Files
mozjpeg/simd/i386/jfdctint-sse2.asm
DRC 19c791cdac Improve code formatting consistency
With rare exceptions ...
- Always separate line continuation characters by one space from
  preceding code.
- Always use two-space indentation.  Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
  function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
  with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
  function name.
- Always precede pointer symbols ('*' and '**') by a space in type
  casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
  API libraries (using min() from tjutil.h is still necessary for
  TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
  line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.

The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions.  This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree.  The
new convention is more consistent with the formatting of other OSS code
bases.

This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.

NOTES:
- Although it is no longer necessary for the function name in function
  declarations to begin in Column 1 (this was historically necessary
  because of the ansi2knr utility, which allowed libjpeg to be built
  with non-ANSI compilers), we retain that formatting for the libjpeg
  code because it improves readability when using libjpeg's function
  attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
  Uncrustify, although neither was completely up to the task, and thus
  a great deal of manual tweaking was required.  Note to developers of
  code formatting utilities:  the libjpeg-turbo code base is an
  excellent test bed, because AFAICT, it breaks every single one of the
  utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
  formatted to match the SSE2 code (refer to
  ff5685d5344273df321eb63a005eaae19d2496e3.)  I hadn't intended to
  bother with this, but the Loongson MMI implementation demonstrated
  that there is still academic value to the MMX implementation, as an
  algorithmic model for other 64-bit vector implementations.  Thus, it
  is desirable to improve its readability in the same manner as that of
  the SSE2 implementation.
2018-03-16 02:14:34 -05:00

636 lines
26 KiB
NASM

;
; jfdctint.asm - accurate integer FDCT (SSE2)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
; Copyright (C) 2016, D. R. Commander.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains a slow-but-accurate integer implementation of the
; forward DCT (Discrete Cosine Transform). The following code is based
; directly on the IJG's original jfdctint.c; see the jfdctint.c for
; more details.
;
; [TAB8]
%include "jsimdext.inc"
%include "jdct.inc"
; --------------------------------------------------------------------------
%define CONST_BITS 13
%define PASS1_BITS 2
%define DESCALE_P1 (CONST_BITS - PASS1_BITS)
%define DESCALE_P2 (CONST_BITS + PASS1_BITS)
%if CONST_BITS == 13
F_0_298 equ 2446 ; FIX(0.298631336)
F_0_390 equ 3196 ; FIX(0.390180644)
F_0_541 equ 4433 ; FIX(0.541196100)
F_0_765 equ 6270 ; FIX(0.765366865)
F_0_899 equ 7373 ; FIX(0.899976223)
F_1_175 equ 9633 ; FIX(1.175875602)
F_1_501 equ 12299 ; FIX(1.501321110)
F_1_847 equ 15137 ; FIX(1.847759065)
F_1_961 equ 16069 ; FIX(1.961570560)
F_2_053 equ 16819 ; FIX(2.053119869)
F_2_562 equ 20995 ; FIX(2.562915447)
F_3_072 equ 25172 ; FIX(3.072711026)
%else
; NASM cannot do compile-time arithmetic on floating-point constants.
%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n))
F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336)
F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644)
F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100)
F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865)
F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223)
F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602)
F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110)
F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065)
F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560)
F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869)
F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447)
F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026)
%endif
; --------------------------------------------------------------------------
SECTION SEG_CONST
alignz 32
GLOBAL_DATA(jconst_fdct_islow_sse2)
EXTN(jconst_fdct_islow_sse2):
PW_F130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541
PW_F054_MF130 times 4 dw F_0_541, (F_0_541 - F_1_847)
PW_MF078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175
PW_F117_F078 times 4 dw F_1_175, (F_1_175 - F_0_390)
PW_MF060_MF089 times 4 dw (F_0_298 - F_0_899), -F_0_899
PW_MF089_F060 times 4 dw -F_0_899, (F_1_501 - F_0_899)
PW_MF050_MF256 times 4 dw (F_2_053 - F_2_562), -F_2_562
PW_MF256_F050 times 4 dw -F_2_562, (F_3_072 - F_2_562)
PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1 - 1)
PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2 - 1)
PW_DESCALE_P2X times 8 dw 1 << (PASS1_BITS - 1)
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
;
; Perform the forward DCT on one block of samples.
