Files
mozjpeg/java/TJUnitTest.java
DRC fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00

1108 lines
38 KiB
Java

/*
* Copyright (C)2011-2018, 2022-2023 D. R. Commander. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the libjpeg-turbo Project nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This program tests the various code paths in the TurboJPEG JNI Wrapper
*/
import java.io.*;
import java.util.*;
import java.awt.image.*;
import javax.imageio.*;
import java.nio.*;
import org.libjpegturbo.turbojpeg.*;
@SuppressWarnings("checkstyle:JavadocType")
final class TJUnitTest {
private TJUnitTest() {}
static final String CLASS_NAME =
new TJUnitTest().getClass().getName();
static void usage() {
System.out.println("\nUSAGE: java " + CLASS_NAME + " [options]\n");
System.out.println("Options:");
System.out.println("-yuv = test YUV encoding/compression/decompression/decoding");
System.out.println(" (8-bit data precision only)");
System.out.println("-noyuvpad = do not pad each row in each Y, U, and V plane to the nearest");
System.out.println(" multiple of 4 bytes");
System.out.println("-precision N = test N-bit data precision (N is 8, 12, or 16; default is 8; if N");
System.out.println(" is 16, then -lossless is implied)");
System.out.println("-lossless = test lossless JPEG compression/decompression");
System.out.println("-bi = test BufferedImage I/O (8-bit data precision only)\n");
System.exit(1);
}
static final String[] SUBNAME_LONG = {
"4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1"
};
static final String[] SUBNAME = {
"444", "422", "420", "GRAY", "440", "411"
};
static final String[] PIXFORMATSTR = {
"RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "Grayscale",
"RGBA", "BGRA", "ABGR", "ARGB", "CMYK"
};
static final int[] FORMATS_3SAMPLE = {
TJ.PF_RGB, TJ.PF_BGR
};
static final int[] FORMATS_3BYTEBI = {
BufferedImage.TYPE_3BYTE_BGR
};
static final int[] FORMATS_4SAMPLE = {
TJ.PF_RGBX, TJ.PF_BGRX, TJ.PF_XBGR, TJ.PF_XRGB, TJ.PF_CMYK
};
static final int[] FORMATS_4BYTEBI = {
BufferedImage.TYPE_INT_BGR, BufferedImage.TYPE_INT_RGB,
BufferedImage.TYPE_4BYTE_ABGR, BufferedImage.TYPE_4BYTE_ABGR_PRE,
BufferedImage.TYPE_INT_ARGB, BufferedImage.TYPE_INT_ARGB_PRE
};
static final int[] FORMATS_GRAY = {
TJ.PF_GRAY
};
static final int[] FORMATS_GRAYBI = {
BufferedImage.TYPE_BYTE_GRAY
};
static final int[] FORMATS_RGB = {
TJ.PF_RGB
};
private static boolean doYUV = false;
private static boolean lossless = false;
private static int psv = 1;
private static int yuvAlign = 4;
private static int precision = 8;
private static int sampleSize, maxSample, tolerance, redToY, yellowToY;
private static boolean bi = false;
private static int exitStatus = 0;
static int biTypePF(int biType) {
ByteOrder byteOrder = ByteOrder.nativeOrder();
switch (biType) {
case BufferedImage.TYPE_3BYTE_BGR:
return TJ.PF_BGR;
case BufferedImage.TYPE_4BYTE_ABGR:
case BufferedImage.TYPE_4BYTE_ABGR_PRE:
return TJ.PF_ABGR;
case BufferedImage.TYPE_BYTE_GRAY:
return TJ.PF_GRAY;
case BufferedImage.TYPE_INT_BGR:
return TJ.PF_RGBX;
case BufferedImage.TYPE_INT_RGB:
return TJ.PF_BGRX;
case BufferedImage.TYPE_INT_ARGB:
case BufferedImage.TYPE_INT_ARGB_PRE:
return TJ.PF_BGRA;
default:
return 0;
}
}
static String biTypeStr(int biType) {
switch (biType) {
case BufferedImage.TYPE_3BYTE_BGR:
return "3BYTE_BGR";
case BufferedImage.TYPE_4BYTE_ABGR:
return "4BYTE_ABGR";
case BufferedImage.TYPE_4BYTE_ABGR_PRE:
return "4BYTE_ABGR_PRE";
case BufferedImage.TYPE_BYTE_GRAY:
return "BYTE_GRAY";
case BufferedImage.TYPE_INT_BGR:
return "INT_BGR";
case BufferedImage.TYPE_INT_RGB:
return "INT_RGB";
case BufferedImage.TYPE_INT_ARGB:
return "INT_ARGB";
