The Gordian knot that 7fec5074f9 attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API. If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application. (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)
Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation. Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.
In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:
- The colormap and sample_range_limit fields in jpeg_decompress_struct
- The alloc_sarray() and access_virt_sarray() methods in
jpeg_memory_mgr
- jpeg_write_scanlines() and jpeg_write_raw_data()
- jpeg_read_scanlines() and jpeg_read_raw_data()
- jpeg_skip_scanlines() and jpeg_crop_scanline()
(This is subtle, but both of those functions use JSAMPLE-dependent
opaque structures behind the scenes.)
It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples. Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:
- Compile only the precision-dependent libjpeg modules (the
coefficient buffer controllers, the colorspace converters, the
DCT/IDCT managers, the main buffer controllers, the preprocessing
and postprocessing controller, the downsampler and upsamplers, the
quantizers, the integer DCT methods, and the IDCT methods) for
multiple data precisions.
- Introduce 12-bit-specific methods into the various internal
structures defined in jpegint.h.
- Create precision-independent data type, macro, method, field, and
function names that are prefixed by an underscore, and use an
internal header to convert those into precision-dependent data
type, macro, method, field, and function names, based on the value
of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
modules.
- Expose precision-dependent jinit*() functions for each of the
precision-dependent libjpeg modules.
- Abstract the precision-dependent libjpeg modules by calling the
appropriate precision-dependent jinit*() function, based on the
value of cinfo->data_precision, from top-level libjpeg API
functions.
1116 lines
33 KiB
C
1116 lines
33 KiB
C
/*
|
|
* jcphuff.c
|
|
*
|
|
* This file was part of the Independent JPEG Group's software:
|
|
* Copyright (C) 1995-1997, Thomas G. Lane.
|
|
* libjpeg-turbo Modifications:
|
|
* Copyright (C) 2011, 2015, 2018, 2021-2022, D. R. Commander.
|
|
* Copyright (C) 2016, 2018, Matthieu Darbois.
|
|
* Copyright (C) 2020, Arm Limited.
|
|
* Copyright (C) 2021, Alex Richardson.
|
|
* For conditions of distribution and use, see the accompanying README.ijg
|
|
* file.
|
|
*
|
|
* This file contains Huffman entropy encoding routines for progressive JPEG.
|
|
*
|
|
* We do not support output suspension in this module, since the library
|
|
* currently does not allow multiple-scan files to be written with output
|
|
* suspension.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "jsimd.h"
|
|
#include <limits.h>
|
|
|
|
#ifdef HAVE_INTRIN_H
|
|
#include <intrin.h>
|
|
#ifdef _MSC_VER
|
|
#ifdef HAVE_BITSCANFORWARD64
|
|
#pragma intrinsic(_BitScanForward64)
|
|
#endif
|
|
#ifdef HAVE_BITSCANFORWARD
|
|
#pragma intrinsic(_BitScanForward)
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef C_PROGRESSIVE_SUPPORTED
|
|
|
|
/*
|
|
* NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
|
|
* used for bit counting rather than the lookup table. This will reduce the
|
|
* memory footprint by 64k, which is important for some mobile applications
|
|
* that create many isolated instances of libjpeg-turbo (web browsers, for
|
|
* instance.) This may improve performance on some mobile platforms as well.
|
|
* This feature is enabled by default only on Arm processors, because some x86
|
|
* chips have a slow implementation of bsr, and the use of clz/bsr cannot be
|
|
* shown to have a significant performance impact even on the x86 chips that
|
|
* have a fast implementation of it. When building for Armv6, you can
|
|
* explicitly disable the use of clz/bsr by adding -mthumb to the compiler
|
|
* flags (this defines __thumb__).
|
|
*/
|
|
|
|
/* NOTE: Both GCC and Clang define __GNUC__ */
|
|
#if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \
|
|
defined(_M_ARM) || defined(_M_ARM64)
|
|
#if !defined(__thumb__) || defined(__thumb2__)
|
|
#define USE_CLZ_INTRINSIC
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_CLZ_INTRINSIC
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x))
|
|
#else
|
|
#define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
|
|
#endif
|
|
#define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
|
|
#else
|
|
#include "jpeg_nbits_table.h"
|
|
#define JPEG_NBITS(x) (jpeg_nbits_table[x])
|
|
#define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
|
|
#endif
|
|
|
|
|
|
/* Expanded entropy encoder object for progressive Huffman encoding. */
|
|
|
|
typedef struct {
|
|
struct jpeg_entropy_encoder pub; /* public fields */
|
|
|
|
/* Pointer to routine to prepare data for encode_mcu_AC_first() */
|
|
void (*AC_first_prepare) (const JCOEF *block,
|
|
const int *jpeg_natural_order_start, int Sl,
|
|
int Al, JCOEF *values, size_t *zerobits);
|
|
/* Pointer to routine to prepare data for encode_mcu_AC_refine() */
|
|
int (*AC_refine_prepare) (const JCOEF *block,
|
|
const int *jpeg_natural_order_start, int Sl,
|
|
int Al, JCOEF *absvalues, size_t *bits);
|
|
|
|
/* Mode flag: TRUE for optimization, FALSE for actual data output */
|
|
boolean gather_statistics;
|
|
|
|
/* Bit-level coding status.
