Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
36a4ccccd3 | ||
|
|
cc7150e281 | ||
|
|
88aeed428f |
77
CHANGELOG
77
CHANGELOG
@@ -1,77 +0,0 @@
|
||||
CHANGELOG for Independent JPEG Group's JPEG software
|
||||
|
||||
Version 3 17-Mar-92
|
||||
--------------------
|
||||
|
||||
Memory manager is finally capable of swapping to temp files. There are
|
||||
separate versions of jmemsys.c for no temp files (same behavior as older
|
||||
versions), simple temp files with or without tmpfile(), and a DOS-specific
|
||||
version (including special code for EMS and XMS). This is probably much more
|
||||
system-dependent than any of the older code; some bugs may surface here.
|
||||
|
||||
Hooks added for user interface to install progress monitoring routine
|
||||
(percent-done bar, etc). See comments with dummy progress_monitor
|
||||
routines in jcdeflts.c, jddeflts.c.
|
||||
|
||||
Two-pass color quantization (finally!). This is now the default method when
|
||||
quantizing; say '-1' to djpeg for quick-and-ugly 1-pass method. There is
|
||||
a test file for checking 2-pass quantization and GIF output.
|
||||
|
||||
Fixed bug in jcopy_block_row that broke cjpeg -o option and djpeg -b option
|
||||
on MSDOS machines.
|
||||
|
||||
Miscellaneous small speedups; notably, DCT computation rearranged so that
|
||||
GCC "inline" feature is no longer needed for good code quality.
|
||||
|
||||
File config.c renamed ckconfig.c to avoid name conflict with /etc/config
|
||||
on Unix systems.
|
||||
|
||||
Added example.c to document usage of JPEG subroutines better.
|
||||
|
||||
Memory manager now knows how to release all storage during error exit ---
|
||||
avoids memory leak when using JPEG as subroutines. This implies a couple
|
||||
small changes to the subroutine interface: the old free_defaults subroutines
|
||||
are no longer needed, but if you have a replacement error_exit method then it
|
||||
must call the new free_all method. Also, jselvirtmem renamed to jselmemmgr.
|
||||
|
||||
Code for reading Targa files with 32-bit pixels was incorrect.
|
||||
|
||||
Colorspace conversion slightly faster and more accurate; because of
|
||||
this, old "test" files will no longer match bit-for-bit.
|
||||
|
||||
|
||||
Version 2 13-Dec-91
|
||||
--------------------
|
||||
|
||||
Documentation improved a little --- there are man pages now.
|
||||
Installation instructions moved from README to a separate file SETUP.
|
||||
|
||||
New program config.c is provided to help you get the configuration options
|
||||
right. This should make installation a lot more foolproof.
|
||||
|
||||
Sense of djpeg -D switch reversed: dithering is now ON by default.
|
||||
|
||||
RLE image file support added (thanks to Mike Lijewski).
|
||||
|
||||
Targa image file support added (thanks to Lee Crocker).
|
||||
|
||||
PPM input now accepts all PPM and PGM files.
|
||||
|
||||
Bug fix: on machines where 'int' is 16 bits, high-Q-setting JPEG files
|
||||
were not decoded correctly.
|
||||
|
||||
Numerous changes to improve portability. There should be few or no compiler
|
||||
warnings now.
|
||||
|
||||
Makefiles cleaned up; defaults now appropriate for production use rather than
|
||||
debugging.
|
||||
|
||||
Subroutine interface cleaned up. If you wrote code based on version 1's
|
||||
jcmain/jdmain, you'll need to change it, but it should get a little shorter
|
||||
and simpler.
|
||||
|
||||
|
||||
Version 1 7-Oct-91
|
||||
--------------------
|
||||
|
||||
Initial public release.
|
||||
537
README
537
README
@@ -1,294 +1,130 @@
|
||||
The Independent JPEG Group's JPEG software
|
||||
==========================================
|
||||
|
||||
README for release 3 of 17-Mar-92
|
||||
==================================
|
||||
README for release 5 of 24-Sep-94
|
||||
=================================
|
||||
|
||||
This distribution contains the third official release of the Independent JPEG
|
||||
This distribution contains the fifth public release of the Independent JPEG
|
||||
Group's free JPEG software. You are welcome to redistribute this software and
|
||||
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
|
||||
|
||||
For installation instructions, see file SETUP; for usage instructions, see
|
||||
file USAGE (or the cjpeg.1 and djpeg.1 manual pages).
|
||||
Serious users of this software (particularly those incorporating it into
|
||||
larger programs) should contact jpeg-info@uunet.uu.net to be added to our
|
||||
electronic mailing list. Mailing list members are notified of updates and
|
||||
have a chance to participate in technical discussions, etc.
|
||||
|
||||
This software is still undergoing revision. Updated versions may be obtained
|
||||
by FTP or UUCP to UUNET and other archive sites; see ARCHIVE LOCATIONS below
|
||||
for details.
|
||||
This software is the work of Tom Lane, Philip Gladstone, Luis Ortiz, Jim
|
||||
Boucher, Lee Crocker, George Phillips, Davide Rossi, Ge' Weijers, and other
|
||||
members of the Independent JPEG Group.
|
||||
|
||||
If you intend to become a serious user of this software, please contact
|
||||
jpeg-info@uunet.uu.net to be added to our electronic mailing list. Then
|
||||
you'll be notified of updates and have a chance to participate in discussions,
|
||||
etc.
|
||||
|
||||
This software is the work of Tom Lane, Philip Gladstone, Luis Ortiz,
|
||||
Lee Crocker, Ge' Weijers, and other members of the Independent JPEG Group.
|
||||
IJG is not associated with the official ISO JPEG standards committee.
|
||||
|
||||
|
||||
DISCLAIMER
|
||||
==========
|
||||
DOCUMENTATION ROADMAP
|
||||
=====================
|
||||
|
||||
THIS SOFTWARE IS NOT COMPLETE NOR FULLY DEBUGGED. It is not guaranteed to be
|
||||
useful for anything, nor to be compatible with subsequent releases, nor to be
|
||||
an accurate implementation of the JPEG standard. (See LEGAL ISSUES for even
|
||||
more disclaimers.)
|
||||
This file contains the following sections:
|
||||
|
||||
Please report any problems with this software to jpeg-info@uunet.uu.net.
|
||||
OVERVIEW General description of JPEG and the IJG software.
|
||||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
|
||||
REFERENCES Where to learn more about JPEG.
|
||||
ARCHIVE LOCATIONS Where to find newer versions of this software.
|
||||
RELATED SOFTWARE Other stuff you should get.
|
||||
FILE FORMAT WARS Software *not* to get.
|
||||
TO DO Plans for future IJG releases.
|
||||
|
||||
Other documentation files in the distribution are:
|
||||
|
||||
User documentation:
|
||||
install.doc How to configure and install the IJG software.
|
||||
usage.doc Usage instructions for cjpeg, djpeg, rdjpgcom, wrjpgcom.
|
||||
*.1 Unix-style man pages for programs (same info as usage.doc).
|
||||
change.log Version-to-version change highlights.
|
||||
Programmer and internal documentation:
|
||||
libjpeg.doc How to use the JPEG library in your own programs.
|
||||
example.c Sample code for calling the JPEG library.
|
||||
structure.doc Overview of the JPEG library's internal structure.
|
||||
filelist.doc Road map of IJG files.
|
||||
coderules.doc Coding style rules --- please read if you contribute code.
|
||||
|
||||
Please read at least the files install.doc and usage.doc. Useful information
|
||||
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
|
||||
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
|
||||
|
||||
If you want to understand how the JPEG code works, we suggest reading one or
|
||||
more of the REFERENCES, then looking at the documentation files (in roughly
|
||||
the order listed) before diving into the code.
|
||||
|
||||
|
||||
WHAT'S HERE
|
||||
===========
|
||||
OVERVIEW
|
||||
========
|
||||
|
||||
This distribution contains C software to implement JPEG image compression and
|
||||
This package contains C software to implement JPEG image compression and
|
||||
decompression. JPEG (pronounced "jay-peg") is a standardized compression
|
||||
method for full-color and gray-scale images. JPEG is intended for
|
||||
method for full-color and gray-scale images. JPEG is intended for compressing
|
||||
"real-world" scenes; cartoons and other non-realistic images are not its
|
||||
strong suit. JPEG is lossy, meaning that the output image is not necessarily
|
||||
identical to the input image. Hence you should not use JPEG if you have to
|
||||
have identical output bits. However, on typical images of real-world scenes,
|
||||
very good compression levels can be obtained with no visible change, and
|
||||
amazingly high compression levels can be obtained if you can tolerate a
|
||||
low-quality image. For more details, see the references, or just experiment
|
||||
with various compression settings.
|
||||
identical to the input image. Hence you must not use JPEG if you have to have
|
||||
identical output bits. However, on typical images of real-world scenes, very
|
||||
good compression levels can be obtained with no visible change, and amazingly
|
||||
high compression levels are possible if you can tolerate a low-quality image.
|
||||
For more details, see the references, or just experiment with various
|
||||
compression settings.
|
||||
|
||||
The software implements JPEG baseline and extended-sequential compression
|
||||
We provide a set of library routines for reading and writing JPEG image files,
|
||||
plus two simple applications "cjpeg" and "djpeg", which use the library to
|
||||
perform conversion between JPEG and some other popular image file formats.
|
||||
The library is intended to be reused in other applications.
|
||||
|
||||
This software implements JPEG baseline and extended-sequential compression
|
||||
processes. Provision is made for supporting all variants of these processes,
|
||||
although some uncommon parameter settings aren't implemented yet. For legal
|
||||
reasons, we are not distributing code for the arithmetic-coding process; see
|
||||
LEGAL ISSUES. At present we have made no provision for supporting the
|
||||
progressive, hierarchical, or lossless processes defined in the standard.
|
||||
(Support for progressive mode may be offered in a future release.)
|
||||
|
||||
The present software is not far beyond the prototype stage. It does not
|
||||
support all possible variants of the JPEG standard, and some functions have
|
||||
rather slow and/or crude implementations. However, it is useful already.
|
||||
In order to support file conversion and viewing software, we have included
|
||||
considerable functionality beyond the bare JPEG coding/decoding capability;
|
||||
for example, the color quantization modules are not strictly part of JPEG
|
||||
decoding, but they are essential for output to colormapped file formats or
|
||||
colormapped displays. These extra functions can be compiled out of the
|
||||
library if not required for a particular application. We have also included
|
||||
two simple applications for inserting and extracting textual comments in
|
||||
JFIF files.
|
||||
|
||||
The emphasis in designing this software has been on achieving portability and
|
||||
flexibility, while also making it fast enough to be useful. We have not yet
|
||||
undertaken serious performance measurement or tuning; we intend to do so in
|
||||
the future.
|
||||
flexibility, while also making it fast enough to be useful. In particular,
|
||||
the software is not intended to be read as a tutorial on JPEG. (See the
|
||||
REFERENCES section for introductory material.) While we hope that the entire
|
||||
package will someday be industrial-strength code, much remains to be done in
|
||||
performance tuning and in improving the capabilities of individual modules.
|
||||
|
||||
|
||||
This software can be used on several levels:
|
||||
|
||||
* As canned software for JPEG compression and decompression. Just edit the
|
||||
Makefile and configuration files as needed (see file SETUP), compile and go.
|
||||
Members of the Independent JPEG Group will improve the out-of-the-box
|
||||
functionality and speed as time goes on.
|
||||
|
||||
* As the basis for other JPEG programs. For example, you could incorporate
|
||||
the decompressor into a general image viewing package by replacing the
|
||||
output module with write-to-screen functions. For an implementation on
|
||||
specific hardware, you might want to replace some of the inner loops with
|
||||
assembly code. For a non-command-line-driven system, you might want a
|
||||
different user interface. (Members of the group will be producing Macintosh
|
||||
and Amiga versions with more appropriate user interfaces, for example.)
|
||||
|
||||
* As a toolkit for experimentation with JPEG and JPEG-like algorithms. Most
|
||||
of the individual decisions you might want to mess with are packaged up into
|
||||
separate modules. For example, the details of color-space conversion and
|
||||
subsampling techniques are each localized in one compressor and one
|
||||
decompressor module. You'd probably also want to extend the user interface
|
||||
to give you more detailed control over the JPEG compression parameters.
|
||||
|
||||
In particular, we welcome the use of this software as a component of commercial
|
||||
products; no royalty is required.
|
||||
|
||||
|
||||
ARCHIVE LOCATIONS
|
||||
=================
|
||||
|
||||
The "official" archive site for this software is ftp.uu.net (Internet
|
||||
address 137.39.1.9 or 192.48.96.9). The most recent released version can
|
||||
always be found there in directory graphics/jpeg. This particular version
|
||||
will be archived as jpegsrc.v3.tar.Z. If you are on the Internet, you can
|
||||
retrieve files from UUNET by anonymous FTP. If you don't have FTP access,
|
||||
UUNET's archives are also available via UUCP; contact postmaster@uunet.uu.net
|
||||
for information on retrieving files that way.
|
||||
|
||||
Various other Internet sites maintain copies of the UUNET file, which may or
|
||||
may not be up-to-date. In Europe, try nic.funet.fi (128.214.6.100; look in
|
||||
directory pub/graphics/programs/jpeg).
|
||||
|
||||
You can also obtain this software from CompuServe, in the GRAPHSUPPORT forum
|
||||
(GO PICS), library 10; this version will be file jpsrc3.zip.
|
||||
|
||||
If you are not reasonably handy at configuring and installing portable C
|
||||
programs, you may have some difficulty installing this package. You may
|
||||
prefer to obtain a pre-built executable version. A collection of pre-built
|
||||
executables for various machines is currently available for anonymous FTP at
|
||||
procyon.cis.ksu.edu (129.130.10.80 --- this number is due to change soon);
|
||||
look under /pub/JPEG. The administrators of this system ask that FTP traffic
|
||||
be limited to non-prime hours. For more information on this archive, please
|
||||
contact Steve Davis (strat@cis.ksu.edu). This collection is not maintained by
|
||||
the Independent JPEG Group, and programs in it may not be the latest version.
|
||||
|
||||
|
||||
SUPPORTING SOFTWARE
|
||||
===================
|
||||
|
||||
You will probably want Jef Poskanzer's PBMPLUS image software, which provides
|
||||
many useful operations on PPM-format image files. In particular, it can
|
||||
convert PPM images to and from a wide range of other formats. You can FTP
|
||||
this free software from export.lcs.mit.edu (contrib/pbmplus*.tar.Z) or
|
||||
ftp.ee.lbl.gov (pbmplus*.tar.Z). Unfortunately PBMPLUS is not nearly as
|
||||
portable as the JPEG software is; you are likely to have difficulty making it
|
||||
work on any non-Unix machine.
|
||||
|
||||
If you are using X Windows you might want to use the xv or xloadimage viewers
|
||||
to save yourself the trouble of converting PPM to some other format. Both of
|
||||
these can be found in the contrib directory at export.lcs.mit.edu. Actually,
|
||||
xv version 2.00 and up incorporates our software and thus can read and write
|
||||
JPEG files directly. (NOTE: since xv internally reduces all images to 8
|
||||
bits/pixel, a JPEG file written by xv will not be very high quality; you may
|
||||
also prefer xloadimage for viewing if you have a 24-bit display. Caveat user.)
|
||||
|
||||
For DOS machines, Lee Crocker's free Piclab program is a useful companion to
|
||||
the JPEG software. The latest version, currently 1.91, is available by FTP
|
||||
from SIMTEL20 and its various mirror sites, file <msdos.graphics>piclb191.zip.
|
||||
CompuServe also has it, in the same library as the JPEG software.
|
||||
|
||||
|
||||
SOFTWARE THAT'S NO HELP AT ALL
|
||||
==============================
|
||||
|
||||
Handmade Software's shareware PC program GIF2JPG produces files that are
|
||||
totally incompatible with our programs. They use a proprietary format that is
|
||||
an amalgam of GIF and JPEG representations. However, you can force GIF2JPG
|
||||
to produce compatible files with its -j switch, and their decompression
|
||||
program JPG2GIF can read our files (at least ones produced with our default
|
||||
option settings).
|
||||
|
||||
Unfortunately, many commercial JPEG implementations are also incompatible as
|
||||
of this writing, especially programs released before summer 1991. The root of
|
||||
the problem is that the ISO JPEG committee failed to specify a concrete file
|
||||
format. Some vendors "filled in the blanks" on their own, creating
|
||||
proprietary formats that no one else could read. (For example, none of the
|
||||
early commercial JPEG implementations for the Macintosh were able to exchange
|
||||
compressed files.)
|
||||
|
||||
The file format we have adopted is called JFIF (see REFERENCES). This format
|
||||
has been agreed to by a number of major commercial JPEG vendors, and we expect
|
||||
that it will become the de facto standard. JFIF is a minimal representation;
|
||||
work is also going forward to incorporate JPEG compression into the TIFF
|
||||
standard, for use in "high end" applications that need to record a lot of
|
||||
additional data about an image. We intend to support JPEG-in-TIFF in the
|
||||
future. We hope that these two formats will be sufficient and that other,
|
||||
incompatible JPEG file formats will not proliferate.
|
||||
|
||||
Indeed, part of the reason for developing and releasing this free software is
|
||||
to help force rapid convergence to de facto standards for JPEG file formats.
|
||||
SUPPORT STANDARD, NON-PROPRIETARY FORMATS: demand JFIF or JPEG-in-TIFF!
