Files
mozjpeg/jcomapi.c
DRC 0fc7313e54 Don't traverse linked list when saving a marker
If the calling application invokes jpeg_save_markers() to save a
particular type of marker, then the save_marker() function will be
invoked for every marker of that type that is encountered.  Previously,
only the head of the marker linked list was stored (in
jpeg_decompress_struct), so save_marker() had to traverse the entire
linked list before it could add a new marker to the tail of the list.
That caused CPU usage to grow exponentially with the number of markers.
Referring to #764, it is possible to create a JPEG image that contains
an excessive number of markers.  The specific reproducer that uncovered
this issue is a specially-crafted 1-megabyte malformed JPEG image with
tens of thousands of APP1 markers, which required approximately 30
seconds of CPU time (on a modern Intel processor) to process.  However,
it should also be possible to create a legitimate JPEG image that
reproduces the issue (such as an image with tens of thousands of
duplicate EXIF tags.)

This commit introduces a new pointer (in jpeg_decomp_master, in order to
preserve backward ABI compatibility) that is used to store the tail of
the marker linked list whenever a marker is added to it.  Thus, it is no
longer necessary to traverse the list when adding a marker, and CPU
usage will grow linearly rather than exponentially with the number of
markers.

Fixes #764
2024-05-14 14:46:33 -04:00

111 lines
3.2 KiB
C

/*
* jcomapi.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1997, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2024, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains application interface routines that are used for both
* compression and decompression.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Abort processing of a JPEG compression or decompression operation,
* but don't destroy the object itself.
*
* For this, we merely clean up all the nonpermanent memory pools.
* Note that temp files (virtual arrays) are not allowed to belong to
* the permanent pool, so we will be able to close all temp files here.
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_abort(j_common_ptr cinfo)
{
int pool;
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
if (cinfo->mem == NULL)
return;
/* Releasing pools in reverse order might help avoid fragmentation
* with some (brain-damaged) malloc libraries.
*/
for (pool = JPOOL_NUMPOOLS - 1; pool > JPOOL_PERMANENT; pool--) {
(*cinfo->mem->free_pool) (cinfo, pool);
}
/* Reset overall state for possible reuse of object */
if (cinfo->is_decompressor) {
cinfo->global_state = DSTATE_START;
/* Try to keep application from accessing now-deleted marker list.
* A bit kludgy to do it here, but this is the most central place.
*/
((j_decompress_ptr)cinfo)->marker_list = NULL;
((j_decompress_ptr)cinfo)->master->marker_list_end = NULL;
} else {
cinfo->global_state = CSTATE_START;
}
}
/*
* Destruction of a JPEG object.
*
* Everything gets deallocated except the master jpeg_compress_struct itself
* and the error manager struct. Both of these are supplied by the application
* and must be freed, if necessary, by the application. (Often they are on
* the stack and so don't need to be freed anyway.)
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_destroy(j_common_ptr cinfo)
{
/* We need only tell the memory manager to release everything. */
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
if (cinfo->mem != NULL)
(*cinfo->mem->self_destruct) (cinfo);
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
cinfo->global_state = 0; /* mark it destroyed */
}
/*
* Convenience routines for allocating quantization and Huffman tables.
* (Would jutils.c be a more reasonable place to put these?)
*/
GLOBAL(JQUANT_TBL *)
jpeg_alloc_quant_table(j_common_ptr cinfo)
{
JQUANT_TBL *tbl;
tbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JQUANT_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
GLOBAL(JHUFF_TBL *)
jpeg_alloc_huff_table(j_common_ptr cinfo)
{
JHUFF_TBL *tbl;
tbl = (JHUFF_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JHUFF_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}