Independent JPEG Group's JPEG software release 6b with x86 SIMD extension for IJG JPEG library version 1.02
516 lines
16 KiB
C
516 lines
16 KiB
C
/*
|
|
* jcdctmgr.c
|
|
*
|
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* ---------------------------------------------------------------------
|
|
* x86 SIMD extension for IJG JPEG library
|
|
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
|
* This file has been modified for SIMD extension.
|
|
* Last Modified : December 24, 2005
|
|
* ---------------------------------------------------------------------
|
|
*
|
|
* This file contains the forward-DCT management logic.
|
|
* This code selects a particular DCT implementation to be used,
|
|
* and it performs related housekeeping chores including coefficient
|
|
* quantization.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
|
|
|
|
/* Private subobject for this module */
|
|
|
|
typedef struct {
|
|
struct jpeg_forward_dct pub; /* public fields */
|
|
|
|
/* Pointer to the DCT routine actually in use */
|
|
forward_DCT_method_ptr do_dct;
|
|
convsamp_int_method_ptr convsamp;
|
|
quantize_int_method_ptr quantize;
|
|
|
|
/* The actual post-DCT divisors --- not identical to the quant table
|
|
* entries, because of scaling (especially for an unnormalized DCT).
|
|
* Each table is given in normal array order.
|
|
*/
|
|
DCTELEM * divisors[NUM_QUANT_TBLS];
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
/* Same as above for the floating-point case. */
|
|
float_DCT_method_ptr do_float_dct;
|
|
convsamp_float_method_ptr float_convsamp;
|
|
quantize_float_method_ptr float_quantize;
|
|
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
|
#endif
|
|
} my_fdct_controller;
|
|
|
|
typedef my_fdct_controller * my_fdct_ptr;
|
|
|
|
/*
|
|
* SIMD Ext: Most of SSE/SSE2 instructions require that the memory address
|
|
* is aligned to a 16-byte boundary; if not, a general-protection exception
|
|
* (#GP) is generated.
|
|
*/
|
|
|
|
#define ALIGN_SIZE 16 /* sizeof SSE/SSE2 register */
|
|
#define ALIGN_MEM(p,a) ((void *) (((size_t) (p) + (a) - 1) & -(a)))
|
|
|
|
#ifdef JFDCT_INT_QUANTIZE_WITH_DIVISION
|
|
#undef jpeg_quantize_int
|
|
#undef jpeg_quantize_int_mmx
|
|
#undef jpeg_quantize_int_sse2
|
|
#define jpeg_quantize_int jpeg_quantize_idiv
|
|
#define jpeg_quantize_int_mmx jpeg_quantize_idiv
|
|
#define jpeg_quantize_int_sse2 jpeg_quantize_idiv
|
|
#endif
|
|
|
|
|
|
#ifndef JFDCT_INT_QUANTIZE_WITH_DIVISION
|
|
|
|
/*
|
|
* SIMD Ext: compute the reciprocal of the divisor
|
|
*
|
|
* This implementation is based on an algorithm described in
|
|
* "How to optimize for the Pentium family of microprocessors"
|
|
* (http://www.agner.org/assem/).
|
|
*/
|
|
|
|
LOCAL(void)
|
|
compute_reciprocal (DCTELEM divisor, DCTELEM * dtbl)
|
|
{
|
|
unsigned long d = ((unsigned long) divisor) & 0x0000FFFF;
|
|
unsigned long fq, fr;
|
|
int b, r, c;
|
|
|
|
for (b = 0; (1UL << b) <= d; b++) ;
|
|
|
|
r = 16 + (--b);
|
|
fq = (1UL << r) / d;
|
|
fr = (1UL << r) % d;
|
|
r -= 16;
|
|
c = 0;
|
|
|
|
if (fr == 0) {
|
|
fq >>= 1;
|
|
r--;
|
|
} else if (fr <= (d / 2)) {
|
|
c++;
|
|
} else {
|
|
fq++;
|
|
}
|
|
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM) (c + (d / 2)); /* correction + roundfactor */
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (16 - (r + 1 + 1))); /* scale */
|
|
dtbl[DCTSIZE2 * 3] = (DCTELEM) (r + 1); /* shift */
|
|
}
|
|
|
|
#endif /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
|
|
|
|
|
|
/*
|
|
* Initialize for a processing pass.
|
|
* Verify that all referenced Q-tables are present, and set up
|
|
* the divisor table for each one.