|
||||
|
||||
|
||||
USING JPEG AS A SUBROUTINE IN A LARGER PROGRAM
|
||||
==============================================
|
||||
|
||||
You can readily incorporate the JPEG compression and decompression routines in
|
||||
a larger program. The file example.c provides a skeleton of the interface
|
||||
routines you'll need for this purpose. Essentially, you replace jcmain.c (for
|
||||
compression) and/or jdmain.c (for decompression) with your own code. Note
|
||||
that the fewer JPEG options you allow the user to twiddle, the less code you
|
||||
need; all the default options are set up automatically. (Alternately, if you
|
||||
know a lot about JPEG or have a special application, you may want to twiddle
|
||||
the default options even more extensively than jcmain/jdmain do.)
|
||||
|
||||
Most likely, you will want the uncompressed image to come from memory (for
|
||||
compression) or go to memory or the screen (for decompression). For this
|
||||
purpose you must provide image reading or writing routines that match the
|
||||
interface used by the image file I/O modules (jrdXXX or jwrXXX); again,
|
||||
example.c shows a skeleton of what is required.
|
||||
|
||||
By default, any error detected inside the JPEG routines will cause a message
|
||||
to be printed on stderr, followed by exit(). You can override this behavior
|
||||
by supplying your own message-printing and/or error-exit routines; again,
|
||||
example.c shows how.
|
||||
|
||||
Mechanics: we recommend you create libjpeg.a as shown in the Makefile, then
|
||||
link that with your surrounding program. (If your linker is at all
|
||||
reasonable, only the code you actually need will get loaded.) Include the
|
||||
files jconfig.h and jpegdata.h in C files that need to call the JPEG routines.
|
||||
|
||||
CAUTION: some people have tried to compile JPEG and their surrounding code
|
||||
with different compilers, e.g., cc for JPEG and c++ or gcc for the rest. This
|
||||
is a Real Bad Move and you will deserve what happens to you if you try it.
|
||||
(Hint: the parameter structures can get laid out differently with no warning.)
|
||||
|
||||
Read our "architecture" file for more info. If it seems to you that the
|
||||
software structure doesn't accommodate what you want to do, please contact
|
||||
the authors.
|
||||
|
||||
Beginning with version 3, we will endeavor to hold the interface described by
|
||||
example.c constant, so that you can plug in updated versions of the JPEG code
|
||||
just by recompiling. However, we can't guarantee this, especially if you
|
||||
choose to twiddle any JPEG options not listed in example.c. Check the
|
||||
CHANGELOG when installing any new version, and compare example.c against the
|
||||
prior version. Recompile your calling software (don't just relink), as we may
|
||||
add or subtract fields in the parameter structures.
|
||||
|
||||
|
||||
REFERENCES
|
||||
==========
|
||||
|
||||
The best and most readily available introduction to the JPEG compression
|
||||
algorithm is Wallace's article in the April '91 CACM:
|
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
|
||||
(Adjacent articles in that issue discuss MPEG motion picture compression,
|
||||
applications of JPEG, and related topics.) We highly recommend reading that
|
||||
article before trying to understand the innards of any JPEG software.
|
||||
If you don't have the CACM issue handy, a PostScript file containing a revised
|
||||
version of the article is available at ftp.uu.net, graphics/jpeg/wallace.ps.Z.
|
||||
The file (actually a preprint for an article to appear in IEEE Trans. Consumer
|
||||
Electronics) omits the sample images that appeared in CACM, but it includes
|
||||
corrections and some added material. Note: the Wallace article is copyright
|
||||
ACM and IEEE, and it may not be used for commercial purposes.
|
||||
|
||||
For more detail about the JPEG standard you pretty much have to go to the
|
||||
draft standard (which is not nearly as intelligible as Wallace's article).
|
||||
The standard is not now available electronically; you must order a paper copy
|
||||
through ISO. In the US, copies may be ordered from ANSI Sales at (212)
|
||||
642-4900. The standard is divided into two parts: Part 1 is the actual
|
||||
specification, and Part 2 covers compliance testing methods. The current
|
||||
"committee draft" version of Part 1 is titled "Digital Compression and Coding
|
||||
of Continuous-tone Still Images, Part 1: Requirements and guidelines" and has
|
||||
document number ISO/IEC CD 10918-1. (The alternate number SC2 N2215 should
|
||||
also be mentioned when ordering.) This draft is expected to be superseded by
|
||||
the Draft International Standard version around the end of November 1991.
|
||||
Ordering info will be the same as above, but replace "CD" with "DIS" in the
|
||||
document number (alternate number not yet known). The committee draft of
|
||||
Part 2 is expected to be available around the end of December 1991. It will
|
||||
be titled "Digital Compression and Coding of Continuous-tone Still Images,
|
||||
Part 2: Compliance testing" and will have document number ISO/IEC CD 10918-2
|
||||
(alternate number not yet known).
|
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file
|
||||
format. For the omitted details we follow the "JFIF" conventions, revision
|
||||
1.01. A copy of the JFIF spec is available from:
|
||||
Literature Department
|
||||
C-Cube Microsystems, Inc.
|
||||
399A West Trimble Road
|
||||
San Jose, CA 95131
|
||||
(408) 944-6300
|
||||
The same source can supply copies of the draft JPEG-in-TIFF documents
|
||||
(Appendixes O and P to the TIFF spec). PostScript versions of these
|
||||
documents can also be obtained by e-mail from the C-Cube mail server,
|
||||
netlib@c3.pla.ca.us. Send the message "send jfif_ps from jpeg" to obtain the
|
||||
JFIF document; "send app_o_ps from jpeg" and "send app_p_ps from jpeg" will
|
||||
produce the TIFF documents. Send the message "help" if you have trouble.
|
||||
|
||||
If you want to understand this implementation, start by reading the
|
||||
"architecture" documentation file. Please read "codingrules" if you want to
|
||||
contribute any code.
|
||||
We welcome the use of this software as a component of commercial products.
|
||||
No royalty is required, but we do ask for an acknowledgement in product
|
||||
documentation, as described under LEGAL ISSUES.
|
||||
|
||||
|
||||
LEGAL ISSUES
|
||||
============
|
||||
|
||||
In plain English:
|
||||
|
||||
1. We don't promise that this software works. (But if you find any bugs,
|
||||
please let us know!)
|
||||
2. You can use this software for whatever you want. You don't have to pay us.
|
||||
3. You may not pretend that you wrote this software. If you use it in a
|
||||
program, you must acknowledge somewhere in your documentation that
|
||||
you've used the IJG code.
|
||||
|
||||
In legalese:
|
||||
|
||||
The authors make NO WARRANTY or representation, either express or implied,
|
||||
with respect to this software, its quality, accuracy, merchantability, or
|
||||
fitness for a particular purpose. This software is provided "AS IS", and you,
|
||||
its user, assume the entire risk as to its quality and accuracy.
|
||||
|
||||
This software is copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
This software is copyright (C) 1991, 1992, 1993, 1994, Thomas G. Lane.
|
||||
All Rights Reserved except as specified below.
|
||||
|
||||
Permission is hereby granted to use, copy, modify, and distribute this
|
||||
@@ -305,10 +141,14 @@ the Independent JPEG Group".
|
||||
full responsibility for any undesirable consequences; the authors accept
|
||||
NO LIABILITY for damages of any kind.
|
||||
|
||||
Permission is NOT granted for the use of any author's name or author's company
|
||||
name in advertising or publicity relating to this software or products derived
|
||||
from it. This software may be referred to only as "the Independent JPEG
|
||||
Group's software".
|
||||
These conditions apply to any software derived from or based on the IJG code,
|
||||
not just to the unmodified library. If you use our work, you ought to
|
||||
acknowledge us.
|
||||
|
||||
Permission is NOT granted for the use of any IJG author's name or company name
|
||||
in advertising or publicity relating to this software or products derived from
|
||||
it. This software may be referred to only as "the Independent JPEG Group's
|
||||
software".
|
||||
|
||||
We specifically permit and encourage the use of this software as the basis of
|
||||
commercial products, provided that all warranty or liability claims are
|
||||
@@ -321,40 +161,189 @@ ansi2knr.c is NOT covered by the above copyright and conditions, but instead
|
||||
by the usual distribution terms of the Free Software Foundation; principally,
|
||||
that you must include source code if you redistribute it. (See the file
|
||||
ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part
|
||||
of any product generated from the JPEG code, this does not limit you more than
|
||||
of any program generated from the IJG code, this does not limit you more than
|
||||
the foregoing paragraphs do.
|
||||
|
||||
The configuration script "configure" was produced by GNU Autoconf. Again,
|
||||
the FSF copyright terms apply only to configure, not to the IJG code; and
|
||||
again, that does not limit your use of the object code.
|
||||
|
||||
It appears that the arithmetic coding option of the JPEG spec is covered by
|
||||
patents owned by IBM and AT&T, as well as a pending Japanese patent of
|
||||
Mitsubishi. Hence arithmetic coding cannot legally be used without obtaining
|
||||
one or more licenses. For this reason, support for arithmetic coding has been
|
||||
removed from the free JPEG software. (Since arithmetic coding provides only a
|
||||
marginal gain over the unpatented Huffman mode, it is unlikely that very many
|
||||
people will choose to use it. If you do obtain the necessary licenses,
|
||||
contact jpeg-info@uunet.uu.net for a copy of our arithmetic coding modules.)
|
||||
patents owned by IBM, AT&T, and Mitsubishi. Hence arithmetic coding cannot
|
||||
legally be used without obtaining one or more licenses. For this reason,
|
||||
support for arithmetic coding has been removed from the free JPEG software.
|
||||
(Since arithmetic coding provides only a marginal gain over the unpatented
|
||||
Huffman mode, it is unlikely that very many implementations will support it.)
|
||||
So far as we are aware, there are no patent restrictions on the remaining
|
||||
code.
|
||||
|
||||
|
||||
We are required to state that
|
||||
"The Graphics Interchange Format(c) is the Copyright property of
|
||||
CompuServe Incorporated. GIF(sm) is a Service Mark property of
|
||||
CompuServe Incorporated."
|
||||
|
||||
|
||||
REFERENCES
|
||||
==========
|
||||
|
||||
We highly recommend reading one or more of these references before trying to
|
||||
understand the innards of the JPEG software.
|
||||
|
||||
The best short technical introduction to the JPEG compression algorithm is
|
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
|
||||
(Adjacent articles in that issue discuss MPEG motion picture compression,
|
||||
applications of JPEG, and related topics.) If you don't have the CACM issue
|
||||
handy, a PostScript file containing a revised version of Wallace's article is
|
||||
available at ftp.uu.net, graphics/jpeg/wallace.ps.gz. The file (actually a
|
||||
preprint for an article to appear in IEEE Trans. Consumer Electronics) omits
|
||||
the sample images that appeared in CACM, but it includes corrections and some
|
||||
added material. Note: the Wallace article is copyright ACM and IEEE, and it
|
||||
may not be used for commercial purposes.
|
||||
|
||||
A somewhat less technical, more leisurely introduction to JPEG can be found in
|
||||
"The Data Compression Book" by Mark Nelson, published by M&T Books (Redwood
|
||||
City, CA), 1991, ISBN 1-55851-216-0. This book provides good explanations and
|
||||
example C code for a multitude of compression methods including JPEG. It is
|
||||
an excellent source if you are comfortable reading C code but don't know much
|
||||
about data compression in general. The book's JPEG sample code is far from
|
||||
industrial-strength, but when you are ready to look at a full implementation,
|
||||
you've got one here...
|
||||
|
||||
The best full description of JPEG is the textbook "JPEG Still Image Data
|
||||
Compression Standard" by William B. Pennebaker and Joan L. Mitchell, published
|
||||
by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. Price US$59.95, 638 pp.
|
||||
The book includes the complete text of the ISO JPEG standards (DIS 10918-1
|
||||
and draft DIS 10918-2). This is by far the most complete exposition of JPEG
|
||||
in existence, and we highly recommend it.
|
||||
|
||||
The JPEG standard itself is not available electronically; you must order a
|
||||
paper copy through ISO. (Unless you feel a need to own a certified official
|
||||
copy, we recommend buying the Pennebaker and Mitchell book instead; it's much
|
||||
cheaper and includes a great deal of useful explanatory material.) In the US,
|
||||
copies of the standard may be ordered from ANSI Sales at (212) 642-4900, or
|
||||
from Global Engineering Documents at (800) 854-7179. (ANSI doesn't take
|
||||
credit card orders, but Global does.) It's not cheap: as of 1992, ANSI was
|
||||
charging $95 for Part 1 and $47 for Part 2, plus 7% shipping/handling. The
|
||||
standard is divided into two parts, Part 1 being the actual specification,
|
||||
while Part 2 covers compliance testing methods. Part 1 is titled "Digital
|
||||
Compression and Coding of Continuous-tone Still Images, Part 1: Requirements
|
||||
and guidelines" and has document number ISO/IEC IS 10918-1. As of mid-1994,
|
||||
Part 2 is still at Draft International Standard status. It is titled "Digital
|
||||
Compression and Coding of Continuous-tone Still Images, Part 2: Compliance
|
||||
testing" and has document number ISO/IEC DIS 10918-2. (The document number
|
||||
will change to IS 10918-2 when final approval is obtained.) A Part 3,
|
||||
covering extensions, is likely to appear in draft form in late 1994.
|
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file
|
||||
format. For the omitted details we follow the "JFIF" conventions, revision
|
||||
1.02. A copy of the JFIF spec is available from:
|
||||
Literature Department
|
||||
C-Cube Microsystems, Inc.
|
||||
1778 McCarthy Blvd.
|
||||
Milpitas, CA 95035
|
||||
phone (408) 944-6300, fax (408) 944-6314
|
||||
A PostScript version of this document is available at ftp.uu.net, file
|
||||
graphics/jpeg/jfif.ps.gz. It can also be obtained by e-mail from the C-Cube
|
||||
mail server, netlib@c3.pla.ca.us. Send the message "send jfif_ps from jpeg"
|
||||
to the server to obtain the JFIF document; send the message "help" if you have
|
||||
trouble.
|
||||
|
||||
The TIFF 6.0 file format specification can be obtained by FTP from sgi.com
|
||||
(192.48.153.1), file graphics/tiff/TIFF6.ps.Z; or you can order a printed copy
|
||||
from Aldus Corp. at (206) 628-6593. It should be noted that the TIFF 6.0 spec
|
||||
of 3-June-92 has a number of serious problems in its JPEG features. A
|
||||
redesign effort is currently underway to correct these problems; it is
|
||||
expected to result in a new, incompatible, spec. IJG intends to support the
|
||||
corrected version of TIFF when the new spec is issued.
|
||||
|
||||
|
||||
ARCHIVE LOCATIONS
|
||||
=================
|
||||
|
||||
The "official" archive site for this software is ftp.uu.net (Internet
|
||||
address 192.48.96.9). The most recent released version can always be found
|
||||
there in directory graphics/jpeg. This particular version will be archived
|
||||
as graphics/jpeg/jpegsrc.v5.tar.gz. If you are on the Internet, you
|
||||
can retrieve files from ftp.uu.net by standard anonymous FTP. If you don't
|
||||
have FTP access, UUNET's archives are also available via UUCP; contact
|
||||
help@uunet.uu.net for information on retrieving files that way.
|
||||
|
||||
Numerous Internet sites maintain copies of the UUNET files; in particular,
|
||||
you can probably find a copy at any site that archives comp.sources.misc
|
||||
submissions. However, only ftp.uu.net is guaranteed to have the latest
|
||||
official version.
|
||||
|
||||
You can also obtain this software from CompuServe, in the GRAPHSUPPORT forum
|
||||
(GO GRAPHSUP); this version will be file jpsrc5.zip in library 15. Again,
|
||||
CompuServe is not guaranteed to have the very latest version.
|
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a useful source of
|
||||
general information about JPEG. It is updated constantly and therefore
|
||||
is not included in this distribution. The FAQ is posted every two weeks
|
||||
to Usenet newsgroups comp.graphics, news.answers, and other groups. You
|
||||
can always obtain the latest version from the news.answers archive at
|
||||
rtfm.mit.edu (18.181.0.24). By FTP, fetch /pub/usenet/news.answers/jpeg-faq.
|
||||
If you don't have FTP, send e-mail to mail-server@rtfm.mit.edu with body
|
||||
"send usenet/news.answers/jpeg-faq".
|
||||
|
||||
|
||||
RELATED SOFTWARE
|
||||
================
|
||||
|
||||
Numerous viewing and image manipulation programs now support JPEG. (Quite a
|
||||
few of them use this library to do so.) The JPEG FAQ described above lists
|
||||
some of the more popular free and shareware viewers, and tells where to
|
||||
obtain them on Internet.
|
||||
|
||||
If you are on a Unix machine, we highly recommend Jef Poskanzer's free
|
||||
PBMPLUS image software, which provides many useful operations on PPM-format
|
||||
image files. In particular, it can convert PPM images to and from a wide
|
||||
range of other formats. You can obtain this package by FTP from ftp.x.org
|
||||
(contrib/pbmplus*.tar.Z) or ftp.ee.lbl.gov (pbmplus*.tar.Z). There is also
|
||||
a newer update of this package called NETPBM, available from
|
||||
wuarchive.wustl.edu under directory /graphics/graphics/packages/NetPBM/.
|
||||
Unfortunately PBMPLUS/NETPBM is not nearly as portable as the IJG software
|
||||
is; you are likely to have difficulty making it work on any non-Unix machine.
|
||||
|
||||
A different free JPEG implementation, written by the PVRG group at Stanford,
|
||||
is available from havefun.stanford.edu in directory pub/jpeg. This program
|
||||
is designed for research and experimentation rather than production use;
|
||||
it is slower, harder to use, and less portable than the IJG code, but it
|
||||
implements a larger subset of the JPEG standard. In particular, it supports
|
||||
lossless JPEG.
|
||||
|
||||
|
||||
FILE FORMAT WARS
|
||||
================
|
||||
|
||||
Some JPEG programs produce files that are not compatible with our library.
