The IJG convention is to format copyright notices as: Copyright (C) YYYY, Owner. We try to maintain this convention for any code that is part of the libjpeg API library (with the exception of preserving the copyright notices from Cendio's code verbatim, since those predate libjpeg-turbo.) Note that the phrase "All Rights Reserved" is no longer necessary, since all Buenos Aires Convention signatories signed onto the Berne Convention in 2000. However, our convention is to retain this phrase for any files that have a self-contained copyright header but to leave it off of any files that refer to another file for conditions of distribution and use. For instance, all of the non-SIMD files in the libjpeg API library refer to README.ijg, and the copyright message in that file contains "All Rights Reserved", so it is unnecessary to add it to the individual files. The TurboJPEG code retains my preferred formatting convention for copyright notices, which is based on that of VirtualGL (where the TurboJPEG API originated.)
427 lines
18 KiB
NASM
427 lines
18 KiB
NASM
;
|
|
; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
|
|
;
|
|
; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
|
|
; Copyright (C) 2015, Matthieu Darbois.
|
|
;
|
|
; Based on the x86 SIMD extension for IJG JPEG library
|
|
; Copyright (C) 1999-2006, MIYASAKA Masaru.
|
|
; For conditions of distribution and use, see copyright notice in jsimdext.inc
|
|
;
|
|
; This file should be assembled with NASM (Netwide Assembler),
|
|
; can *not* be assembled with Microsoft's MASM or any compatible
|
|
; assembler (including Borland's Turbo Assembler).
|
|
; NASM is available from http://nasm.sourceforge.net/ or
|
|
; http://sourceforge.net/project/showfiles.php?group_id=6208
|
|
;
|
|
; This file contains an SSE2 implementation for Huffman coding of one block.
|
|
; The following code is based directly on jchuff.c; see jchuff.c for more
|
|
; details.
|
|
;
|
|
; [TAB8]
|
|
|
|
%include "jsimdext.inc"
|
|
|
|
; --------------------------------------------------------------------------
|
|
SECTION SEG_CONST
|
|
|
|
alignz 16
|
|
global EXTN(jconst_huff_encode_one_block)
|
|
|
|
EXTN(jconst_huff_encode_one_block):
|
|
|
|
%include "jpeg_nbits_table.inc"
|
|
|
|
alignz 16
|
|
|
|
; --------------------------------------------------------------------------
|
|
SECTION SEG_TEXT
|
|
BITS 32
|
|
|
|
; These macros perform the same task as the emit_bits() function in the
|
|
; original libjpeg code. In addition to reducing overhead by explicitly
|
|
; inlining the code, additional performance is achieved by taking into
|
|
; account the size of the bit buffer and waiting until it is almost full
|
|
; before emptying it. This mostly benefits 64-bit platforms, since 6
|
|
; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
|
|
|
|
%macro EMIT_BYTE 0
|
|
sub put_bits, 8 ; put_bits -= 8;
|
|
mov edx, put_buffer
|
|
mov ecx, put_bits
|
|
shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
|
|
mov byte [eax], dl ; *buffer++ = c;
|
|
add eax, 1
|
|
cmp dl, 0xFF ; need to stuff a zero byte?