|
|
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
|
*/
|
|
JOCTET *next_output_byte; /* => next byte to write in buffer */
|
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|
size_t put_buffer; /* current bit-accumulation buffer */
|
|
int put_bits; /* # of bits now in it */
|
|
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
|
|
|
/* Coding status for DC components */
|
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
|
|
|
/* Coding status for AC components */
|
|
int ac_tbl_no; /* the table number of the single component */
|
|
unsigned int EOBRUN; /* run length of EOBs */
|
|
unsigned int BE; /* # of buffered correction bits before MCU */
|
|
char *bit_buffer; /* buffer for correction bits (1 per char) */
|
|
/* packing correction bits tightly would save some space but cost time... */
|
|
|
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
|
int next_restart_num; /* next restart number to write (0-7) */
|
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan).
|
|
* Since any one scan codes only DC or only AC, we only need one set
|
|
* of tables, not one for DC and one for AC.
|
|
*/
|
|
c_derived_tbl *derived_tbls[NUM_HUFF_TBLS];
|
|
|
|
/* Statistics tables for optimization; again, one set is enough */
|
|
long *count_ptrs[NUM_HUFF_TBLS];
|
|
} phuff_entropy_encoder;
|
|
|
|
typedef phuff_entropy_encoder *phuff_entropy_ptr;
|
|
|
|
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
|
* buffer can hold. Larger sizes may slightly improve compression, but
|
|
* 1000 is already well into the realm of overkill.
|
|
* The minimum safe size is 64 bits.
|
|
*/
|
|
|
|
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
|
|
|
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
|
|
* We assume that int right shift is unsigned if JLONG right shift is,
|
|
* which should be safe.
|
|
*/
|
|
|
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
|
#define ISHIFT_TEMPS int ishift_temp;
|
|
#define IRIGHT_SHIFT(x, shft) \
|
|
((ishift_temp = (x)) < 0 ? \
|
|
(ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \
|
|
(ishift_temp >> (shft)))
|
|
#else
|
|
#define ISHIFT_TEMPS
|
|
#define IRIGHT_SHIFT(x, shft) ((x) >> (shft))
|
|
#endif
|
|
|
|
#define PAD(v, p) ((v + (p) - 1) & (~((p) - 1)))
|
|
|
|
/* Forward declarations */
|
|
METHODDEF(boolean) encode_mcu_DC_first(j_compress_ptr cinfo,
|
|
JBLOCKROW *MCU_data);
|
|
METHODDEF(void) encode_mcu_AC_first_prepare
|
|
(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al,
|
|
JCOEF *values, size_t *zerobits);
|
|
METHODDEF(boolean) encode_mcu_AC_first(j_compress_ptr cinfo,
|
|
JBLOCKROW *MCU_data);
|
|
METHODDEF(boolean) encode_mcu_DC_refine(j_compress_ptr cinfo,
|
|
JBLOCKROW *MCU_data);
|
|
METHODDEF(int) encode_mcu_AC_refine_prepare
|
|
(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al,
|
|
JCOEF *absvalues, size_t *bits);
|
|
METHODDEF(boolean) encode_mcu_AC_refine(j_compress_ptr cinfo,
|
|
JBLOCKROW *MCU_data);
|
|
METHODDEF(void) finish_pass_phuff(j_compress_ptr cinfo);
|
|
METHODDEF(void) finish_pass_gather_phuff(j_compress_ptr cinfo);
|
|
|
|
|
|
/* Count bit loop zeroes */
|
|
INLINE
|
|
METHODDEF(int)
|
|
count_zeroes(size_t *x)
|
|
{
|
|
#if defined(HAVE_BUILTIN_CTZL)
|
|
int result;
|
|
result = __builtin_ctzl(*x);
|
|
*x >>= result;
|
|
#elif defined(HAVE_BITSCANFORWARD64)
|
|
unsigned long result;
|
|
_BitScanForward64(&result, *x);
|
|
*x >>= result;
|
|
#elif defined(HAVE_BITSCANFORWARD)
|
|
unsigned long result;