case BufferedImage.TYPE_INT_ARGB_PRE:
return "INT_ARGB_PRE";
default:
return "Unknown";
}
}
static void fillArray(Object buf, int val) {
if (precision == 8)
Arrays.fill((byte[])buf, (byte)val);
else
Arrays.fill((short[])buf, (short)val);
}
static void setVal(Object buf, int index, int value) {
if (precision == 8)
((byte[])buf)[index] = (byte)value;
else
((short[])buf)[index] = (short)value;
}
static void initBuf(Object buf, int w, int pitch, int h, int pf,
boolean bottomUp) throws Exception {
int roffset = TJ.getRedOffset(pf);
int goffset = TJ.getGreenOffset(pf);
int boffset = TJ.getBlueOffset(pf);
int aoffset = TJ.getAlphaOffset(pf);
int ps = TJ.getPixelSize(pf);
int index, row, col, halfway = 16;
if (pf == TJ.PF_GRAY) {
fillArray(buf, 0);
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = pitch * (h - row - 1) + col;
else
index = pitch * row + col;
if (((row / 8) + (col / 8)) % 2 == 0)
setVal(buf, index, (row < halfway) ? maxSample : 0);
else
setVal(buf, index, (row < halfway) ? redToY : yellowToY);
}
}
return;
}
if (pf == TJ.PF_CMYK) {
fillArray(buf, maxSample);
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = (h - row - 1) * w + col;
else
index = row * w + col;
if (((row / 8) + (col / 8)) % 2 == 0) {
if (row >= halfway) setVal(buf, index * ps + 3, 0);
} else {
setVal(buf, index * ps + 2, 0);
if (row < halfway)
setVal(buf, index * ps + 1, 0);
}
}
}
return;
}
fillArray(buf, 0);
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = pitch * (h - row - 1) + col * ps;
else
index = pitch * row + col * ps;
if (((row / 8) + (col / 8)) % 2 == 0) {
if (row < halfway) {
setVal(buf, index + roffset, maxSample);
setVal(buf, index + goffset, maxSample);
setVal(buf, index + boffset, maxSample);
}
} else {
setVal(buf, index + roffset, maxSample);
if (row >= halfway)
setVal(buf, index + goffset, maxSample);
}
if (aoffset >= 0)
setVal(buf, index + aoffset, maxSample);
}
}
}
static void initIntBuf(int[] buf, int w, int pitch, int h, int pf,
boolean bottomUp) throws Exception {
int rshift = TJ.getRedOffset(pf) * 8;
int gshift = TJ.getGreenOffset(pf) * 8;
int bshift = TJ.getBlueOffset(pf) * 8;
int ashift = TJ.getAlphaOffset(pf) * 8;
int index, row, col, halfway = 16;
Arrays.fill(buf, 0);
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = pitch * (h - row - 1) + col;
else
index = pitch * row + col;
if (((row / 8) + (col / 8)) % 2 == 0) {
if (row < halfway) {
buf[index] |= (255 << rshift);
buf[index] |= (255 << gshift);
buf[index] |= (255 << bshift);
}
} else {
buf[index] |= (255 << rshift);
if (row >= halfway)
buf[index] |= (255 << gshift);
}
if (ashift >= 0)
buf[index] |= (255 << ashift);
}
}
}
static void initImg(BufferedImage img, int pf, boolean bottomUp)
throws Exception {
WritableRaster wr = img.getRaster();
int imgType = img.getType();
if (imgType == BufferedImage.TYPE_INT_RGB ||
imgType == BufferedImage.TYPE_INT_BGR ||
imgType == BufferedImage.TYPE_INT_ARGB ||
imgType == BufferedImage.TYPE_INT_ARGB_PRE) {
SinglePixelPackedSampleModel sm =
(SinglePixelPackedSampleModel)img.getSampleModel();
int pitch = sm.getScanlineStride();
DataBufferInt db = (DataBufferInt)wr.getDataBuffer();
int[] buf = db.getData();
initIntBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, bottomUp);
} else {
ComponentSampleModel sm = (ComponentSampleModel)img.getSampleModel();
int pitch = sm.getScanlineStride();
DataBufferByte db = (DataBufferByte)wr.getDataBuffer();
byte[] buf = db.getData();
initBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, bottomUp);
}
}
static void checkVal(int row, int col, int v, String vname, int cv)
throws Exception {
v = (v < 0) ? v + 256 : v;