|
|
jne %%.EMIT_BYTE_END
|
|
mov byte [eax], 0 ; *buffer++ = 0;
|
|
add eax, 1
|
|
%%.EMIT_BYTE_END:
|
|
%endmacro
|
|
|
|
%macro PUT_BITS 1
|
|
add put_bits, ecx ; put_bits += size;
|
|
shl put_buffer, cl ; put_buffer = (put_buffer << size);
|
|
or put_buffer, %1
|
|
%endmacro
|
|
|
|
%macro CHECKBUF15 0
|
|
cmp put_bits, 16 ; if (put_bits > 31) {
|
|
jl %%.CHECKBUF15_END
|
|
mov eax, POINTER [esp+buffer]
|
|
EMIT_BYTE
|
|
EMIT_BYTE
|
|
mov POINTER [esp+buffer], eax
|
|
%%.CHECKBUF15_END:
|
|
%endmacro
|
|
|
|
%macro EMIT_BITS 1
|
|
PUT_BITS %1
|
|
CHECKBUF15
|
|
%endmacro
|
|
|
|
%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
|
|
pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128();
|
|
pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128();
|
|
pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128();
|
|
pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128();
|
|
pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
|
|
pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
|
|
pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
|
|
pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
|
|
pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
|
|
pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
|
|
pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
|
|
pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
|
|
pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
|
|
pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
|
|
pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
|
|
pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
|
|
pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
|
|
pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
|
|
pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
|
|
pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
|
|
pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
|
|
pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
|
|
pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
|
|
pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
|
|
pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
|
|
pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
|
|
pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
|
|
pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
|
|
pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
|
|
pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
|
|
pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
|
|
pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
|
|
pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
|
|
pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
|
|
pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
|
|
%if %1 != 32
|
|
pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
|
|
%else
|
|
pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
|
|
%endif
|
|
pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
|
|
paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg);
|
|
paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg);
|
|
paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg);
|
|
paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg);
|
|
pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg);
|
|
pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1);
|
|
pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1);
|
|
pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1);
|
|
pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1);
|
|
movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
|
|
movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
|
|
movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
|
|
movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
|
|
movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
|
|
movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
|
|
movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
|
|
movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
|
|
%endmacro
|
|
|
|
;
|
|
; Encode a single block's worth of coefficients.
|
|
;
|
|
; GLOBAL(JOCTET*)
|
|
; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
|
|
; JCOEFPTR block, int last_dc_val,
|
|
; c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
|
;
|
|
|
|
; eax + 8 = working_state *state
|
|
; eax + 12 = JOCTET *buffer
|
|
; eax + 16 = JCOEFPTR block
|
|
; eax + 20 = int last_dc_val
|
|
; eax + 24 = c_derived_tbl *dctbl
|
|
; eax + 28 = c_derived_tbl *actbl
|
|
|
|
%define pad 6*SIZEOF_DWORD ; Align to 16 bytes
|
|
%define t1 pad
|
|
%define t2 t1+(DCTSIZE2*SIZEOF_WORD)
|
|
%define block t2+(DCTSIZE2*SIZEOF_WORD)
|
|
%define actbl block+SIZEOF_DWORD
|
|
%define buffer actbl+SIZEOF_DWORD
|
|
%define temp buffer+SIZEOF_DWORD
|
|
%define temp2 temp+SIZEOF_DWORD
|
|
%define temp3 temp2+SIZEOF_DWORD
|
|
%define temp4 temp3+SIZEOF_DWORD
|
|
%define temp5 temp4+SIZEOF_DWORD
|
|
%define gotptr temp5+SIZEOF_DWORD ; void *gotptr
|
|
%define put_buffer ebx
|
|
%define put_bits edi
|
|
|
|
align 16
|
|
global EXTN(jsimd_huff_encode_one_block_sse2)
|
|
|
|
EXTN(jsimd_huff_encode_one_block_sse2):
|
|
push ebp
|
|
mov eax,esp ; eax = original ebp
|
|
sub esp, byte 4
|
|
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
|
|
mov [esp],eax
|
|
mov ebp,esp ; ebp = aligned ebp
|
|
sub esp, temp5+9*SIZEOF_DWORD-pad
|
|
push ebx
|
|
push ecx
|
|
; push edx ; need not be preserved
|
|
push esi
|
|
push edi
|
|
push ebp
|
|
|
|
mov esi, POINTER [eax+8] ; (working_state *state)
|
|
mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer;
|
|
mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits;
|
|
push esi ; esi is now scratch
|
|
|
|
get_GOT edx ; get GOT address
|
|
movpic POINTER [esp+gotptr], edx ; save GOT address
|
|
|
|
mov ecx, POINTER [eax+28]
|
|
mov edx, POINTER [eax+16]
|
|
mov esi, POINTER [eax+12]
|
|
mov POINTER [esp+actbl], ecx
|
|
mov POINTER [esp+block], edx
|
|
mov POINTER [esp+buffer], esi
|
|
|
|
; Encode the DC coefficient difference per section F.1.2.1
|
|
mov esi, POINTER [esp+block] ; block
|
|
movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
|
|
sub ecx, DWORD [eax+20]
|
|
mov esi, ecx
|
|
|
|
; This is a well-known technique for obtaining the absolute value
|
|
; without a branch. It is derived from an assembly language technique
|
|
; presented in "How to Optimize for the Pentium Processors",
|
|
; Copyright (c) 1996, 1997 by Agner Fog.