;
; GLOBAL(void)
; jsimd_fdct_islow_sse2(DCTELEM *data)
;
%define data(b) (b) + 8 ; DCTELEM *data
%define original_ebp ebp + 0
%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD
; xmmword wk[WK_NUM]
%define WK_NUM 6
align 32
GLOBAL_FUNCTION(jsimd_fdct_islow_sse2)
EXTN(jsimd_fdct_islow_sse2):
push ebp
mov eax, esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [esp], eax
mov ebp, esp ; ebp = aligned ebp
lea esp, [wk(0)]
pushpic ebx
; push ecx ; unused
; push edx ; need not be preserved
; push esi ; unused
; push edi ; unused
get_GOT ebx ; get GOT address
; ---- Pass 1: process rows.
mov edx, POINTER [data(eax)] ; (DCTELEM *)
movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
movdqa xmm4, xmm0 ; transpose coefficients(phase 1)
punpcklwd xmm0, xmm1 ; xmm0=(00 10 01 11 02 12 03 13)
punpckhwd xmm4, xmm1 ; xmm4=(04 14 05 15 06 16 07 17)
movdqa xmm5, xmm2 ; transpose coefficients(phase 1)
punpcklwd xmm2, xmm3 ; xmm2=(20 30 21 31 22 32 23 33)
punpckhwd xmm5, xmm3 ; xmm5=(24 34 25 35 26 36 27 37)
movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)]
movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)]
movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)]
movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)]
; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33)
movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37)
movdqa xmm2, xmm6 ; transpose coefficients(phase 1)
punpcklwd xmm6, xmm7 ; xmm6=(40 50 41 51 42 52 43 53)
punpckhwd xmm2, xmm7 ; xmm2=(44 54 45 55 46 56 47 57)
movdqa xmm5, xmm1 ; transpose coefficients(phase 1)
punpcklwd xmm1, xmm3 ; xmm1=(60 70 61 71 62 72 63 73)
punpckhwd xmm5, xmm3 ; xmm5=(64 74 65 75 66 76 67 77)
movdqa xmm7, xmm6 ; transpose coefficients(phase 2)
punpckldq xmm6, xmm1 ; xmm6=(40 50 60 70 41 51 61 71)
punpckhdq xmm7, xmm1 ; xmm7=(42 52 62 72 43 53 63 73)
movdqa xmm3, xmm2 ; transpose coefficients(phase 2)
punpckldq xmm2, xmm5 ; xmm2=(44 54 64 74 45 55 65 75)
punpckhdq xmm3, xmm5 ; xmm3=(46 56 66 76 47 57 67 77)
movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33)
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37)
movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=(42 52 62 72 43 53 63 73)
movdqa XMMWORD [wk(3)], xmm2 ; wk(3)=(44 54 64 74 45 55 65 75)
movdqa xmm7, xmm0 ; transpose coefficients(phase 2)
punpckldq xmm0, xmm1 ; xmm0=(00 10 20 30 01 11 21 31)
punpckhdq xmm7, xmm1 ; xmm7=(02 12 22 32 03 13 23 33)
movdqa xmm2, xmm4 ; transpose coefficients(phase 2)
punpckldq xmm4, xmm5 ; xmm4=(04 14 24 34 05 15 25 35)
punpckhdq xmm2, xmm5 ; xmm2=(06 16 26 36 07 17 27 37)
movdqa xmm1, xmm0 ; transpose coefficients(phase 3)
punpcklqdq xmm0, xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0
punpckhqdq xmm1, xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1
movdqa xmm5, xmm2 ; transpose coefficients(phase 3)
punpcklqdq xmm2, xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6
punpckhqdq xmm5, xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7