if (v < cv - tolerance || v > cv + tolerance) {
throw new Exception("Comp. " + vname + " at " + row + "," + col +
" should be " + cv + ", not " + v);
}
}
static void checkVal0(int row, int col, int v, String vname)
throws Exception {
v = (v < 0) ? v + 256 : v;
if (v > tolerance) {
throw new Exception("Comp. " + vname + " at " + row + "," + col +
" should be 0, not " + v);
}
}
static void checkValMax(int row, int col, int v, String vname)
throws Exception {
v = (v < 0) ? v + 256 : v;
if (v < maxSample - tolerance) {
throw new Exception("Comp. " + vname + " at " + row + "," + col +
" should be " + maxSample + ", not " + v);
}
}
static int getVal(Object buf, int index) {
int v;
if (precision == 8)
v = (int)(((byte[])buf)[index]);
else
v = (int)(((short[])buf)[index]);
if (v < 0)
v += maxSample + 1;
return v;
}
static int checkBuf(Object buf, int w, int pitch, int h, int pf, int subsamp,
TJScalingFactor sf, boolean bottomUp) throws Exception {
int roffset = TJ.getRedOffset(pf);
int goffset = TJ.getGreenOffset(pf);
int boffset = TJ.getBlueOffset(pf);
int aoffset = TJ.getAlphaOffset(pf);
int ps = TJ.getPixelSize(pf);
int index, row, col, retval = 1;
int halfway = 16 * sf.getNum() / sf.getDenom();
int blockSize = 8 * sf.getNum() / sf.getDenom();
try {
if (pf == TJ.PF_GRAY)
roffset = goffset = boffset = 0;
if (pf == TJ.PF_CMYK) {
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = (h - row - 1) * w + col;
else
index = row * w + col;
int c = getVal(buf, index * ps);
int m = getVal(buf, index * ps + 1);
int y = getVal(buf, index * ps + 2);
int k = getVal(buf, index * ps + 3);
checkValMax(row, col, c, "C");
if (((row / blockSize) + (col / blockSize)) % 2 == 0) {
checkValMax(row, col, m, "M");
checkValMax(row, col, y, "Y");
if (row < halfway)
checkValMax(row, col, k, "K");
else
checkVal0(row, col, k, "K");
} else {
checkVal0(row, col, y, "Y");
checkValMax(row, col, k, "K");
if (row < halfway)
checkVal0(row, col, m, "M");
else
checkValMax(row, col, m, "M");
}
}
}
return 1;
}
for (row = 0; row < halfway; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = pitch * (h - row - 1) + col * ps;
else
index = pitch * row + col * ps;
int r = getVal(buf, index + roffset);
int g = getVal(buf, index + goffset);
int b = getVal(buf, index + boffset);
int a = aoffset >= 0 ? getVal(buf, index + aoffset) : maxSample;
if (((row / blockSize) + (col / blockSize)) % 2 == 0) {
if (row < halfway) {
checkValMax(row, col, r, "R");
checkValMax(row, col, g, "G");
checkValMax(row, col, b, "B");
} else {
checkVal0(row, col, r, "R");
checkVal0(row, col, g, "G");
checkVal0(row, col, b, "B");
}
} else {
if (subsamp == TJ.SAMP_GRAY) {
if (row < halfway) {
checkVal(row, col, r, "R", redToY);
checkVal(row, col, g, "G", redToY);
checkVal(row, col, b, "B", redToY);
} else {
checkVal(row, col, r, "R", yellowToY);
checkVal(row, col, g, "G", yellowToY);
checkVal(row, col, b, "B", yellowToY);
}
} else {
checkValMax(row, col, r, "R");
if (row < halfway) {
checkVal0(row, col, g, "G");
} else {
checkValMax(row, col, g, "G");
}
checkVal0(row, col, b, "B");
}
}
checkValMax(row, col, a, "A");
}
}
} catch (Exception e) {
System.out.println("\n" + e.getMessage());
retval = 0;
}
if (retval == 0) {
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
if (pf == TJ.PF_CMYK) {
int c = getVal(buf, pitch * row + col * ps);
int m = getVal(buf, pitch * row + col * ps + 1);
int y = getVal(buf, pitch * row + col * ps + 2);
int k = getVal(buf, pitch * row + col * ps + 3);
System.out.format("%3d/%3d/%3d/%3d ", c, m, y, k);
} else {
int r = getVal(buf, pitch * row + col * ps + roffset);
int g = getVal(buf, pitch * row + col * ps + goffset);
int b = getVal(buf, pitch * row + col * ps + boffset);