|
|
_BitScanForward(&result, *x);
|
|
*x >>= result;
|
|
#else
|
|
int result = 0;
|
|
while ((*x & 1) == 0) {
|
|
++result;
|
|
*x >>= 1;
|
|
}
|
|
#endif
|
|
return (int)result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize for a Huffman-compressed scan using progressive JPEG.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_phuff(j_compress_ptr cinfo, boolean gather_statistics)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
boolean is_DC_band;
|
|
int ci, tbl;
|
|
jpeg_component_info *compptr;
|
|
|
|
entropy->cinfo = cinfo;
|
|
entropy->gather_statistics = gather_statistics;
|
|
|
|
is_DC_band = (cinfo->Ss == 0);
|
|
|
|
/* We assume jcmaster.c already validated the scan parameters. */
|
|
|
|
/* Select execution routines */
|
|
if (cinfo->Ah == 0) {
|
|
if (is_DC_band)
|
|
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
|
else
|
|
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
|
if (jsimd_can_encode_mcu_AC_first_prepare())
|
|
entropy->AC_first_prepare = jsimd_encode_mcu_AC_first_prepare;
|
|
else
|
|
entropy->AC_first_prepare = encode_mcu_AC_first_prepare;
|
|
} else {
|
|
if (is_DC_band)
|
|
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
|
else {
|
|
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
|
if (jsimd_can_encode_mcu_AC_refine_prepare())
|
|
entropy->AC_refine_prepare = jsimd_encode_mcu_AC_refine_prepare;
|
|
else
|
|
entropy->AC_refine_prepare = encode_mcu_AC_refine_prepare;
|
|
/* AC refinement needs a correction bit buffer */
|
|
if (entropy->bit_buffer == NULL)
|
|
entropy->bit_buffer = (char *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
MAX_CORR_BITS * sizeof(char));
|
|
}
|
|
}
|
|
if (gather_statistics)
|
|
entropy->pub.finish_pass = finish_pass_gather_phuff;
|
|
else
|
|
entropy->pub.finish_pass = finish_pass_phuff;
|
|
|
|
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
|
|
* for AC coefficients.
|
|
*/
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
/* Initialize DC predictions to 0 */
|
|
entropy->last_dc_val[ci] = 0;
|
|
/* Get table index */
|
|
if (is_DC_band) {
|
|
if (cinfo->Ah != 0) /* DC refinement needs no table */
|
|
continue;
|
|
tbl = compptr->dc_tbl_no;
|
|
} else {
|
|
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
|
|
}
|
|
if (gather_statistics) {
|
|
/* Check for invalid table index */
|
|
/* (make_c_derived_tbl does this in the other path) */
|
|
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
|
/* Allocate and zero the statistics tables */
|
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
|
if (entropy->count_ptrs[tbl] == NULL)
|
|
entropy->count_ptrs[tbl] = (long *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
257 * sizeof(long));
|
|
memset(entropy->count_ptrs[tbl], 0, 257 * sizeof(long));
|
|
} else {
|
|
/* Compute derived values for Huffman table */
|
|
/* We may do this more than once for a table, but it's not expensive */
|
|
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
|
|
&entropy->derived_tbls[tbl]);
|
|
}
|
|
}
|
|
|
|
/* Initialize AC stuff */
|
|
entropy->EOBRUN = 0;
|
|
entropy->BE = 0;
|
|
|
|
/* Initialize bit buffer to empty */
|
|
entropy->put_buffer = 0;
|
|
entropy->put_bits = 0;
|
|
|
|
/* Initialize restart stuff */
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num = 0;
|
|
}
|
|
|
|
|
|
/* Outputting bytes to the file.
|
|
* NB: these must be called only when actually outputting,
|
|
* that is, entropy->gather_statistics == FALSE.