movdqa xmm6, xmm1
movdqa xmm3, xmm0
psubw xmm1, xmm2 ; xmm1=data1-data6=tmp6
psubw xmm0, xmm5 ; xmm0=data0-data7=tmp7
paddw xmm6, xmm2 ; xmm6=data1+data6=tmp1
paddw xmm3, xmm5 ; xmm3=data0+data7=tmp0
movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(42 52 62 72 43 53 63 73)
movdqa xmm5, XMMWORD [wk(3)] ; xmm5=(44 54 64 74 45 55 65 75)
movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6
movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7
movdqa xmm1, xmm7 ; transpose coefficients(phase 3)
punpcklqdq xmm7, xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2
punpckhqdq xmm1, xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3
movdqa xmm0, xmm4 ; transpose coefficients(phase 3)
punpcklqdq xmm4, xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4
punpckhqdq xmm0, xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5
movdqa xmm2, xmm1
movdqa xmm5, xmm7
paddw xmm1, xmm4 ; xmm1=data3+data4=tmp3
paddw xmm7, xmm0 ; xmm7=data2+data5=tmp2
psubw xmm2, xmm4 ; xmm2=data3-data4=tmp4
psubw xmm5, xmm0 ; xmm5=data2-data5=tmp5
; -- Even part
movdqa xmm4, xmm3
movdqa xmm0, xmm6
paddw xmm3, xmm1 ; xmm3=tmp10
paddw xmm6, xmm7 ; xmm6=tmp11
psubw xmm4, xmm1 ; xmm4=tmp13
psubw xmm0, xmm7 ; xmm0=tmp12
movdqa xmm1, xmm3
paddw xmm3, xmm6 ; xmm3=tmp10+tmp11
psubw xmm1, xmm6 ; xmm1=tmp10-tmp11
psllw xmm3, PASS1_BITS ; xmm3=data0
psllw xmm1, PASS1_BITS ; xmm1=data4
movdqa XMMWORD [wk(2)], xmm3 ; wk(2)=data0
movdqa XMMWORD [wk(3)], xmm1 ; wk(3)=data4
; (Original)
; z1 = (tmp12 + tmp13) * 0.541196100;
; data2 = z1 + tmp13 * 0.765366865;
; data6 = z1 + tmp12 * -1.847759065;
;
; (This implementation)
; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100;
; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065);
movdqa xmm7, xmm4 ; xmm4=tmp13
movdqa xmm6, xmm4
punpcklwd xmm7, xmm0 ; xmm0=tmp12
punpckhwd xmm6, xmm0
movdqa xmm4, xmm7
movdqa xmm0, xmm6
pmaddwd xmm7, [GOTOFF(ebx,PW_F130_F054)] ; xmm7=data2L
pmaddwd xmm6, [GOTOFF(ebx,PW_F130_F054)] ; xmm6=data2H
pmaddwd xmm4, [GOTOFF(ebx,PW_F054_MF130)] ; xmm4=data6L
pmaddwd xmm0, [GOTOFF(ebx,PW_F054_MF130)] ; xmm0=data6H
paddd xmm7, [GOTOFF(ebx,PD_DESCALE_P1)]
paddd xmm6, [GOTOFF(ebx,PD_DESCALE_P1)]
psrad xmm7, DESCALE_P1
psrad xmm6, DESCALE_P1
paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P1)]
paddd xmm0, [GOTOFF(ebx,PD_DESCALE_P1)]
psrad xmm4, DESCALE_P1
psrad xmm0, DESCALE_P1
packssdw xmm7, xmm6 ; xmm7=data2
packssdw xmm4, xmm0 ; xmm4=data6
movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=data2
movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=data6
; -- Odd part
movdqa xmm3, XMMWORD [wk(0)] ; xmm3=tmp6
movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp7
movdqa xmm6, xmm2 ; xmm2=tmp4
movdqa xmm0, xmm5 ; xmm5=tmp5
paddw xmm6, xmm3 ; xmm6=z3
paddw xmm0, xmm1 ; xmm0=z4
; (Original)
; z5 = (z3 + z4) * 1.175875602;
; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
; z3 += z5; z4 += z5;
;