System.out.format("%3d/%3d/%3d ", r, g, b);
}
}
System.out.print("\n");
}
}
return retval;
}
static int checkIntBuf(int[] buf, int w, int pitch, int h, int pf,
int subsamp, TJScalingFactor sf, boolean bottomUp)
throws Exception {
int rshift = TJ.getRedOffset(pf) * 8;
int gshift = TJ.getGreenOffset(pf) * 8;
int bshift = TJ.getBlueOffset(pf) * 8;
int ashift = TJ.getAlphaOffset(pf) * 8;
int index, row, col, retval = 1;
int halfway = 16 * sf.getNum() / sf.getDenom();
int blockSize = 8 * sf.getNum() / sf.getDenom();
try {
for (row = 0; row < halfway; row++) {
for (col = 0; col < w; col++) {
if (bottomUp)
index = pitch * (h - row - 1) + col;
else
index = pitch * row + col;
int r = (buf[index] >> rshift) & 0xFF;
int g = (buf[index] >> gshift) & 0xFF;
int b = (buf[index] >> bshift) & 0xFF;
int a = ashift >= 0 ? (buf[index] >> ashift) & 0xFF : 255;
if (((row / blockSize) + (col / blockSize)) % 2 == 0) {
if (row < halfway) {
checkValMax(row, col, r, "R");
checkValMax(row, col, g, "G");
checkValMax(row, col, b, "B");
} else {
checkVal0(row, col, r, "R");
checkVal0(row, col, g, "G");
checkVal0(row, col, b, "B");
}
} else {
if (subsamp == TJ.SAMP_GRAY) {
if (row < halfway) {
checkVal(row, col, r, "R", 76);
checkVal(row, col, g, "G", 76);
checkVal(row, col, b, "B", 76);
} else {
checkVal(row, col, r, "R", 226);
checkVal(row, col, g, "G", 226);
checkVal(row, col, b, "B", 226);
}
} else {
checkValMax(row, col, r, "R");
if (row < halfway) {
checkVal0(row, col, g, "G");
} else {
checkValMax(row, col, g, "G");
}
checkVal0(row, col, b, "B");
}
}
checkValMax(row, col, a, "A");
}
}
} catch (Exception e) {
System.out.println("\n" + e.getMessage());
retval = 0;
}
if (retval == 0) {
for (row = 0; row < h; row++) {
for (col = 0; col < w; col++) {
int r = (buf[pitch * row + col] >> rshift) & 0xFF;
int g = (buf[pitch * row + col] >> gshift) & 0xFF;
int b = (buf[pitch * row + col] >> bshift) & 0xFF;
if (r < 0) r += 256;
if (g < 0) g += 256;
if (b < 0) b += 256;
System.out.format("%3d/%3d/%3d ", r, g, b);
}
System.out.print("\n");
}
}
return retval;
}
static int checkImg(BufferedImage img, int pf, int subsamp,
TJScalingFactor sf, boolean bottomUp) throws Exception {
WritableRaster wr = img.getRaster();
int imgType = img.getType();
if (imgType == BufferedImage.TYPE_INT_RGB ||
imgType == BufferedImage.TYPE_INT_BGR ||
imgType == BufferedImage.TYPE_INT_ARGB ||
imgType == BufferedImage.TYPE_INT_ARGB_PRE) {
SinglePixelPackedSampleModel sm =
(SinglePixelPackedSampleModel)img.getSampleModel();
int pitch = sm.getScanlineStride();
DataBufferInt db = (DataBufferInt)wr.getDataBuffer();
int[] buf = db.getData();
return checkIntBuf(buf, img.getWidth(), pitch, img.getHeight(), pf,
subsamp, sf, bottomUp);
} else {
ComponentSampleModel sm = (ComponentSampleModel)img.getSampleModel();
int pitch = sm.getScanlineStride();
DataBufferByte db = (DataBufferByte)wr.getDataBuffer();
byte[] buf = db.getData();
return checkBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, subsamp,
sf, bottomUp);
}
}
static int pad(int v, int p) {
return ((v + (p) - 1) & (~((p) - 1)));
}
static int checkBufYUV(byte[] buf, int size, int w, int h, int subsamp,
TJScalingFactor sf) throws Exception {
int row, col;
int hsf = TJ.getMCUWidth(subsamp) / 8, vsf = TJ.getMCUHeight(subsamp) / 8;
int pw = pad(w, hsf), ph = pad(h, vsf);
int cw = pw / hsf, ch = ph / vsf;
int ypitch = pad(pw, yuvAlign), uvpitch = pad(cw, yuvAlign);
int retval = 1;
int correctsize = ypitch * ph +
(subsamp == TJ.SAMP_GRAY ? 0 : uvpitch * ch * 2);
int halfway = 16 * sf.getNum() / sf.getDenom();
int blockSize = 8 * sf.getNum() / sf.getDenom();
try {
if (size != correctsize)
