Independent JPEG Group's JPEG software release 6b with x86 SIMD extension for IJG JPEG library version 1.02
349 lines
15 KiB
C
349 lines
15 KiB
C
/*
|
|
* jdct.h
|
|
*
|
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* ---------------------------------------------------------------------
|
|
* x86 SIMD extension for IJG JPEG library
|
|
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
|
* This file has been modified for SIMD extension.
|
|
* Last Modified : January 5, 2006
|
|
* ---------------------------------------------------------------------
|
|
*
|
|
* This include file contains common declarations for the forward and
|
|
* inverse DCT modules. These declarations are private to the DCT managers
|
|
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
|
* The individual DCT algorithms are kept in separate files to ease
|
|
* machine-dependent tuning (e.g., assembly coding).
|
|
*/
|
|
|
|
|
|
/* SIMD Ext: configuration check */
|
|
|
|
#if BITS_IN_JSAMPLE != 8
|
|
#error "Sorry, this SIMD code only copes with 8-bit sample values."
|
|
#endif
|
|
|
|
|
|
/*
|
|
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
|
|
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
|
|
* for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
|
|
* implementations use an array of type FAST_FLOAT, instead.)
|
|
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
|
|
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
|
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
|
* convention improves accuracy in integer implementations and saves some
|
|
* work in floating-point ones.
|
|
* Quantization of the output coefficients is done by jcdctmgr.c.
|
|
*/
|
|
|
|
/* SIMD Ext: To maximize parallelism, Type DCTELEM is changed to short
|
|
* (originally, int).
|
|
*/
|
|
typedef short DCTELEM; /* SIMD Ext: must be short */
|
|
|
|
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
|
|
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
|
|
typedef JMETHOD(void, convsamp_int_method_ptr,
|
|
(JSAMPARRAY sample_data, JDIMENSION start_col,
|
|
DCTELEM * workspace));
|
|
typedef JMETHOD(void, convsamp_float_method_ptr,
|
|
(JSAMPARRAY sample_data, JDIMENSION start_col,
|
|
FAST_FLOAT *workspace));
|
|
typedef JMETHOD(void, quantize_int_method_ptr,
|
|
(JCOEFPTR coef_block, DCTELEM * divisors,
|
|
DCTELEM * workspace));
|
|
typedef JMETHOD(void, quantize_float_method_ptr,
|
|
(JCOEFPTR coef_block, FAST_FLOAT * divisors,
|
|
FAST_FLOAT * workspace));
|
|
|
|
|
|
/*
|
|
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
|
* to an output sample array. The routine must dequantize the input data as
|
|
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
|
* pointed to by compptr->dct_table. The output data is to be placed into the
|
|
* sample array starting at a specified column. (Any row offset needed will
|
|
* be applied to the array pointer before it is passed to the IDCT code.)
|
|
* Note that the number of samples emitted by the IDCT routine is
|
|
* DCT_scaled_size * DCT_scaled_size.
|
|
*/
|
|
|
|
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
|
|
|
/* SIMD Ext: To maximize parallelism, Type MULTIPLIER is changed to short.
|
|
* Macro definitions of MULTIPLIER and FAST_FLOAT in jmorecfg.h are ignored.
|
|
*/
|
|
#undef MULTIPLIER
|
|
#define MULTIPLIER short /* SIMD Ext: must be short */
|
|
#undef FAST_FLOAT
|
|
#define FAST_FLOAT float /* SIMD Ext: must be float */
|
|
|
|
/*
|
|
* Each IDCT routine has its own ideas about the best dct_table element type.
|
|
*/
|
|
|
|
typedef MULTIPLIER ISLOW_MULT_TYPE; /* SIMD Ext: must be short */
|
|
typedef MULTIPLIER IFAST_MULT_TYPE; /* SIMD Ext: must be short */
|
|
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
|
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* SIMD Ext: must be float */
|
|
|
|
|
|
/*
|
|
* Each IDCT routine is responsible for range-limiting its results and
|
|
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
|
* be quite far out of range if the input data is corrupt, so a bulletproof
|
|
* range-limiting step is required. We use a mask-and-table-lookup method
|
|
* to do the combined operations quickly. See the comments with
|
|
* prepare_range_limit_table (in jdmaster.c) for more info.