|
|
* In the current implementation, DCT of all components is done during
|
|
* the first pass, even if only some components will be output in the
|
|
* first scan. Hence all components should be examined here.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_fdctmgr (j_compress_ptr cinfo)
|
|
{
|
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
int ci, qtblno, i;
|
|
jpeg_component_info *compptr;
|
|
JQUANT_TBL * qtbl;
|
|
DCTELEM * dtbl;
|
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
qtblno = compptr->quant_tbl_no;
|
|
/* Make sure specified quantization table is present */
|
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
|
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
|
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
|
/* Compute divisors for this quant table */
|
|
/* We may do this more than once for same table, but it's not a big deal */
|
|
switch (cinfo->dct_method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
/* For LL&M IDCT method, divisors are equal to raw quantization
|
|
* coefficients multiplied by 8 (to counteract scaling).
|
|
*/
|
|
#ifndef JFDCT_INT_QUANTIZE_WITH_DIVISION
|
|
if (fdct->divisors[qtblno] == NULL) {
|
|
fdct->divisors[qtblno] = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
|
|
}
|
|
dtbl = fdct->divisors[qtblno];
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
compute_reciprocal ((DCTELEM) (qtbl->quantval[i] << 3), &dtbl[i]);
|
|
}
|
|
break;
|
|
#else /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
|
|
if (fdct->divisors[qtblno] == NULL) {
|
|
fdct->divisors[qtblno] = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
DCTSIZE2 * SIZEOF(DCTELEM));
|
|
}
|
|
dtbl = fdct->divisors[qtblno];
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
|
}
|
|
break;
|
|
#endif /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
|
|
#endif /* DCT_ISLOW_SUPPORTED */
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
case JDCT_IFAST:
|
|
{
|
|
/* For AA&N IDCT method, divisors are equal to quantization
|
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
* scalefactor[0] = 1
|
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
* We apply a further scale factor of 8.
|
|
*/
|
|
#define CONST_BITS 14
|
|
static const INT16 aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
SHIFT_TEMPS
|
|
|
|
#ifndef JFDCT_INT_QUANTIZE_WITH_DIVISION
|
|
if (fdct->divisors[qtblno] == NULL) {
|
|
fdct->divisors[qtblno] = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
|
|
}
|
|
dtbl = fdct->divisors[qtblno];
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
compute_reciprocal ((DCTELEM)
|
|
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
|
(INT32) aanscales[i]),
|
|
CONST_BITS-3),
|
|
&dtbl[i]);
|
|
}
|
|
#else /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
|
|
if (fdct->divisors[qtblno] == NULL) {
|
|
fdct->divisors[qtblno] = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
DCTSIZE2 * SIZEOF(DCTELEM));
|
|
}
|
|
dtbl = fdct->divisors[qtblno];
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
dtbl[i] = (DCTELEM)
|
|
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
|
(INT32) aanscales[i]),
|
|
CONST_BITS-3);
|
|
}
|
|
#endif /* JFDCT_INT_QUANTIZE_WITH_DIVISION */
|
|
}
|
|
break;
|
|
#endif /* DCT_IFAST_SUPPORTED */
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
case JDCT_FLOAT:
|
|
{
|
|
/* For float AA&N IDCT method, divisors are equal to quantization
|
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
* scalefactor[0] = 1
|
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
* We apply a further scale factor of 8.
|
|
* What's actually stored is 1/divisor so that the inner loop can
|
|
* use a multiplication rather than a division.
|
|
*/
|
|
FAST_FLOAT * fdtbl;
|
|
int row, col;
|
|
static const double aanscalefactor[DCTSIZE] = {
|
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
|
};
|
|
|
|
if (fdct->float_divisors[qtblno] == NULL) {
|
|
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
|
}
|
|
fdtbl = fdct->float_divisors[qtblno];
|
|
i = 0;
|
|
for (row = 0; row < DCTSIZE; row++) {
|
|
for (col = 0; col < DCTSIZE; col++) {
|
|
fdtbl[i] = (FAST_FLOAT)
|
|
(1.0 / (((double) qtbl->quantval[i] *
|
|
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform forward DCT on one or more blocks of a component.
|
|
*
|
|
* The input samples are taken from the sample_data[] array starting at
|
|
* position start_row/start_col, and moving to the right for any additional
|
|
* blocks. The quantized coefficients are returned in coef_blocks[].
