With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
330 lines
12 KiB
C
330 lines
12 KiB
C
/*
|
|
* AltiVec optimizations for libjpeg-turbo
|
|
*
|
|
* Copyright (C) 2015, D. R. Commander. All Rights Reserved.
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
/* This file is included by jdmerge-altivec.c */
|
|
|
|
|
|
void jsimd_h2v1_merged_upsample_altivec(JDIMENSION output_width,
|
|
JSAMPIMAGE input_buf,
|
|
JDIMENSION in_row_group_ctr,
|
|
JSAMPARRAY output_buf)
|
|
{
|
|
JSAMPROW outptr, inptr0, inptr1, inptr2;
|
|
int pitch = output_width * RGB_PIXELSIZE, num_cols, yloop;
|
|
#if __BIG_ENDIAN__
|
|
int offset;
|
|
#endif
|
|
unsigned char __attribute__((aligned(16))) tmpbuf[RGB_PIXELSIZE * 16];
|
|
|
|
__vector unsigned char rgb0, rgb1, rgb2, rgbx0, rgbx1, rgbx2, rgbx3,
|
|
y, cb, cr;
|
|
#if __BIG_ENDIAN__
|
|
__vector unsigned char edgel, edgeh, edges, out0, out1, out2, out3;
|
|
#if RGB_PIXELSIZE == 4
|
|
__vector unsigned char out4;
|
|
#endif
|
|
#endif
|
|
#if RGB_PIXELSIZE == 4
|
|
__vector unsigned char rgb3;
|
|
#endif
|
|
__vector short rg0, rg1, rg2, rg3, bx0, bx1, bx2, bx3, ye, yo, cbl, cbh,
|
|
crl, crh, r_yl, r_yh, g_yl, g_yh, b_yl, b_yh, g_y0w, g_y1w, g_y2w, g_y3w,
|
|
rl, rh, gl, gh, bl, bh, re, ro, ge, go, be, bo;
|
|
__vector int g_y0, g_y1, g_y2, g_y3;
|
|
|
|
/* Constants
|
|
* NOTE: The >> 1 is to compensate for the fact that vec_madds() returns 17
|
|
* high-order bits, not 16.
|
|
*/
|
|
__vector short pw_f0402 = { __8X(F_0_402 >> 1) },
|
|
pw_mf0228 = { __8X(-F_0_228 >> 1) },
|
|
pw_mf0344_f0285 = { __4X2(-F_0_344, F_0_285) },
|
|
pw_one = { __8X(1) }, pw_255 = { __8X(255) },
|
|
pw_cj = { __8X(CENTERJSAMPLE) };
|
|
__vector int pd_onehalf = { __4X(ONE_HALF) };
|
|
__vector unsigned char pb_zero = { __16X(0) },
|
|
#if __BIG_ENDIAN__
|
|
shift_pack_index =
|
|
{ 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 },
|
|
even_index =
|
|
{ 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, 0, 28, 0, 30 },
|
|
odd_index =
|
|
{ 0, 17, 0, 19, 0, 21, 0, 23, 0, 25, 0, 27, 0, 29, 0, 31 };
|
|
#else
|
|
shift_pack_index =
|
|
{ 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 },
|
|
even_index =
|
|
{ 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, 0, 28, 0, 30, 0 },
|
|
odd_index =
|
|
{ 17, 0, 19, 0, 21, 0, 23, 0, 25, 0, 27, 0, 29, 0, 31, 0 };
|
|
#endif
|
|
|
|
inptr0 = input_buf[0][in_row_group_ctr];
|
|
inptr1 = input_buf[1][in_row_group_ctr];
|
|
inptr2 = input_buf[2][in_row_group_ctr];
|
|
outptr = output_buf[0];
|
|
|
|
for (num_cols = pitch; num_cols > 0; inptr1 += 16, inptr2 += 16) {
|
|
|
|
cb = vec_ld(0, inptr1);
|
|
/* NOTE: We have to use vec_merge*() here because vec_unpack*() doesn't
|
|
* support unsigned vectors.