|
||||
The root of the problem is that the ISO JPEG committee failed to specify a
|
||||
concrete file format. Some vendors "filled in the blanks" on their own,
|
||||
creating proprietary formats that no one else could read. (For example, none
|
||||
of the early commercial JPEG implementations for the Macintosh were able to
|
||||
exchange compressed files.)
|
||||
|
||||
The file format we have adopted is called JFIF (see REFERENCES). This format
|
||||
has been agreed to by a number of major commercial JPEG vendors, and it has
|
||||
become the de facto standard. JFIF is a minimal or "low end" representation.
|
||||
Work is also going forward to incorporate JPEG compression into the TIFF
|
||||
standard, for use in "high end" applications that need to record a lot of
|
||||
additional data about an image. We intend to support TIFF in the future.
|
||||
We hope that these two formats will be sufficient and that other,
|
||||
incompatible JPEG file formats will not proliferate.
|
||||
|
||||
Indeed, part of the reason for developing and releasing this free software is
|
||||
to help force rapid convergence to de facto standards for JPEG file formats.
|
||||
SUPPORT STANDARD, NON-PROPRIETARY FORMATS: demand JFIF or TIFF/JPEG!
|
||||
|
||||
|
||||
TO DO
|
||||
=====
|
||||
|
||||
Many of the modules need fleshing out to provide more complete
|
||||
implementations, or to provide faster paths for common cases.
|
||||
Improving the speed will be the next big work item for the JPEG group.
|
||||
In future versions, we are considering supporting progressive JPEG
|
||||
compression, the upcoming JPEG Part 3 extensions, and other improvements.
|
||||
|
||||
We'd appreciate it if people would compile and check out the code on as wide a
|
||||
variety of systems as possible, and report any portability problems
|
||||
encountered (with solutions, if possible). Checks of file compatibility with
|
||||
other JPEG implementations would also be of interest. Finally, we would
|
||||
appreciate code profiles showing where the most time is spent, especially on
|
||||
unusual systems.
|
||||
As always, speeding things up is high on our priority list.
|
||||
|
||||
Please send bug reports, offers of help, etc. to jpeg-info@uunet.uu.net.
|
||||
|
||||
368
SETUP
368
SETUP
@@ -1,368 +0,0 @@
|
||||
SETUP instructions for the Independent JPEG Group's JPEG software
|
||||
=================================================================
|
||||
|
||||
This file explains how to configure and compile the JPEG software. We have
|
||||
tried to make this software extremely portable and flexible, so that it can be
|
||||
adapted to almost any environment. The downside of this decision is that the
|
||||
installation process is not very automatic; you will need at least a little
|
||||
familiarity with C programming and program build procedures for your system.
|
||||
|
||||
This file contains general instructions, then sections of specific hints for
|
||||
certain systems. You may save yourself considerable time if you scan the
|
||||
whole file before starting to do anything.
|
||||
|
||||
Before installing the software you must unpack the distributed source code.
|
||||
Since you are reading this file, you have probably already succeeded in this
|
||||
task. However, there is one potential trap if you are on a non-Unix system:
|
||||
you may need to convert these files to the local standard text file format
|
||||
(for example, if you are on MS-DOS you probably have to convert LF end-of-line
|
||||
to CR/LF). If so, apply the conversion to all the files EXCEPT those whose
|
||||
names begin with "test". The test files contain binary data; if you change
|
||||
them in any way then the self-test will give bad results.
|
||||
|
||||
|
||||
STEP 1: PREPARE A MAKEFILE
|
||||
==========================
|
||||
|
||||
First, select a makefile and copy it to "Makefile" (or whatever your version
|
||||
of make uses as the default makefile name; for example, "makefile.mak" for
|
||||
old versions of Borland C). We include several standard makefiles in the
|
||||
distribution:
|
||||
|
||||
makefile.ansi: for Unix systems with ANSI-compatible C compilers.
|
||||
makefile.unix: for Unix systems with non-ANSI C compilers.
|
||||
makefile.mc5: for Microsoft C 5.x under MS-DOS.
|
||||
makefile.mc6: for Microsoft C 6.x under MS-DOS.
|
||||
makefile.bcc: for Borland C (Turbo C) under MS-DOS.
|
||||
makefile.pwc: for Mix Software's Power C under MS-DOS.
|
||||
makefile.manx: for Manx Aztec C on Amigas.
|
||||
makefile.sas: for SAS C on Amigas.
|
||||
makefile.mms: for VAX/VMS systems with MMS.
|
||||
makefile.vms: for VAX/VMS systems without MMS.
|
||||
|
||||
If you don't see a makefile for your system, we recommend starting from either
|
||||
makefile.ansi or makefile.unix, depending on whether your compiler accepts
|
||||
ANSI C or not. Actually you should start with makefile.ansi whenever your
|
||||
compiler supports ANSI-style function definitions; you don't need full ANSI
|
||||
compatibility. The difference between the two makefiles is that makefile.unix
|
||||
preprocesses the source code to convert function definitions to old-style C.
|
||||
(Our thanks to Peter Deutsch of Aladdin Enterprises for the ansi2knr program.)
|
||||
|
||||
If you don't know whether your compiler supports ANSI-style function
|
||||
definitions, then take a look at ckconfig.c. It is a test program that will
|
||||
help you figure out this fact, as well as some other facts you'll need in
|
||||
later steps. You must compile and execute ckconfig.c by hand; the makefiles
|
||||
don't provide any support for this. ckconfig.c may not compile the first try
|
||||
(in fact, the whole idea is for it to fail if anything is going to). If you
|
||||
get compile errors, fix them by editing ckconfig.c according to the directions
|
||||
given in ckconfig.c. Once you get it to run, select a makefile according to
|
||||
the advice it prints out, and make any other changes it recommends.
|
||||
|
||||
Look over the selected Makefile and adjust options as needed. In particular
|
||||
you may want to change the CC and CFLAGS definitions. For instance, if you
|
||||
are using GCC, set CC=gcc. If you had to use any compiler switches to get
|
||||
ckconfig.c to work, make sure the same switches are in CFLAGS.
|
||||
|
||||
If you are on a system that doesn't use makefiles, you'll need to set up
|
||||
project files (or whatever you do use) to compile all the source files and
|
||||
link them into executable files cjpeg and djpeg. See the file lists in any of
|
||||
the makefiles to find out which files go into each program. As a last resort,
|
||||
you can make a batch script that just compiles everything and links it all
|
||||
together; makefile.vms is an example of this (it's for VMS systems that have
|
||||
no make-like utility).
|
||||
|
||||
|
||||
STEP 2: EDIT JCONFIG.H
|
||||
======================
|
||||
|
||||
Look over jconfig.h and adjust #defines to reflect the properties of your
|
||||
system and C compiler. (If you prefer, you can usually leave jconfig.h
|
||||
unmodified and add -Dsymbol switches to the Makefile's CFLAGS definition.)
|
||||
|
||||
If you have an ANSI-compliant C compiler, no changes should be necessary
|
||||
except perhaps for RIGHT_SHIFT_IS_UNSIGNED and TWO_FILE_COMMANDLINE. For
|
||||
older compilers other changes may be needed, depending on what ANSI features
|
||||
are supported.
|
||||
|
||||
If you don't know enough about C programming to understand the questions in
|
||||
jconfig.h, then use ckconfig.c to figure out what to change. (See description
|
||||
of ckconfig.c in step 1.)
|
||||
|
||||
A note about TWO_FILE_COMMANDLINE: defining this selects the command line
|
||||
syntax in which the input and output files are both named on the command line.
|
||||
If it's not defined, the output image goes to standard output, and the input
|
||||
can optionally come from standard input. You MUST use two-file style on any
|
||||
system that doesn't cope well with binary data fed through stdin/stdout; this
|
||||
is true for most MS-DOS compilers, for example. If you're not on a Unix
|
||||
system, it's probably safest to assume you need two-file style.
|
||||
|
||||
|
||||
STEP 3: SELECT SYSTEM-DEPENDENT FILES
|
||||
=====================================
|
||||
|
||||
The only system-dependent file in the current version is jmemsys.c. This file
|
||||
controls use of temporary files for big images that won't fit in main memory.
|
||||
You'll notice there is no file by that name in the distribution; you must
|
||||
select one of the provided versions and copy, rename, or link it to jmemsys.c.
|
||||
Here are the provided versions:
|
||||
|
||||
jmemansi.c This is a reasonably portable version that should
|
||||
work on most ANSI and near-ANSI C compilers. It uses
|
||||
the ANSI-standard library routine tmpfile(), which not
|
||||
all pre-ANSI systems have. On some systems tmpfile()
|
||||
may put the temporary file in a non-optimal location;
|
||||
if you don't like what it does, use jmemname.c.
|
||||
|
||||
jmemname.c This version constructs the temp file name by itself.
|
||||
For anything except a Unix machine, you'll need to
|
||||
configure the select_file_name() routine appropriately;
|
||||
see the comments near the head of jmemname.c.
|
||||
If you use this version, define NEED_SIGNAL_CATCHER
|
||||
in jconfig.h or in the Makefile to make sure the temp
|
||||
files are removed if the program is aborted.
|
||||
|
||||
jmemnobs.c (That stands for No Backing Store :-). This will
|
||||
compile on almost any system, but it assumes you
|
||||
have enough main memory or virtual memory to hold
|
||||
the biggest images you need to work with.
|
||||
|
||||
jmemdos.c This should be used in most MS-DOS installations; see
|
||||
the system-specific notes about MS-DOS for more info.
|
||||
IMPORTANT: if you use this, also copy jmemdos.h to
|
||||
jmemsys.h, replacing the standard version. ALSO,
|
||||
include the assembly file jmemdosa.asm in the programs.
|
||||
(This last is already done if you used one of the
|
||||
supplied MS-DOS-specific makefiles.)
|
||||
|
||||
If you have plenty of (real or virtual) main memory, just use jmemnobs.c.
|
||||
"Plenty" means at least ten bytes for every pixel in the largest images
|
||||
you plan to process, so a lot of systems don't meet this criterion.
|
||||
If yours doesn't, try jmemansi.c first. If that doesn't compile, you'll have
|
||||
to use jmemname.c; be sure to adjust select_file_name() for local conditions.
|
||||
You may also need to change unlink() to remove() in close_backing_store().
|
||||
|
||||
Except with jmemnobs.c, you need to adjust the #define DEFAULT_MAX_MEM to a
|
||||
reasonable value for your system (either by editing jmemsys.c, or by adding
|
||||
a -D switch to the Makefile). This value limits the amount of data space the
|
||||
program will attempt to allocate. Code and static data space isn't counted,
|
||||
so the actual memory needs for cjpeg or djpeg are typically 100 to 150Kb more
|
||||
than the max-memory setting. Larger max-memory settings reduce the amount of
|
||||
I/O needed to process a large image, but too large a value can result in
|
||||
"insufficient memory" failures. On most Unix machines (and other systems with
|
||||
virtual memory), just set DEFAULT_MAX_MEM to several million and forget it.
|
||||
At the other end of the spectrum, for MS-DOS machines you probably can't go
|
||||
much above 300K to 400K.
|
||||
|
||||
|
||||
STEP 4: MAKE
|
||||
============
|
||||
|
||||
Now you should be able to "make" the software.
|
||||
|
||||
If you have trouble with missing system include files or inclusion of the
|
||||
wrong ones, look at jinclude.h (or use ckconfig.c, if you are not a C expert).
|
||||
|
||||
If your compiler complains about big_sarray_control and big_barray_control
|
||||
being undefined structures, you should be able to shut it up by adding
|
||||
-DINCOMPLETE_TYPES_BROKEN to CFLAGS (or add #define INCOMPLETE_TYPES_BROKEN
|
||||
to jconfig.h).
|
||||
|
||||
There are a fair number of routines that do not use all of their parameters;
|
||||
some compilers will issue warnings about this, which you can ignore. Any
|
||||
other warning deserves investigation.
|
||||
|
||||
|
||||
STEP 5: TEST
|
||||
============
|
||||
|
||||
As a quick test of functionality we've included a small sample image in
|
||||
several forms:
|
||||
testorig.jpg A reduced section of the well-known Lenna picture.
|
||||
testimg.ppm The output of djpeg testorig.jpg
|
||||
testimg.gif The output of djpeg -G testorig.jpg
|
||||
testimg.jpg The output of cjpeg testimg.ppm
|
||||
(The two .jpg files aren't identical since JPEG is lossy.) If you can
|
||||
generate duplicates of the testimg.* files then you probably have working
|
||||
programs.
|
||||
|
||||
With most of the makefiles, "make test" will perform the necessary
|
||||
comparisons. If you're using a makefile that doesn't provide this option, run
|
||||
djpeg and cjpeg to generate testout.ppm, testout.gif, and testout.jpg, then
|
||||
compare these to testimg.* with whatever binary file comparison tool you have.
|
||||
The files should be bit-for-bit identical.
|
||||
|
||||
If your choice of jmemsys.c was anything other than jmemnobs.c, you should
|
||||
also test that temporary-file usage works. Try "djpeg -G -m 0 testorig.jpg"
|
||||
and make sure its output matches testimg.gif. If you have any really large
|
||||
images handy, try compressing them with -o and/or decompressing with -G
|
||||
to make sure your DEFAULT_MAX_MEM setting is not too large.
|
||||
|
||||
NOTE: this is far from an exhaustive test of the JPEG software; some modules,
|
||||
such as fast color quantization, are not exercised at all. It's just a quick
|
||||
test to give you some confidence that you haven't missed something major.
|
||||
|
||||
If the test passes, you can copy the executable files cjpeg and djpeg to
|
||||
wherever you normally install programs. Read the file USAGE to learn more
|
||||
about using the programs.
|
||||
|
||||
|
||||
OPTIONAL STUFF
|
||||
==============
|
||||
|
||||
We distribute the software with support for RLE image files (Utah Raster
|
||||
Toolkit format) disabled, because the RLE support won't compile without the
|
||||
Utah library. If you have URT version 3.0, you can enable RLE support as
|
||||
follows:
|
||||
1. #define RLE_SUPPORTED in jconfig.h or in the Makefile.
|
||||
2. Add a -I option to CFLAGS in the Makefile for the directory
|
||||
containing the URT .h files (typically the "include"
|
||||
subdirectory of the URT distribution).
|
||||
3. Add -L... -lrle to LDLIBS in the Makefile, where ... specifies
|
||||
the directory containing the URT "librle.a" file (typically the
|
||||
"lib" subdirectory of the URT distribution).
|
||||
|
||||
If you want to incorporate the JPEG code as subroutines in a larger program,
|
||||
we recommend that you make libjpeg.a. (See file README for more info.)
|
||||
|
||||
CAUTION: When you use the JPEG code as subroutines, we recommend that you make
|
||||
any required configuration changes by modifying jconfig.h, not by adding -D
|
||||
switches to the Makefile. Otherwise you must be sure to provide the same -D
|
||||
switches when compiling any program that includes the JPEG .h files.
|
||||
|
||||
If you need to make a smaller version of the JPEG software, some optional
|
||||
functions can be removed at compile time. See the xxx_SUPPORTED #defines in
|
||||
jconfig.h. If at all possible, we recommend that you leave in decoder support
|
||||
for all valid JPEG files, to ensure that you can read anyone's output.
|
||||
Restricting your encoder, or removing optional functions like block smoothing,
|
||||
won't hurt compatibility. Taking out support for image file formats that you
|
||||
don't use is the most painless way to make the programs smaller.
|
||||
|
||||
|
||||
NOTES FOR SPECIFIC SYSTEMS
|
||||
==========================
|
||||
|
||||
We welcome reports on changes needed for systems not mentioned here.
|
||||
Submit 'em to jpeg-info@uunet.uu.net. Also, ckconfig.c is fairly new and not
|
||||
yet thoroughly tested; if it's wrong about how to configure the JPEG software
|
||||
for your system, please let us know.
|
||||
|
||||
|
||||
Amiga:
|
||||
|
||||
Makefiles are provided for Manx Aztec C and SAS C. I have also heard from
|
||||
people who have compiled with the free DICE compiler, using makefile.ansi as a
|
||||
starting point (set "CC= dcc" and "CFLAGS= -c -DAMIGA -DTWO_FILE_COMMANDLINE
|
||||
-DNEED_SIGNAL_CATCHER" in the makefile). For all compilers, we recommend you
|
||||
use jmemname.c as the system-dependent memory manager. Assuming you have
|
||||
-DAMIGA in the makefile, jmemname.c will put temporary files in JPEGTMP:.
|
||||
Change jmemname.c if you don't like this.
|
||||
|
||||
|
||||
Cray:
|
||||
|
||||
Should you be so fortunate as to be running JPEG on a Cray YMP, there is a
|
||||
compiler bug in Cray's Standard C versions prior to 3.1. You'll need to
|
||||
insert a line reading "#pragma novector" just before the loop
|
||||
for (i = 1; i <= (int) htbl->bits[l]; i++)
|
||||
huffsize[p++] = (char) l;
|
||||
in fix_huff_tbl (in V2, line 42 of jchuff.c and line 38 of jdhuff.c). The
|
||||
usual symptom of not adding this line is a core-dump. See Cray's SPR 48222.
|
||||
|
||||
|
||||
HP/Apollo DOMAIN:
|
||||
|
||||
At least in version 10.3.5, the C compiler is ANSI but the system include
|
||||
files are not. Use makefile.ansi and add -DNONANSI_INCLUDES to CFLAGS.
|
||||
|
||||
|
||||
HP-UX:
|
||||
|
||||
If you have HP-UX 7.05 or later with the "software development" C compiler,
|
||||
then you can use makefile.ansi. Add "-Aa" to the CFLAGS line in the makefile
|
||||
to make the compiler work in ANSI mode. If you have a pre-7.05 system, or if
|
||||
you are using the non-ANSI C compiler delivered with a minimum HP-UX 8.0
|
||||
system, then you must use makefile.unix (and do NOT add -Aa). Also, adding
|
||||
"-lmalloc" to LDLIBS is recommended if you have libmalloc.a (it seems not to
|
||||
be present in minimum 8.0).