|
|
mov edx, ecx
|
|
sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
|
|
xor ecx, edx ; temp ^= temp3;
|
|
sub ecx, edx ; temp -= temp3;
|
|
|
|
; For a negative input, want temp2 = bitwise complement of abs(input)
|
|
; This code assumes we are on a two's complement machine
|
|
add esi, edx ; temp2 += temp3;
|
|
mov DWORD [esp+temp], esi ; backup temp2 in temp
|
|
|
|
; Find the number of bits needed for the magnitude of the coefficient
|
|
movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
|
|
movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp);
|
|
mov DWORD [esp+temp2], edx ; backup nbits in temp2
|
|
|
|
; Emit the Huffman-coded symbol for the number of bits
|
|
mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore
|
|
mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
|
|
movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
|
|
EMIT_BITS eax ; EMIT_BITS(code, size)
|
|
|
|
mov ecx, DWORD [esp+temp2] ; restore nbits
|
|
|
|
; Mask off any extra bits in code
|
|
mov eax, 1
|
|
shl eax, cl
|
|
dec eax
|
|
and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1;
|
|
|
|
; Emit that number of bits of the value, if positive,
|
|
; or the complement of its magnitude, if negative.
|
|
EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
|
|
|
|
; Prepare data
|
|
xor ecx, ecx
|
|
mov esi, POINTER [esp+block]
|
|
kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
|
|
18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
|
|
27, 20, 13, 6, 7, 14, 21, 28, 35, \
|
|
xmm0, xmm1, xmm2, xmm3
|
|
kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
|
|
30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
|
|
53, 60, 61, 54, 47, 55, 62, 63, 63, \
|
|
xmm0, xmm1, xmm2, xmm3
|
|
|
|
pxor xmm7, xmm7
|
|
movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
|
|
movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
|
|
movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
|
|
movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
|
|
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
|
|
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
|
|
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
|
|
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
|
|
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
|
|
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
|
|
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
|
|
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
|
|
shl ecx, 16
|
|
or edx, ecx
|
|
not edx ; index = ~index;
|
|
|
|
lea esi, [esp+t1]
|
|
mov ebp, POINTER [esp+actbl] ; ebp = actbl
|
|
|
|
.BLOOP:
|
|
bsf ecx, edx ; r = __builtin_ctzl(index);
|
|
jz .ELOOP
|
|
lea esi, [esi+ecx*2] ; k += r;
|
|
shr edx, cl ; index >>= r;
|
|
mov DWORD [esp+temp3], edx
|
|
.BRLOOP:
|
|
cmp ecx, 16 ; while (r > 15) {
|
|
jl .ERLOOP
|
|
sub ecx, 16 ; r -= 16;
|
|
mov DWORD [esp+temp], ecx
|
|
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
|
|
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
|
|
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
|
|
mov ecx, DWORD [esp+temp]
|
|
jmp .BRLOOP
|
|
.ERLOOP:
|
|
movsx eax, word [esi] ; temp = t1[k];
|
|
movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
|
|
movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp);
|
|
mov DWORD [esp+temp2], eax
|
|
; Emit Huffman symbol for run length / number of bits
|
|
shl ecx, 4 ; temp3 = (r << 4) + nbits;
|
|
add ecx, eax
|
|
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
|
|
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
|
|
EMIT_BITS eax
|
|
|
|