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
|
JDIMENSION start_row, JDIMENSION start_col,
|
|
JDIMENSION num_blocks)
|
|
/* This version is used for integer DCT implementations. */
|
|
{
|
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
|
DCTELEM workspace[DCTSIZE2 + ALIGN_SIZE/sizeof(DCTELEM)];
|
|
DCTELEM * wkptr = (DCTELEM *) ALIGN_MEM(workspace, ALIGN_SIZE);
|
|
JDIMENSION bi;
|
|
|
|
sample_data += start_row; /* fold in the vertical offset once */
|
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
|
/* Load data into workspace, applying unsigned->signed conversion */
|
|
(*fdct->convsamp) (sample_data, start_col, wkptr);
|
|
|
|
/* Perform the DCT */
|
|
(*fdct->do_dct) (wkptr);
|
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
|
(*fdct->quantize) (coef_blocks[bi], divisors, wkptr);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
|
|
METHODDEF(void)
|
|
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
|
JDIMENSION start_row, JDIMENSION start_col,
|
|
JDIMENSION num_blocks)
|
|
/* This version is used for floating-point DCT implementations. */
|
|
{
|
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
|
FAST_FLOAT workspace[DCTSIZE2 + ALIGN_SIZE/sizeof(FAST_FLOAT)];
|
|
FAST_FLOAT * wkptr = (FAST_FLOAT *) ALIGN_MEM(workspace, ALIGN_SIZE);
|
|
JDIMENSION bi;
|
|
|
|
sample_data += start_row; /* fold in the vertical offset once */
|
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
|
/* Load data into workspace, applying unsigned->signed conversion */
|
|
(*fdct->float_convsamp) (sample_data, start_col, wkptr);
|
|
|
|
/* Perform the DCT */
|
|
(*fdct->do_float_dct) (wkptr);
|
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
|
(*fdct->float_quantize) (coef_blocks[bi], divisors, wkptr);
|
|
}
|
|
}
|
|
|
|
#endif /* DCT_FLOAT_SUPPORTED */
|
|
|
|
|
|
/*
|
|
* Initialize FDCT manager.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_forward_dct (j_compress_ptr cinfo)
|
|
{
|
|
my_fdct_ptr fdct;
|
|
int i;
|
|
unsigned int simd = jpeg_simd_support((j_common_ptr) cinfo);
|
|
|
|
fdct = (my_fdct_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
SIZEOF(my_fdct_controller));
|
|
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
|
fdct->pub.start_pass = start_pass_fdctmgr;
|
|
|
|
switch (cinfo->dct_method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
fdct->pub.forward_DCT = forward_DCT;
|
|
#ifdef JFDCT_INT_SSE2_SUPPORTED
|
|
if (simd & JSIMD_SSE2 &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_islow_sse2)) {
|
|
fdct->do_dct = jpeg_fdct_islow_sse2;
|
|
fdct->convsamp = jpeg_convsamp_int_sse2;
|
|
fdct->quantize = jpeg_quantize_int_sse2;
|
|
} else
|
|
#endif
|
|
#ifdef JFDCT_INT_MMX_SUPPORTED
|
|
if (simd & JSIMD_MMX) {
|
|
fdct->do_dct = jpeg_fdct_islow_mmx;
|
|
fdct->convsamp = jpeg_convsamp_int_mmx;
|
|
fdct->quantize = jpeg_quantize_int_mmx;
|
|
} else
|
|
#endif
|
|
{
|
|
fdct->do_dct = jpeg_fdct_islow;
|
|
fdct->convsamp = jpeg_convsamp_int;
|
|
fdct->quantize = jpeg_quantize_int;
|
|
}
|
|
break;
|
|
#endif /* DCT_ISLOW_SUPPORTED */
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
case JDCT_IFAST:
|
|
fdct->pub.forward_DCT = forward_DCT;
|
|
#ifdef JFDCT_INT_SSE2_SUPPORTED
|
|
if (simd & JSIMD_SSE2 &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_ifast_sse2)) {
|
|
fdct->do_dct = jpeg_fdct_ifast_sse2;
|
|
fdct->convsamp = jpeg_convsamp_int_sse2;
|
|
fdct->quantize = jpeg_quantize_int_sse2;
|
|
} else
|
|
#endif
|
|
#ifdef JFDCT_INT_MMX_SUPPORTED
|
|
if (simd & JSIMD_MMX) {
|
|
fdct->do_dct = jpeg_fdct_ifast_mmx;