|
||||
|
||||
On HP 9000 series 800 machines, the HP C compiler is buggy in revisions prior
|
||||
to A.08.07. If you get complaints about "not a typedef name", you'll have to
|
||||
convert the code to K&R style (i.e., use makefile.unix).
|
||||
|
||||
|
||||
Macintosh Think C:
|
||||
|
||||
You'll have to prepare project files for cjpeg and djpeg; we don't include
|
||||
those in the distribution since they are not text files. The COBJECTS and
|
||||
DOBJECTS lists in makefile.unix show which files should be included in each
|
||||
project. Also add the ANSI and Unix C libraries in a separate segment. You
|
||||
may need to divide the JPEG files into more than one segment; you can do this
|
||||
pretty much as you please.
|
||||
|
||||
If you have Think C version 5.0 you need not modify jconfig.h; instead you
|
||||
should turn on both the ANSI Settings and Language Extensions option buttons
|
||||
(so that both __STDC__ and THINK_C are predefined). With version 4.0 you must
|
||||
edit jconfig.h. (You can #define HAVE_STDC to do the right thing for all
|
||||
options except const; you must also #define const.)
|
||||
|
||||
jcmain and jdmain are set up to provide the usual command-line interface
|
||||
by means of Think's ccommand() library routine. Anybody want to write a
|
||||
more Mac-like interface for us?
|
||||
|
||||
|
||||
MS-DOS, generic comments:
|
||||
|
||||
The JPEG code is designed to be compiled with 80x86 "small" or "medium" memory
|
||||
models (i.e., data pointers are 16 bits unless explicitly declared "far"; code
|
||||
pointers can be either size). You should be able to use small model to
|
||||
compile cjpeg or djpeg by itself, but you will probably have to go to medium
|
||||
model if you include the JPEG code in a larger application. This shouldn't
|
||||
hurt performance much. You *will* take a noticeable performance hit if you
|
||||
compile in a large-data memory model, and you should avoid "huge" model if at
|
||||
all possible. Be sure that NEED_FAR_POINTERS is defined by jconfig.h or by
|
||||
the Makefile if you use a small-data model; be sure it is NOT defined if you
|
||||
use a large-data memory model. (As distributed, jconfig.h defines
|
||||
NEED_FAR_POINTERS if MSDOS is defined.)
|
||||
|
||||
The DOS-specific memory manager, jmemdos.c, should be used if possible.
|
||||
(Be sure to install jmemdos.h and jmemdosa.asm along with it.) If you
|
||||
can't use jmemdos.c for some reason --- for example, because you don't have
|
||||
a Microsoft-compatible assembler to assemble jmemdosa.asm --- you'll have
|
||||
to fall back to jmemansi.c or jmemname.c. IMPORTANT: if you use either of
|
||||
those files, you will have to compile in a large-data memory model in order
|
||||
to get the right stdio library. Too bad.
|
||||
|
||||
None of the above advice applies if you are using a 386 flat-memory-space
|
||||
environment, such as DJGPP or Watcom C. For these compilers, do NOT define
|
||||
NEED_FAR_POINTERS, and do NOT use jmemdos.c. Use jmemnobs.c if the
|
||||
environment supplies adequate virtual memory, otherwise use jmemansi.c or
|
||||
jmemname.c.
|
||||
|
||||
|
||||
MS-DOS, DJGPP:
|
||||
|
||||
The file egetopt.c conflicts with some library routines in DJGPP 1.05.
|
||||
Remove #include "egetopt.c" from jcmain.c and jdmain.c, and in each of
|
||||
those files change the egetopt(...) call to getopt(...). This will be
|
||||
fixed more cleanly in some future version. Use makefile.ansi, and put
|
||||
"-DTWO_FILE_COMMANDLINE" (but *not* -DMSDOS) in CFLAGS.
|
||||
|
||||
|
||||
MS-DOS, Microsoft C:
|
||||
|
||||
Some versions of MS C fail with an "out of macro expansion space" error
|
||||
because they can't cope with the macro TRACEMS8 (defined in jpegdata.h).
|
||||
If this happens to you, the easiest solution is to change TRACEMS8 to
|
||||
expand to nothing. You'll lose the ability to dump out JPEG coefficient
|
||||
tables with djpeg -d -d, but at least you can compile.
|
||||
|
||||
makefile.mc6 (MS C 6.x makefile) has not been tested since jmemdosa.asm
|
||||
was added; we'd appreciate hearing whether it works or not.
|
||||
|
||||
|
||||
Sun:
|
||||
|
||||
Don't forget to add -DBSD to CFLAGS. If you are using GCC on SunOS 4.0.1 or
|
||||
earlier, you will need to add -DNONANSI_INCLUDES to CFLAGS (your compiler may
|
||||
be ANSI, but your system include files aren't). I've gotten conflicting
|
||||
reports on whether this is still necessary on SunOS 4.1 or later.
|
||||
212
USAGE
212
USAGE
@@ -1,212 +0,0 @@
|
||||
USAGE instructions for the Independent JPEG Group's JPEG software
|
||||
=================================================================
|
||||
|
||||
INTRODUCTION
|
||||
|
||||
This distribution contains software to implement JPEG image compression and
|
||||
decompression. JPEG (pronounced "jay-peg") is a standardized compression
|
||||
method for full-color and gray-scale images. JPEG is designed to handle
|
||||
"real-world" scenes, for example scanned photographs. Cartoons, line
|
||||
drawings, and other non-realistic images are not JPEG's strong suit; on this
|
||||
sort of material you may get poor image quality and/or little compression.
|
||||
|
||||
JPEG is lossy, meaning that the output image is not necessarily identical to
|
||||
the input image. Hence you should not use JPEG if you have to have identical
|
||||
output bits. However, on typical real-world images, very good compression
|
||||
levels can be obtained with no visible change, and amazingly high compression
|
||||
is possible if you can tolerate a low-quality image. You can trade off image
|
||||
quality against file size by adjusting the compressor's "quality" setting.
|
||||
|
||||
This file describes usage of the standard programs "cjpeg" and "djpeg" that
|
||||
can be built directly from the distributed C code. See the README file for
|
||||
hints on incorporating the JPEG software into other programs.
|
||||
|
||||
If you are on a Unix machine you may prefer to read the Unix-style manual
|
||||
pages in files cjpeg.1 and djpeg.1.
|
||||
|
||||
NOTE: at some point we will probably redesign the user interface, so the
|
||||
command line switches described here will change.
|
||||
|
||||
|
||||
GENERAL USAGE
|
||||
|
||||
We provide two programs, cjpeg to compress an image file into JPEG format,
|
||||
and djpeg to decompress a JPEG file back into a conventional image format.
|
||||
|
||||
On Unix-like systems, you say:
|
||||
cjpeg [switches] [imagefile] >jpegfile
|
||||
or
|
||||
djpeg [switches] [jpegfile] >imagefile
|
||||
The programs read the specified input file, or standard input if none is
|
||||
named. They always write to standard output (with trace/error messages to
|
||||
standard error). These conventions are handy for piping images between
|
||||
programs.
|
||||
|
||||
On most non-Unix systems, you say:
|
||||
cjpeg [switches] imagefile jpegfile
|
||||
or
|
||||
djpeg [switches] jpegfile imagefile
|
||||
i.e., both the input and output files are named on the command line. This
|
||||
style is a little more foolproof, and it loses no functionality if you don't
|
||||
have pipes. (You can get this style on Unix too, if you prefer, by defining
|
||||
TWO_FILE_COMMANDLINE when you compile the programs; see SETUP.)
|
||||
|
||||
The currently supported image file formats are: PPM (PBMPLUS color format),
|
||||
PGM (PBMPLUS gray-scale format), GIF, Targa, and RLE (Utah Raster Toolkit
|
||||
format). (RLE is supported only if the URT library is available.)
|
||||
cjpeg recognizes the input image format automatically, with the exception
|
||||
of some Targa-format files. You have to tell djpeg which format to generate.
|
||||
|
||||
The only JPEG file format currently supported is the JFIF format. Support for
|
||||
the TIFF/JPEG format will probably be added at some future date.
|
||||
|
||||
|
||||
CJPEG DETAILS
|
||||
|
||||
The command line switches for cjpeg are:
|
||||
|
||||
-Q quality Scale quantization tables to adjust image quality.
|
||||
Quality is 0 (worst) to 100 (best); default is 75.
|
||||
(See below for more info.)
|
||||
|
||||
-o Perform optimization of entropy encoding parameters.
|
||||
Without this, default encoding parameters are used.
|
||||
-o usually makes the JPEG file a little smaller, but
|
||||
cjpeg runs somewhat slower and needs much more memory.
|
||||
Image quality and speed of decompression are unaffected
|
||||
by -o.
|
||||
|
||||
-T Input file is Targa format. Targa files that contain
|
||||
an "identification" field will not be automatically
|
||||
recognized by cjpeg; for such files you must specify
|
||||
-T to force cjpeg to treat the input as Targa format.
|
||||
|
||||
-I Generate noninterleaved JPEG file (not yet supported).
|
||||
|
||||
-a Use arithmetic coding rather than Huffman coding.
|
||||
(Not currently supported for legal reasons.)
|
||||
|
||||
-d Enable debug printout. More -d's give more printout.
|
||||
Also, version information is printed at startup.
|
||||
|
||||
-m memory Set limit for amount of memory to use in processing
|
||||
large images. Value is in thousands of bytes, or
|
||||
millions of bytes if "M" is attached to the number.
|
||||
For example, -m 4m selects 4000000 bytes. If more
|
||||
space is needed, temporary files will be used.
|
||||
|
||||
The -Q switch lets you trade off compressed file size against quality of the
|
||||
reconstructed image: the higher the -Q setting, the larger the JPEG file, and
|
||||
the closer the output image will be to the original input. Normally you want
|
||||
to use the lowest -Q setting (smallest file) that decompresses into something
|
||||
visually indistinguishable from the original image. For this purpose the -Q
|
||||
setting should be between 50 and 95; the default of 75 is often about right.
|
||||
If you see defects at -Q 75, then go up 5 or 10 counts at a time until you are
|
||||
happy with the output image. (The optimal setting will vary from one image to
|
||||
another.)
|
||||
|
||||
-Q 100 will generate a quantization table of all 1's, eliminating loss in the
|
||||
quantization step (but there is still information loss in subsampling, as well
|
||||
as roundoff error). This setting is mainly of interest for experimental
|
||||
purposes. -Q values above about 95 are NOT recommended for normal use; the
|
||||
compressed file size goes up dramatically for hardly any gain in output image
|
||||
quality.
|
||||
|
||||
In the other direction, -Q values below 50 will produce very small files of
|
||||
low image quality. Settings around 5 to 10 might be useful in preparing an
|
||||
index of a large image library, for example. Try -Q 2 (or so) for some
|
||||
amusing Cubist effects. (Note: -Q values below about 25 generate 2-byte
|
||||
quantization tables, which are considered optional in the JPEG standard.
|
||||
cjpeg emits a warning message when you give such a -Q value, because some
|
||||
commercial JPEG programs may be unable to decode the resulting file.)
|
||||
|
||||
|
||||
DJPEG DETAILS
|
||||
|
||||
The command line switches for djpeg are:
|
||||
|
||||
-G Select GIF output format (implies -q, with default
|
||||
of 256 colors).
|
||||
|
||||
-P Select PPM or PGM output format (this is the default).
|
||||
PGM is emitted if the JPEG file is gray-scale or if -g
|
||||
is specified.
|
||||
|
||||
-R Select RLE output format. Requires URT library.
|
||||
|
||||
-T Select Targa output format. Gray-scale format is
|
||||
emitted if the JPEG file is gray-scale or if -g is
|
||||
specified; otherwise, colormapped format is emitted
|
||||
if -q is specified; otherwise, 24-bit full-color
|
||||
format is emitted.
|
||||
|
||||
-g Force gray-scale output even if input is color.
|
||||
|
||||
-q N Quantize to N colors. This reduces the number of
|
||||
colors in the output image so that it can be displayed
|
||||
on a colormapped display or stored in a colormapped
|
||||
file format. For example, if you have an 8-bit
|
||||
display, you'd need to quantize to 256 or fewer colors.
|
||||
|
||||
-D Do not use dithering in color quantization.
|
||||
By default, Floyd-Steinberg dithering is applied when
|
||||
quantizing colors, but on some images dithering may
|
||||
result in objectionable "graininess". If that
|
||||
happens, you can turn off dithering with -D.
|
||||
-D is ignored unless you also say -q or -G.
|
||||
|
||||
-1 Use one-pass instead of two-pass color quantization.
|
||||
The one-pass method is faster and needs less memory,
|
||||
but it produces a lower-quality image.
|
||||
-1 is ignored unless you also say -q or -G. Also,
|
||||
the one-pass method is always used for gray-scale
|
||||
output (the two-pass method is no improvement then).
|
||||
|
||||
-b Perform cross-block smoothing. This is quite
|
||||
memory-intensive and only seems to improve the image
|
||||
at very low quality settings (-Q 10 to 20 or so).
|
||||
At normal -Q settings it may make the image worse.
|
||||
|
||||
-d Enable debug printout. More -d's give more printout.
|
||||
Also, version information is printed at startup.
|
||||
|
||||
-m memory Set limit for amount of memory to use in processing
|
||||
large images. Value is in thousands of bytes, or
|
||||
millions of bytes if "M" is attached to the number.
|
||||
For example, -m 4m selects 4000000 bytes. If more
|
||||
space is needed, temporary files will be used.
|
||||
|
||||
|
||||
HINTS
|
||||
|
||||
Avoid running an image through a series of JPEG compression/decompression
|
||||
cycles. Image quality loss will accumulate; after ten or so cycles the image
|
||||
may be noticeably worse than it was after one cycle. It's best to use a
|
||||
lossless format while manipulating an image, then convert to JPEG format when
|
||||
you are ready to file the image away.
|
||||
|
||||
The -o option to cjpeg is worth using when you are making a "final" version
|
||||
for posting or archiving. It's also a win when you are using low -Q settings
|
||||
to make very small JPEG files; the percentage improvement is often a lot more
|
||||
than it is on larger files.
|
||||
|
||||
The default memory usage limit (-m) is set when the software is compiled.
|
||||
If you get an "insufficient memory" error, try specifying a smaller -m value,
|
||||
even -m 0 to use the absolute minimum space. You may want to recompile with
|
||||
a smaller default value if this happens often.
|
||||
|
||||
djpeg with two-pass color quantization requires a good deal of space; on
|
||||
MS-DOS machines it may run out of memory even with -m 0. In that case you
|
||||
can still decompress, with some loss of image quality, by specifying -1
|
||||
for one-pass quantization.
|
||||
|
||||
If more space is needed than will fit in the available main memory (as
|
||||
determined by -m), temporary files will be used. (MS-DOS versions will try to
|
||||
get extended or expanded memory first.) The temporary files are often rather
|
||||
large: in typical cases they occupy three bytes per pixel, for example
|
||||
3*800*600 = 1.44Mb for an 800x600 image. If you don't have enough free disk
|
||||
space, leave out -o (for cjpeg) or specify -1 (for djpeg). On MS-DOS, the
|
||||
temporary files are created in the directory named by the TMP or TEMP
|
||||
environment variable, or in the current directory if neither of those exist.
|
||||
Amiga implementations put the temp files in the directory named by JPEGTMP:,
|
||||
so be sure to assign JPEGTMP: to a disk partition with adequate free space.
|
||||
19
ansi2knr.1
Normal file
19
ansi2knr.1
Normal file
@@ -0,0 +1,19 @@
|
||||
.TH ANSI2KNR 1 "31 December 1990"
|
||||
.SH NAME
|
||||
ansi2knr \- convert ANSI C to Kernighan & Ritchie C
|
||||
.SH SYNOPSIS
|
||||
.I ansi2knr
|
||||
input_file output_file
|
||||
.SH DESCRIPTION
|
||||
If no output_file is supplied, output goes to stdout.
|
||||
.br
|
||||
There are no error messages.
|
||||
.sp
|
||||
.I ansi2knr
|
||||
recognizes functions by seeing a non-keyword identifier at the left margin, followed by a left parenthesis, with a right parenthesis as the last character on the line. It will recognize a multi-line header if the last character on each line but the last is a left parenthesis or comma. These algorithms ignore whitespace and comments, except that the function name must be the first thing on the line.
|
||||
.sp
|
||||
The following constructs will confuse it:
|
||||
.br
|
||||
- Any other construct that starts at the left margin and follows the above syntax (such as a macro or function call).
|
||||
.br
|
||||
- Macros that tinker with the syntax of the function header.
|
||||
80
ansi2knr.c
80
ansi2knr.c
@@ -1,30 +1,26 @@
|
||||
/* Copyright (C) 1989, 1991, 1993 Aladdin Enterprises. All rights reserved. */
|
||||
|
||||
/* ansi2knr.c */
|
||||
/* Convert ANSI function declarations to K&R syntax */
|
||||
|
||||
/*
|
||||
* Received from Peter Deutsch (ghost@aladdin.com)
|
||||
* Fri, 26 Apr 91 10:10:10 PDT
|
||||
* Small portability improvements by Tom Lane
|
||||
*/
|
||||
|
||||
/* Copyright (C) 1989, 1991 Aladdin Enterprises. All rights reserved.
|
||||
Distributed by Free Software Foundation, Inc.
|
||||
|
||||
This file is part of Ghostscript.
|
||||
|
||||
Ghostscript is distributed in the hope that it will be useful, but
|
||||
ansi2knr is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility
|
||||
to anyone for the consequences of using it or for whether it serves any
|
||||
particular purpose or works at all, unless he says so in writing. Refer
|
||||
to the Ghostscript General Public License for full details.