|
|
*/
|
|
cbl = (__vector signed short)VEC_UNPACKHU(cb);
|
|
cbh = (__vector signed short)VEC_UNPACKLU(cb);
|
|
cbl = vec_sub(cbl, pw_cj);
|
|
cbh = vec_sub(cbh, pw_cj);
|
|
|
|
cr = vec_ld(0, inptr2);
|
|
crl = (__vector signed short)VEC_UNPACKHU(cr);
|
|
crh = (__vector signed short)VEC_UNPACKLU(cr);
|
|
crl = vec_sub(crl, pw_cj);
|
|
crh = vec_sub(crh, pw_cj);
|
|
|
|
/* (Original)
|
|
* R = Y + 1.40200 * Cr
|
|
* G = Y - 0.34414 * Cb - 0.71414 * Cr
|
|
* B = Y + 1.77200 * Cb
|
|
*
|
|
* (This implementation)
|
|
* R = Y + 0.40200 * Cr + Cr
|
|
* G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr
|
|
* B = Y - 0.22800 * Cb + Cb + Cb
|
|
*/
|
|
b_yl = vec_add(cbl, cbl);
|
|
b_yh = vec_add(cbh, cbh);
|
|
b_yl = vec_madds(b_yl, pw_mf0228, pw_one);
|
|
b_yh = vec_madds(b_yh, pw_mf0228, pw_one);
|
|
b_yl = vec_sra(b_yl, (__vector unsigned short)pw_one);
|
|
b_yh = vec_sra(b_yh, (__vector unsigned short)pw_one);
|
|
b_yl = vec_add(b_yl, cbl);
|
|
b_yh = vec_add(b_yh, cbh);
|
|
b_yl = vec_add(b_yl, cbl);
|
|
b_yh = vec_add(b_yh, cbh);
|
|
|
|
r_yl = vec_add(crl, crl);
|
|
r_yh = vec_add(crh, crh);
|
|
r_yl = vec_madds(r_yl, pw_f0402, pw_one);
|
|
r_yh = vec_madds(r_yh, pw_f0402, pw_one);
|
|
r_yl = vec_sra(r_yl, (__vector unsigned short)pw_one);
|
|
r_yh = vec_sra(r_yh, (__vector unsigned short)pw_one);
|
|
r_yl = vec_add(r_yl, crl);
|
|
r_yh = vec_add(r_yh, crh);
|
|
|
|
g_y0w = vec_mergeh(cbl, crl);
|
|
g_y1w = vec_mergel(cbl, crl);
|
|
g_y0 = vec_msums(g_y0w, pw_mf0344_f0285, pd_onehalf);
|
|
g_y1 = vec_msums(g_y1w, pw_mf0344_f0285, pd_onehalf);
|
|
g_y2w = vec_mergeh(cbh, crh);
|
|
g_y3w = vec_mergel(cbh, crh);
|
|
g_y2 = vec_msums(g_y2w, pw_mf0344_f0285, pd_onehalf);
|
|
g_y3 = vec_msums(g_y3w, pw_mf0344_f0285, pd_onehalf);
|
|
/* Clever way to avoid 4 shifts + 2 packs. This packs the high word from
|
|
* each dword into a new 16-bit vector, which is the equivalent of
|
|
* descaling the 32-bit results (right-shifting by 16 bits) and then
|
|
* packing them.
|
|
*/
|
|
g_yl = vec_perm((__vector short)g_y0, (__vector short)g_y1,
|
|
shift_pack_index);
|
|
g_yh = vec_perm((__vector short)g_y2, (__vector short)g_y3,
|
|
shift_pack_index);
|
|
g_yl = vec_sub(g_yl, crl);
|
|
g_yh = vec_sub(g_yh, crh);
|
|
|
|
for (yloop = 0; yloop < 2 && num_cols > 0; yloop++,
|
|
num_cols -= RGB_PIXELSIZE * 16,
|
|
outptr += RGB_PIXELSIZE * 16, inptr0 += 16) {
|
|
|
|
y = vec_ld(0, inptr0);
|
|
ye = (__vector signed short)vec_perm(pb_zero, y, even_index);
|
|
yo = (__vector signed short)vec_perm(pb_zero, y, odd_index);
|
|
|
|
if (yloop == 0) {
|
|
be = vec_add(b_yl, ye);
|
|
bo = vec_add(b_yl, yo);
|
|
re = vec_add(r_yl, ye);
|
|
ro = vec_add(r_yl, yo);
|
|
ge = vec_add(g_yl, ye);
|
|
go = vec_add(g_yl, yo);
|
|
} else {
|
|
be = vec_add(b_yh, ye);
|
|
bo = vec_add(b_yh, yo);
|
|
re = vec_add(r_yh, ye);
|
|
ro = vec_add(r_yh, yo);
|
|
ge = vec_add(g_yh, ye);
|
|
go = vec_add(g_yh, yo);
|
|
}
|
