Files
mozjpeg/simd/i386/jfdctfst-sse2.asm
DRC 19c791cdac Improve code formatting consistency
With rare exceptions ...
- Always separate line continuation characters by one space from
  preceding code.
- Always use two-space indentation.  Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
  function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
  with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
  function name.
- Always precede pointer symbols ('*' and '**') by a space in type
  casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
  API libraries (using min() from tjutil.h is still necessary for
  TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
  line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.

The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions.  This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree.  The
new convention is more consistent with the formatting of other OSS code
bases.

This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.

NOTES:
- Although it is no longer necessary for the function name in function
  declarations to begin in Column 1 (this was historically necessary
  because of the ansi2knr utility, which allowed libjpeg to be built
  with non-ANSI compilers), we retain that formatting for the libjpeg
  code because it improves readability when using libjpeg's function
  attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
  Uncrustify, although neither was completely up to the task, and thus
  a great deal of manual tweaking was required.  Note to developers of
  code formatting utilities:  the libjpeg-turbo code base is an
  excellent test bed, because AFAICT, it breaks every single one of the
  utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
  formatted to match the SSE2 code (refer to
  ff5685d5344273df321eb63a005eaae19d2496e3.)  I hadn't intended to
  bother with this, but the Loongson MMI implementation demonstrated
  that there is still academic value to the MMX implementation, as an
  algorithmic model for other 64-bit vector implementations.  Thus, it
  is desirable to improve its readability in the same manner as that of
  the SSE2 implementation.
2018-03-16 02:14:34 -05:00

406 lines
18 KiB
NASM

;
; jfdctfst.asm - fast integer FDCT (SSE2)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
; Copyright (C) 2016, D. R. Commander.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains a fast, not so accurate integer implementation of
; the forward DCT (Discrete Cosine Transform). The following code is
; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
; for more details.
;
; [TAB8]
%include "jsimdext.inc"
%include "jdct.inc"
; --------------------------------------------------------------------------
%define CONST_BITS 8 ; 14 is also OK.
%if CONST_BITS == 8
F_0_382 equ 98 ; FIX(0.382683433)
F_0_541 equ 139 ; FIX(0.541196100)
F_0_707 equ 181 ; FIX(0.707106781)
F_1_306 equ 334 ; FIX(1.306562965)
%else
; NASM cannot do compile-time arithmetic on floating-point constants.
%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n))
F_0_382 equ DESCALE( 410903207, 30 - CONST_BITS) ; FIX(0.382683433)
F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100)
F_0_707 equ DESCALE( 759250124, 30 - CONST_BITS) ; FIX(0.707106781)
F_1_306 equ DESCALE(1402911301, 30 - CONST_BITS) ; FIX(1.306562965)
%endif
; --------------------------------------------------------------------------
SECTION SEG_CONST
; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
%define PRE_MULTIPLY_SCALE_BITS 2
%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
alignz 32
GLOBAL_DATA(jconst_fdct_ifast_sse2)
EXTN(jconst_fdct_ifast_sse2):
PW_F0707 times 8 dw F_0_707 << CONST_SHIFT
PW_F0382 times 8 dw F_0_382 << CONST_SHIFT
PW_F0541 times 8 dw F_0_541 << CONST_SHIFT
PW_F1306 times 8 dw F_1_306 << CONST_SHIFT
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
;
; Perform the forward DCT on one block of samples.
;
; GLOBAL(void)
; jsimd_fdct_ifast_sse2(DCTELEM *data)
;
%define data(b) (b) + 8 ; DCTELEM *data
%define original_ebp ebp + 0
%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD
; xmmword wk[WK_NUM]
%define WK_NUM 2
align 32
GLOBAL_FUNCTION(jsimd_fdct_ifast_sse2)
EXTN(jsimd_fdct_ifast_sse2):
push ebp
mov eax, esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [esp], eax
mov ebp, esp ; ebp = aligned ebp
lea esp, [wk(0)]
pushpic ebx
; push ecx ; unused
; push edx ; need not be preserved
; push esi ; unused
; push edi ; unused
get_GOT ebx ; get GOT address
; ---- Pass 1: process rows.