|
||||
to the GNU General Public License for full details.
|
||||
|
||||
Everyone is granted permission to copy, modify and redistribute
|
||||
Ghostscript, but only under the conditions described in the Ghostscript
|
||||
ansi2knr, but only under the conditions described in the GNU
|
||||
General Public License. A copy of this license is supposed to have been
|
||||
given to you along with Ghostscript so you can know your rights and
|
||||
given to you along with ansi2knr so you can know your rights and
|
||||
responsibilities. It should be in a file named COPYING. Among other
|
||||
things, the copyright notice and this notice must be preserved on all
|
||||
copies. */
|
||||
copies.
|
||||
*/
|
||||
|
||||
/*
|
||||
---------- Here is the GhostScript file COPYING, referred to above ----------
|
||||
---------- Here is the GNU GPL file COPYING, referred to above ----------
|
||||
----- These terms do NOT apply to the JPEG software itself; see README ------
|
||||
|
||||
GHOSTSCRIPT GENERAL PUBLIC LICENSE
|
||||
@@ -169,28 +165,26 @@ INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE
|
||||
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) GHOSTSCRIPT, EVEN IF YOU
|
||||
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM
|
||||
BY ANY OTHER PARTY.
|
||||
|
||||
-------------------- End of file COPYING ------------------------------
|
||||
*/
|
||||
|
||||
|
||||
/* ansi2knr.c */
|
||||
/* Convert ANSI function declarations to K&R syntax */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#ifdef BSD
|
||||
#include <strings.h>
|
||||
#define strchr index
|
||||
#else
|
||||
#ifdef VMS
|
||||
extern char *strcat(), *strchr(), *strcpy(), *strupr();
|
||||
extern int strcmp(), strlen(), strncmp();
|
||||
extern int strlen(), strncmp();
|
||||
#else
|
||||
#include <string.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* malloc and free should be declared in stdlib.h, */
|
||||
/* but if you've got a K&R compiler, they probably aren't. */
|
||||
#ifdef MSDOS
|
||||
#include <malloc.h>
|
||||
#else
|
||||
@@ -204,34 +198,41 @@ BY ANY OTHER PARTY.
|
||||
#endif
|
||||
|
||||
/* Usage:
|
||||
ansi2knr input_file output_file
|
||||
ansi2knr input_file [output_file]
|
||||
* If no output_file is supplied, output goes to stdout.
|
||||
* There are no error messages.
|
||||
*
|
||||
* ansi2knr recognizes functions by seeing a non-keyword identifier
|
||||
* at the left margin, followed by a left parenthesis,
|
||||
* with a right parenthesis as the last character on the line.
|
||||
* It will recognize a multi-line header if the last character
|
||||
* on each line but the last is a left parenthesis or comma.
|
||||
* It will recognize a multi-line header provided that the last character
|
||||
* of the last line of the header is a right parenthesis,
|
||||
* and no intervening line ends with a left brace or a semicolon.
|
||||
* These algorithms ignore whitespace and comments, except that
|
||||
* the function name must be the first thing on the line.
|
||||
* The following constructs will confuse it:
|
||||
- Any other construct that starts at the left margin and
|
||||
follows the above syntax (such as a macro or function call).
|
||||
- Macros that tinker with the syntax of the function header.
|
||||
* - Any other construct that starts at the left margin and
|
||||
* follows the above syntax (such as a macro or function call).
|
||||
* - Macros that tinker with the syntax of the function header.
|
||||
*/
|
||||
|
||||
/* Scanning macros */
|
||||
#define isidchar(ch) (isalnum(ch) || (ch) == '_')
|
||||
#define isidfirstchar(ch) (isalpha(ch) || (ch) == '_')
|
||||
|
||||
int
|
||||
/* Forward references */
|
||||
char *skipspace();
|
||||
int writeblanks();
|
||||
int test1();
|
||||
int convert1();
|
||||
|
||||
/* The main program */
|
||||
main(argc, argv)
|
||||
int argc;
|
||||
char *argv[];
|
||||
{ FILE *in, *out;
|
||||
#define bufsize 500 /* arbitrary size */
|
||||
char buf[bufsize+1];
|
||||
#define bufsize 5000 /* arbitrary size */
|
||||
char *buf;
|
||||
char *line;
|
||||
switch ( argc )
|
||||
{
|
||||
@@ -253,6 +254,7 @@ main(argc, argv)
|
||||
exit(1);
|
||||
}
|
||||
fprintf(out, "#line 1 \"%s\"\n", argv[1]);
|
||||
buf = malloc(bufsize);
|
||||
line = buf;
|
||||
while ( fgets(line, (unsigned)(buf + bufsize - line), in) != NULL )
|
||||
{ switch ( test1(buf) )
|
||||
@@ -262,7 +264,9 @@ main(argc, argv)
|
||||
break;
|
||||
case -1: /* maybe the start of a function */
|
||||
line = buf + strlen(buf);
|
||||
continue;
|
||||
if ( line != buf + (bufsize - 1) ) /* overflow check */
|
||||
continue;
|
||||
/* falls through */
|
||||
default: /* not a function */
|
||||
fputs(buf, out);
|
||||
break;
|
||||
@@ -270,6 +274,7 @@ main(argc, argv)
|
||||
line = buf;
|
||||
}
|
||||
if ( line != buf ) fputs(buf, out);
|
||||
free(buf);
|
||||
fclose(out);
|
||||
fclose(in);
|
||||
return 0;
|
||||
@@ -327,9 +332,9 @@ test1(buf)
|
||||
switch ( *bend )
|
||||
{
|
||||
case ')': contin = 1; break;
|
||||
case '(':
|
||||
case ',': contin = -1; break;
|
||||
default: return 0; /* not a function */
|
||||
case '{':
|
||||
case ';': return 0; /* not a function */
|
||||
default: contin = -1;
|
||||
}
|
||||
while ( isidchar(*p) ) p++;
|
||||
endfn = p;
|
||||
@@ -365,13 +370,16 @@ int
|
||||
convert1(buf, out)
|
||||
char *buf;
|
||||
FILE *out;
|
||||
{ char *endfn = strchr(buf, '(') + 1;
|
||||
{ char *endfn;
|
||||
register char *p;
|
||||
char **breaks;
|
||||
unsigned num_breaks = 2; /* for testing */
|
||||
char **btop;
|
||||
char **bp;
|
||||
char **ap;
|
||||
/* Pre-ANSI implementations don't agree on whether strchr */
|
||||
/* is called strchr or index, so we open-code it here. */
|
||||
for ( endfn = buf; *(endfn++) != '('; ) ;
|
||||
top: p = endfn;
|
||||
breaks = (char **)malloc(sizeof(char *) * num_breaks * 2);
|
||||
if ( breaks == 0 )
|
||||
|
||||
1180
architecture
1180
architecture
File diff suppressed because it is too large
Load Diff
135
cderror.h
Normal file
135
cderror.h
Normal file
@@ -0,0 +1,135 @@
|
||||
/*
|
||||
* cderror.h
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines the error and message codes for the cjpeg/djpeg
|
||||
* applications. These strings are not needed as part of the JPEG library
|
||||
* proper.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
*/
|
||||
|
||||
|
||||
/* To define the enum list of message codes, include this file without
|
||||
* defining JMAKE_MSG_TABLE. To create the message string table, include it
|
||||
* again with JMAKE_MSG_TABLE defined (this should be done in just one module).
|
||||
*/
|
||||
|
||||
#ifdef JMAKE_MSG_TABLE
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define addon_message_table cdMsgTable
|
||||
#endif
|
||||
|
||||
const char * const addon_message_table[] = {
|
||||
|
||||
#define JMESSAGE(code,string) string ,
|
||||
|
||||
#else /* not JMAKE_MSG_TABLE */
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code,string) code ,
|
||||
|
||||
#endif /* JMAKE_MSG_TABLE */
|
||||
|
||||
JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */
|
||||
|
||||
#ifdef BMP_SUPPORTED
|
||||
JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
|
||||
JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
|
||||
JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
|
||||
JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
|
||||
JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
|
||||
JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
|
||||
JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
|
||||
JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
|
||||
JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
|
||||
JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
|
||||
#endif /* BMP_SUPPORTED */
|
||||
|
||||
#ifdef GIF_SUPPORTED
|
||||
JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
|
||||
JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
|
||||
JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
|
||||
JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
|
||||
JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
|
||||
JMESSAGE(JTRC_GIF_BADVERSION,
|
||||
"Warning: unexpected GIF version number '%c%c%c'")
|
||||
JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
|
||||
JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
|
||||
JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
|
||||
JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
|
||||
JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
|
||||
JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
|
||||
#endif /* GIF_SUPPORTED */
|
||||
|
||||
#ifdef PPM_SUPPORTED
|
||||
JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
|
||||
JMESSAGE(JERR_PPM_NOT, "Not a PPM file")
|
||||
JMESSAGE(JTRC_PGM, "%ux%u PGM image")
|
||||
JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
|
||||
JMESSAGE(JTRC_PPM, "%ux%u PPM image")
|
||||
JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
|
||||
#endif /* PPM_SUPPORTED */
|
||||
|
||||
#ifdef RLE_SUPPORTED
|
||||
JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
|
||||
JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
|
||||
JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
|
||||
JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
|
||||
JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
|
||||
JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
|
||||
JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
|
||||
JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
|
||||
JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
|
||||
JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
|
||||
JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
|
||||
JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
|
||||
JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
|
||||
JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
|
||||
#endif /* RLE_SUPPORTED */
|
||||
|
||||
#ifdef TARGA_SUPPORTED
|
||||
JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
|
||||
JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
|
||||
JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
|
||||
JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
|
||||
JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
|
||||
JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
|
||||
#else
|
||||
JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
|
||||
#endif /* TARGA_SUPPORTED */
|
||||
|
||||
JMESSAGE(JERR_BAD_CMAP_FILE,
|
||||
"Color map file is invalid or of unsupported format")
|
||||
JMESSAGE(JERR_TOO_MANY_COLORS,
|
||||
"Output file format cannot handle %d colormap entries")
|
||||
JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
|
||||
#ifdef TARGA_SUPPORTED
|
||||
JMESSAGE(JERR_UNKNOWN_FORMAT,
|
||||
"Unrecognized input file format --- perhaps you need -targa")
|
||||
#else
|
||||
JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
|
||||
#endif
|
||||
JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
|
||||
|
||||
#ifdef JMAKE_MSG_TABLE
|
||||
|
||||
NULL
|
||||
};
|
||||
|
||||
#else /* not JMAKE_MSG_TABLE */
|
||||
|
||||
JMSG_LASTADDONCODE
|
||||
} ADDON_MESSAGE_CODE;
|
||||
|
||||
#endif /* JMAKE_MSG_TABLE */
|
||||
|
||||
#undef JMESSAGE
|
||||
124
cdjpeg.h
Normal file
124
cdjpeg.h
Normal file
@@ -0,0 +1,124 @@
|
||||
/*
|
||||
* cdjpeg.h
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains common declarations for the sample applications
|
||||
* cjpeg and djpeg. It is NOT used by the core JPEG library.
|
||||
*/
|
||||
|
||||
#define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */
|
||||
#define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h" /* get library error codes too */
|
||||
#include "cderror.h" /* get application-specific error codes */
|
||||
|
||||
|
||||
/*
|
||||
* Object interface for cjpeg's source file decoding modules
|
||||
*/
|
||||
|
||||
typedef struct cjpeg_source_struct * cjpeg_source_ptr;
|
||||
|
||||
struct cjpeg_source_struct {
|
||||
JMETHOD(void, start_input, (j_compress_ptr cinfo,
|
||||
cjpeg_source_ptr sinfo));
|
||||
JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
|
||||
cjpeg_source_ptr sinfo));
|
||||
JMETHOD(void, finish_input, (j_compress_ptr cinfo,
|
||||
cjpeg_source_ptr sinfo));
|
||||
|
||||
FILE *input_file;
|
||||
|
||||
JSAMPARRAY buffer;
|
||||
JDIMENSION buffer_height;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Object interface for djpeg's output file encoding modules
|
||||
*/
|
||||
|
||||
typedef struct djpeg_dest_struct * djpeg_dest_ptr;
|
||||
|
||||
struct djpeg_dest_struct {
|
||||
/* start_output is called after jpeg_start_decompress finishes.
|
||||
* The color map will be ready at this time, if one is needed.
|
||||
*/
|
||||
JMETHOD(void, start_output, (j_decompress_ptr cinfo,
|
||||
djpeg_dest_ptr dinfo));
|
||||
/* Emit the specified number of pixel rows from the buffer. */
|
||||
JMETHOD(void, put_pixel_rows, (j_decompress_ptr cinfo,
|
||||
djpeg_dest_ptr dinfo,
|
||||
JDIMENSION rows_supplied));
|
||||
/* Finish up at the end of the image. */
|
||||
JMETHOD(void, finish_output, (j_decompress_ptr cinfo,
|
||||
djpeg_dest_ptr dinfo));
|
||||
|
||||
/* Target file spec; filled in by djpeg.c after object is created. */
|
||||
FILE * output_file;
|
||||
|
||||
/* Output pixel-row buffer. Created by module init or start_output.
|
||||
* Width is cinfo->output_width * cinfo->output_components;
|
||||
* height is buffer_height.
|
||||
*/
|
||||
JSAMPARRAY buffer;
|
||||
JDIMENSION buffer_height;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* cjpeg/djpeg may need to perform extra passes to convert to or from
|
||||
* the source/destination file format. The JPEG library does not know
|
||||
* about these passes, but we'd like them to be counted by the progress
|
||||
* monitor. We use an expanded progress monitor object to hold the
|
||||
* additional pass count.
|
||||
*/
|
||||
|
||||
struct cdjpeg_progress_mgr {
|
||||
struct jpeg_progress_mgr pub; /* fields known to JPEG library */
|
||||
int completed_extra_passes; /* extra passes completed */
|
||||
int total_extra_passes; /* total extra */
|
||||
/* last printed percentage stored here to avoid multiple printouts */
|
||||
int percent_done;
|
||||
};
|
||||
|
||||
typedef struct cdjpeg_progress_mgr * cd_progress_ptr;
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jinit_read_bmp jIRdBMP
|
||||
#define jinit_write_bmp jIWrBMP
|
||||
#define jinit_read_gif jIRdGIF
|
||||
#define jinit_write_gif jIWrGIF
|
||||
#define jinit_read_ppm jIRdPPM
|
||||
#define jinit_write_ppm jIWrPPM
|
||||
#define jinit_read_rle jIRdRLE
|
||||
#define jinit_write_rle jIWrRLE
|
||||
#define jinit_read_targa jIRdTarga
|
||||
#define jinit_write_targa jIWrTarga
|
||||
#define read_color_map RdCMap
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
/* Module selection routines for I/O modules. */
|
||||
|
||||
EXTERN cjpeg_source_ptr jinit_read_bmp JPP((j_compress_ptr cinfo));
|
||||
EXTERN djpeg_dest_ptr jinit_write_bmp JPP((j_decompress_ptr cinfo,
|
||||
boolean is_os2));
|
||||
EXTERN cjpeg_source_ptr jinit_read_gif JPP((j_compress_ptr cinfo));
|
||||
EXTERN djpeg_dest_ptr jinit_write_gif JPP((j_decompress_ptr cinfo));
|
||||
EXTERN cjpeg_source_ptr jinit_read_ppm JPP((j_compress_ptr cinfo));
|
||||
EXTERN djpeg_dest_ptr jinit_write_ppm JPP((j_decompress_ptr cinfo));
|
||||
EXTERN cjpeg_source_ptr jinit_read_rle JPP((j_compress_ptr cinfo));
|
||||
EXTERN djpeg_dest_ptr jinit_write_rle JPP((j_decompress_ptr cinfo));
|
||||
EXTERN cjpeg_source_ptr jinit_read_targa JPP((j_compress_ptr cinfo));
|
||||
EXTERN djpeg_dest_ptr jinit_write_targa JPP((j_decompress_ptr cinfo));
|
||||
|
||||
/* Other global routines */
|
||||
|
||||
EXTERN void read_color_map JPP((j_decompress_ptr cinfo, FILE * infile));
|
||||
39
change.log
Normal file
39
change.log
Normal file
@@ -0,0 +1,39 @@
|
||||
CHANGE LOG for Independent JPEG Group's JPEG software
|
||||
|
||||
|
||||
Version 5 24-Sep-94
|
||||
--------------------
|
||||
|
||||
Version 5 represents a nearly complete redesign and rewrite of the IJG
|
||||
software. Major user-visible changes include:
|
||||
* Automatic configuration simplifies installation for most Unix systems.
|
||||
* A range of speed vs. image quality tradeoffs are supported.
|
||||
This includes resizing of an image during decompression: scaling down
|
||||
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
|
||||
* New programs rdjpgcom and wrjpgcom allow insertion and extraction
|
||||
of text comments in a JPEG file.
|
||||
|
||||
The application programmer's interface to the library has changed completely.
|
||||
Notable improvements include:
|
||||
* We have eliminated the use of callback routines for handling the
|
||||
uncompressed image data. The application now sees the library as a
|
||||
set of routines that it calls to read or write image data on a
|
||||
scanline-by-scanline basis.
|
||||
* The application image data is represented in a conventional interleaved-
|
||||
pixel format, rather than as a separate array for each color channel.
|
||||
This can save a copying step in many programs.
|
||||
* The handling of compressed data has been cleaned up: the application can
|
||||
supply routines to source or sink the compressed data. It is possible to
|
||||
suspend processing on source/sink buffer overrun, although this is not
|
||||
supported in all operating modes.
|
||||
* All static state has been eliminated from the library, so that multiple
|
||||
instances of compression or decompression can be active concurrently.