|
|
*/
|
|
|
|
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
|
|
|
|
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
|
|
|
|
|
/* Short forms of external names for systems with brain-damaged linkers. */
|
|
|
|
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
|
#define jpeg_fdct_islow jFDislow /* jfdctint.asm */
|
|
#define jpeg_fdct_ifast jFDifast /* jfdctfst.asm */
|
|
#define jpeg_fdct_float jFDfloat /* jfdctflt.asm */
|
|
#define jpeg_fdct_islow_mmx jFDMislow /* jfmmxint.asm */
|
|
#define jpeg_fdct_ifast_mmx jFDMifast /* jfmmxfst.asm */
|
|
#define jpeg_fdct_float_3dnow jFD3float /* jf3dnflt.asm */
|
|
#define jpeg_fdct_islow_sse2 jFDSislow /* jfss2int.asm */
|
|
#define jpeg_fdct_ifast_sse2 jFDSifast /* jfss2fst.asm */
|
|
#define jpeg_fdct_float_sse jFDSfloat /* jfsseflt.asm */
|
|
#define jpeg_convsamp_int jCnvInt /* jcqntint.asm */
|
|
#define jpeg_quantize_int jQntInt /* jcqntint.asm */
|
|
#define jpeg_quantize_idiv jQntIDiv /* jcqntint.asm */
|
|
#define jpeg_convsamp_float jCnvFloat /* jcqntflt.asm */
|
|
#define jpeg_quantize_float jQntFloat /* jcqntflt.asm */
|
|
#define jpeg_convsamp_int_mmx jCnvMmx /* jcqntmmx.asm */
|
|
#define jpeg_quantize_int_mmx jQntMmx /* jcqntmmx.asm */
|
|
#define jpeg_convsamp_flt_3dnow jCnv3dnow /* jcqnt3dn.asm */
|
|
#define jpeg_quantize_flt_3dnow jQnt3dnow /* jcqnt3dn.asm */
|
|
#define jpeg_convsamp_int_sse2 jCnvISse2 /* jcqnts2i.asm */
|
|
#define jpeg_quantize_int_sse2 jQntISse2 /* jcqnts2i.asm */
|
|
#define jpeg_convsamp_flt_sse jCnvSse /* jcqntsse.asm */
|
|
#define jpeg_quantize_flt_sse jQntSse /* jcqntsse.asm */
|
|
#define jpeg_convsamp_flt_sse2 jCnvFSse2 /* jcqnts2f.asm */
|
|
#define jpeg_quantize_flt_sse2 jQntFSse2 /* jcqnts2f.asm */
|
|
#define jpeg_idct_islow jRDislow /* jidctint.asm */
|
|
#define jpeg_idct_ifast jRDifast /* jidctfst.asm */
|
|
#define jpeg_idct_float jRDfloat /* jidctflt.asm */
|
|
#define jpeg_idct_4x4 jRD4x4 /* jidctred.asm */
|
|
#define jpeg_idct_2x2 jRD2x2 /* jidctred.asm */
|
|
#define jpeg_idct_1x1 jRD1x1 /* jidctred.asm */
|
|
#define jpeg_idct_islow_mmx jRDMislow /* jimmxint.asm */
|
|
#define jpeg_idct_ifast_mmx jRDMifast /* jimmxfst.asm */
|
|
#define jpeg_idct_float_3dnow jRD3float /* ji3dnflt.asm */
|
|
#define jpeg_idct_4x4_mmx jRDM4x4 /* jimmxred.asm */
|
|
#define jpeg_idct_2x2_mmx jRDM2x2 /* jimmxred.asm */
|
|
#define jpeg_idct_islow_sse2 jRDSislow /* jiss2int.asm */
|
|
#define jpeg_idct_ifast_sse2 jRDSifast /* jiss2fst.asm */
|
|
#define jpeg_idct_float_sse jRDSfloat /* jisseflt.asm */
|
|
#define jpeg_idct_float_sse2 jRD2float /* jiss2flt.asm */
|
|
#define jpeg_idct_4x4_sse2 jRDS4x4 /* jiss2red.asm */
|
|
#define jpeg_idct_2x2_sse2 jRDS2x2 /* jiss2red.asm */
|
|
#define jconst_fdct_float jFCfloat /* jfdctflt.asm */
|
|
#define jconst_fdct_islow_mmx jFCMislow /* jfmmxint.asm */
|
|
#define jconst_fdct_ifast_mmx jFCMifast /* jfmmxfst.asm */
|
|
#define jconst_fdct_float_3dnow jFC3float /* jf3dnflt.asm */
|
|
#define jconst_fdct_islow_sse2 jFCSislow /* jfss2int.asm */
|
|
#define jconst_fdct_ifast_sse2 jFCSifast /* jfss2fst.asm */
|
|
#define jconst_fdct_float_sse jFCSfloat /* jfsseflt.asm */
|
|
#define jconst_idct_float jRCfloat /* jidctflt.asm */
|
|
#define jconst_idct_islow_mmx jRCMislow /* jimmxint.asm */
|
|
#define jconst_idct_ifast_mmx jRCMifast /* jimmxfst.asm */
|
|
#define jconst_idct_float_3dnow jRC3float /* ji3dnflt.asm */
|
|
#define jconst_idct_red_mmx jRCMred /* jimmxred.asm */
|
|
#define jconst_idct_islow_sse2 jRCSislow /* jiss2int.asm */
|
|
#define jconst_idct_ifast_sse2 jRCSifast /* jiss2fst.asm */
|
|
#define jconst_idct_float_sse jRCSfloat /* jisseflt.asm */
|
|
#define jconst_idct_float_sse2 jRC2float /* jiss2flt.asm */
|
|
#define jconst_idct_red_sse2 jRCSred /* jiss2red.asm */
|
|
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
|
|
|
/* Extern declarations for the forward and inverse DCT routines. */
|
|
|
|
EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
|
|
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
|
|
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
|
|
|
|
EXTERN(void) jpeg_fdct_islow_mmx JPP((DCTELEM * data));
|
|
EXTERN(void) jpeg_fdct_ifast_mmx JPP((DCTELEM * data));
|
|
EXTERN(void) jpeg_fdct_float_3dnow JPP((FAST_FLOAT * data));
|
|
|
|
EXTERN(void) jpeg_fdct_islow_sse2 JPP((DCTELEM * data));
|
|
EXTERN(void) jpeg_fdct_ifast_sse2 JPP((DCTELEM * data));
|
|
EXTERN(void) jpeg_fdct_float_sse JPP((FAST_FLOAT * data));
|
|
|
|
EXTERN(void) jpeg_convsamp_int
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_quantize_int
|
|
JPP((JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_quantize_idiv
|
|
JPP((JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_convsamp_float
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace));
|
|
EXTERN(void) jpeg_quantize_float
|
|
JPP((JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace));
|
|
|
|
EXTERN(void) jpeg_convsamp_int_mmx