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
|
|
; Mask off any extra bits in code
|
|
mov ecx, DWORD [esp+temp2]
|
|
mov eax, 1
|
|
shl eax, cl
|
|
dec eax
|
|
and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
|
|
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
|
|
mov edx, DWORD [esp+temp3]
|
|
add esi, 2 ; ++k;
|
|
shr edx, 1 ; index >>= 1;
|
|
|
|
jmp .BLOOP
|
|
.ELOOP:
|
|
movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
|
|
movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
|
|
movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
|
|
movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
|
|
pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
|
|
pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
|
|
pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
|
|
pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
|
|
packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
|
|
packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
|
|
pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
|
|
pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
|
|
shl ecx, 16
|
|
or edx, ecx
|
|
not edx ; index = ~index;
|
|
|
|
lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
|
|
sub eax, esi
|
|
shr eax, 1
|
|
bsf ecx, edx ; r = __builtin_ctzl(index);
|
|
jz .ELOOP2
|
|
shr edx, cl ; index >>= r;
|
|
add ecx, eax
|
|
lea esi, [esi+ecx*2] ; k += r;
|
|
mov DWORD [esp+temp3], edx
|
|
jmp .BRLOOP2
|
|
.BLOOP2:
|
|
bsf ecx, edx ; r = __builtin_ctzl(index);
|
|
jz .ELOOP2
|
|
lea esi, [esi+ecx*2] ; k += r;
|
|
shr edx, cl ; index >>= r;
|
|
mov DWORD [esp+temp3], edx
|
|
.BRLOOP2:
|
|
cmp ecx, 16 ; while (r > 15) {
|
|
jl .ERLOOP2
|
|
sub ecx, 16 ; r -= 16;
|
|
mov DWORD [esp+temp], ecx
|
|
mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
|
|
movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
|
|
EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
|
|
mov ecx, DWORD [esp+temp]
|
|
jmp .BRLOOP2
|
|
.ERLOOP2:
|
|
movsx eax, word [esi] ; temp = t1[k];
|
|
bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
|
|
inc eax
|
|
mov DWORD [esp+temp2], eax
|
|
; Emit Huffman symbol for run length / number of bits
|
|
shl ecx, 4 ; temp3 = (r << 4) + nbits;
|
|
add ecx, eax
|
|
mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
|
|
movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
|
|
EMIT_BITS eax
|
|
|
|
movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
|
|
; Mask off any extra bits in code
|
|
mov ecx, DWORD [esp+temp2]
|
|
mov eax, 1
|
|
shl eax, cl
|
|
dec eax
|
|
and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
|
|
EMIT_BITS eax ; PUT_BITS(temp2, nbits)
|
|
mov edx, DWORD [esp+temp3]
|
|
add esi, 2 ; ++k;
|
|
shr edx, 1 ; index >>= 1;
|
|
|
|
jmp .BLOOP2
|
|
.ELOOP2:
|
|
; If the last coef(s) were zero, emit an end-of-block code
|
|
lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
|
|
cmp edx, esi ; if (r > 0) {
|
|
je .EFN
|
|
mov eax, INT [ebp] ; code = actbl->ehufco[0];
|
|
movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
|
|
EMIT_BITS eax
|
|
.EFN:
|
|
mov eax, [esp+buffer]
|
|
pop esi
|
|
; Save put_buffer & put_bits
|
|
mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
|
|
mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits;
|
|
|
|
pop ebp
|
|
pop edi
|
|
pop esi
|
|
; pop edx ; need not be preserved
|
|
pop ecx
|
|
pop ebx
|
|
mov esp,ebp ; esp <- aligned ebp
|
|
pop esp ; esp <- original ebp
|
|
pop ebp
|
|
ret
|
|
|
|
; For some reason, the OS X linker does not honor the request to align the
|
|
; segment unless we do this.
|
|
align 16
|