|
||||
* JPEG abbreviated datastream formats are supported, ie, quantization and
|
||||
Huffman tables can be stored separately from the image data.
|
||||
* And not only that, but the documentation of the library has improved
|
||||
considerably!
|
||||
|
||||
|
||||
The last widely used release before the version 5 rewrite was version 4A of
|
||||
18-Feb-93. Change logs before that point have been discarded, since they
|
||||
are not of much interest after the rewrite.
|
||||
278
cjpeg.1
278
cjpeg.1
@@ -1,16 +1,10 @@
|
||||
.TH CJPEG 1 "28 February 1992"
|
||||
.TH CJPEG 1 "30 August 1994"
|
||||
.SH NAME
|
||||
cjpeg \- compress an image file to a JPEG file
|
||||
.SH SYNOPSIS
|
||||
.B cjpeg
|
||||
[
|
||||
.BI \-Q " quality"
|
||||
]
|
||||
[
|
||||
.B \-oTIad
|
||||
]
|
||||
[
|
||||
.BI \-m " memory"
|
||||
.I options
|
||||
]
|
||||
[
|
||||
.I filename
|
||||
@@ -21,108 +15,250 @@ cjpeg \- compress an image file to a JPEG file
|
||||
.B cjpeg
|
||||
compresses the named image file, or the standard input if no file is
|
||||
named, and produces a JPEG/JFIF file on the standard output.
|
||||
The currently supported image file formats are: PPM (PBMPLUS color
|
||||
format), PGM (PBMPLUS gray-scale format), GIF, Targa, and RLE (Utah Raster
|
||||
The currently supported input file formats are: PPM (PBMPLUS color
|
||||
format), PGM (PBMPLUS gray-scale format), BMP, GIF, Targa, and RLE (Utah Raster
|
||||
Toolkit format). (RLE is supported only if the URT library is available.)
|
||||
.SH OPTIONS
|
||||
All switch names may be abbreviated; for example,
|
||||
.B \-grayscale
|
||||
may be written
|
||||
.B \-gray
|
||||
or
|
||||
.BR \-gr .
|
||||
Most of the "basic" switches can be abbreviated to as little as one letter.
|
||||
Upper and lower case are equivalent (thus
|
||||
.B \-GIF
|
||||
is the same as
|
||||
.BR \-gif ).
|
||||
British spellings are also accepted (e.g.,
|
||||
.BR \-greyscale ),
|
||||
though for brevity these are not mentioned below.
|
||||
.PP
|
||||
The basic switches are:
|
||||
.TP
|
||||
.BI \-Q " quality"
|
||||
.BI \-quality " N"
|
||||
Scale quantization tables to adjust image quality. Quality is 0 (worst) to
|
||||
100 (best); default is 75. (See below for more info.)
|
||||
.TP
|
||||
.B \-o
|
||||
.B \-grayscale
|
||||
Create monochrome JPEG file from color input. Be sure to use this switch when
|
||||
compressing a grayscale GIF file, because
|
||||
.B cjpeg
|
||||
isn't bright enough to notice whether a GIF file uses only shades of gray.
|
||||
By saying
|
||||
.BR \-grayscale ,
|
||||
you'll get a smaller JPEG file that takes less time to process.
|
||||
.TP
|
||||
.B \-optimize
|
||||
Perform optimization of entropy encoding parameters. Without this, default
|
||||
encoding parameters are used.
|
||||
.B \-o
|
||||
.B \-optimize
|
||||
usually makes the JPEG file a little smaller, but
|
||||
.B cjpeg
|
||||
runs somewhat slower and needs much more memory. Image quality and speed of
|
||||
decompression are unaffected by
|
||||
.BR \-o .
|
||||
.BR \-optimize .
|
||||
.TP
|
||||
.B \-T
|
||||
.B \-targa
|
||||
Input file is Targa format. Targa files that contain an "identification"
|
||||
field will not be automatically recognized by
|
||||
.BR cjpeg ;
|
||||
for such files you must specify
|
||||
.B \-T
|
||||
to force
|
||||
.B \-targa
|
||||
to make
|
||||
.B cjpeg
|
||||
to treat the input as Targa format.
|
||||
.TP
|
||||
.B \-I
|
||||
Generate noninterleaved JPEG file (not yet supported).
|
||||
.TP
|
||||
.B \-a
|
||||
Use arithmetic coding rather than Huffman coding (not currently
|
||||
supported for legal reasons).
|
||||
.TP
|
||||
.B \-d
|
||||
Enable debug printout. More
|
||||
.BR \-d 's
|
||||
give more output. Also, version information is printed at startup.
|
||||
.TP
|
||||
.BI \-m " memory"
|
||||
Set limit for amount of memory to use in processing large images. Value is
|
||||
in thousands of bytes, or millions of bytes if "M" is attached to the
|
||||
number. For example,
|
||||
.B \-m 4m
|
||||
selects 4000000 bytes. If more space is needed, temporary files will be used.
|
||||
treat the input as Targa format.
|
||||
For most Targa files, you won't need this switch.
|
||||
.PP
|
||||
The
|
||||
.B \-Q
|
||||
.B \-quality
|
||||
switch lets you trade off compressed file size against quality of the
|
||||
reconstructed image: the higher the
|
||||
.B \-Q
|
||||
setting, the larger the JPEG file, and the closer the output image will be to
|
||||
the original input. Normally you want to use the lowest
|
||||
.B \-Q
|
||||
setting (smallest file) that decompresses into something visually
|
||||
indistinguishable from the original image. For this purpose the
|
||||
.B \-Q
|
||||
setting should be between 50 and 95; the default of 75 is often about right.
|
||||
If you see defects at
|
||||
.B \-Q
|
||||
reconstructed image: the higher the quality setting, the larger the JPEG file,
|
||||
and the closer the output image will be to the original input. Normally you
|
||||
want to use the lowest quality setting (smallest file) that decompresses into
|
||||
something visually indistinguishable from the original image. For this
|
||||
purpose the quality setting should be between 50 and 95; the default of 75 is
|
||||
often about right. If you see defects at
|
||||
.B \-quality
|
||||
75, then go up 5 or 10 counts at a time until you are happy with the output
|
||||
image. (The optimal setting will vary from one image to another.)
|
||||
.PP
|
||||
.B \-Q
|
||||
.B \-quality
|
||||
100 will generate a quantization table of all 1's, eliminating loss in the
|
||||
quantization step (but there is still information loss in subsampling, as well
|
||||
as roundoff error). This setting is mainly of interest for experimental
|
||||
purposes.
|
||||
.B \-Q
|
||||
values above about 95 are
|
||||
purposes. Quality values above about 95 are
|
||||
.B not
|
||||
recommended for normal use; the compressed file size goes up dramatically for
|
||||
hardly any gain in output image quality.
|
||||
.PP
|
||||
In the other direction,
|
||||
.B \-Q
|
||||
values below 50 will produce very small files of low image quality. Settings
|
||||
around 5 to 10 might be useful in preparing an index of a large image library,
|
||||
for example. Try
|
||||
.B \-Q
|
||||
2 (or so) for some amusing Cubist effects. (Note:
|
||||
.B \-Q
|
||||
In the other direction, quality values below 50 will produce very small files
|
||||
of low image quality. Settings around 5 to 10 might be useful in preparing an
|
||||
index of a large image library, for example. Try
|
||||
.B \-quality
|
||||
2 (or so) for some amusing Cubist effects. (Note: quality
|
||||
values below about 25 generate 2-byte quantization tables, which are
|
||||
considered optional in the JPEG standard.
|
||||
.B cjpeg
|
||||
emits a warning message when you give such a
|
||||
.B \-Q
|
||||
value, because some commercial JPEG programs may be unable to decode the
|
||||
resulting file.)
|
||||
emits a warning message when you give such a quality value, because some
|
||||
commercial JPEG programs may be unable to decode the resulting file. Use
|
||||
.B \-baseline
|
||||
if you need to ensure compatibility at low quality values.)
|
||||
.PP
|
||||
Switches for advanced users:
|
||||
.TP
|
||||
.B \-dct int
|
||||
Use integer DCT method (default).
|
||||
.TP
|
||||
.B \-dct fast
|
||||
Use fast integer DCT (less accurate).
|
||||
.TP
|
||||
.B \-dct float
|
||||
Use floating-point DCT method.
|
||||
The floating-point method is the most accurate, but will be the slowest unless
|
||||
your machine has very fast floating-point hardware. Also note that results of
|
||||
the floating-point method may vary slightly across machines, while the integer
|
||||
methods should give the same results everywhere. The fast integer method is
|
||||
much less accurate than the other two.
|
||||
.TP
|
||||
.BI \-restart " N"
|
||||
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is
|
||||
attached to the number.
|
||||
.B \-restart 0
|
||||
(the default) means no restart markers.
|
||||
.TP
|
||||
.BI \-smooth " N"
|
||||
Smooth the input image to eliminate dithering noise. N, ranging from 1 to
|
||||
100, indicates the strength of smoothing. 0 (the default) means no smoothing.
|
||||
.TP
|
||||
.BI \-maxmemory " N"
|
||||
Set limit for amount of memory to use in processing large images. Value is
|
||||
in thousands of bytes, or millions of bytes if "M" is attached to the
|
||||
number. For example,
|
||||
.B \-max 4m
|
||||
selects 4000000 bytes. If more space is needed, temporary files will be used.
|
||||
.TP
|
||||
.BI \-outfile " name"
|
||||
Send output image to the named file, not to standard output.
|
||||
.TP
|
||||
.B \-verbose
|
||||
Enable debug printout. More
|
||||
.BR \-v 's
|
||||
give more output. Also, version information is printed at startup.
|
||||
.TP
|
||||
.B \-debug
|
||||
Same as
|
||||
.BR \-verbose .
|
||||
.PP
|
||||
The
|
||||
.B \-restart
|
||||
option inserts extra markers that allow a JPEG decoder to resynchronize after
|
||||
a transmission error. Without restart markers, any damage to a compressed
|
||||
file will usually ruin the image from the point of the error to the end of the
|
||||
image; with restart markers, the damage is usually confined to the portion of
|
||||
the image up to the next restart marker. Of course, the restart markers
|
||||
occupy extra space. We recommend
|
||||
.B \-restart 1
|
||||
for images that will be transmitted across unreliable networks such as Usenet.
|
||||
.PP
|
||||
The
|
||||
.B \-smooth
|
||||
option filters the input to eliminate fine-scale noise. This is often useful
|
||||
when converting GIF files to JPEG: a moderate smoothing factor of 10 to 50
|
||||
gets rid of dithering patterns in the input file, resulting in a smaller JPEG
|
||||
file and a better-looking image. Too large a smoothing factor will visibly
|
||||
blur the image, however.
|
||||
.PP
|
||||
Switches for wizards:
|
||||
.TP
|
||||
.B \-arithmetic
|
||||
Use arithmetic coding rather than Huffman coding. (Not currently
|
||||
supported for legal reasons.)
|
||||
.TP
|
||||
.B \-baseline
|
||||
Force a baseline JPEG file to be generated. This clamps quantization values
|
||||
to 8 bits even at low quality settings.
|
||||
.TP
|
||||
.B \-nointerleave
|
||||
Generate noninterleaved JPEG file (not yet supported).
|
||||
.TP
|
||||
.BI \-qtables " file"
|
||||
Use the quantization tables given in the specified file. The file should
|
||||
contain one to four tables (64 values each) as plain text. Comments preceded
|
||||
by '#' may be included in the file. The tables are implicitly numbered
|
||||
0,1,etc. If
|
||||
.BI \-quality " N"
|
||||
is also specified, the values in the file are scaled according to
|
||||
.BR cjpeg 's
|
||||
quality scaling curve.
|
||||
.TP
|
||||
.BI \-qslots " N[,...]"
|
||||
Select which quantization table to use for each color component. By default,
|
||||
table 0 is used for luminance and table 1 for chrominance components.
|
||||
.TP
|
||||
.BI \-sample " HxV[,...]"
|
||||
Set JPEG sampling factors. If you specify fewer H/V pairs than there are
|
||||
components, the remaining components are set to 1x1 sampling. The default
|
||||
setting is equivalent to \fB\-sample 2x2\fR.
|
||||
.PP
|
||||
The "wizard" switches are intended for experimentation with JPEG. If you
|
||||
don't know what you are doing, \fBdon't use them\fR. You can easily produce
|
||||
files with worse image quality and/or poorer compression than you'll get from
|
||||
the default settings. Furthermore, these switches should not be used when
|
||||
making files intended for general use, because not all JPEG implementations
|
||||
will support unusual JPEG parameter settings.
|
||||
.SH EXAMPLES
|
||||
.LP
|
||||
This example compresses the PPM file foo.ppm with a quality factor of
|
||||
60 and saves the output as foo.jpg:
|
||||
.IP
|
||||
.B cjpeg \-Q
|
||||
.B cjpeg \-quality
|
||||
.I 60 foo.ppm
|
||||
.B >
|
||||
.I foo.jpg
|
||||
.SH HINTS
|
||||
Color GIF files are not the ideal input for JPEG; JPEG is really intended for
|
||||
compressing full-color (24-bit) images. In particular, don't try to convert
|
||||
cartoons, line drawings, and other images that have only a few distinct
|
||||
colors. GIF works great on these, JPEG does not. If you want to convert a
|
||||
GIF to JPEG, you should experiment with
|
||||
.BR cjpeg 's
|
||||
.B \-quality
|
||||
and
|
||||
.B \-smooth
|
||||
options to get a satisfactory conversion.
|
||||
.B \-smooth 10
|
||||
or so is often helpful.
|
||||
.PP
|
||||
Avoid running an image through a series of JPEG compression/decompression
|
||||
cycles. Image quality loss will accumulate; after ten or so cycles the image
|
||||
may be noticeably worse than it was after one cycle. It's best to use a
|
||||
lossless format while manipulating an image, then convert to JPEG format when
|
||||
you are ready to file the image away.
|
||||
.PP
|
||||
The
|
||||
.B \-optimize
|
||||
option to
|
||||
.B cjpeg
|
||||
is worth using when you are making a "final" version for posting or archiving.
|
||||
It's also a win when you are using low quality settings to make very small
|
||||
JPEG files; the percentage improvement is often a lot more than it is on
|
||||
larger files.
|
||||
.SH ENVIRONMENT
|
||||
.TP
|
||||
.B JPEGMEM
|
||||
If this environment variable is set, its value is the default memory limit.
|
||||
The value is specified as described for the
|
||||
.B \-maxmemory
|
||||
switch.
|
||||
.B JPEGMEM
|
||||
overrides the default value specified when the program was compiled, and
|
||||
itself is overridden by an explicit
|
||||
.BR \-maxmemory .
|
||||
.SH SEE ALSO
|
||||
.BR djpeg (1)
|
||||
.BR djpeg (1),
|
||||
.BR rdjpgcom (1),
|
||||
.BR wrjpgcom (1)
|
||||
.br
|
||||
.BR ppm (5),
|
||||
.BR pgm (5)
|
||||
@@ -132,13 +268,13 @@ Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
|
||||
.SH AUTHOR
|
||||
Independent JPEG Group
|
||||
.SH BUGS
|
||||
Arithmetic coding and interleaved output not yet supported.
|
||||
Arithmetic coding is not supported for legal reasons.
|
||||
.PP
|
||||
Not all variants of Targa file format are supported.
|
||||
Not all variants of BMP and Targa file formats are supported.
|
||||
.PP
|
||||
The
|
||||
.B -T
|
||||
.B \-targa
|
||||
switch is not a bug, it's a feature. (It would be a bug if the Targa format
|
||||
designers had not been clueless.)
|
||||
.PP
|
||||
Not as fast as we'd like.
|
||||
Still not as fast as we'd like.
|
||||
|
||||
877
cjpeg.c
Normal file
877
cjpeg.c
Normal file
@@ -0,0 +1,877 @@
|
||||
/*
|
||||
* cjpeg.c
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a command-line user interface for the JPEG compressor.
|
||||
* It should work on any system with Unix- or MS-DOS-style command lines.
|
||||
*
|
||||
* Two different command line styles are permitted, depending on the
|
||||
* compile-time switch TWO_FILE_COMMANDLINE:
|
||||
* cjpeg [options] inputfile outputfile
|
||||
* cjpeg [options] [inputfile]
|
||||
* In the second style, output is always to standard output, which you'd
|
||||
* normally redirect to a file or pipe to some other program. Input is
|
||||
* either from a named file or from standard input (typically redirected).
|
||||
* The second style is convenient on Unix but is unhelpful on systems that
|
||||
* don't support pipes. Also, you MUST use the first style if your system
|
||||
* doesn't do binary I/O to stdin/stdout.
|
||||
* To simplify script writing, the "-outfile" switch is provided. The syntax
|
||||
* cjpeg [options] -outfile outputfile inputfile
|
||||
* works regardless of which command line style is used.
|
||||
*/
|
||||
|
||||
#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
|
||||
#define JMAKE_MSG_TABLE
|
||||
#include "cderror.h" /* create message string table */
|
||||
#include "jversion.h" /* for version message */
|
||||
|
||||
#include <ctype.h> /* to declare isupper(), tolower() */
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
#include <signal.h> /* to declare signal() */
|
||||
#endif
|
||||
#ifdef USE_SETMODE
|
||||
#include <fcntl.h> /* to declare setmode()'s parameter macros */
|
||||
/* If you have setmode() but not <io.h>, just delete this line: */
|
||||
#include <io.h> /* to declare setmode() */
|
||||
#endif
|
||||
|
||||
#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
|
||||
#ifdef __MWERKS__
|
||||
#include <SIOUX.h> /* Metrowerks declares it here */
|
||||
#endif
|
||||
#ifdef THINK_C
|
||||
#include <console.h> /* Think declares it here */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define WRITE_BINARY "w"
|
||||
#else
|
||||
#define READ_BINARY "rb"
|
||||
#define WRITE_BINARY "wb"
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
#ifndef EXIT_SUCCESS
|
||||
#ifdef VMS
|
||||
#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
|
||||
#else
|
||||
#define EXIT_SUCCESS 0
|
||||
#endif
|
||||
#endif
|
||||
#ifndef EXIT_WARNING
|
||||
#ifdef VMS
|
||||
#define EXIT_WARNING 1 /* VMS is very nonstandard */
|
||||
#else
|
||||
#define EXIT_WARNING 2
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* This routine determines what format the input file is,
|
||||
* and selects the appropriate input-reading module.
