (768, 0))
|
||||
else:
|
||||
@@ -121,7 +131,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
|
||||
|
||||
if self.t5xxl is not None:
|
||||
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5)
|
||||
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
t5_out, t5_pooled = t5_output[:2]
|
||||
if self.t5_attention_mask:
|
||||
extra["attention_mask"] = t5_output[2]["attention_mask"]
|
||||
|
||||
if lg_out is not None:
|
||||
out = torch.cat([lg_out, t5_out], dim=-2)
|
||||
else:
|
||||
@@ -133,7 +147,7 @@ class SD3ClipModel(torch.nn.Module):
|
||||
if pooled is None:
|
||||
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
|
||||
|
||||
return out, pooled
|
||||
return out, pooled, extra
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@@ -143,8 +157,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None):
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
|
||||
class SD3ClipModel_(SD3ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
|
||||
return SD3ClipModel_
|
||||
32
comfy/text_encoders/spiece_tokenizer.py
Normal file
32
comfy/text_encoders/spiece_tokenizer.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
class SPieceTokenizer:
|
||||
add_eos = True
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(path):
|
||||
return SPieceTokenizer(path)
|
||||
|
||||
def __init__(self, tokenizer_path):
|
||||
import sentencepiece
|
||||
if torch.is_tensor(tokenizer_path):
|
||||
tokenizer_path = tokenizer_path.numpy().tobytes()
|
||||
|
||||
if isinstance(tokenizer_path, bytes):
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_eos=self.add_eos)
|
||||
else:
|
||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_eos=self.add_eos)
|
||||
|
||||
def get_vocab(self):
|
||||
out = {}
|
||||
for i in range(self.tokenizer.get_piece_size()):
|
||||
out[self.tokenizer.id_to_piece(i)] = i
|
||||
return out
|
||||
|
||||
def __call__(self, string):
|
||||
out = self.tokenizer.encode(string)
|
||||
return {"input_ids": out}
|
||||
|
||||
def serialize_model(self):
|
||||
return torch.ByteTensor(list(self.tokenizer.serialized_model_proto()))
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
class T5LayerNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
|
||||
@@ -11,7 +12,7 @@ class T5LayerNorm(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
variance = x.pow(2).mean(-1, keepdim=True)
|
||||
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight.to(device=x.device, dtype=x.dtype) * x
|
||||
return comfy.ops.cast_to_input(self.weight, x) * x
|
||||
|
||||
activations = {
|
||||
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
||||
@@ -82,7 +83,7 @@ class T5Attention(torch.nn.Module):
|
||||
if relative_attention_bias:
|
||||
self.relative_attention_num_buckets = 32
|
||||
self.relative_attention_max_distance = 128
|
||||
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
|
||||
self.relative_attention_bias = operations.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device, dtype=dtype)
|
||||
|
||||
@staticmethod
|
||||
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
||||
@@ -132,7 +133,7 @@ class T5Attention(torch.nn.Module):
|
||||
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
||||
return relative_buckets
|
||||
|
||||
def compute_bias(self, query_length, key_length, device):
|
||||
def compute_bias(self, query_length, key_length, device, dtype):
|
||||
"""Compute binned relative position bias"""
|
||||
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
||||
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
||||
@@ -143,7 +144,7 @@ class T5Attention(torch.nn.Module):
|
||||
num_buckets=self.relative_attention_num_buckets,
|
||||
max_distance=self.relative_attention_max_distance,
|
||||
)
|
||||
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
||||
values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads)
|
||||
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
||||
return values
|
||||
|
||||
@@ -152,7 +153,7 @@ class T5Attention(torch.nn.Module):
|
||||
k = self.k(x)
|
||||
v = self.v(x)
|
||||
if self.relative_attention_bias is not None:
|
||||
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
|
||||
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype)
|
||||
|
||||
if past_bias is not None:
|
||||
if mask is not None:
|
||||
@@ -199,7 +200,7 @@ class T5Stack(torch.nn.Module):
|
||||
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
|
||||
# self.dropout = nn.Dropout(config.dropout_rate)
|
||||
|
||||
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
@@ -223,9 +224,9 @@ class T5(torch.nn.Module):
|
||||
self.num_layers = config_dict["num_layers"]
|
||||
model_dim = config_dict["d_model"]
|
||||
|
||||
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] == "t5", dtype, device, operations)
|
||||
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations)
|
||||
self.dtype = dtype
|
||||
self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device)
|
||||
self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype)
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.shared
|
||||
@@ -234,5 +235,7 @@ class T5(torch.nn.Module):
|
||||
self.shared = embeddings
|
||||
|
||||
def forward(self, input_ids, *args, **kwargs):
|
||||
x = self.shared(input_ids)
|
||||
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
|
||||
if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
|
||||
x = torch.nan_to_num(x) #Fix for fp8 T5 base
|
||||
return self.encoder(x, *args, **kwargs)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user