Files
mozjpeg/jddctmgr.c
DRC af618ffe09 Clean up the lossless JPEG feature
- Rename jpeg_simple_lossless() to jpeg_enable_lossless() and modify the
  function so that it stores the lossless parameters directly in the Ss
  and Al fields of jpeg_compress_struct rather than using a scan script.

- Move the cjpeg -lossless switch into "Switches for advanced users".

- Document the libjpeg API and run-time features that are unavailable in
  lossless mode, and ensure that all parameters, functions, and switches
  related to unavailable features are ignored or generate errors in
  lossless mode.

- Defer any action that depends on whether lossless mode is enabled
  until jpeg_start_compress()/jpeg_start_decompress() is called.

- Document the purpose of the point transform value.

- "Codec" stands for coder/decoder, so it is a bit awkward to say
  "lossless compression codec" and "lossless decompression codec".
  Use "lossless compressor" and "lossless decompressor" instead.

- Restore backward API/ABI compatibility with libjpeg v6b:

  * Move the new 'lossless' field from the exposed jpeg_compress_struct
    and jpeg_decompress_struct structures into the opaque
    jpeg_comp_master and jpeg_decomp_master structures, and allocate the
    master structures in the body of jpeg_create_compress() and
    jpeg_create_decompress().

  * Remove the new 'process' field from jpeg_compress_struct and
    jpeg_decompress_struct and replace it with the old
    'progressive_mode' field and the new 'lossless' field.

  * Remove the new 'data_unit' field from jpeg_compress_struct and
    jpeg_decompress_struct and replace it with a locally-computed
    data unit variable.

  * Restore the names of macros and fields that refer to DCT blocks, and
    document that they have a different meaning in lossless mode.  (Most
    of them aren't very meaningful in lossless mode anyhow.)

  * Remove the new alloc_darray() method from jpeg_memory_mgr and
    replace it with an internal macro that wraps the alloc_sarray()
    method.

  * Move the JDIFF* data types from jpeglib.h and jmorecfg.h into
    jpegint.h.

  * Remove the new 'codec' field from jpeg_compress_struct and
    jpeg_decompress_struct and instead reuse the existing internal
    coefficient control, forward/inverse DCT, and entropy
    encoding/decoding structures for lossless compression/decompression.

  * Repurpose existing error codes rather than introducing new ones.
    (The new JERR_BAD_RESTART and JWRN_MUST_DOWNSCALE codes remain,
    although JWRN_MUST_DOWNSCALE will probably be removed in
    libjpeg-turbo, since we have a different way of handling multiple
    data precisions.)

- Automatically enable lossless mode when a scan script with parameters
  that are only valid for lossless mode is detected, and document the
  use of scan scripts to generate lossless JPEG images.

- Move the sequential and shared Huffman routines back into jchuff.c and
  jdhuff.c, and document that those routines are shared with jclhuff.c
  and jdlhuff.c as well as with jcphuff.c and jdphuff.c.

- Move MAX_DIFF_BITS from jchuff.h into jclhuff.c, the only place where
  it is used.

- Move the predictor and scaler code into jclossls.c and jdlossls.c.

- Streamline register usage in the [un]differencers (inspired by similar
  optimizations in the color [de]converters.)

- Restructure the logic in a few places to reduce duplicated code.

- Ensure that all lossless-specific code is guarded by
  C_LOSSLESS_SUPPORTED or D_LOSSLESS_SUPPORTED and that the library can
  be built successfully if either or both of those macros is undefined.

- Remove all short forms of external names introduced by the lossless
  JPEG patch.  (These will not be needed by libjpeg-turbo, so there is
  no use cleaning them up.)