|
||||
*
|
||||
* To determine which family of input formats the file belongs to,
|
||||
* we may look only at the first byte of the file, since C does not
|
||||
* guarantee that more than one character can be pushed back with ungetc.
|
||||
* Looking at additional bytes would require one of these approaches:
|
||||
* 1) assume we can fseek() the input file (fails for piped input);
|
||||
* 2) assume we can push back more than one character (works in
|
||||
* some C implementations, but unportable);
|
||||
* 3) provide our own buffering (breaks input readers that want to use
|
||||
* stdio directly, such as the RLE library);
|
||||
* or 4) don't put back the data, and modify the input_init methods to assume
|
||||
* they start reading after the start of file (also breaks RLE library).
|
||||
* #1 is attractive for MS-DOS but is untenable on Unix.
|
||||
*
|
||||
* The most portable solution for file types that can't be identified by their
|
||||
* first byte is to make the user tell us what they are. This is also the
|
||||
* only approach for "raw" file types that contain only arbitrary values.
|
||||
* We presently apply this method for Targa files. Most of the time Targa
|
||||
* files start with 0x00, so we recognize that case. Potentially, however,
|
||||
* a Targa file could start with any byte value (byte 0 is the length of the
|
||||
* seldom-used ID field), so we provide a switch to force Targa input mode.
|
||||
*/
|
||||
|
||||
static boolean is_targa; /* records user -targa switch */
|
||||
|
||||
|
||||
LOCAL cjpeg_source_ptr
|
||||
select_file_type (j_compress_ptr cinfo, FILE * infile)
|
||||
{
|
||||
int c;
|
||||
|
||||
if (is_targa) {
|
||||
#ifdef TARGA_SUPPORTED
|
||||
return jinit_read_targa(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_TGA_NOTCOMP);
|
||||
#endif
|
||||
}
|
||||
|
||||
if ((c = getc(infile)) == EOF)
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
if (ungetc(c, infile) == EOF)
|
||||
ERREXIT(cinfo, JERR_UNGETC_FAILED);
|
||||
|
||||
switch (c) {
|
||||
#ifdef BMP_SUPPORTED
|
||||
case 'B':
|
||||
return jinit_read_bmp(cinfo);
|
||||
#endif
|
||||
#ifdef GIF_SUPPORTED
|
||||
case 'G':
|
||||
return jinit_read_gif(cinfo);
|
||||
#endif
|
||||
#ifdef PPM_SUPPORTED
|
||||
case 'P':
|
||||
return jinit_read_ppm(cinfo);
|
||||
#endif
|
||||
#ifdef RLE_SUPPORTED
|
||||
case 'R':
|
||||
return jinit_read_rle(cinfo);
|
||||
#endif
|
||||
#ifdef TARGA_SUPPORTED
|
||||
case 0x00:
|
||||
return jinit_read_targa(cinfo);
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_UNKNOWN_FORMAT);
|
||||
break;
|
||||
}
|
||||
|
||||
return NULL; /* suppress compiler warnings */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Signal catcher to ensure that temporary files are removed before aborting.
|
||||
* NB: for Amiga Manx C this is actually a global routine named _abort();
|
||||
* we put "#define signal_catcher _abort" in jconfig.h. Talk about bogus...
|
||||
*/
|
||||
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
|
||||
static j_common_ptr sig_cinfo;
|
||||
|
||||
GLOBAL void
|
||||
signal_catcher (int signum)
|
||||
{
|
||||
if (sig_cinfo != NULL) {
|
||||
if (sig_cinfo->err != NULL) /* turn off trace output */
|
||||
sig_cinfo->err->trace_level = 0;
|
||||
jpeg_destroy(sig_cinfo); /* clean up memory allocation & temp files */
|
||||
}
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Optional routine to display a percent-done figure on stderr.
|
||||
*/
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
|
||||
METHODDEF void
|
||||
progress_monitor (j_common_ptr cinfo)
|
||||
{
|
||||
cd_progress_ptr prog = (cd_progress_ptr) cinfo->progress;
|
||||
int total_passes = prog->pub.total_passes + prog->total_extra_passes;
|
||||
int percent_done = (int) (prog->pub.pass_counter*100L/prog->pub.pass_limit);
|
||||
|
||||
if (percent_done != prog->percent_done) {
|
||||
prog->percent_done = percent_done;
|
||||
if (total_passes > 1) {
|
||||
fprintf(stderr, "\rPass %d/%d: %3d%% ",
|
||||
prog->pub.completed_passes + prog->completed_extra_passes + 1,
|
||||
total_passes, percent_done);
|
||||
} else {
|
||||
fprintf(stderr, "\r %3d%% ", percent_done);
|
||||
}
|
||||
fflush(stderr);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Argument-parsing code.
|
||||
* The switch parser is designed to be useful with DOS-style command line
|
||||
* syntax, ie, intermixed switches and file names, where only the switches
|
||||
* to the left of a given file name affect processing of that file.
|
||||
* The main program in this file doesn't actually use this capability...
|
||||
*/
|
||||
|
||||
|
||||
static const char * progname; /* program name for error messages */
|
||||
static char * outfilename; /* for -outfile switch */
|
||||
|
||||
|
||||
LOCAL void
|
||||
usage (void)
|
||||
/* complain about bad command line */
|
||||
{
|
||||
fprintf(stderr, "usage: %s [switches] ", progname);
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
fprintf(stderr, "inputfile outputfile\n");
|
||||
#else
|
||||
fprintf(stderr, "[inputfile]\n");
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "Switches (names may be abbreviated):\n");
|
||||
fprintf(stderr, " -quality N Compression quality (0..100; 5-95 is useful range)\n");
|
||||
fprintf(stderr, " -grayscale Create monochrome JPEG file\n");
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n");
|
||||
#endif
|
||||
#ifdef TARGA_SUPPORTED
|
||||
fprintf(stderr, " -targa Input file is Targa format (usually not needed)\n");
|
||||
#endif
|
||||
fprintf(stderr, "Switches for advanced users:\n");
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
fprintf(stderr, " -dct int Use integer DCT method%s\n",
|
||||
(JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
fprintf(stderr, " -dct fast Use fast integer DCT (less accurate)%s\n",
|
||||
(JDCT_DEFAULT == JDCT_IFAST ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fprintf(stderr, " -dct float Use floating-point DCT method%s\n",
|
||||
(JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : ""));
|
||||
#endif
|
||||
fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n");
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
fprintf(stderr, " -smooth N Smooth dithered input (N=1..100 is strength)\n");
|
||||
#endif
|
||||
fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n");
|
||||
fprintf(stderr, " -outfile name Specify name for output file\n");
|
||||
fprintf(stderr, " -verbose or -debug Emit debug output\n");
|
||||
fprintf(stderr, "Switches for wizards:\n");
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
fprintf(stderr, " -arithmetic Use arithmetic coding\n");
|
||||
#endif
|
||||
fprintf(stderr, " -baseline Force baseline output\n");
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
fprintf(stderr, " -nointerleave Create noninterleaved JPEG file\n");
|
||||
#endif
|
||||
fprintf(stderr, " -qtables file Use quantization tables given in file\n");
|
||||
fprintf(stderr, " -qslots N[,...] Set component quantization tables\n");
|
||||
fprintf(stderr, " -sample HxV[,...] Set component sampling factors\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
LOCAL boolean
|
||||
keymatch (char * arg, const char * keyword, int minchars)
|
||||
/* Case-insensitive matching of (possibly abbreviated) keyword switches. */
|
||||
/* keyword is the constant keyword (must be lower case already), */
|
||||
/* minchars is length of minimum legal abbreviation. */
|
||||
{
|
||||
register int ca, ck;
|
||||
register int nmatched = 0;
|
||||
|
||||
while ((ca = *arg++) != '\0') {
|
||||
if ((ck = *keyword++) == '\0')
|
||||
return FALSE; /* arg longer than keyword, no good */
|
||||
if (isupper(ca)) /* force arg to lcase (assume ck is already) */
|
||||
ca = tolower(ca);
|
||||
if (ca != ck)
|
||||
return FALSE; /* no good */
|
||||
nmatched++; /* count matched characters */
|
||||
}
|
||||
/* reached end of argument; fail if it's too short for unique abbrev */
|
||||
if (nmatched < minchars)
|
||||
return FALSE;
|
||||
return TRUE; /* A-OK */
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
qt_getc (FILE * file)
|
||||
/* Read next char, skipping over any comments (# to end of line) */
|
||||
/* A comment/newline sequence is returned as a newline */
|
||||
{
|
||||
register int ch;
|
||||
|
||||
ch = getc(file);
|
||||
if (ch == '#') {
|
||||
do {
|
||||
ch = getc(file);
|
||||
} while (ch != '\n' && ch != EOF);
|
||||
}
|
||||
return ch;
|
||||
}
|
||||
|
||||
|
||||
LOCAL long
|
||||
read_qt_integer (FILE * file)
|
||||
/* Read an unsigned decimal integer from a quantization-table file */
|
||||
/* Swallows one trailing character after the integer */
|
||||
{
|
||||
register int ch;
|
||||
register long val;
|
||||
|
||||
/* Skip any leading whitespace, detect EOF */
|
||||
do {
|
||||
ch = qt_getc(file);
|
||||
if (ch == EOF)
|
||||
return EOF;
|
||||
} while (isspace(ch));
|
||||
|
||||
if (! isdigit(ch)) {
|
||||
fprintf(stderr, "%s: bogus data in quantization file\n", progname);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
val = ch - '0';
|
||||
while (ch = qt_getc(file), isdigit(ch)) {
|
||||
val *= 10;
|
||||
val += ch - '0';
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
read_quant_tables (j_compress_ptr cinfo, char * filename, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Read a set of quantization tables from the specified file.
|
||||
* The file is plain ASCII text: decimal numbers with whitespace between.
|
||||
* Comments preceded by '#' may be included in the file.
|
||||
* There may be one to NUM_QUANT_TBLS tables in the file, each of 64 values.
|
||||
* The tables are implicitly numbered 0,1,etc.
|
||||
* NOTE: does not affect the qslots mapping, which will default to selecting
|
||||
* table 0 for luminance (or primary) components, 1 for chrominance components.
|
||||
* You must use -qslots if you want a different component->table mapping.
|
||||
*/
|
||||
{
|
||||
/* ZIG[i] is the zigzag-order position of the i'th element of a DCT block */
|
||||
/* read in natural order (left to right, top to bottom). */
|
||||
static const int ZIG[DCTSIZE2] = {
|
||||
0, 1, 5, 6, 14, 15, 27, 28,
|
||||
2, 4, 7, 13, 16, 26, 29, 42,
|
||||
3, 8, 12, 17, 25, 30, 41, 43,
|
||||
9, 11, 18, 24, 31, 40, 44, 53,
|
||||
10, 19, 23, 32, 39, 45, 52, 54,
|
||||
20, 22, 33, 38, 46, 51, 55, 60,
|
||||
21, 34, 37, 47, 50, 56, 59, 61,
|
||||
35, 36, 48, 49, 57, 58, 62, 63
|
||||
};
|
||||
FILE * fp;
|
||||
int tblno, i;
|
||||
long val;
|
||||
unsigned int table[DCTSIZE2];
|
||||
|
||||
if ((fp = fopen(filename, "r")) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", progname, filename);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
tblno = 0;
|
||||
|
||||
while ((val = read_qt_integer(fp)) != EOF) { /* read 1st element of table */
|
||||
if (tblno >= NUM_QUANT_TBLS) {
|
||||
fprintf(stderr, "%s: too many tables in file %s\n", progname, filename);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
table[0] = (unsigned int) val;
|
||||
for (i = 1; i < DCTSIZE2; i++) {
|
||||
if ((val = read_qt_integer(fp)) == EOF) {
|
||||
fprintf(stderr, "%s: incomplete table in file %s\n", progname, filename);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
table[ZIG[i]] = (unsigned int) val;
|
||||
}
|
||||
jpeg_add_quant_table(cinfo, tblno, table, scale_factor, force_baseline);
|
||||
tblno++;
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
set_quant_slots (j_compress_ptr cinfo, char *arg)
|
||||
/* Process a quantization-table-selectors parameter string, of the form
|
||||
* N[,N,...]
|
||||
* If there are more components than parameters, the last value is replicated.
|
||||
*/
|
||||
{
|
||||
int val = 0; /* default table # */
|
||||
int ci;
|
||||
char ch;
|
||||
|
||||
for (ci = 0; ci < MAX_COMPONENTS; ci++) {
|
||||
if (*arg) {
|
||||
ch = ','; /* if not set by sscanf, will be ',' */
|
||||
if (sscanf(arg, "%d%c", &val, &ch) < 1)
|
||||
usage();
|
||||
if (ch != ',')
|
||||
usage(); /* syntax check */
|
||||
if (val < 0 || val >= NUM_QUANT_TBLS) {
|
||||
fprintf(stderr, "JPEG quantization tables are numbered 0..%d\n",
|
||||
NUM_QUANT_TBLS-1);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
cinfo->comp_info[ci].quant_tbl_no = val;
|
||||
while (*arg && *arg++ != ',') /* advance to next segment of arg string */
|
||||
;
|
||||
} else {
|
||||
/* reached end of parameter, set remaining components to last table */
|
||||
cinfo->comp_info[ci].quant_tbl_no = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
set_sample_factors (j_compress_ptr cinfo, char *arg)
|
||||
/* Process a sample-factors parameter string, of the form
|
||||
* HxV[,HxV,...]
|
||||
* If there are more components than parameters, "1x1" is assumed.
|
||||
*/
|
||||
{
|
||||
int ci, val1, val2;
|
||||
char ch1, ch2;
|
||||
|
||||
for (ci = 0; ci < MAX_COMPONENTS; ci++) {
|
||||
if (*arg) {
|
||||
ch2 = ','; /* if not set by sscanf, will be ',' */
|
||||
if (sscanf(arg, "%d%c%d%c", &val1, &ch1, &val2, &ch2) < 3)
|
||||
usage();
|
||||
if ((ch1 != 'x' && ch1 != 'X') || ch2 != ',')
|
||||
usage(); /* syntax check */
|
||||
if (val1 <= 0 || val1 > 4 || val2 <= 0 || val2 > 4) {
|
||||
fprintf(stderr, "JPEG sampling factors must be 1..4\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
cinfo->comp_info[ci].h_samp_factor = val1;
|
||||
cinfo->comp_info[ci].v_samp_factor = val2;
|
||||
while (*arg && *arg++ != ',') /* advance to next segment of arg string */
|
||||
;
|
||||
} else {
|
||||
/* reached end of parameter, set remaining components to 1x1 sampling */
|
||||
cinfo->comp_info[ci].h_samp_factor = 1;
|
||||
cinfo->comp_info[ci].v_samp_factor = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
parse_switches (j_compress_ptr cinfo, int argc, char **argv,
|
||||
int last_file_arg_seen, boolean for_real)
|
||||
/* Parse optional switches.
|
||||
* Returns argv[] index of first file-name argument (== argc if none).
|
||||
* Any file names with indexes <= last_file_arg_seen are ignored;
|
||||
* they have presumably been processed in a previous iteration.
|
||||
* (Pass 0 for last_file_arg_seen on the first or only iteration.)
|
||||
* for_real is FALSE on the first (dummy) pass; we may skip any expensive
|
||||
* processing.
|
||||
*/
|
||||
{
|
||||
int argn;
|
||||
char * arg;
|
||||
int quality; /* -quality parameter */
|
||||
int q_scale_factor; /* scaling percentage for -qtables */
|
||||
boolean force_baseline;
|
||||
char * qtablefile = NULL; /* saves -qtables filename if any */
|
||||
char * qslotsarg = NULL; /* saves -qslots parm if any */
|
||||
char * samplearg = NULL; /* saves -sample parm if any */
|
||||
|
||||
/* Set up default JPEG parameters. */
|
||||
/* Note that default -quality level need not, and does not,
|
||||
* match the default scaling for an explicit -qtables argument.