|
|
*/
|
|
|
|
/* Emit a byte */
|
|
#define emit_byte(entropy, val) { \
|
|
*(entropy)->next_output_byte++ = (JOCTET)(val); \
|
|
if (--(entropy)->free_in_buffer == 0) \
|
|
dump_buffer(entropy); \
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
dump_buffer(phuff_entropy_ptr entropy)
|
|
/* Empty the output buffer; we do not support suspension in this module. */
|
|
{
|
|
struct jpeg_destination_mgr *dest = entropy->cinfo->dest;
|
|
|
|
if (!(*dest->empty_output_buffer) (entropy->cinfo))
|
|
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
|
/* After a successful buffer dump, must reset buffer pointers */
|
|
entropy->next_output_byte = dest->next_output_byte;
|
|
entropy->free_in_buffer = dest->free_in_buffer;
|
|
}
|
|
|
|
|
|
/* Outputting bits to the file */
|
|
|
|
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
|
* left-justified in this part. At most 16 bits can be passed to emit_bits
|
|
* in one call, and we never retain more than 7 bits in put_buffer
|
|
* between calls, so 24 bits are sufficient.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_bits(phuff_entropy_ptr entropy, unsigned int code, int size)
|
|
/* Emit some bits, unless we are in gather mode */
|
|
{
|
|
/* This routine is heavily used, so it's worth coding tightly. */
|
|
register size_t put_buffer = (size_t)code;
|
|
register int put_bits = entropy->put_bits;
|
|
|
|
/* if size is 0, caller used an invalid Huffman table entry */
|
|
if (size == 0)
|
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
|
|
|
if (entropy->gather_statistics)
|
|
return; /* do nothing if we're only getting stats */
|
|
|
|
put_buffer &= (((size_t)1) << size) - 1; /* mask off any extra bits in code */
|
|
|
|
put_bits += size; /* new number of bits in buffer */
|
|
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
|
|
|
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
|
|
|
|
while (put_bits >= 8) {
|
|
int c = (int)((put_buffer >> 16) & 0xFF);
|
|
|
|
emit_byte(entropy, c);
|
|
if (c == 0xFF) { /* need to stuff a zero byte? */
|
|
emit_byte(entropy, 0);
|
|
}
|
|
put_buffer <<= 8;
|
|
put_bits -= 8;
|
|
}
|
|
|
|
entropy->put_buffer = put_buffer; /* update variables */
|
|
entropy->put_bits = put_bits;
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
flush_bits(phuff_entropy_ptr entropy)
|
|
{
|
|
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
|
entropy->put_buffer = 0; /* and reset bit-buffer to empty */
|
|
entropy->put_bits = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit (or just count) a Huffman symbol.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_symbol(phuff_entropy_ptr entropy, int tbl_no, int symbol)
|
|
{
|
|
if (entropy->gather_statistics)
|
|
entropy->count_ptrs[tbl_no][symbol]++;
|
|
else {
|
|
c_derived_tbl *tbl = entropy->derived_tbls[tbl_no];
|
|
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit bits from a correction bit buffer.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_buffered_bits(phuff_entropy_ptr entropy, char *bufstart,
|
|
unsigned int nbits)
|
|
{
|
|
if (entropy->gather_statistics)
|
|
return; /* no real work */
|
|
|
|
while (nbits > 0) {
|
|
emit_bits(entropy, (unsigned int)(*bufstart), 1);
|
|
bufstart++;
|
|
nbits--;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit any pending EOBRUN symbol.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_eobrun(phuff_entropy_ptr entropy)
|
|
{
|
|
register int temp, nbits;
|
|
|
|
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
|
temp = entropy->EOBRUN;
|
|
nbits = JPEG_NBITS_NONZERO(temp) - 1;
|
|
/* safety check: shouldn't happen given limited correction-bit buffer */
|
|
if (nbits > 14)
|
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
|
|
|
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
|
if (nbits)
|
|
emit_bits(entropy, entropy->EOBRUN, nbits);
|
|
|
|
entropy->EOBRUN = 0;
|
|
|
|
/* Emit any buffered correction bits */
|
|
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
|
entropy->BE = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit a restart marker & resynchronize predictions.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_restart(phuff_entropy_ptr entropy, int restart_num)
|
|
{
|
|
int ci;
|
|
|
|
emit_eobrun(entropy);
|
|
|
|
if (!entropy->gather_statistics) {
|
|
flush_bits(entropy);
|
|
emit_byte(entropy, 0xFF);
|
|
emit_byte(entropy, JPEG_RST0 + restart_num);
|
|
}
|
|
|
|
if (entropy->cinfo->Ss == 0) {
|
|
/* Re-initialize DC predictions to 0 */
|
|
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
|
entropy->last_dc_val[ci] = 0;
|
|
} else {
|
|
/* Re-initialize all AC-related fields to 0 */
|
|
entropy->EOBRUN = 0;
|
|
entropy->BE = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for DC initial scan (either spectral selection,
|
|
* or first pass of successive approximation).