|
|
fdct->convsamp = jpeg_convsamp_int_mmx;
|
|
fdct->quantize = jpeg_quantize_int_mmx;
|
|
} else
|
|
#endif
|
|
{
|
|
fdct->do_dct = jpeg_fdct_ifast;
|
|
fdct->convsamp = jpeg_convsamp_int;
|
|
fdct->quantize = jpeg_quantize_int;
|
|
}
|
|
break;
|
|
#endif /* DCT_IFAST_SUPPORTED */
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
case JDCT_FLOAT:
|
|
fdct->pub.forward_DCT = forward_DCT_float;
|
|
#ifdef JFDCT_FLT_SSE_SSE2_SUPPORTED
|
|
if (simd & JSIMD_SSE && simd & JSIMD_SSE2 &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_float_sse)) {
|
|
fdct->do_float_dct = jpeg_fdct_float_sse;
|
|
fdct->float_convsamp = jpeg_convsamp_flt_sse2;
|
|
fdct->float_quantize = jpeg_quantize_flt_sse2;
|
|
} else
|
|
#endif
|
|
#ifdef JFDCT_FLT_SSE_MMX_SUPPORTED
|
|
if (simd & JSIMD_SSE &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_float_sse)) {
|
|
fdct->do_float_dct = jpeg_fdct_float_sse;
|
|
fdct->float_convsamp = jpeg_convsamp_flt_sse;
|
|
fdct->float_quantize = jpeg_quantize_flt_sse;
|
|
} else
|
|
#endif
|
|
#ifdef JFDCT_FLT_3DNOW_MMX_SUPPORTED
|
|
if (simd & JSIMD_3DNOW) {
|
|
fdct->do_float_dct = jpeg_fdct_float_3dnow;
|
|
fdct->float_convsamp = jpeg_convsamp_flt_3dnow;
|
|
fdct->float_quantize = jpeg_quantize_flt_3dnow;
|
|
} else
|
|
#endif
|
|
{
|
|
fdct->do_float_dct = jpeg_fdct_float;
|
|
fdct->float_convsamp = jpeg_convsamp_float;
|
|
fdct->float_quantize = jpeg_quantize_float;
|
|
}
|
|
break;
|
|
#endif /* DCT_FLOAT_SUPPORTED */
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
|
|
/* Mark divisor tables unallocated */
|
|
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
|
fdct->divisors[i] = NULL;
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
fdct->float_divisors[i] = NULL;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef JSIMD_MODEINFO_NOT_SUPPORTED
|
|
|
|
GLOBAL(unsigned int)
|
|
jpeg_simd_forward_dct (j_compress_ptr cinfo, int method)
|
|
{
|
|
unsigned int simd = jpeg_simd_support((j_common_ptr) cinfo);
|
|
|
|
switch (method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
#ifdef JFDCT_INT_SSE2_SUPPORTED
|
|
if (simd & JSIMD_SSE2 &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_islow_sse2))
|
|
return JSIMD_SSE2;
|
|
#endif
|
|
#ifdef JFDCT_INT_MMX_SUPPORTED
|
|
if (simd & JSIMD_MMX)
|
|
return JSIMD_MMX;
|
|
#endif
|
|
return JSIMD_NONE;
|
|
#endif /* DCT_ISLOW_SUPPORTED */
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
case JDCT_IFAST:
|
|
#ifdef JFDCT_INT_SSE2_SUPPORTED
|
|
if (simd & JSIMD_SSE2 &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_ifast_sse2))
|
|
return JSIMD_SSE2;
|
|
#endif
|
|
#ifdef JFDCT_INT_MMX_SUPPORTED
|
|
if (simd & JSIMD_MMX)
|
|
return JSIMD_MMX;
|
|
#endif
|
|
return JSIMD_NONE;
|
|
#endif /* DCT_IFAST_SUPPORTED */
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
case JDCT_FLOAT:
|
|
#ifdef JFDCT_FLT_SSE_SSE2_SUPPORTED
|
|
if (simd & JSIMD_SSE && simd & JSIMD_SSE2 &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_float_sse))
|
|
return JSIMD_SSE; /* (JSIMD_SSE | JSIMD_SSE2); */
|
|
#endif
|
|
#ifdef JFDCT_FLT_SSE_MMX_SUPPORTED
|
|
if (simd & JSIMD_SSE &&
|
|
IS_CONST_ALIGNED_16(jconst_fdct_float_sse))
|
|
return JSIMD_SSE; /* (JSIMD_SSE | JSIMD_MMX); */
|
|
#endif
|
|
#ifdef JFDCT_FLT_3DNOW_MMX_SUPPORTED
|
|
if (simd & JSIMD_3DNOW)
|
|
return JSIMD_3DNOW; /* (JSIMD_3DNOW | JSIMD_MMX); */
|
|
#endif
|
|
return JSIMD_NONE;
|
|
#endif /* DCT_FLOAT_SUPPORTED */
|
|
default:
|
|
;
|
|
}
|
|
|
|
return JSIMD_NONE; /* not compiled */
|
|
}
|
|
|
|
#endif /* !JSIMD_MODEINFO_NOT_SUPPORTED */
|