mov edx, POINTER [data(eax)] ; (DCTELEM *)
movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
movdqa xmm4, xmm0 ; transpose coefficients(phase 1)
punpcklwd xmm0, xmm1 ; xmm0=(00 10 01 11 02 12 03 13)
punpckhwd xmm4, xmm1 ; xmm4=(04 14 05 15 06 16 07 17)
movdqa xmm5, xmm2 ; transpose coefficients(phase 1)
punpcklwd xmm2, xmm3 ; xmm2=(20 30 21 31 22 32 23 33)
punpckhwd xmm5, xmm3 ; xmm5=(24 34 25 35 26 36 27 37)
movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)]
movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)]
movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)]
movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)]
; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33)
movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37)
movdqa xmm2, xmm6 ; transpose coefficients(phase 1)
punpcklwd xmm6, xmm7 ; xmm6=(40 50 41 51 42 52 43 53)
punpckhwd xmm2, xmm7 ; xmm2=(44 54 45 55 46 56 47 57)
movdqa xmm5, xmm1 ; transpose coefficients(phase 1)
punpcklwd xmm1, xmm3 ; xmm1=(60 70 61 71 62 72 63 73)
punpckhwd xmm5, xmm3 ; xmm5=(64 74 65 75 66 76 67 77)
movdqa xmm7, xmm6 ; transpose coefficients(phase 2)
punpckldq xmm6, xmm1 ; xmm6=(40 50 60 70 41 51 61 71)
punpckhdq xmm7, xmm1 ; xmm7=(42 52 62 72 43 53 63 73)
movdqa xmm3, xmm2 ; transpose coefficients(phase 2)
punpckldq xmm2, xmm5 ; xmm2=(44 54 64 74 45 55 65 75)
punpckhdq xmm3, xmm5 ; xmm3=(46 56 66 76 47 57 67 77)
movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33)
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37)
movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73)
movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75)
movdqa xmm7, xmm0 ; transpose coefficients(phase 2)
punpckldq xmm0, xmm1 ; xmm0=(00 10 20 30 01 11 21 31)
punpckhdq xmm7, xmm1 ; xmm7=(02 12 22 32 03 13 23 33)
movdqa xmm2, xmm4 ; transpose coefficients(phase 2)
punpckldq xmm4, xmm5 ; xmm4=(04 14 24 34 05 15 25 35)
punpckhdq xmm2, xmm5 ; xmm2=(06 16 26 36 07 17 27 37)
movdqa xmm1, xmm0 ; transpose coefficients(phase 3)
punpcklqdq xmm0, xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0
punpckhqdq xmm1, xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1
movdqa xmm5, xmm2 ; transpose coefficients(phase 3)
punpcklqdq xmm2, xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6
punpckhqdq xmm5, xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7
movdqa xmm6, xmm1
movdqa xmm3, xmm0
psubw xmm1, xmm2 ; xmm1=data1-data6=tmp6
psubw xmm0, xmm5 ; xmm0=data0-data7=tmp7
paddw xmm6, xmm2 ; xmm6=data1+data6=tmp1
paddw xmm3, xmm5 ; xmm3=data0+data7=tmp0
movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73)
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75)
movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6
movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7
movdqa xmm1, xmm7 ; transpose coefficients(phase 3)
punpcklqdq xmm7, xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2
punpckhqdq xmm1, xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3
movdqa xmm0, xmm4 ; transpose coefficients(phase 3)
punpcklqdq xmm4, xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4
punpckhqdq xmm0, xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5
movdqa xmm2, xmm1
movdqa xmm5, xmm7
paddw xmm1, xmm4 ; xmm1=data3+data4=tmp3
paddw xmm7, xmm0 ; xmm7=data2+data5=tmp2
psubw xmm2, xmm4 ; xmm2=data3-data4=tmp4
psubw xmm5, xmm0 ; xmm5=data2-data5=tmp5
; -- Even part
movdqa xmm4, xmm3
movdqa xmm0, xmm6