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
register int temp, temp2, temp3;
|
|
register int nbits;
|
|
int blkn, ci;
|
|
int Al = cinfo->Al;
|
|
JBLOCKROW block;
|
|
jpeg_component_info *compptr;
|
|
ISHIFT_TEMPS
|
|
int max_coef_bits = cinfo->data_precision + 2;
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart(entropy, entropy->next_restart_num);
|
|
|
|
/* Encode the MCU data blocks */
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
block = MCU_data[blkn];
|
|
ci = cinfo->MCU_membership[blkn];
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
|
|
/* Compute the DC value after the required point transform by Al.
|
|
* This is simply an arithmetic right shift.
|
|
*/
|
|
temp2 = IRIGHT_SHIFT((int)((*block)[0]), Al);
|
|
|
|
/* DC differences are figured on the point-transformed values. */
|
|
temp = temp2 - entropy->last_dc_val[ci];
|
|
entropy->last_dc_val[ci] = temp2;
|
|
|
|
/* Encode the DC coefficient difference per section G.1.2.1 */
|
|
|
|
/* This is a well-known technique for obtaining the absolute value without
|
|
* a branch. It is derived from an assembly language technique presented
|
|
* in "How to Optimize for the Pentium Processors", Copyright (c) 1996,
|
|
* 1997 by Agner Fog.
|
|
*/
|
|
temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
|
|
temp ^= temp3;
|
|
temp -= temp3; /* temp is abs value of input */
|
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
|
temp2 = temp ^ temp3;
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = JPEG_NBITS(temp);
|
|
/* Check for out-of-range coefficient values.
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
|
*/
|
|
if (nbits > max_coef_bits + 1)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count/emit the Huffman-coded symbol for the number of bits */
|
|
emit_symbol(entropy, compptr->dc_tbl_no, nbits);
|
|
|
|
/* Emit that number of bits of the value, if positive, */
|
|
/* or the complement of its magnitude, if negative. */
|
|
if (nbits) /* emit_bits rejects calls with size 0 */
|
|
emit_bits(entropy, (unsigned int)temp2, nbits);
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Data preparation for encode_mcu_AC_first().
|
|
*/
|
|
|
|
#define COMPUTE_ABSVALUES_AC_FIRST(Sl) { \
|
|
for (k = 0; k < Sl; k++) { \
|
|
temp = block[jpeg_natural_order_start[k]]; \
|
|
if (temp == 0) \
|
|
continue; \
|
|
/* We must apply the point transform by Al. For AC coefficients this \
|
|
* is an integer division with rounding towards 0. To do this portably \
|
|
* in C, we shift after obtaining the absolute value; so the code is \
|
|
* interwoven with finding the abs value (temp) and output bits (temp2). \
|
|
*/ \
|
|
temp2 = temp >> (CHAR_BIT * sizeof(int) - 1); \
|
|
temp ^= temp2; \
|
|
temp -= temp2; /* temp is abs value of input */ \
|
|
temp >>= Al; /* apply the point transform */ \
|
|
/* Watch out for case that nonzero coef is zero after point transform */ \
|
|
if (temp == 0) \
|
|
continue; \
|
|
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */ \
|
|
temp2 ^= temp; \
|
|
values[k] = (JCOEF)temp; \
|
|
values[k + DCTSIZE2] = (JCOEF)temp2; \
|
|
zerobits |= ((size_t)1U) << k; \
|
|
} \
|
|
}
|
|
|
|
METHODDEF(void)
|
|
encode_mcu_AC_first_prepare(const JCOEF *block,
|
|
const int *jpeg_natural_order_start, int Sl,
|
|
int Al, JCOEF *values, size_t *bits)
|
|
{
|
|
register int k, temp, temp2;
|
|
size_t zerobits = 0U;
|
|
int Sl0 = Sl;
|
|
|
|
#if SIZEOF_SIZE_T == 4
|
|
if (Sl0 > 32)
|
|
Sl0 = 32;
|
|
#endif
|
|
|
|
COMPUTE_ABSVALUES_AC_FIRST(Sl0);
|
|
|
|
bits[0] = zerobits;
|
|
#if SIZEOF_SIZE_T == 4
|
|
zerobits = 0U;
|
|
|
|
if (Sl > 32) {
|
|
Sl -= 32;
|
|
jpeg_natural_order_start += 32;
|
|
values += 32;
|
|
|
|
COMPUTE_ABSVALUES_AC_FIRST(Sl);
|
|
}
|
|
bits[1] = zerobits;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* MCU encoding for AC initial scan (either spectral selection,
|
|
* or first pass of successive approximation).