throw new Exception("Incorrect size " + size + ". Should be " +
correctsize);
for (row = 0; row < ph; row++) {
for (col = 0; col < pw; col++) {
byte y = buf[ypitch * row + col];
if (((row / blockSize) + (col / blockSize)) % 2 == 0) {
if (row < halfway)
checkValMax(row, col, y, "Y");
else
checkVal0(row, col, y, "Y");
} else {
if (row < halfway)
checkVal(row, col, y, "Y", 76);
else
checkVal(row, col, y, "Y", 226);
}
}
}
if (subsamp != TJ.SAMP_GRAY) {
halfway = 16 / vsf * sf.getNum() / sf.getDenom();
for (row = 0; row < ch; row++) {
for (col = 0; col < cw; col++) {
byte u = buf[ypitch * ph + (uvpitch * row + col)],
v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)];
if (((row * vsf / blockSize) + (col * hsf / blockSize)) % 2 == 0) {
checkVal(row, col, u, "U", 128);
checkVal(row, col, v, "V", 128);
} else {
if (row < halfway) {
checkVal(row, col, u, "U", 85);
checkValMax(row, col, v, "V");
} else {
checkVal0(row, col, u, "U");
checkVal(row, col, v, "V", 149);
}
}
}
}
}
} catch (Exception e) {
System.out.println("\n" + e.getMessage());
retval = 0;
}
if (retval == 0) {
for (row = 0; row < ph; row++) {
for (col = 0; col < pw; col++) {
int y = buf[ypitch * row + col];
if (y < 0) y += 256;
System.out.format("%3d ", y);
}
System.out.print("\n");
}
System.out.print("\n");
for (row = 0; row < ch; row++) {
for (col = 0; col < cw; col++) {
int u = buf[ypitch * ph + (uvpitch * row + col)];
if (u < 0) u += 256;
System.out.format("%3d ", u);
}
System.out.print("\n");
}
System.out.print("\n");
for (row = 0; row < ch; row++) {
for (col = 0; col < cw; col++) {
int v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)];
if (v < 0) v += 256;
System.out.format("%3d ", v);
}
System.out.print("\n");
}
}
return retval;
}
static void writeJPEG(byte[] jpegBuf, int jpegBufSize, String filename)
throws Exception {
File file = new File(filename);
FileOutputStream fos = new FileOutputStream(file);
fos.write(jpegBuf, 0, jpegBufSize);
fos.close();
}
static int compTest(TJCompressor tjc, byte[] dstBuf, int w, int h, int pf,
String baseName) throws Exception {
String tempStr;
Object srcBuf = null;
BufferedImage img = null;
String pfStr, pfStrLong;
boolean bottomUp = (tjc.get(TJ.PARAM_BOTTOMUP) == 1);
int subsamp = tjc.get(TJ.PARAM_SUBSAMP);
int jpegQual = tjc.get(TJ.PARAM_QUALITY);
int jpegPSV = tjc.get(TJ.PARAM_LOSSLESSPSV);
String buStr = bottomUp ? "BU" : "TD";
String buStrLong = bottomUp ? "Bottom-Up" : "Top-Down ";
int size = 0, ps, imgType = pf;
if (bi) {
pf = biTypePF(imgType);
pfStr = biTypeStr(imgType);
pfStrLong = pfStr + " (" + PIXFORMATSTR[pf] + ")";
} else {
pfStr = PIXFORMATSTR[pf];
pfStrLong = pfStr;
}
ps = TJ.getPixelSize(pf);
if (bi) {
img = new BufferedImage(w, h, imgType);
initImg(img, pf, bottomUp);
tempStr = baseName + "_enc" + precision + "_" + pfStr + "_" + buStr +
"_" + SUBNAME[subsamp] + "_Q" + jpegQual + ".png";
File file = new File(tempStr);
ImageIO.write(img, "png", file);
tjc.setSourceImage(img, 0, 0, 0, 0);
} else {
if (precision == 8)
srcBuf = new byte[w * h * ps + 1];
else
srcBuf = new short[w * h * ps + 1];
initBuf(srcBuf, w, w * ps, h, pf, bottomUp);
if (precision == 8)
tjc.setSourceImage((byte[])srcBuf, 0, 0, w, 0, h, pf);
else if (precision == 12)
tjc.setSourceImage12((short[])srcBuf, 0, 0, w, 0, h, pf);
else
tjc.setSourceImage16((short[])srcBuf, 0, 0, w, 0, h, pf);
}
Arrays.fill(dstBuf, (byte)0);
if (doYUV) {
System.out.format("%s %s -> YUV %s ... ", pfStrLong, buStrLong,
SUBNAME_LONG[subsamp]);
YUVImage yuvImage = tjc.encodeYUV(yuvAlign);
if (checkBufYUV(yuvImage.getBuf(), yuvImage.getSize(), w, h, subsamp,
new TJScalingFactor(1, 1)) == 1)
System.out.print("Passed.\n");
else {