psubw xmm3, xmm1 ; xmm3=tmp13
psubw xmm6, xmm7 ; xmm6=tmp12
paddw xmm4, xmm1 ; xmm4=tmp10
paddw xmm0, xmm7 ; xmm0=tmp11
paddw xmm6, xmm3
psllw xmm6, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm6, [GOTOFF(ebx,PW_F0707)] ; xmm6=z1
movdqa xmm1, xmm4
movdqa xmm7, xmm3
psubw xmm4, xmm0 ; xmm4=data4
psubw xmm3, xmm6 ; xmm3=data6
paddw xmm1, xmm0 ; xmm1=data0
paddw xmm7, xmm6 ; xmm7=data2
movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6
movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7
movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4
movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6
; -- Odd part
paddw xmm2, xmm5 ; xmm2=tmp10
paddw xmm5, xmm0 ; xmm5=tmp11
paddw xmm0, xmm6 ; xmm0=tmp12, xmm6=tmp7
psllw xmm2, PRE_MULTIPLY_SCALE_BITS
psllw xmm0, PRE_MULTIPLY_SCALE_BITS
psllw xmm5, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm5, [GOTOFF(ebx,PW_F0707)] ; xmm5=z3
movdqa xmm4, xmm2 ; xmm4=tmp10
psubw xmm2, xmm0
pmulhw xmm2, [GOTOFF(ebx,PW_F0382)] ; xmm2=z5
pmulhw xmm4, [GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
pmulhw xmm0, [GOTOFF(ebx,PW_F1306)] ; xmm0=MULTIPLY(tmp12,FIX_1_306562)
paddw xmm4, xmm2 ; xmm4=z2
paddw xmm0, xmm2 ; xmm0=z4
movdqa xmm3, xmm6
psubw xmm6, xmm5 ; xmm6=z13
paddw xmm3, xmm5 ; xmm3=z11
movdqa xmm2, xmm6
movdqa xmm5, xmm3
psubw xmm6, xmm4 ; xmm6=data3
psubw xmm3, xmm0 ; xmm3=data7
paddw xmm2, xmm4 ; xmm2=data5
paddw xmm5, xmm0 ; xmm5=data1
; ---- Pass 2: process columns.
; mov edx, POINTER [data(eax)] ; (DCTELEM *)
; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72)
; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73)
movdqa xmm4, xmm1 ; transpose coefficients(phase 1)
punpcklwd xmm1, xmm5 ; xmm1=(00 01 10 11 20 21 30 31)
punpckhwd xmm4, xmm5 ; xmm4=(40 41 50 51 60 61 70 71)
movdqa xmm0, xmm7 ; transpose coefficients(phase 1)
punpcklwd xmm7, xmm6 ; xmm7=(02 03 12 13 22 23 32 33)
punpckhwd xmm0, xmm6 ; xmm0=(42 43 52 53 62 63 72 73)
movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4
movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6
; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76)
; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77)
movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33)
movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73)
movdqa xmm7, xmm5 ; transpose coefficients(phase 1)
punpcklwd xmm5, xmm2 ; xmm5=(04 05 14 15 24 25 34 35)
punpckhwd xmm7, xmm2 ; xmm7=(44 45 54 55 64 65 74 75)
movdqa xmm0, xmm6 ; transpose coefficients(phase 1)
punpcklwd xmm6, xmm3 ; xmm6=(06 07 16 17 26 27 36 37)
punpckhwd xmm0, xmm3 ; xmm0=(46 47 56 57 66 67 76 77)
movdqa xmm2, xmm5 ; transpose coefficients(phase 2)
punpckldq xmm5, xmm6 ; xmm5=(04 05 06 07 14 15 16 17)
punpckhdq xmm2, xmm6 ; xmm2=(24 25 26 27 34 35 36 37)
movdqa xmm3, xmm7 ; transpose coefficients(phase 2)
punpckldq xmm7, xmm0 ; xmm7=(44 45 46 47 54 55 56 57)
punpckhdq xmm3, xmm0 ; xmm3=(64 65 66 67 74 75 76 77)
movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33)
movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73)
movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37)
movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57)
movdqa xmm2, xmm1 ; transpose coefficients(phase 2)
punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 10 11 12 13)
punpckhdq xmm2, xmm6 ; xmm2=(20 21 22 23 30 31 32 33)
movdqa xmm7, xmm4 ; transpose coefficients(phase 2)
punpckldq xmm4, xmm0 ; xmm4=(40 41 42 43 50 51 52 53)