|
|
*/
|
|
|
|
#define ENCODE_COEFS_AC_FIRST(label) { \
|
|
while (zerobits) { \
|
|
r = count_zeroes(&zerobits); \
|
|
cvalue += r; \
|
|
label \
|
|
temp = cvalue[0]; \
|
|
temp2 = cvalue[DCTSIZE2]; \
|
|
\
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
|
|
while (r > 15) { \
|
|
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); \
|
|
r -= 16; \
|
|
} \
|
|
\
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ \
|
|
nbits = JPEG_NBITS_NONZERO(temp); /* there must be at least one 1 bit */ \
|
|
/* Check for out-of-range coefficient values */ \
|
|
if (nbits > max_coef_bits) \
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); \
|
|
\
|
|
/* Count/emit Huffman symbol for run length / number of bits */ \
|
|
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); \
|
|
\
|
|
/* Emit that number of bits of the value, if positive, */ \
|
|
/* or the complement of its magnitude, if negative. */ \
|
|
emit_bits(entropy, (unsigned int)temp2, nbits); \
|
|
\
|
|
cvalue++; \
|
|
zerobits >>= 1; \
|
|
} \
|
|
}
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
register int temp, temp2;
|
|
register int nbits, r;
|
|
int Sl = cinfo->Se - cinfo->Ss + 1;
|
|
int Al = cinfo->Al;
|
|
JCOEF values_unaligned[2 * DCTSIZE2 + 15];
|
|
JCOEF *values;
|
|
const JCOEF *cvalue;
|
|
size_t zerobits;
|
|
size_t bits[8 / SIZEOF_SIZE_T];
|
|
int max_coef_bits = cinfo->data_precision + 2;
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart(entropy, entropy->next_restart_num);
|
|
|
|
#ifdef WITH_SIMD
|
|
cvalue = values = (JCOEF *)PAD((JUINTPTR)values_unaligned, 16);
|
|
#else
|
|
/* Not using SIMD, so alignment is not needed */
|
|
cvalue = values = values_unaligned;
|
|
#endif
|
|
|
|
/* Prepare data */
|
|
entropy->AC_first_prepare(MCU_data[0][0], jpeg_natural_order + cinfo->Ss,
|
|
Sl, Al, values, bits);
|
|
|
|
zerobits = bits[0];
|
|
#if SIZEOF_SIZE_T == 4
|
|
zerobits |= bits[1];
|
|
#endif
|
|
|
|
/* Emit any pending EOBRUN */
|
|
if (zerobits && (entropy->EOBRUN > 0))
|
|
emit_eobrun(entropy);
|
|
|
|
#if SIZEOF_SIZE_T == 4
|
|
zerobits = bits[0];
|
|
#endif
|
|
|
|
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
|
|
|
ENCODE_COEFS_AC_FIRST((void)0;);
|
|
|
|
#if SIZEOF_SIZE_T == 4
|
|
zerobits = bits[1];
|
|
if (zerobits) {
|
|
int diff = ((values + DCTSIZE2 / 2) - cvalue);
|
|
r = count_zeroes(&zerobits);
|
|
r += diff;
|
|
cvalue += r;
|
|
goto first_iter_ac_first;
|
|
}
|
|
|
|
ENCODE_COEFS_AC_FIRST(first_iter_ac_first:);
|
|
#endif
|
|
|
|
if (cvalue < (values + Sl)) { /* If there are trailing zeroes, */
|
|
entropy->EOBRUN++; /* count an EOB */
|
|
if (entropy->EOBRUN == 0x7FFF)
|
|
emit_eobrun(entropy); /* force it out to avoid overflow */
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for DC successive approximation refinement scan.
|
|
* Note: we assume such scans can be multi-component, although the spec
|
|
* is not very clear on the point.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
register int temp;
|
|
int blkn;
|
|
int Al = cinfo->Al;
|
|
JBLOCKROW block;
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart(entropy, entropy->next_restart_num);
|
|
|
|
/* Encode the MCU data blocks */
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
block = MCU_data[blkn];
|
|
|
|
/* We simply emit the Al'th bit of the DC coefficient value. */
|
|
temp = (*block)[0];
|
|
emit_bits(entropy, (unsigned int)(temp >> Al), 1);
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Data preparation for encode_mcu_AC_refine().