System.out.print("FAILED!\n");
exitStatus = -1;
}
System.out.format("YUV %s %s -> JPEG Q%d ... ", SUBNAME_LONG[subsamp],
buStrLong, jpegQual);
tjc.setSourceImage(yuvImage);
} else {
if (lossless)
System.out.format("%s %s -> LOSSLESS PSV%d ... ", pfStrLong, buStrLong,
jpegPSV);
else
System.out.format("%s %s -> %s Q%d ... ", pfStrLong, buStrLong,
SUBNAME_LONG[subsamp], jpegQual);
}
tjc.compress(dstBuf);
size = tjc.getCompressedSize();
if (lossless)
tempStr = baseName + "_enc" + precision + "_" + pfStr + "_" + buStr +
"_LOSSLESS_PSV" + jpegPSV + ".jpg";
else
tempStr = baseName + "_enc" + precision + "_" + pfStr + "_" + buStr +
"_" + SUBNAME[subsamp] + "_Q" + jpegQual + ".jpg";
writeJPEG(dstBuf, size, tempStr);
System.out.println("Done.\n Result in " + tempStr);
return size;
}
static void decompTest(TJDecompressor tjd, byte[] jpegBuf, int jpegSize,
int w, int h, int pf, String baseName, int subsamp,
TJScalingFactor sf) throws Exception {
String pfStr, pfStrLong, tempStr;
boolean bottomUp = (tjd.get(TJ.PARAM_BOTTOMUP) == 1);
String buStrLong = bottomUp ? "Bottom-Up" : "Top-Down ";
int scaledWidth = sf.getScaled(w);
int scaledHeight = sf.getScaled(h);
int temp1, temp2, imgType = pf;
BufferedImage img = null;
Object dstBuf = null;
if (bi) {
pf = biTypePF(imgType);
pfStr = biTypeStr(imgType);
pfStrLong = pfStr + " (" + PIXFORMATSTR[pf] + ")";
} else {
pfStr = PIXFORMATSTR[pf];
pfStrLong = pfStr;
}
tjd.setSourceImage(jpegBuf, jpegSize);
tjd.setScalingFactor(sf);
if (lossless && subsamp != TJ.SAMP_444 && subsamp != TJ.SAMP_GRAY)
subsamp = TJ.SAMP_444;
if (tjd.getWidth() != w || tjd.getHeight() != h ||
tjd.get(TJ.PARAM_SUBSAMP) != subsamp)
throw new Exception("Incorrect JPEG header");
if (doYUV) {
System.out.format("JPEG -> YUV %s ", SUBNAME_LONG[subsamp]);
if (!sf.isOne())
System.out.format("%d/%d ... ", sf.getNum(), sf.getDenom());
else System.out.print("... ");
YUVImage yuvImage = tjd.decompressToYUV(yuvAlign);
if (checkBufYUV(yuvImage.getBuf(), yuvImage.getSize(), scaledWidth,
scaledHeight, subsamp, sf) == 1)
System.out.print("Passed.\n");
else {
System.out.print("FAILED!\n"); exitStatus = -1;
}
System.out.format("YUV %s -> %s %s ... ", SUBNAME_LONG[subsamp],
pfStrLong, buStrLong);
tjd.setSourceImage(yuvImage);
} else {
System.out.format("JPEG -> %s %s ", pfStrLong, buStrLong);
if (!sf.isOne())
System.out.format("%d/%d ... ", sf.getNum(), sf.getDenom());
else System.out.print("... ");
}
if (bi)
img = tjd.decompress8(imgType);
else {
if (precision == 8)
dstBuf = tjd.decompress8(0, pf);
else if (precision == 12)
dstBuf = tjd.decompress12(0, pf);
else
dstBuf = tjd.decompress16(0, pf);
}
if (bi) {
tempStr = baseName + "_dec_" + pfStr + "_" + (bottomUp ? "BU" : "TD") +
"_" + SUBNAME[subsamp] + "_" +
(double)sf.getNum() / (double)sf.getDenom() + "x" + ".png";
File file = new File(tempStr);
ImageIO.write(img, "png", file);
}
if ((bi && checkImg(img, pf, subsamp, sf, bottomUp) == 1) ||
(!bi && checkBuf(dstBuf, scaledWidth,
scaledWidth * TJ.getPixelSize(pf), scaledHeight, pf,
subsamp, sf, bottomUp) == 1))
System.out.print("Passed.\n");
else {
System.out.print("FAILED!\n");
exitStatus = -1;
}
}
static void decompTest(TJDecompressor tjd, byte[] jpegBuf, int jpegSize,
int w, int h, int pf, String baseName, int subsamp)
throws Exception {
int i;
if (lossless) {
decompTest(tjd, jpegBuf, jpegSize, w, h, pf, baseName, subsamp,
TJ.UNSCALED);
return;
}
TJScalingFactor[] sf = TJ.getScalingFactors();
for (i = 0; i < sf.length; i++) {
int num = sf[i].getNum();
int denom = sf[i].getDenom();
if (subsamp == TJ.SAMP_444 || subsamp == TJ.SAMP_GRAY ||
(subsamp == TJ.SAMP_411 && num == 1 &&
(denom == 2 || denom == 1)) ||