|
|
|
rl = vec_mergeh(re, ro);
|
|
rh = vec_mergel(re, ro);
|
|
gl = vec_mergeh(ge, go);
|
|
gh = vec_mergel(ge, go);
|
|
bl = vec_mergeh(be, bo);
|
|
bh = vec_mergel(be, bo);
|
|
|
|
rg0 = vec_mergeh(rl, gl);
|
|
bx0 = vec_mergeh(bl, pw_255);
|
|
rg1 = vec_mergel(rl, gl);
|
|
bx1 = vec_mergel(bl, pw_255);
|
|
rg2 = vec_mergeh(rh, gh);
|
|
bx2 = vec_mergeh(bh, pw_255);
|
|
rg3 = vec_mergel(rh, gh);
|
|
bx3 = vec_mergel(bh, pw_255);
|
|
|
|
rgbx0 = vec_packsu(rg0, bx0);
|
|
rgbx1 = vec_packsu(rg1, bx1);
|
|
rgbx2 = vec_packsu(rg2, bx2);
|
|
rgbx3 = vec_packsu(rg3, bx3);
|
|
|
|
#if RGB_PIXELSIZE == 3
|
|
/* rgbx0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 X0 B1 X1 B2 X2 B3 X3
|
|
* rgbx1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 X4 B5 X5 B6 X6 B7 X7
|
|
* rgbx2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 X8 B9 X9 Ba Xa Bb Xb
|
|
* rgbx3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Xc Bd Xd Be Xe Bf Xf
|
|
*
|
|
* rgb0 = R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5
|
|
* rgb1 = G5 B5 R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 Ra Ga
|
|
* rgb2 = Ba Rb Gb Bb Rc Gc Bc Rd Gd Bd Re Ge Be Rf Gf Bf
|
|
*/
|
|
rgb0 = vec_perm(rgbx0, rgbx1, (__vector unsigned char)RGB_INDEX0);
|
|
rgb1 = vec_perm(rgbx1, rgbx2, (__vector unsigned char)RGB_INDEX1);
|
|
rgb2 = vec_perm(rgbx2, rgbx3, (__vector unsigned char)RGB_INDEX2);
|
|
#else
|
|
/* rgbx0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 X0 B1 X1 B2 X2 B3 X3
|
|
* rgbx1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 X4 B5 X5 B6 X6 B7 X7
|
|
* rgbx2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 X8 B9 X9 Ba Xa Bb Xb
|
|
* rgbx3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Xc Bd Xd Be Xe Bf Xf
|
|
*
|
|
* rgb0 = R0 G0 B0 X0 R1 G1 B1 X1 R2 G2 B2 X2 R3 G3 B3 X3
|
|
* rgb1 = R4 G4 B4 X4 R5 G5 B5 X5 R6 G6 B6 X6 R7 G7 B7 X7
|
|
* rgb2 = R8 G8 B8 X8 R9 G9 B9 X9 Ra Ga Ba Xa Rb Gb Bb Xb
|
|
* rgb3 = Rc Gc Bc Xc Rd Gd Bd Xd Re Ge Be Xe Rf Gf Bf Xf
|
|
*/
|
|
rgb0 = vec_perm(rgbx0, rgbx0, (__vector unsigned char)RGB_INDEX);
|
|
rgb1 = vec_perm(rgbx1, rgbx1, (__vector unsigned char)RGB_INDEX);
|
|
rgb2 = vec_perm(rgbx2, rgbx2, (__vector unsigned char)RGB_INDEX);
|
|
rgb3 = vec_perm(rgbx3, rgbx3, (__vector unsigned char)RGB_INDEX);
|
|
#endif
|
|
|
|
#if __BIG_ENDIAN__
|
|
offset = (size_t)outptr & 15;
|
|
if (offset) {
|
|
__vector unsigned char unaligned_shift_index;
|
|
int bytes = num_cols + offset;
|
|
|
|
if (bytes < (RGB_PIXELSIZE + 1) * 16 && (bytes & 15)) {
|
|
/* Slow path to prevent buffer overwrite. Since there is no way to
|
|
* write a partial AltiVec register, overwrite would occur on the
|
|
* last chunk of the last image row if the right edge is not on a
|
|
* 16-byte boundary. It could also occur on other rows if the bytes
|
|
* per row is low enough. Since we can't determine whether we're on
|
|
* the last image row, we have to assume every row is the last.