|
|
*/
|
|
|
|
#define COMPUTE_ABSVALUES_AC_REFINE(Sl, koffset) { \
|
|
/* It is convenient to make a pre-pass to determine the transformed \
|
|
* coefficients' absolute values and the EOB position. \
|
|
*/ \
|
|
for (k = 0; k < Sl; k++) { \
|
|
temp = block[jpeg_natural_order_start[k]]; \
|
|
/* We must apply the point transform by Al. For AC coefficients this \
|
|
* is an integer division with rounding towards 0. To do this portably \
|
|
* in C, we shift after obtaining the absolute value. \
|
|
*/ \
|
|
temp2 = temp >> (CHAR_BIT * sizeof(int) - 1); \
|
|
temp ^= temp2; \
|
|
temp -= temp2; /* temp is abs value of input */ \
|
|
temp >>= Al; /* apply the point transform */ \
|
|
if (temp != 0) { \
|
|
zerobits |= ((size_t)1U) << k; \
|
|
signbits |= ((size_t)(temp2 + 1)) << k; \
|
|
} \
|
|
absvalues[k] = (JCOEF)temp; /* save abs value for main pass */ \
|
|
if (temp == 1) \
|
|
EOB = k + koffset; /* EOB = index of last newly-nonzero coef */ \
|
|
} \
|
|
}
|
|
|
|
METHODDEF(int)
|
|
encode_mcu_AC_refine_prepare(const JCOEF *block,
|
|
const int *jpeg_natural_order_start, int Sl,
|
|
int Al, JCOEF *absvalues, size_t *bits)
|
|
{
|
|
register int k, temp, temp2;
|
|
int EOB = 0;
|
|
size_t zerobits = 0U, signbits = 0U;
|
|
int Sl0 = Sl;
|
|
|
|
#if SIZEOF_SIZE_T == 4
|
|
if (Sl0 > 32)
|
|
Sl0 = 32;
|
|
#endif
|
|
|
|
COMPUTE_ABSVALUES_AC_REFINE(Sl0, 0);
|
|
|
|
bits[0] = zerobits;
|
|
#if SIZEOF_SIZE_T == 8
|
|
bits[1] = signbits;
|
|
#else
|
|
bits[2] = signbits;
|
|
|
|
zerobits = 0U;
|
|
signbits = 0U;
|
|
|
|
if (Sl > 32) {
|
|
Sl -= 32;
|
|
jpeg_natural_order_start += 32;
|
|
absvalues += 32;
|
|
|
|
COMPUTE_ABSVALUES_AC_REFINE(Sl, 32);
|
|
}
|
|
|
|
bits[1] = zerobits;
|
|
bits[3] = signbits;
|
|
#endif
|
|
|
|
return EOB;
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for AC successive approximation refinement scan.
|
|
*/
|
|
|
|
#define ENCODE_COEFS_AC_REFINE(label) { \
|
|
while (zerobits) { \
|
|
idx = count_zeroes(&zerobits); \
|
|
r += idx; \
|
|
cabsvalue += idx; \
|
|
signbits >>= idx; \
|
|
label \
|
|
/* Emit any required ZRLs, but not if they can be folded into EOB */ \
|
|
while (r > 15 && (cabsvalue <= EOBPTR)) { \
|
|
/* emit any pending EOBRUN and the BE correction bits */ \
|
|
emit_eobrun(entropy); \
|
|
/* Emit ZRL */ \
|
|
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); \
|
|
r -= 16; \
|
|
/* Emit buffered correction bits that must be associated with ZRL */ \
|
|
emit_buffered_bits(entropy, BR_buffer, BR); \
|
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ \
|
|
BR = 0; \
|
|
} \
|
|
\
|
|
temp = *cabsvalue++; \
|
|
\
|
|
/* If the coef was previously nonzero, it only needs a correction bit. \
|
|
* NOTE: a straight translation of the spec's figure G.7 would suggest \
|
|
* that we also need to test r > 15. But if r > 15, we can only get here \
|
|
* if k > EOB, which implies that this coefficient is not 1. \
|
|
*/ \
|
|
if (temp > 1) { \
|
|
/* The correction bit is the next bit of the absolute value. */ \
|
|
BR_buffer[BR++] = (char)(temp & 1); \
|
|
signbits >>= 1; \
|
|
zerobits >>= 1; \
|
|
continue; \
|
|
} \
|
|
\
|
|
/* Emit any pending EOBRUN and the BE correction bits */ \
|
|
emit_eobrun(entropy); \
|
|
\
|
|
/* Count/emit Huffman symbol for run length / number of bits */ \
|
|
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); \
|
|
\
|
|
/* Emit output bit for newly-nonzero coef */ \
|
|
temp = signbits & 1; /* ((*block)[jpeg_natural_order_start[k]] < 0) ? 0 : 1 */ \
|
|
emit_bits(entropy, (unsigned int)temp, 1); \
|
|
\
|
|
/* Emit buffered correction bits that must be associated with this code */ \
|
|
emit_buffered_bits(entropy, BR_buffer, BR); \
|
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ \
|
|
BR = 0; \
|
|
r = 0; /* reset zero run length */ \
|
|
signbits >>= 1; \
|
|
zerobits >>= 1; \
|
|
} \
|
|
}
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
register int temp, r, idx;
|
|
char *BR_buffer;
|
|
unsigned int BR;
|
|
int Sl = cinfo->Se - cinfo->Ss + 1;
|
|
int Al = cinfo->Al;
|
|