; (This implementation)
; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
movdqa xmm7, xmm6
movdqa xmm4, xmm6
punpcklwd xmm7, xmm0
punpckhwd xmm4, xmm0
movdqa xmm6, xmm7
movdqa xmm0, xmm4
pmaddwd xmm7, [GOTOFF(ebx,PW_MF078_F117)] ; xmm7=z3L
pmaddwd xmm4, [GOTOFF(ebx,PW_MF078_F117)] ; xmm4=z3H
pmaddwd xmm6, [GOTOFF(ebx,PW_F117_F078)] ; xmm6=z4L
pmaddwd xmm0, [GOTOFF(ebx,PW_F117_F078)] ; xmm0=z4H
movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=z3L
movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=z3H
; (Original)
; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6;
; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869;
; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110;
; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4;
; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4;
;
; (This implementation)
; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223;
; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447;
; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447);
; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223);
; data7 = tmp4 + z3; data5 = tmp5 + z4;
; data3 = tmp6 + z3; data1 = tmp7 + z4;
movdqa xmm7, xmm2
movdqa xmm4, xmm2
punpcklwd xmm7, xmm1
punpckhwd xmm4, xmm1
movdqa xmm2, xmm7
movdqa xmm1, xmm4
pmaddwd xmm7, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm7=tmp4L
pmaddwd xmm4, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm4=tmp4H
pmaddwd xmm2, [GOTOFF(ebx,PW_MF089_F060)] ; xmm2=tmp7L
pmaddwd xmm1, [GOTOFF(ebx,PW_MF089_F060)] ; xmm1=tmp7H
paddd xmm7, XMMWORD [wk(0)] ; xmm7=data7L
paddd xmm4, XMMWORD [wk(1)] ; xmm4=data7H
paddd xmm2, xmm6 ; xmm2=data1L
paddd xmm1, xmm0 ; xmm1=data1H
paddd xmm7, [GOTOFF(ebx,PD_DESCALE_P1)]
paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P1)]
psrad xmm7, DESCALE_P1
psrad xmm4, DESCALE_P1
paddd xmm2, [GOTOFF(ebx,PD_DESCALE_P1)]
paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P1)]
psrad xmm2, DESCALE_P1
psrad xmm1, DESCALE_P1
packssdw xmm7, xmm4 ; xmm7=data7
packssdw xmm2, xmm1 ; xmm2=data1
movdqa xmm4, xmm5
movdqa xmm1, xmm5
punpcklwd xmm4, xmm3
punpckhwd xmm1, xmm3
movdqa xmm5, xmm4
movdqa xmm3, xmm1
pmaddwd xmm4, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm4=tmp5L
pmaddwd xmm1, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm1=tmp5H
pmaddwd xmm5, [GOTOFF(ebx,PW_MF256_F050)] ; xmm5=tmp6L
pmaddwd xmm3, [GOTOFF(ebx,PW_MF256_F050)] ; xmm3=tmp6H
paddd xmm4, xmm6 ; xmm4=data5L
paddd xmm1, xmm0 ; xmm1=data5H
paddd xmm5, XMMWORD [wk(0)] ; xmm5=data3L
paddd xmm3, XMMWORD [wk(1)] ; xmm3=data3H
paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P1)]
paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P1)]
psrad xmm4, DESCALE_P1
psrad xmm1, DESCALE_P1
paddd xmm5, [GOTOFF(ebx,PD_DESCALE_P1)]
paddd xmm3, [GOTOFF(ebx,PD_DESCALE_P1)]
psrad xmm5, DESCALE_P1
psrad xmm3, DESCALE_P1
packssdw xmm4, xmm1 ; xmm4=data5
packssdw xmm5, xmm3 ; xmm5=data3
; ---- Pass 2: process columns.