punpckhdq xmm7, xmm0 ; xmm7=(60 61 62 63 70 71 72 73)
movdqa xmm6, xmm1 ; transpose coefficients(phase 3)
punpcklqdq xmm1, xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0
punpckhqdq xmm6, xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1
movdqa xmm0, xmm7 ; transpose coefficients(phase 3)
punpcklqdq xmm7, xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6
punpckhqdq xmm0, xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7
movdqa xmm5, xmm6
movdqa xmm3, xmm1
psubw xmm6, xmm7 ; xmm6=data1-data6=tmp6
psubw xmm1, xmm0 ; xmm1=data0-data7=tmp7
paddw xmm5, xmm7 ; xmm5=data1+data6=tmp1
paddw xmm3, xmm0 ; xmm3=data0+data7=tmp0
movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37)
movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57)
movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6
movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7
movdqa xmm6, xmm2 ; transpose coefficients(phase 3)
punpcklqdq xmm2, xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2
punpckhqdq xmm6, xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3
movdqa xmm1, xmm4 ; transpose coefficients(phase 3)
punpcklqdq xmm4, xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4
punpckhqdq xmm1, xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5
movdqa xmm7, xmm6
movdqa xmm0, xmm2
paddw xmm6, xmm4 ; xmm6=data3+data4=tmp3
paddw xmm2, xmm1 ; xmm2=data2+data5=tmp2
psubw xmm7, xmm4 ; xmm7=data3-data4=tmp4
psubw xmm0, xmm1 ; xmm0=data2-data5=tmp5
; -- Even part
movdqa xmm4, xmm3
movdqa xmm1, xmm5
psubw xmm3, xmm6 ; xmm3=tmp13
psubw xmm5, xmm2 ; xmm5=tmp12
paddw xmm4, xmm6 ; xmm4=tmp10
paddw xmm1, xmm2 ; xmm1=tmp11
paddw xmm5, xmm3
psllw xmm5, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm5, [GOTOFF(ebx,PW_F0707)] ; xmm5=z1
movdqa xmm6, xmm4
movdqa xmm2, xmm3
psubw xmm4, xmm1 ; xmm4=data4
psubw xmm3, xmm5 ; xmm3=data6
paddw xmm6, xmm1 ; xmm6=data0
paddw xmm2, xmm5 ; xmm2=data2
movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm4
movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm3
movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm6
movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm2
; -- Odd part
movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7
paddw xmm7, xmm0 ; xmm7=tmp10
paddw xmm0, xmm1 ; xmm0=tmp11
paddw xmm1, xmm5 ; xmm1=tmp12, xmm5=tmp7
psllw xmm7, PRE_MULTIPLY_SCALE_BITS
psllw xmm1, PRE_MULTIPLY_SCALE_BITS
psllw xmm0, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm0, [GOTOFF(ebx,PW_F0707)] ; xmm0=z3
movdqa xmm4, xmm7 ; xmm4=tmp10
psubw xmm7, xmm1
pmulhw xmm7, [GOTOFF(ebx,PW_F0382)] ; xmm7=z5
pmulhw xmm4, [GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
pmulhw xmm1, [GOTOFF(ebx,PW_F1306)] ; xmm1=MULTIPLY(tmp12,FIX_1_306562)
paddw xmm4, xmm7 ; xmm4=z2
paddw xmm1, xmm7 ; xmm1=z4
movdqa xmm3, xmm5
psubw xmm5, xmm0 ; xmm5=z13
paddw xmm3, xmm0 ; xmm3=z11
movdqa xmm6, xmm5
movdqa xmm2, xmm3
psubw xmm5, xmm4 ; xmm5=data3
psubw xmm3, xmm1 ; xmm3=data7
paddw xmm6, xmm4 ; xmm6=data5
paddw xmm2, xmm1 ; xmm2=data1
movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm5
movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm3
movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm6
movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm2
; pop edi ; unused
; pop esi ; unused
; pop edx ; need not be preserved
; pop ecx ; unused
poppic ebx
mov esp, ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32