JCOEF absvalues_unaligned[DCTSIZE2 + 15];
|
|
JCOEF *absvalues;
|
|
const JCOEF *cabsvalue, *EOBPTR;
|
|
size_t zerobits, signbits;
|
|
size_t bits[16 / SIZEOF_SIZE_T];
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart(entropy, entropy->next_restart_num);
|
|
|
|
#ifdef WITH_SIMD
|
|
cabsvalue = absvalues = (JCOEF *)PAD((JUINTPTR)absvalues_unaligned, 16);
|
|
#else
|
|
/* Not using SIMD, so alignment is not needed */
|
|
cabsvalue = absvalues = absvalues_unaligned;
|
|
#endif
|
|
|
|
/* Prepare data */
|
|
EOBPTR = absvalues +
|
|
entropy->AC_refine_prepare(MCU_data[0][0], jpeg_natural_order + cinfo->Ss,
|
|
Sl, Al, absvalues, bits);
|
|
|
|
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
|
|
|
r = 0; /* r = run length of zeros */
|
|
BR = 0; /* BR = count of buffered bits added now */
|
|
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
|
|
|
zerobits = bits[0];
|
|
#if SIZEOF_SIZE_T == 8
|
|
signbits = bits[1];
|
|
#else
|
|
signbits = bits[2];
|
|
#endif
|
|
ENCODE_COEFS_AC_REFINE((void)0;);
|
|
|
|
#if SIZEOF_SIZE_T == 4
|
|
zerobits = bits[1];
|
|
signbits = bits[3];
|
|
|
|
if (zerobits) {
|
|
int diff = ((absvalues + DCTSIZE2 / 2) - cabsvalue);
|
|
idx = count_zeroes(&zerobits);
|
|
signbits >>= idx;
|
|
idx += diff;
|
|
r += idx;
|
|
cabsvalue += idx;
|
|
goto first_iter_ac_refine;
|
|
}
|
|
|
|
ENCODE_COEFS_AC_REFINE(first_iter_ac_refine:);
|
|
#endif
|
|
|
|
r |= (int)((absvalues + Sl) - cabsvalue);
|
|
|
|
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
|
entropy->EOBRUN++; /* count an EOB */
|
|
entropy->BE += BR; /* concat my correction bits to older ones */
|
|
/* We force out the EOB if we risk either:
|
|
* 1. overflow of the EOB counter;
|
|
* 2. overflow of the correction bit buffer during the next MCU.
|
|
*/
|
|
if (entropy->EOBRUN == 0x7FFF ||
|
|
entropy->BE > (MAX_CORR_BITS - DCTSIZE2 + 1))
|
|
emit_eobrun(entropy);
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish up at the end of a Huffman-compressed progressive scan.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
finish_pass_phuff(j_compress_ptr cinfo)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Flush out any buffered data */
|
|
emit_eobrun(entropy);
|
|
flush_bits(entropy);
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
finish_pass_gather_phuff(j_compress_ptr cinfo)
|
|
{
|
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy;
|
|
boolean is_DC_band;
|
|
int ci, tbl;
|
|
jpeg_component_info *compptr;
|
|
JHUFF_TBL **htblptr;
|
|
boolean did[NUM_HUFF_TBLS];
|
|
|
|
/* Flush out buffered data (all we care about is counting the EOB symbol) */
|
|
emit_eobrun(entropy);
|
|
|
|
is_DC_band = (cinfo->Ss == 0);
|
|
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once
|
|
* per table, because it clobbers the input frequency counts!
|
|
*/
|
|
memset(did, 0, sizeof(did));
|
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
if (is_DC_band) {
|
|
if (cinfo->Ah != 0) /* DC refinement needs no table */
|
|
continue;
|
|
tbl = compptr->dc_tbl_no;
|
|
} else {
|
|
tbl = compptr->ac_tbl_no;
|
|
}
|
|
if (!did[tbl]) {
|
|
if (is_DC_band)
|
|
htblptr = &cinfo->dc_huff_tbl_ptrs[tbl];
|
|
else
|
|
htblptr = &cinfo->ac_huff_tbl_ptrs[tbl];
|
|
if (*htblptr == NULL)
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
|
|
did[tbl] = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Module initialization routine for progressive Huffman entropy encoding.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_phuff_encoder(j_compress_ptr cinfo)
|
|
{
|
|
phuff_entropy_ptr entropy;
|
|
int i;
|
|
|
|
entropy = (phuff_entropy_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
sizeof(phuff_entropy_encoder));
|
|
cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
|
|
entropy->pub.start_pass = start_pass_phuff;
|
|
|
|
/* Mark tables unallocated */
|
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
|
entropy->derived_tbls[i] = NULL;
|
|
entropy->count_ptrs[i] = NULL;
|
|
}
|
|
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
|
}
|
|
|
|
#endif /* C_PROGRESSIVE_SUPPORTED */
|