(subsamp != TJ.SAMP_411 && num == 1 &&
(denom == 4 || denom == 2 || denom == 1)))
decompTest(tjd, jpegBuf, jpegSize, w, h, pf, baseName, subsamp, sf[i]);
}
}
static void doTest(int w, int h, int[] formats, int subsamp, String baseName)
throws Exception {
TJCompressor tjc = null;
TJDecompressor tjd = null;
int size;
byte[] dstBuf;
if (lossless && subsamp != TJ.SAMP_GRAY)
subsamp = TJ.SAMP_444;
dstBuf = new byte[TJ.bufSize(w, h, subsamp)];
try {
tjc = new TJCompressor();
tjd = new TJDecompressor();
if (lossless) {
tjc.set(TJ.PARAM_LOSSLESS, 1);
tjc.set(TJ.PARAM_LOSSLESSPSV, ((psv++ - 1) % 7) + 1);
} else {
tjc.set(TJ.PARAM_QUALITY, 100);
if (subsamp == TJ.SAMP_422 || subsamp == TJ.SAMP_420 ||
subsamp == TJ.SAMP_440 || subsamp == TJ.SAMP_411)
tjd.set(TJ.PARAM_FASTUPSAMPLE, 1);
}
tjc.set(TJ.PARAM_SUBSAMP, subsamp);
for (int pf : formats) {
if (pf < 0) continue;
for (int i = 0; i < 2; i++) {
tjc.set(TJ.PARAM_BOTTOMUP, i == 1 ? 1 : 0);
tjd.set(TJ.PARAM_BOTTOMUP, i == 1 ? 1 : 0);
size = compTest(tjc, dstBuf, w, h, pf, baseName);
decompTest(tjd, dstBuf, size, w, h, pf, baseName, subsamp);
if (pf >= TJ.PF_RGBX && pf <= TJ.PF_XRGB && !bi) {
System.out.print("\n");
decompTest(tjd, dstBuf, size, w, h, pf + (TJ.PF_RGBA - TJ.PF_RGBX),
baseName, subsamp);
}
System.out.print("\n");
}
}
System.out.print("--------------------\n\n");
} catch (Exception e) {
if (tjc != null) tjc.close();
if (tjd != null) tjd.close();
throw e;
}
if (tjc != null) tjc.close();
if (tjd != null) tjd.close();
}
static void overflowTest() throws Exception {
/* Ensure that the various buffer size methods don't overflow */
int size = 0;
boolean exception = false;
try {
exception = false;
size = TJ.bufSize(18919, 18919, TJ.SAMP_444);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.bufSize() overflow");
try {
exception = false;
size = TJ.bufSizeYUV(26755, 1, 26755, TJ.SAMP_444);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.bufSizeYUV() overflow");
try {
exception = false;
size = TJ.bufSizeYUV(26754, 3, 26754, TJ.SAMP_444);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.bufSizeYUV() overflow");
try {
exception = false;
size = TJ.bufSizeYUV(26754, -1, 26754, TJ.SAMP_444);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.bufSizeYUV() overflow");
try {
exception = false;
size = TJ.planeSizeYUV(0, 46341, 0, 46341, TJ.SAMP_444);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.planeSizeYUV() overflow");
try {
exception = false;
size = TJ.planeWidth(0, Integer.MAX_VALUE, TJ.SAMP_420);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.planeWidth() overflow");
try {
exception = false;
size = TJ.planeHeight(0, Integer.MAX_VALUE, TJ.SAMP_420);
} catch (Exception e) { exception = true; }
if (!exception || size != 0)
throw new Exception("TJ.planeHeight() overflow");
}
static void bufSizeTest() throws Exception {
int w, h, i, subsamp, numSamp = TJ.NUMSAMP;
byte[] srcBuf, dstBuf = null;
YUVImage dstImage = null;
TJCompressor tjc = null;
Random r = new Random();
try {
tjc = new TJCompressor();
if (lossless) {
tjc.set(TJ.PARAM_LOSSLESS, 1);
tjc.set(TJ.PARAM_LOSSLESSPSV, ((psv++ - 1) % 7) + 1);
numSamp = 1;
} else
tjc.set(TJ.PARAM_QUALITY, 100);
System.out.println("Buffer size regression test");
for (subsamp = 0; subsamp < numSamp; subsamp++) {
tjc.set(TJ.PARAM_SUBSAMP, subsamp);
for (w = 1; w < 48; w++) {
int maxh = (w == 1) ? 2048 : 48;
for (h = 1; h < maxh; h++) {
if (h % 100 == 0)
System.out.format("%04d x %04d\b\b\b\b\b\b\b\b\b\b\b", w, h);
srcBuf = new byte[w * h * 4];
if (doYUV)
dstImage = new YUVImage(w, yuvAlign, h, subsamp);
else
dstBuf = new byte[TJ.bufSize(w, h, subsamp)];
for (i = 0; i < w * h * 4; i++) {