; mov edx, POINTER [data(eax)] ; (DCTELEM *)
movdqa xmm6, XMMWORD [wk(2)] ; xmm6=col0
movdqa xmm0, XMMWORD [wk(4)] ; xmm0=col2
; xmm6=(00 10 20 30 40 50 60 70), xmm0=(02 12 22 32 42 52 62 72)
; xmm2=(01 11 21 31 41 51 61 71), xmm5=(03 13 23 33 43 53 63 73)
movdqa xmm1, xmm6 ; transpose coefficients(phase 1)
punpcklwd xmm6, xmm2 ; xmm6=(00 01 10 11 20 21 30 31)
punpckhwd xmm1, xmm2 ; xmm1=(40 41 50 51 60 61 70 71)
movdqa xmm3, xmm0 ; transpose coefficients(phase 1)
punpcklwd xmm0, xmm5 ; xmm0=(02 03 12 13 22 23 32 33)
punpckhwd xmm3, xmm5 ; xmm3=(42 43 52 53 62 63 72 73)
movdqa xmm2, XMMWORD [wk(3)] ; xmm2=col4
movdqa xmm5, XMMWORD [wk(5)] ; xmm5=col6
; xmm2=(04 14 24 34 44 54 64 74), xmm5=(06 16 26 36 46 56 66 76)
; xmm4=(05 15 25 35 45 55 65 75), xmm7=(07 17 27 37 47 57 67 77)
movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=(02 03 12 13 22 23 32 33)
movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(42 43 52 53 62 63 72 73)
movdqa xmm0, xmm2 ; transpose coefficients(phase 1)
punpcklwd xmm2, xmm4 ; xmm2=(04 05 14 15 24 25 34 35)
punpckhwd xmm0, xmm4 ; xmm0=(44 45 54 55 64 65 74 75)
movdqa xmm3, xmm5 ; transpose coefficients(phase 1)
punpcklwd xmm5, xmm7 ; xmm5=(06 07 16 17 26 27 36 37)
punpckhwd xmm3, xmm7 ; xmm3=(46 47 56 57 66 67 76 77)
movdqa xmm4, xmm2 ; transpose coefficients(phase 2)
punpckldq xmm2, xmm5 ; xmm2=(04 05 06 07 14 15 16 17)
punpckhdq xmm4, xmm5 ; xmm4=(24 25 26 27 34 35 36 37)
movdqa xmm7, xmm0 ; transpose coefficients(phase 2)
punpckldq xmm0, xmm3 ; xmm0=(44 45 46 47 54 55 56 57)
punpckhdq xmm7, xmm3 ; xmm7=(64 65 66 67 74 75 76 77)
movdqa xmm5, XMMWORD [wk(0)] ; xmm5=(02 03 12 13 22 23 32 33)
movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53 62 63 72 73)
movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=(24 25 26 27 34 35 36 37)
movdqa XMMWORD [wk(3)], xmm0 ; wk(3)=(44 45 46 47 54 55 56 57)
movdqa xmm4, xmm6 ; transpose coefficients(phase 2)
punpckldq xmm6, xmm5 ; xmm6=(00 01 02 03 10 11 12 13)
punpckhdq xmm4, xmm5 ; xmm4=(20 21 22 23 30 31 32 33)
movdqa xmm0, xmm1 ; transpose coefficients(phase 2)
punpckldq xmm1, xmm3 ; xmm1=(40 41 42 43 50 51 52 53)
punpckhdq xmm0, xmm3 ; xmm0=(60 61 62 63 70 71 72 73)
movdqa xmm5, xmm6 ; transpose coefficients(phase 3)
punpcklqdq xmm6, xmm2 ; xmm6=(00 01 02 03 04 05 06 07)=data0
punpckhqdq xmm5, xmm2 ; xmm5=(10 11 12 13 14 15 16 17)=data1
movdqa xmm3, xmm0 ; transpose coefficients(phase 3)
punpcklqdq xmm0, xmm7 ; xmm0=(60 61 62 63 64 65 66 67)=data6
punpckhqdq xmm3, xmm7 ; xmm3=(70 71 72 73 74 75 76 77)=data7
movdqa xmm2, xmm5
movdqa xmm7, xmm6
psubw xmm5, xmm0 ; xmm5=data1-data6=tmp6
psubw xmm6, xmm3 ; xmm6=data0-data7=tmp7
paddw xmm2, xmm0 ; xmm2=data1+data6=tmp1
paddw xmm7, xmm3 ; xmm7=data0+data7=tmp0
movdqa xmm0, XMMWORD [wk(2)] ; xmm0=(24 25 26 27 34 35 36 37)
movdqa xmm3, XMMWORD [wk(3)] ; xmm3=(44 45 46 47 54 55 56 57)
movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=tmp6
movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7
movdqa xmm5, xmm4 ; transpose coefficients(phase 3)
punpcklqdq xmm4, xmm0 ; xmm4=(20 21 22 23 24 25 26 27)=data2
punpckhqdq xmm5, xmm0 ; xmm5=(30 31 32 33 34 35 36 37)=data3
movdqa xmm6, xmm1 ; transpose coefficients(phase 3)
punpcklqdq xmm1, xmm3 ; xmm1=(40 41 42 43 44 45 46 47)=data4
punpckhqdq xmm6, xmm3 ; xmm6=(50 51 52 53 54 55 56 57)=data5
movdqa xmm0, xmm5
movdqa xmm3, xmm4
paddw xmm5, xmm1 ; xmm5=data3+data4=tmp3
paddw xmm4, xmm6 ; xmm4=data2+data5=tmp2
psubw xmm0, xmm1 ; xmm0=data3-data4=tmp4
psubw xmm3, xmm6 ; xmm3=data2-data5=tmp5
; -- Even part
movdqa xmm1, xmm7
movdqa xmm6, xmm2
paddw xmm7, xmm5 ; xmm7=tmp10
paddw xmm2, xmm4 ; xmm2=tmp11
psubw xmm1, xmm5 ; xmm1=tmp13
psubw xmm6, xmm4 ; xmm6=tmp12
movdqa xmm5, xmm7
paddw xmm7, xmm2 ; xmm7=tmp10+tmp11
psubw xmm5, xmm2 ; xmm5=tmp10-tmp11
paddw xmm7, [GOTOFF(ebx,PW_DESCALE_P2X)]
paddw xmm5, [GOTOFF(ebx,PW_DESCALE_P2X)]
psraw xmm7, PASS1_BITS ; xmm7=data0
psraw xmm5, PASS1_BITS ; xmm5=data4
movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm7
movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm5
; (Original)
; z1 = (tmp12 + tmp13) * 0.541196100;
; data2 = z1 + tmp13 * 0.765366865;
; data6 = z1 + tmp12 * -1.847759065;
;
; (This implementation)
; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100;
; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065);
movdqa xmm4, xmm1 ; xmm1=tmp13
movdqa xmm2, xmm1
punpcklwd xmm4, xmm6 ; xmm6=tmp12
punpckhwd xmm2, xmm6
movdqa xmm1, xmm4
movdqa xmm6, xmm2
pmaddwd xmm4, [GOTOFF(ebx,PW_F130_F054)] ; xmm4=data2L
pmaddwd xmm2, [GOTOFF(ebx,PW_F130_F054)] ; xmm2=data2H
pmaddwd xmm1, [GOTOFF(ebx,PW_F054_MF130)] ; xmm1=data6L
pmaddwd xmm6, [GOTOFF(ebx,PW_F054_MF130)] ; xmm6=data6H
paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P2)]
paddd xmm2, [GOTOFF(ebx,PD_DESCALE_P2)]
psrad xmm4, DESCALE_P2
psrad xmm2, DESCALE_P2
paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P2)]
paddd xmm6, [GOTOFF(ebx,PD_DESCALE_P2)]
psrad xmm1, DESCALE_P2
psrad xmm6, DESCALE_P2
packssdw xmm4, xmm2 ; xmm4=data2
packssdw xmm1, xmm6 ; xmm1=data6
movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm4
movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm1
; -- Odd part
movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp6
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7
movdqa xmm2, xmm0 ; xmm0=tmp4
movdqa xmm6, xmm3 ; xmm3=tmp5
paddw xmm2, xmm7 ; xmm2=z3
paddw xmm6, xmm5 ; xmm6=z4
; (Original)
; z5 = (z3 + z4) * 1.175875602;
; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
; z3 += z5; z4 += z5;
;
; (This implementation)
; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
movdqa xmm4, xmm2
movdqa xmm1, xmm2
punpcklwd xmm4, xmm6
punpckhwd xmm1, xmm6
movdqa xmm2, xmm4
movdqa xmm6, xmm1
pmaddwd xmm4, [GOTOFF(ebx,PW_MF078_F117)] ; xmm4=z3L
pmaddwd xmm1, [GOTOFF(ebx,PW_MF078_F117)] ; xmm1=z3H
pmaddwd xmm2, [GOTOFF(ebx,PW_F117_F078)] ; xmm2=z4L