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_quantize_int_mmx
|
|
JPP((JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_convsamp_flt_3dnow
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace));
|
|
EXTERN(void) jpeg_quantize_flt_3dnow
|
|
JPP((JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace));
|
|
|
|
EXTERN(void) jpeg_convsamp_int_sse2
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_quantize_int_sse2
|
|
JPP((JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace));
|
|
EXTERN(void) jpeg_convsamp_flt_sse
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace));
|
|
EXTERN(void) jpeg_quantize_flt_sse
|
|
JPP((JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace));
|
|
EXTERN(void) jpeg_convsamp_flt_sse2
|
|
JPP((JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace));
|
|
EXTERN(void) jpeg_quantize_flt_sse2
|
|
JPP((JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace));
|
|
|
|
EXTERN(void) jpeg_idct_islow
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_ifast
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_float
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_4x4
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_2x2
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_1x1
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
|
|
EXTERN(void) jpeg_idct_islow_mmx
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_ifast_mmx
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_4x4_mmx
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_2x2_mmx
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
|
|
EXTERN(void) jpeg_idct_float_3dnow
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_float_sse
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_float_sse2
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
|
|
EXTERN(void) jpeg_idct_islow_sse2
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_ifast_sse2
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_4x4_sse2
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
EXTERN(void) jpeg_idct_2x2_sse2
|
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
|
|
|
extern const int jconst_fdct_float[];
|
|
extern const int jconst_fdct_islow_mmx[];
|
|
extern const int jconst_fdct_ifast_mmx[];
|
|
extern const int jconst_fdct_float_3dnow[];
|
|
extern const int jconst_fdct_islow_sse2[];
|
|
extern const int jconst_fdct_ifast_sse2[];
|
|
extern const int jconst_fdct_float_sse[];
|
|
extern const int jconst_idct_float[];
|
|
extern const int jconst_idct_islow_mmx[];
|
|
extern const int jconst_idct_ifast_mmx[];
|
|
extern const int jconst_idct_float_3dnow[];
|
|
extern const int jconst_idct_red_mmx[];
|
|
extern const int jconst_idct_islow_sse2[];
|
|
extern const int jconst_idct_ifast_sse2[];
|
|
extern const int jconst_idct_float_sse[];
|
|
extern const int jconst_idct_float_sse2[];
|
|
extern const int jconst_idct_red_sse2[];
|
|
|
|
|
|
/*
|
|
* Macros for handling fixed-point arithmetic; these are used by many
|
|
* but not all of the DCT/IDCT modules.
|
|
*
|
|
* All values are expected to be of type INT32.
|
|
* Fractional constants are scaled left by CONST_BITS bits.
|
|
* CONST_BITS is defined within each module using these macros,
|
|
* and may differ from one module to the next.
|
|
*/
|
|
|
|
#define ONE ((INT32) 1)
|
|
#define CONST_SCALE (ONE << CONST_BITS)
|
|
|
|
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
|
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
|
* thus causing a lot of useless floating-point operations at run time.
|
|
*/
|
|
|
|
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
|
|
|
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
|
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
|
* the fudge factor is correct for either sign of X.
|
|
*/
|
|
|
|
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
|
|
|
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
|
* This macro is used only when the two inputs will actually be no more than
|
|
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
|
* full 32x32 multiply. This provides a useful speedup on many machines.
|
|
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
|
* in C, but some C compilers will do the right thing if you provide the
|
|
* correct combination of casts.
|
|
*/
|
|
|
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
|
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
|
#endif
|
|
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
|
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
|
#endif
|
|
|
|
#ifndef MULTIPLY16C16 /* default definition */
|
|
#define MULTIPLY16C16(var,const) ((var) * (const))
|
|
#endif
|
|
|
|
/* Same except both inputs are variables. */
|
|
|
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
|
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
|
#endif
|
|
|
|
#ifndef MULTIPLY16V16 /* default definition */
|
|
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
|
#endif
|