|
|
*/
|
|
vec_st(rgb0, 0, tmpbuf);
|
|
vec_st(rgb1, 16, tmpbuf);
|
|
vec_st(rgb2, 32, tmpbuf);
|
|
#if RGB_PIXELSIZE == 4
|
|
vec_st(rgb3, 48, tmpbuf);
|
|
#endif
|
|
memcpy(outptr, tmpbuf, min(num_cols, RGB_PIXELSIZE * 16));
|
|
} else {
|
|
/* Fast path */
|
|
unaligned_shift_index = vec_lvsl(0, outptr);
|
|
edgel = vec_ld(0, outptr);
|
|
edgeh = vec_ld(min(num_cols - 1, RGB_PIXELSIZE * 16), outptr);
|
|
edges = vec_perm(edgeh, edgel, unaligned_shift_index);
|
|
unaligned_shift_index = vec_lvsr(0, outptr);
|
|
out0 = vec_perm(edges, rgb0, unaligned_shift_index);
|
|
out1 = vec_perm(rgb0, rgb1, unaligned_shift_index);
|
|
out2 = vec_perm(rgb1, rgb2, unaligned_shift_index);
|
|
#if RGB_PIXELSIZE == 4
|
|
out3 = vec_perm(rgb2, rgb3, unaligned_shift_index);
|
|
out4 = vec_perm(rgb3, edges, unaligned_shift_index);
|
|
#else
|
|
out3 = vec_perm(rgb2, edges, unaligned_shift_index);
|
|
#endif
|
|
vec_st(out0, 0, outptr);
|
|
if (bytes > 16)
|
|
vec_st(out1, 16, outptr);
|
|
if (bytes > 32)
|
|
vec_st(out2, 32, outptr);
|
|
if (bytes > 48)
|
|
vec_st(out3, 48, outptr);
|
|
#if RGB_PIXELSIZE == 4
|
|
if (bytes > 64)
|
|
vec_st(out4, 64, outptr);
|
|
#endif
|
|
}
|
|
} else {
|
|
#endif /* __BIG_ENDIAN__ */
|
|
if (num_cols < RGB_PIXELSIZE * 16 && (num_cols & 15)) {
|
|
/* Slow path */
|
|
VEC_ST(rgb0, 0, tmpbuf);
|
|
VEC_ST(rgb1, 16, tmpbuf);
|
|
VEC_ST(rgb2, 32, tmpbuf);
|
|
#if RGB_PIXELSIZE == 4
|
|
VEC_ST(rgb3, 48, tmpbuf);
|
|
#endif
|
|
memcpy(outptr, tmpbuf, min(num_cols, RGB_PIXELSIZE * 16));
|
|
} else {
|
|
/* Fast path */
|
|
VEC_ST(rgb0, 0, outptr);
|
|
if (num_cols > 16)
|
|
VEC_ST(rgb1, 16, outptr);
|
|
if (num_cols > 32)
|
|
VEC_ST(rgb2, 32, outptr);
|
|
#if RGB_PIXELSIZE == 4
|
|
if (num_cols > 48)
|
|
VEC_ST(rgb3, 48, outptr);
|
|
#endif
|
|
}
|
|
#if __BIG_ENDIAN__
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void jsimd_h2v2_merged_upsample_altivec(JDIMENSION output_width,
|
|
JSAMPIMAGE input_buf,
|
|
JDIMENSION in_row_group_ctr,
|
|
JSAMPARRAY output_buf)
|
|
{
|
|
JSAMPROW inptr, outptr;
|
|
|
|
inptr = input_buf[0][in_row_group_ctr];
|
|
outptr = output_buf[0];
|
|
|
|
input_buf[0][in_row_group_ctr] = input_buf[0][in_row_group_ctr * 2];
|
|
jsimd_h2v1_merged_upsample_altivec(output_width, input_buf, in_row_group_ctr,
|
|
output_buf);
|
|
|
|
input_buf[0][in_row_group_ctr] = input_buf[0][in_row_group_ctr * 2 + 1];
|
|
output_buf[0] = output_buf[1];
|
|
jsimd_h2v1_merged_upsample_altivec(output_width, input_buf, in_row_group_ctr,
|
|
output_buf);
|
|
|
|
input_buf[0][in_row_group_ctr] = inptr;
|
|
output_buf[0] = outptr;
|
|
}
|