- Various wordsmithing, formatting, and punctuation tweaks

- Eliminate various compiler warnings.
2022-11-16 11:27:18 -06:00

366 lines
11 KiB
C

/*
* jddctmgr.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2010 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* Copyright (C) 2010, 2015, 2022, D. R. Commander.
* Copyright (C) 2013, MIPS Technologies, Inc., California.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains the inverse-DCT management logic.
* This code selects a particular IDCT implementation to be used,
* and it performs related housekeeping chores. No code in this file
* is executed per IDCT step, only during output pass setup.
*
* Note that the IDCT routines are responsible for performing coefficient
* dequantization as well as the IDCT proper. This module sets up the
* dequantization multiplier table needed by the IDCT routine.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#include "jsimddct.h"
#include "jpegapicomp.h"
/*
* The decompressor input side (jdinput.c) saves away the appropriate
* quantization table for each component at the start of the first scan
* involving that component. (This is necessary in order to correctly
* decode files that reuse Q-table slots.)
* When we are ready to make an output pass, the saved Q-table is converted
* to a multiplier table that will actually be used by the IDCT routine.
* The multiplier table contents are IDCT-method-dependent. To support
* application changes in IDCT method between scans, we can remake the
* multiplier tables if necessary.
* In buffered-image mode, the first output pass may occur before any data
* has been seen for some components, and thus before their Q-tables have
* been saved away. To handle this case, multiplier tables are preset
* to zeroes; the result of the IDCT will be a neutral gray level.
*/
/* Private subobject for this module */
typedef struct {
struct jpeg_inverse_dct pub; /* public fields */
/* This array contains the IDCT method code that each multiplier table
* is currently set up for, or -1 if it's not yet set up.
* The actual multiplier tables are pointed to by dct_table in the
* per-component comp_info structures.
*/
int cur_method[MAX_COMPONENTS];
} my_idct_controller;
typedef my_idct_controller *my_idct_ptr;
/* Allocated multiplier tables: big enough for any supported variant */
typedef union {
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
#ifdef DCT_IFAST_SUPPORTED
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
FLOAT_MULT_TYPE float_array[DCTSIZE2];
#endif
} multiplier_table;
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Prepare for an output pass.
* Here we select the proper IDCT routine for each component and build
* a matching multiplier table.
*/
METHODDEF(void)
start_pass(j_decompress_ptr cinfo)
{
my_idct_ptr idct = (my_idct_ptr)cinfo->idct;
int ci, i;
jpeg_component_info *compptr;
int method = 0;
_inverse_DCT_method_ptr method_ptr = NULL;
JQUANT_TBL *qtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Select the proper IDCT routine for this component's scaling */
switch (compptr->_DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
case 1:
method_ptr = _jpeg_idct_1x1;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 2:
#ifdef WITH_SIMD
if (jsimd_can_idct_2x2())
method_ptr = jsimd_idct_2x2;
else
#endif
method_ptr = _jpeg_idct_2x2;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 3:
method_ptr = _jpeg_idct_3x3;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 4:
#ifdef WITH_SIMD
if (jsimd_can_idct_4x4())
method_ptr = jsimd_idct_4x4;
else
#endif
method_ptr = _jpeg_idct_4x4;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 5:
method_ptr = _jpeg_idct_5x5;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 6:
#if defined(WITH_SIMD) && defined(__mips__)
if (jsimd_can_idct_6x6())
method_ptr = jsimd_idct_6x6;
else
#endif
method_ptr = _jpeg_idct_6x6;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 7:
method_ptr = _jpeg_idct_7x7;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
#endif
case DCTSIZE:
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
#ifdef WITH_SIMD
if (jsimd_can_idct_islow())
method_ptr = jsimd_idct_islow;
else
#endif
method_ptr = _jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
#ifdef WITH_SIMD
if (jsimd_can_idct_ifast())
method_ptr = jsimd_idct_ifast;
else
#endif
method_ptr = _jpeg_idct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
#ifdef WITH_SIMD
if (jsimd_can_idct_float())
method_ptr = jsimd_idct_float;
else
#endif
method_ptr = _jpeg_idct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
#ifdef IDCT_SCALING_SUPPORTED
case 9:
method_ptr = _jpeg_idct_9x9;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 10:
method_ptr = _jpeg_idct_10x10;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 11:
method_ptr = _jpeg_idct_11x11;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 12:
#if defined(WITH_SIMD) && defined(__mips__)
if (jsimd_can_idct_12x12())
method_ptr = jsimd_idct_12x12;
else
#endif
method_ptr = _jpeg_idct_12x12;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 13:
method_ptr = _jpeg_idct_13x13;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 14:
method_ptr = _jpeg_idct_14x14;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 15:
method_ptr = _jpeg_idct_15x15;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case 16:
method_ptr = _jpeg_idct_16x16;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
#endif
default:
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size);
break;
}
idct->pub._inverse_DCT[ci] = method_ptr;
/* Create multiplier table from quant table.
* However, we can skip this if the component is uninteresting
* or if we already built the table. Also, if no quant table
* has yet been saved for the component, we leave the
* multiplier table all-zero; we'll be reading zeroes from the
* coefficient controller's buffer anyway.
*/
if (!compptr->component_needed || idct->cur_method[ci] == method)
continue;
qtbl = compptr->quant_table;
if (qtbl == NULL) /* happens if no data yet for component */
continue;
idct->cur_method[ci] = method;
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored as ints to ensure access efficiency.
*/
ISLOW_MULT_TYPE *ismtbl = (ISLOW_MULT_TYPE *)compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE)qtbl->quantval[i];
}
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS.
*/
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)compptr->dct_table;
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
(JLONG)aanscales[i]),
CONST_BITS - IFAST_SCALE_BITS);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
*/
FLOAT_MULT_TYPE *fmtbl = (FLOAT_MULT_TYPE *)compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double)qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col]);
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Initialize IDCT manager.
*/
GLOBAL(void)
_jinit_inverse_dct(j_decompress_ptr cinfo)
{
my_idct_ptr idct;
int ci;
jpeg_component_info *compptr;
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
sizeof(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *)idct;
idct->pub.start_pass = start_pass;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate and pre-zero a multiplier table for each component */
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
sizeof(multiplier_table));
memset(compptr->dct_table, 0, sizeof(multiplier_table));
/* Mark multiplier table not yet set up for any method */
idct->cur_method[ci] = -1;
}
}