srcBuf[i] = (byte)(r.nextInt(2) * 255);
}
tjc.setSourceImage(srcBuf, 0, 0, w, 0, h, TJ.PF_BGRX);
if (doYUV)
tjc.encodeYUV(dstImage);
else
tjc.compress(dstBuf);
srcBuf = new byte[h * w * 4];
if (doYUV)
dstImage = new YUVImage(h, yuvAlign, w, subsamp);
else
dstBuf = new byte[TJ.bufSize(h, w, subsamp)];
for (i = 0; i < h * w * 4; i++) {
srcBuf[i] = (byte)(r.nextInt(2) * 255);
}
tjc.setSourceImage(srcBuf, 0, 0, h, 0, w, TJ.PF_BGRX);
if (doYUV)
tjc.encodeYUV(dstImage);
else
tjc.compress(dstBuf);
}
dstImage = null;
dstBuf = null;
System.gc();
}
}
System.out.println("Done. ");
} catch (Exception e) {
if (tjc != null) tjc.close();
throw e;
}
if (tjc != null) tjc.close();
}
public static void main(String[] argv) {
try {
String testName = "javatest";
for (int i = 0; i < argv.length; i++) {
if (argv[i].equalsIgnoreCase("-yuv"))
doYUV = true;
else if (argv[i].equalsIgnoreCase("-noyuvpad"))
yuvAlign = 1;
else if (argv[i].equalsIgnoreCase("-lossless"))
lossless = true;
else if (argv[i].equalsIgnoreCase("-bi")) {
bi = true;
testName = "javabitest";
} else if (argv[i].equalsIgnoreCase("-precision") &&
i < argv.length - 1) {
int tempi = -1;
try {
tempi = Integer.parseInt(argv[++i]);
} catch (NumberFormatException e) {}
if (tempi != 8 && tempi != 12 && tempi != 16)
usage();
precision = tempi;
if (precision == 16)
lossless = true;
} else
usage();
}
if (lossless && doYUV)
throw new Exception("Lossless JPEG and YUV encoding/decoding are incompatible.");
if (precision != 8 && doYUV)
throw new Exception("YUV encoding/decoding requires 8-bit data precision.");
if (precision != 8 && bi)
throw new Exception("BufferedImage support requires 8-bit data precision.");
System.out.format("Testing %d-bit precision\n", precision);
sampleSize = (precision == 8 ? 1 : 2);
maxSample = (1 << precision) - 1;
tolerance = (lossless ? 0 : (precision > 8 ? 2 : 1));
redToY = (19595 * maxSample) >> 16;
yellowToY = (58065 * maxSample) >> 16;
if (doYUV)
FORMATS_4SAMPLE[4] = -1;
overflowTest();
doTest(35, 39, bi ? FORMATS_3BYTEBI : FORMATS_3SAMPLE, TJ.SAMP_444,
testName);
doTest(39, 41, bi ? FORMATS_4BYTEBI : FORMATS_4SAMPLE, TJ.SAMP_444,
testName);
doTest(41, 35, bi ? FORMATS_3BYTEBI : FORMATS_3SAMPLE, TJ.SAMP_422,
testName);
if (!lossless) {
doTest(35, 39, bi ? FORMATS_4BYTEBI : FORMATS_4SAMPLE, TJ.SAMP_422,
testName);
doTest(39, 41, bi ? FORMATS_3BYTEBI : FORMATS_3SAMPLE, TJ.SAMP_420,
testName);
doTest(41, 35, bi ? FORMATS_4BYTEBI : FORMATS_4SAMPLE, TJ.SAMP_420,
testName);
doTest(35, 39, bi ? FORMATS_3BYTEBI : FORMATS_3SAMPLE, TJ.SAMP_440,
testName);
doTest(39, 41, bi ? FORMATS_4BYTEBI : FORMATS_4SAMPLE, TJ.SAMP_440,
testName);
doTest(41, 35, bi ? FORMATS_3BYTEBI : FORMATS_3SAMPLE, TJ.SAMP_411,
testName);
doTest(35, 39, bi ? FORMATS_4BYTEBI : FORMATS_4SAMPLE, TJ.SAMP_411,
testName);
}
doTest(39, 41, bi ? FORMATS_GRAYBI : FORMATS_GRAY, TJ.SAMP_GRAY,
testName);
if (!lossless) {
doTest(41, 35, bi ? FORMATS_3BYTEBI : FORMATS_3SAMPLE, TJ.SAMP_GRAY,
testName);
FORMATS_4SAMPLE[4] = -1;
doTest(35, 39, bi ? FORMATS_4BYTEBI : FORMATS_4SAMPLE, TJ.SAMP_GRAY,
testName);
}
if (!bi)
bufSizeTest();
if (doYUV && !bi) {
System.out.print("\n--------------------\n\n");
doTest(48, 48, FORMATS_RGB, TJ.SAMP_444, "javatest_yuv0");
doTest(48, 48, FORMATS_RGB, TJ.SAMP_422, "javatest_yuv0");
doTest(48, 48, FORMATS_RGB, TJ.SAMP_420, "javatest_yuv0");
doTest(48, 48, FORMATS_RGB, TJ.SAMP_440, "javatest_yuv0");
doTest(48, 48, FORMATS_RGB, TJ.SAMP_411, "javatest_yuv0");
doTest(48, 48, FORMATS_RGB, TJ.SAMP_GRAY, "javatest_yuv0");
doTest(48, 48, FORMATS_GRAY, TJ.SAMP_GRAY, "javatest_yuv0");
}
} catch (Exception e) {
e.printStackTrace();
exitStatus = -1;
}
System.exit(exitStatus);
}
}