Files
mozjpeg/java
DRC 8456d2b98c Doc: "MCU block" = "iMCU" or "MCU"
The JPEG-1 spec never uses the term "MCU block".  That term is rarely
used in other literature to describe the equivalent of an MCU in an
interleaved JPEG image, but the libjpeg documentation uses "iMCU" to
describe the same thing.  "iMCU" is a better term, since the equivalent
of an interleaved MCU can contain multiple DCT blocks (or samples in
lossless mode) that are only grouped together if the image is
interleaved.

In the case of restart markers, "MCU block" was used in the libjpeg
documentation instead of "MCU", but "MCU" is more accurate and less
confusing.  (The restart interval is literally in MCUs, where one MCU
is one data unit in a non-interleaved JPEG image and multiple data units
in a multi-component interleaved JPEG image.)

In the case of 9b704f96b2, the issue was
actually with progressive JPEG images exactly two DCT blocks wide, not
two MCU blocks wide.

This commit also defines "MCU" and "MCU row" in the description of the
various restart marker options/parameters.  Although an MCU row is
technically always a row of samples in lossless mode, "sample row" was
confusing, since it is used in other places to describe a row of samples
for a single component (whereas an MCU row in a typical lossless JPEG
image consists of a row of interleaved samples for all components.)
2024-08-30 14:16:09 -04:00
..
2024-08-30 14:16:09 -04:00

TurboJPEG Java Wrapper
======================

The TurboJPEG shared library can optionally be built with a Java Native
Interface wrapper, which allows the library to be loaded and used directly from
Java applications.  The Java front end for this is defined in several classes
located under org/libjpegturbo/turbojpeg.  The source code for these Java
classes is licensed under a BSD-style license, so the files can be incorporated
directly into both open source and proprietary projects without restriction.  A
Java archive (JAR) file containing these classes is also shipped with the
"official" distribution packages of libjpeg-turbo.

TJExample.java, which should also be located in the same directory as this
README file, demonstrates how to use the TurboJPEG Java API to compress and
decompress JPEG images in memory.


Performance Pitfalls
--------------------

The TurboJPEG Java API defines several convenience methods that can allocate
image buffers or instantiate classes to hold the result of compress,
decompress, or transform operations.  However, if you use these methods, then
be mindful of the amount of new data you are creating on the heap.  It may be
necessary to manually invoke the garbage collector to prevent heap exhaustion
or to prevent performance degradation.  Background garbage collection can kill
performance, particularly in a multi-threaded environment (Java pauses all
threads when the GC runs.)

The TurboJPEG Java API always gives you the option of pre-allocating your own
source and destination buffers, which allows you to re-use those buffers for
compressing/decompressing multiple images.  If the image sequence you are
compressing or decompressing consists of images of the same size, then
pre-allocating the buffers is recommended.


Installation Directory
----------------------

The TurboJPEG Java Wrapper will look for the TurboJPEG JNI library
(libturbojpeg.so, libturbojpeg.dylib, or turbojpeg.dll) in the system library
paths or in any paths specified in LD_LIBRARY_PATH (Un*x), DYLD_LIBRARY_PATH
(Mac), or PATH (Windows.)  Failing this, on Un*x and Mac systems, the wrapper
will look for the JNI library under the library directory configured when
libjpeg-turbo was built.  If that library directory is
/opt/libjpeg-turbo/lib32, then /opt/libjpeg-turbo/lib64 is also searched, and
vice versa.

If you installed the JNI library into another directory, then you will need
to pass an argument of -Djava.library.path={path_to_JNI_library} to java, or
manipulate LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, or PATH to include the directory
containing the JNI library.