#include #include #include #include #include #include #include "libimagequant.h" using namespace emscripten; int version() { return (((LIQ_VERSION / 10000) % 100) << 16) | (((LIQ_VERSION / 100) % 100) << 8) | (((LIQ_VERSION / 1) % 100) << 0); } thread_local const val Uint8ClampedArray = val::global("Uint8ClampedArray"); #define liq_ptr(T) std::unique_ptr> using liq_attr_ptr = liq_ptr(liq_attr); using liq_image_ptr = liq_ptr(liq_image); using liq_result_ptr = liq_ptr(liq_result); liq_result_ptr liq_image_quantize(liq_image* image, liq_attr* attr) { liq_result* res = nullptr; liq_image_quantize(image, attr, &res); return liq_result_ptr(res); } val quantize(std::string rawimage, int image_width, int image_height, int num_colors, float dithering) { auto image_buffer = (const liq_color*)rawimage.c_str(); int size = image_width * image_height; liq_attr_ptr attr(liq_attr_create()); liq_image_ptr image( liq_image_create_rgba(attr.get(), image_buffer, image_width, image_height, 0)); liq_set_max_colors(attr.get(), num_colors); auto res = liq_image_quantize(image.get(), attr.get()); liq_set_dithering_level(res.get(), dithering); std::vector image8bit(size); std::vector result(size); liq_write_remapped_image(res.get(), image.get(), image8bit.data(), image8bit.size()); auto pal = liq_get_palette(res.get()); // Turn palletted image back into an RGBA image for (int i = 0; i < size; i++) { result[i] = pal->entries[image8bit[i]]; } return Uint8ClampedArray.new_( typed_memory_view(result.size() * sizeof(liq_color), (const uint8_t*)result.data())); } const liq_color zx_colors[] = { {.r = 0, .g = 0, .b = 0, .a = 255}, // regular black {.r = 0, .g = 0, .b = 215, .a = 255}, // regular blue {.r = 215, .g = 0, .b = 0, .a = 255}, // regular red {.r = 215, .g = 0, .b = 215, .a = 255}, // regular magenta {.r = 0, .g = 215, .b = 0, .a = 255}, // regular green {.r = 0, .g = 215, .b = 215, .a = 255}, // regular cyan {.r = 215, .g = 215, .b = 0, .a = 255}, // regular yellow {.r = 215, .g = 215, .b = 215, .a = 255}, // regular white {.r = 0, .g = 0, .b = 255, .a = 255}, // bright blue {.r = 255, .g = 0, .b = 0, .a = 255}, // bright red {.r = 255, .g = 0, .b = 255, .a = 255}, // bright magenta {.r = 0, .g = 255, .b = 0, .a = 255}, // bright green {.r = 0, .g = 255, .b = 255, .a = 255}, // bright cyan {.r = 255, .g = 255, .b = 0, .a = 255}, // bright yellow {.r = 255, .g = 255, .b = 255, .a = 255} // bright white }; /** * The ZX has one bit per pixel, but can assign two colours to an 8x8 block. The * two colours must both be 'regular' or 'bright'. Black exists as both regular * and bright. */ val zx_quantize(std::string rawimage, int image_width, int image_height, float dithering) { auto image_buffer = (const liq_color*)rawimage.c_str(); int size = image_width * image_height; liq_color block[8 * 8]; uint8_t image8bit[8 * 8]; std::vector result(size); // For each 8x8 grid for (int block_start_y = 0; block_start_y < image_height; block_start_y += 8) { for (int block_start_x = 0; block_start_x < image_width; block_start_x += 8) { int color_popularity[15] = {0}; int block_index = 0; int block_width = 8; int block_height = 8; // If the block hangs off the right/bottom of the image dimensions, make // it smaller to fit. if (block_start_y + block_height > image_height) { block_height = image_height - block_start_y; } if (block_start_x + block_width > image_width) { block_width = image_width - block_start_x; } // For each pixel in that block: for (int y = block_start_y; y < block_start_y + block_height; y++) { for (int x = block_start_x; x < block_start_x + block_width; x++) { int pixel_start = (y * image_width) + x; int smallest_distance = INT_MAX; int winning_index = -1; // Copy pixel data for quantizing later block[block_index++] = image_buffer[pixel_start]; // Which zx color is this pixel closest to? for (int color_index = 0; color_index < 15; color_index++) { liq_color color = zx_colors[color_index]; liq_color pixel = image_buffer[pixel_start]; // Using Euclidean distance. LibQuant has better methods, but it // requires conversion to LAB, so I don't think it's worth it. int distance = pow(color.r - pixel.r, 2) + pow(color.g - pixel.g, 2) + pow(color.b - pixel.b, 2); if (distance < smallest_distance) { winning_index = color_index; smallest_distance = distance; } } color_popularity[winning_index]++; } } // Get the three most popular colours for the block. int first_color_index = 0; int second_color_index = 0; int third_color_index = 0; int highest_popularity = -1; int second_highest_popularity = -1; int third_highest_popularity = -1; for (int color_index = 0; color_index < 15; color_index++) { if (color_popularity[color_index] > highest_popularity) { // Store this as the most popular pixel, and demote the current // values: third_color_index = second_color_index; third_highest_popularity = second_highest_popularity; second_color_index = first_color_index; second_highest_popularity = highest_popularity; first_color_index = color_index; highest_popularity = color_popularity[color_index]; } else if (color_popularity[color_index] > second_highest_popularity) { third_color_index = second_color_index; third_highest_popularity = second_highest_popularity; second_color_index = color_index; second_highest_popularity = color_popularity[color_index]; } else if (color_popularity[color_index] > third_highest_popularity) { third_color_index = color_index; third_highest_popularity = color_popularity[color_index]; } } // ZX images can't mix bright and regular colours, except black which // appears in both. Resolve any conflict: while (1) { // If either colour is black, there's no conflict to resolve. if (first_color_index != 0 && second_color_index != 0) { if (first_color_index >= 8 && second_color_index < 8) { // Make the second color bright second_color_index = second_color_index + 7; } else if (first_color_index < 8 && second_color_index >= 8) { // Make the second color regular second_color_index = second_color_index - 7; } } // If, during conflict resolving, we now have two of the same colour // (because we initially selected the bright & regular version of the // same colour), retry again with the third most popular colour. if (first_color_index == second_color_index) { second_color_index = third_color_index; } else break; } // Quantize liq_attr_ptr attr(liq_attr_create()); liq_image_ptr image(liq_image_create_rgba(attr.get(), block, block_width, block_height, 0)); liq_set_max_colors(attr.get(), 2); liq_image_add_fixed_color(image.get(), zx_colors[first_color_index]); liq_image_add_fixed_color(image.get(), zx_colors[second_color_index]); auto res = liq_image_quantize(image.get(), attr.get()); liq_set_dithering_level(res.get(), dithering); liq_write_remapped_image(res.get(), image.get(), image8bit, size); auto pal = liq_get_palette(res.get()); // Turn palletted image back into an RGBA image, and write it into the // full size result image. for (int y = 0; y < block_height; y++) { for (int x = 0; x < block_width; x++) { int image8BitPos = y * block_width + x; int resultStartPos = ((block_start_y + y) * image_width) + (block_start_x + x); result[resultStartPos] = pal->entries[image8bit[image8BitPos]]; } } } } return Uint8ClampedArray.new_( typed_memory_view(result.size() * sizeof(liq_color), (const uint8_t*)result.data())); } EMSCRIPTEN_BINDINGS(my_module) { function("quantize", &quantize); function("zx_quantize", &zx_quantize); function("version", &version); }