pmaddwd xmm6, [GOTOFF(ebx,PW_F117_F078)] ; xmm6=z4H
movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=z3L
movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=z3H
; (Original)
; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6;
; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869;
; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110;
; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4;
; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4;
;
; (This implementation)
; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223;
; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447;
; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447);
; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223);
; data7 = tmp4 + z3; data5 = tmp5 + z4;
; data3 = tmp6 + z3; data1 = tmp7 + z4;
movdqa xmm4, xmm0
movdqa xmm1, xmm0
punpcklwd xmm4, xmm5
punpckhwd xmm1, xmm5
movdqa xmm0, xmm4
movdqa xmm5, xmm1
pmaddwd xmm4, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm4=tmp4L
pmaddwd xmm1, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm1=tmp4H
pmaddwd xmm0, [GOTOFF(ebx,PW_MF089_F060)] ; xmm0=tmp7L
pmaddwd xmm5, [GOTOFF(ebx,PW_MF089_F060)] ; xmm5=tmp7H
paddd xmm4, XMMWORD [wk(0)] ; xmm4=data7L
paddd xmm1, XMMWORD [wk(1)] ; xmm1=data7H
paddd xmm0, xmm2 ; xmm0=data1L
paddd xmm5, xmm6 ; xmm5=data1H
paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P2)]
paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P2)]
psrad xmm4, DESCALE_P2
psrad xmm1, DESCALE_P2
paddd xmm0, [GOTOFF(ebx,PD_DESCALE_P2)]
paddd xmm5, [GOTOFF(ebx,PD_DESCALE_P2)]
psrad xmm0, DESCALE_P2
psrad xmm5, DESCALE_P2
packssdw xmm4, xmm1 ; xmm4=data7
packssdw xmm0, xmm5 ; xmm0=data1
movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm4
movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm0
movdqa xmm1, xmm3
movdqa xmm5, xmm3
punpcklwd xmm1, xmm7
punpckhwd xmm5, xmm7
movdqa xmm3, xmm1
movdqa xmm7, xmm5
pmaddwd xmm1, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm1=tmp5L
pmaddwd xmm5, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm5=tmp5H
pmaddwd xmm3, [GOTOFF(ebx,PW_MF256_F050)] ; xmm3=tmp6L
pmaddwd xmm7, [GOTOFF(ebx,PW_MF256_F050)] ; xmm7=tmp6H
paddd xmm1, xmm2 ; xmm1=data5L
paddd xmm5, xmm6 ; xmm5=data5H
paddd xmm3, XMMWORD [wk(0)] ; xmm3=data3L
paddd xmm7, XMMWORD [wk(1)] ; xmm7=data3H
paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P2)]
paddd xmm5, [GOTOFF(ebx,PD_DESCALE_P2)]
psrad xmm1, DESCALE_P2
psrad xmm5, DESCALE_P2
paddd xmm3, [GOTOFF(ebx,PD_DESCALE_P2)]
paddd xmm7, [GOTOFF(ebx,PD_DESCALE_P2)]
psrad xmm3, DESCALE_P2
psrad xmm7, DESCALE_P2
packssdw xmm1, xmm5 ; xmm1=data5
packssdw xmm3, xmm7 ; xmm3=data3
movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm1
movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm3
; pop edi ; unused
; pop esi ; unused
; pop edx ; need not be preserved
; pop ecx ; unused
poppic ebx
mov esp, ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32