Files
mozjpeg/jccolext.c
DRC e8b40f3c2b Vastly improve 12-bit JPEG integration
The Gordian knot that 7fec5074f9 attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API.  If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application.  (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)

Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation.  Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.

In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:

  - The colormap and sample_range_limit fields in jpeg_decompress_struct
  - The alloc_sarray() and access_virt_sarray() methods in
    jpeg_memory_mgr
  - jpeg_write_scanlines() and jpeg_write_raw_data()
  - jpeg_read_scanlines() and jpeg_read_raw_data()
  - jpeg_skip_scanlines() and jpeg_crop_scanline()
    (This is subtle, but both of those functions use JSAMPLE-dependent
    opaque structures behind the scenes.)

It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples.  Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:

  - Compile only the precision-dependent libjpeg modules (the
    coefficient buffer controllers, the colorspace converters, the
    DCT/IDCT managers, the main buffer controllers, the preprocessing
    and postprocessing controller, the downsampler and upsamplers, the
    quantizers, the integer DCT methods, and the IDCT methods) for
    multiple data precisions.
  - Introduce 12-bit-specific methods into the various internal
    structures defined in jpegint.h.
  - Create precision-independent data type, macro, method, field, and
    function names that are prefixed by an underscore, and use an
    internal header to convert those into precision-dependent data
    type, macro, method, field, and function names, based on the value
    of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
    modules.
  - Expose precision-dependent jinit*() functions for each of the
    precision-dependent libjpeg modules.
  - Abstract the precision-dependent libjpeg modules by calling the
    appropriate precision-dependent jinit*() function, based on the
    value of cinfo->data_precision, from top-level libjpeg API
    functions.
2022-11-04 12:30:33 -05:00

145 lines
4.4 KiB
C

/*
* jccolext.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2012, 2015, 2022, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains input colorspace conversion routines.
*/
/* This file is included by jccolor.c */
/*
* Convert some rows of samples to the JPEG colorspace.
*
* Note that we change from the application's interleaved-pixel format
* to our internal noninterleaved, one-plane-per-component format.
* The input buffer is therefore three times as wide as the output buffer.
*
* A starting row offset is provided only for the output buffer. The caller
* can easily adjust the passed input_buf value to accommodate any row
* offset required on that side.
*/
INLINE
LOCAL(void)
rgb_ycc_convert_internal(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
_JSAMPIMAGE output_buf, JDIMENSION output_row,
int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
register int r, g, b;
register JLONG *ctab = cconvert->rgb_ycc_tab;
register _JSAMPROW inptr;
register _JSAMPROW outptr0, outptr1, outptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = inptr[RGB_RED];
g = inptr[RGB_GREEN];
b = inptr[RGB_BLUE];
inptr += RGB_PIXELSIZE;
/* If the inputs are 0.._MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (_JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] +
ctab[b + B_Y_OFF]) >> SCALEBITS);
/* Cb */
outptr1[col] = (_JSAMPLE)((ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] +
ctab[b + B_CB_OFF]) >> SCALEBITS);
/* Cr */
outptr2[col] = (_JSAMPLE)((ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] +
ctab[b + B_CR_OFF]) >> SCALEBITS);
}
}
}
/**************** Cases other than RGB -> YCbCr **************/
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles RGB->grayscale conversion, which is the same
* as the RGB->Y portion of RGB->YCbCr.
* We assume rgb_ycc_start has been called (we only use the Y tables).
*/
INLINE
LOCAL(void)
rgb_gray_convert_internal(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
_JSAMPIMAGE output_buf, JDIMENSION output_row,
int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert;
register int r, g, b;
register JLONG *ctab = cconvert->rgb_ycc_tab;
register _JSAMPROW inptr;
register _JSAMPROW outptr;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = inptr[RGB_RED];
g = inptr[RGB_GREEN];
b = inptr[RGB_BLUE];
inptr += RGB_PIXELSIZE;
/* Y */
outptr[col] = (_JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] +
ctab[b + B_Y_OFF]) >> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles extended RGB->plain RGB conversion
*/
INLINE
LOCAL(void)
rgb_rgb_convert_internal(j_compress_ptr cinfo, _JSAMPARRAY input_buf,
_JSAMPIMAGE output_buf, JDIMENSION output_row,
int num_rows)
{
register _JSAMPROW inptr;
register _JSAMPROW outptr0, outptr1, outptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
outptr0[col] = inptr[RGB_RED];
outptr1[col] = inptr[RGB_GREEN];
outptr2[col] = inptr[RGB_BLUE];
inptr += RGB_PIXELSIZE;
}
}
}