|
||||
*/
|
||||
quality = 75; /* default -quality value */
|
||||
q_scale_factor = 100; /* default to no scaling for -qtables */
|
||||
force_baseline = FALSE; /* by default, allow 16-bit quantizers */
|
||||
is_targa = FALSE;
|
||||
outfilename = NULL;
|
||||
cinfo->err->trace_level = 0;
|
||||
|
||||
/* Scan command line options, adjust parameters */
|
||||
|
||||
for (argn = 1; argn < argc; argn++) {
|
||||
arg = argv[argn];
|
||||
if (*arg != '-') {
|
||||
/* Not a switch, must be a file name argument */
|
||||
if (argn <= last_file_arg_seen) {
|
||||
outfilename = NULL; /* -outfile applies to just one input file */
|
||||
continue; /* ignore this name if previously processed */
|
||||
}
|
||||
break; /* else done parsing switches */
|
||||
}
|
||||
arg++; /* advance past switch marker character */
|
||||
|
||||
if (keymatch(arg, "arithmetic", 1)) {
|
||||
/* Use arithmetic coding. */
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
cinfo->arith_code = TRUE;
|
||||
#else
|
||||
fprintf(stderr, "%s: sorry, arithmetic coding not supported\n",
|
||||
progname);
|
||||
exit(EXIT_FAILURE);
|
||||
#endif
|
||||
|
||||
} else if (keymatch(arg, "baseline", 1)) {
|
||||
/* Force baseline output (8-bit quantizer values). */
|
||||
force_baseline = TRUE;
|
||||
|
||||
} else if (keymatch(arg, "dct", 2)) {
|
||||
/* Select DCT algorithm. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (keymatch(argv[argn], "int", 1)) {
|
||||
cinfo->dct_method = JDCT_ISLOW;
|
||||
} else if (keymatch(argv[argn], "fast", 2)) {
|
||||
cinfo->dct_method = JDCT_IFAST;
|
||||
} else if (keymatch(argv[argn], "float", 2)) {
|
||||
cinfo->dct_method = JDCT_FLOAT;
|
||||
} else
|
||||
usage();
|
||||
|
||||
} else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
|
||||
/* Enable debug printouts. */
|
||||
/* On first -d, print version identification */
|
||||
static boolean printed_version = FALSE;
|
||||
|
||||
if (! printed_version) {
|
||||
fprintf(stderr, "Independent JPEG Group's CJPEG, version %s\n%s\n",
|
||||
JVERSION, JCOPYRIGHT);
|
||||
printed_version = TRUE;
|
||||
}
|
||||
cinfo->err->trace_level++;
|
||||
|
||||
} else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) {
|
||||
/* Force a monochrome JPEG file to be generated. */
|
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||
|
||||
} else if (keymatch(arg, "maxmemory", 3)) {
|
||||
/* Maximum memory in Kb (or Mb with 'm'). */
|
||||
long lval;
|
||||
char ch = 'x';
|
||||
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
|
||||
usage();
|
||||
if (ch == 'm' || ch == 'M')
|
||||
lval *= 1000L;
|
||||
cinfo->mem->max_memory_to_use = lval * 1000L;
|
||||
|
||||
} else if (keymatch(arg, "nointerleave", 3)) {
|
||||
/* Create noninterleaved file. */
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
cinfo->interleave = FALSE;
|
||||
#else
|
||||
fprintf(stderr, "%s: sorry, multiple-scan support was not compiled\n",
|
||||
progname);
|
||||
exit(EXIT_FAILURE);
|
||||
#endif
|
||||
|
||||
} else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) {
|
||||
/* Enable entropy parm optimization. */
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
cinfo->optimize_coding = TRUE;
|
||||
#else
|
||||
fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n",
|
||||
progname);
|
||||
exit(EXIT_FAILURE);
|
||||
#endif
|
||||
|
||||
} else if (keymatch(arg, "outfile", 4)) {
|
||||
/* Set output file name. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
outfilename = argv[argn]; /* save it away for later use */
|
||||
|
||||
} else if (keymatch(arg, "quality", 1)) {
|
||||
/* Quality factor (quantization table scaling factor). */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%d", &quality) != 1)
|
||||
usage();
|
||||
/* Change scale factor in case -qtables is present. */
|
||||
q_scale_factor = jpeg_quality_scaling(quality);
|
||||
|
||||
} else if (keymatch(arg, "qslots", 2)) {
|
||||
/* Quantization table slot numbers. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
qslotsarg = argv[argn];
|
||||
/* Must delay setting qslots until after we have processed any
|
||||
* colorspace-determining switches, since jpeg_set_colorspace sets
|
||||
* default quant table numbers.
|
||||
*/
|
||||
|
||||
} else if (keymatch(arg, "qtables", 2)) {
|
||||
/* Quantization tables fetched from file. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
qtablefile = argv[argn];
|
||||
/* We postpone actually reading the file in case -quality comes later. */
|
||||
|
||||
} else if (keymatch(arg, "restart", 1)) {
|
||||
/* Restart interval in MCU rows (or in MCUs with 'b'). */
|
||||
long lval;
|
||||
char ch = 'x';
|
||||
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
|
||||
usage();
|
||||
if (lval < 0 || lval > 65535L)
|
||||
usage();
|
||||
if (ch == 'b' || ch == 'B') {
|
||||
cinfo->restart_interval = (unsigned int) lval;
|
||||
cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */
|
||||
} else {
|
||||
cinfo->restart_in_rows = (int) lval;
|
||||
/* restart_interval will be computed during startup */
|
||||
}
|
||||
|
||||
} else if (keymatch(arg, "sample", 2)) {
|
||||
/* Set sampling factors. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
samplearg = argv[argn];
|
||||
/* Must delay setting sample factors until after we have processed any
|
||||
* colorspace-determining switches, since jpeg_set_colorspace sets
|
||||
* default sampling factors.
|
||||
*/
|
||||
|
||||
} else if (keymatch(arg, "smooth", 2)) {
|
||||
/* Set input smoothing factor. */
|
||||
int val;
|
||||
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%d", &val) != 1)
|
||||
usage();
|
||||
if (val < 0 || val > 100)
|
||||
usage();
|
||||
cinfo->smoothing_factor = val;
|
||||
|
||||
} else if (keymatch(arg, "targa", 1)) {
|
||||
/* Input file is Targa format. */
|
||||
is_targa = TRUE;
|
||||
|
||||
} else {
|
||||
usage(); /* bogus switch */
|
||||
}
|
||||
}
|
||||
|
||||
/* Post-switch-scanning cleanup */
|
||||
|
||||
if (for_real) {
|
||||
|
||||
/* Set quantization tables for selected quality. */
|
||||
/* Some or all may be overridden if -qtables is present. */
|
||||
jpeg_set_quality(cinfo, quality, force_baseline);
|
||||
|
||||
if (qtablefile != NULL) /* process -qtables if it was present */
|
||||
read_quant_tables(cinfo, qtablefile, q_scale_factor, force_baseline);
|
||||
|
||||
if (qslotsarg != NULL) /* process -qslots if it was present */
|
||||
set_quant_slots(cinfo, qslotsarg);
|
||||
|
||||
if (samplearg != NULL) /* process -sample if it was present */
|
||||
set_sample_factors(cinfo, samplearg);
|
||||
|
||||
}
|
||||
|
||||
return argn; /* return index of next arg (file name) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The main program.
|
||||
*/
|
||||
|
||||
GLOBAL int
|
||||
main (int argc, char **argv)
|
||||
{
|
||||
struct jpeg_compress_struct cinfo;
|
||||
struct jpeg_error_mgr jerr;
|
||||
#ifdef PROGRESS_REPORT
|
||||
struct cdjpeg_progress_mgr progress;
|
||||
#endif
|
||||
int file_index;
|
||||
cjpeg_source_ptr src_mgr;
|
||||
FILE * input_file;
|
||||
FILE * output_file;
|
||||
JDIMENSION num_scanlines;
|
||||
|
||||
/* On Mac, fetch a command line. */
|
||||
#ifdef USE_CCOMMAND
|
||||
argc = ccommand(&argv);
|
||||
#endif
|
||||
|
||||
progname = argv[0];
|
||||
if (progname == NULL || progname[0] == 0)
|
||||
progname = "cjpeg"; /* in case C library doesn't provide it */
|
||||
|
||||
/* Initialize the JPEG compression object with default error handling. */
|
||||
cinfo.err = jpeg_std_error(&jerr);
|
||||
jpeg_create_compress(&cinfo);
|
||||
/* Add some application-specific error messages (from cderror.h) */
|
||||
jerr.addon_message_table = addon_message_table;
|
||||
jerr.first_addon_message = JMSG_FIRSTADDONCODE;
|
||||
jerr.last_addon_message = JMSG_LASTADDONCODE;
|
||||
|
||||
/* Now safe to enable signal catcher. */
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
sig_cinfo = (j_common_ptr) &cinfo;
|
||||
signal(SIGINT, signal_catcher);
|
||||
#ifdef SIGTERM /* not all systems have SIGTERM */
|
||||
signal(SIGTERM, signal_catcher);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Initialize JPEG parameters.
|
||||
* Much of this may be overridden later.
|
||||
* In particular, we don't yet know the input file's color space,
|
||||
* but we need to provide some value for jpeg_set_defaults() to work.
|
||||
*/
|
||||
|
||||
cinfo.in_color_space = JCS_RGB; /* arbitrary guess */
|
||||
jpeg_set_defaults(&cinfo);
|
||||
|
||||
/* Scan command line to find file names.
|
||||
* It is convenient to use just one switch-parsing routine, but the switch
|
||||
* values read here are ignored; we will rescan the switches after opening
|
||||
* the input file.
|
||||
*/
|
||||
|
||||
file_index = parse_switches(&cinfo, argc, argv, 0, FALSE);
|
||||
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
/* Must have either -outfile switch or explicit output file name */
|
||||
if (outfilename == NULL) {
|
||||
if (file_index != argc-2) {
|
||||
fprintf(stderr, "%s: must name one input and one output file\n",
|
||||
progname);
|
||||
usage();
|
||||
}
|
||||
outfilename = argv[file_index+1];
|
||||
} else {
|
||||
if (file_index != argc-1) {
|
||||
fprintf(stderr, "%s: must name one input and one output file\n",
|
||||
progname);
|
||||
usage();
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Unix style: expect zero or one file name */
|
||||
if (file_index < argc-1) {
|
||||
fprintf(stderr, "%s: only one input file\n", progname);
|
||||
usage();
|
||||
}
|
||||
#endif /* TWO_FILE_COMMANDLINE */
|
||||
|
||||
/* Open the input file. */
|
||||
if (file_index < argc) {
|
||||
if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
} else {
|
||||
/* default input file is stdin */
|
||||
#ifdef USE_SETMODE /* need to hack file mode? */
|
||||
setmode(fileno(stdin), O_BINARY);
|
||||
#endif
|
||||
#ifdef USE_FDOPEN /* need to re-open in binary mode? */
|
||||
if ((input_file = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open stdin\n", progname);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#else
|
||||
input_file = stdin;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Open the output file. */
|
||||
if (outfilename != NULL) {
|
||||
if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
} else {
|
||||
/* default output file is stdout */
|
||||
#ifdef USE_SETMODE /* need to hack file mode? */
|
||||
setmode(fileno(stdout), O_BINARY);
|
||||
#endif
|
||||
#ifdef USE_FDOPEN /* need to re-open in binary mode? */
|
||||
if ((output_file = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open stdout\n", progname);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#else
|
||||
output_file = stdout;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
/* Enable progress display, unless trace output is on */
|
||||
if (jerr.trace_level == 0) {
|
||||
progress.pub.progress_monitor = progress_monitor;
|
||||
progress.completed_extra_passes = 0;
|
||||
progress.total_extra_passes = 0;
|
||||
progress.percent_done = -1;
|
||||
cinfo.progress = &progress.pub;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Figure out the input file format, and set up to read it. */
|
||||
src_mgr = select_file_type(&cinfo, input_file);
|
||||
src_mgr->input_file = input_file;
|
||||
|
||||
/* Read the input file header to obtain file size & colorspace. */
|
||||
(*src_mgr->start_input) (&cinfo, src_mgr);
|
||||
|
||||
/* Now that we know input colorspace, fix colorspace-dependent defaults */
|
||||
jpeg_default_colorspace(&cinfo);
|
||||
|
||||
/* Adjust default compression parameters by re-parsing the options */
|
||||
file_index = parse_switches(&cinfo, argc, argv, 0, TRUE);
|
||||
|
||||
/* Specify data destination for compression */
|
||||
jpeg_stdio_dest(&cinfo, output_file);
|
||||
|
||||
/* Start compressor */
|
||||
jpeg_start_compress(&cinfo, TRUE);
|
||||
|
||||
/* Process data */
|
||||
while (cinfo.next_scanline < cinfo.image_height) {
|
||||
num_scanlines = (*src_mgr->get_pixel_rows) (&cinfo, src_mgr);
|
||||
(void) jpeg_write_scanlines(&cinfo, src_mgr->buffer, num_scanlines);
|
||||
}
|
||||
|
||||
/* Finish compression and release memory */
|
||||
(*src_mgr->finish_input) (&cinfo, src_mgr);
|
||||
jpeg_finish_compress(&cinfo);
|
||||
jpeg_destroy_compress(&cinfo);
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
/* Clear away progress display */
|
||||
if (jerr.trace_level == 0) {
|
||||
fprintf(stderr, "\r \r");
|
||||
fflush(stderr);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* All done. */
|
||||
exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS);
|
||||
return 0; /* suppress no-return-value warnings */
|
||||
}
|
||||
457
ckconfig.c
457
ckconfig.c
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
* ckconfig.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*/
|
||||
@@ -11,12 +11,8 @@
|
||||
* software for installation on a particular system. The idea is to try to
|
||||
* compile and execute this program. If your compiler fails to compile the
|
||||
* program, make changes as indicated in the comments below. Once you can
|
||||
* compile the program, run it, and it will tell you how to set the various
|
||||
* switches in jconfig.h and in your Makefile.
|
||||
*
|
||||
* This could all be done automatically if we could assume we were on a Unix
|
||||
* system, but we don't want to assume that, so you'll have to edit and
|
||||
* recompile this program until it works.
|
||||
* compile the program, run it, and it will produce a "jconfig.h" file for
|
||||
* your system.
|
||||
*
|
||||
* As a general rule, each time you try to compile this program,
|
||||
* pay attention only to the *first* error message you get from the compiler.
|
||||
@@ -31,66 +27,58 @@
|
||||
|
||||
|
||||
/* First we must see if your system has the include files we need.
|
||||
* We start out with the assumption that your system follows the ANSI
|
||||
* conventions for include files. If you get any error in the next dozen
|
||||
* lines, undefine INCLUDES_ARE_ANSI.
|
||||
* We start out with the assumption that your system has all the ANSI-standard
|
||||
* include files. If you get any error trying to include one of these files,
|
||||
* undefine the corresponding HAVE_xxx symbol.
|
||||
*/
|
||||
|
||||
#define INCLUDES_ARE_ANSI /* replace 'define' by 'undef' if error here */
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI /* this will be skipped if you undef... */
|
||||
#include <stdio.h> /* If you ain't got this, you ain't got C. */
|
||||
#ifdef __SASC /* Amiga SAS C provides size_t in stddef.h. */
|
||||
#include <stddef.h> /* (They are wrong...) */
|
||||
#endif
|
||||
#include <string.h> /* size_t might be here too. */
|
||||
typedef size_t my_size_t; /* The payoff: do we have size_t now? */
|
||||
#include <stdlib.h> /* Check other ANSI includes we use. */
|
||||
#define HAVE_STDDEF_H /* replace 'define' by 'undef' if error here */
|
||||
#ifdef HAVE_STDDEF_H /* next line will be skipped if you undef... */
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
|
||||
/* If your system doesn't follow the ANSI conventions, we have to figure out
|
||||
* what it does follow. If you didn't get an error before this line, you can
|
||||
* ignore everything down to "#define HAVE_ANSI_DEFINITIONS".
|
||||
*/
|
||||
|
||||
#ifndef INCLUDES_ARE_ANSI /* skip these tests if INCLUDES_ARE_ANSI */
|
||||
#define HAVE_STDLIB_H /* same thing for stdlib.h */
|
||||
#ifdef HAVE_STDLIB_H
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#include <stdio.h> /* If you ain't got this, you ain't got C. */
|
||||
|
||||
/* jinclude.h will try to include <sys/types.h> if you don't set
|
||||
* INCLUDES_ARE_ANSI. We need to test whether that include file is provided.
|
||||
* If you get an error here, undefine HAVE_TYPES_H.
|
||||
*/
|
||||
|
||||
#define HAVE_TYPES_H
|
||||
|
||||
#ifdef HAVE_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
/* We have to see if your string functions are defined by
|
||||
* strings.h (BSD convention) or string.h (everybody else).
|
||||
* We try the non-BSD convention first; define BSD if the compiler
|
||||
* says it can't find string.h.
|
||||
* strings.h (old BSD convention) or string.h (everybody else).
|
||||
* We try the non-BSD convention first; define NEED_BSD_STRINGS
|
||||
* if the compiler says it can't find string.h.
|
||||
*/
|
||||
|
||||
#undef BSD
|
||||
#undef NEED_BSD_STRINGS
|
||||
|
||||
#ifdef BSD
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
#include <strings.h>
|
||||
#else
|
||||
#include <string.h>
|
||||
#endif
|
||||
|
||||
/* Usually size_t is defined in stdio.h, sys/types.h, and/or string.h.
|
||||
* If not, you'll get an error on the "typedef size_t my_size_t;" line below.
|
||||
* In that case, you'll have to search through your system library to
|
||||
* figure out which include file defines "size_t". Look for a line that
|
||||
* says "typedef something-or-other size_t;" (stddef.h and stdlib.h are
|
||||
* good places to look first). Then, change the line below that says
|
||||
* "#include <someincludefile.h>" to instead include the file
|
||||
* you found size_t in, and define NEED_SPECIAL_INCLUDE.
|
||||
/* On some systems (especially older Unix machines), type size_t is
|
||||
* defined only in the include file <sys/types.h>. If you get a failure
|
||||
* on the size_t test below, try defining NEED_SYS_TYPES_H.
|
||||
*/
|
||||
|
||||
#undef NEED_SYS_TYPES_H /* start by assuming we don't need it */
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
|
||||
/* Usually type size_t is defined in one of the include files we've included
|
||||
* above. If not, you'll get an error on the "typedef size_t my_size_t;" line.
|
||||
* In that case, first try defining NEED_SYS_TYPES_H just above.
|
||||
* If that doesn't work, you'll have to search through your system library
|
||||
* to figure out which include file defines "size_t". Look for a line that
|
||||
* says "typedef something-or-other size_t;". Then, change the line below
|
||||
* that says "#include <someincludefile.h>" to instead include the file
|
||||
* you found size_t in, and define NEED_SPECIAL_INCLUDE. If you can't find
|
||||
* type size_t anywhere, try replacing "#include <someincludefile.h>" with
|
||||
* "typedef unsigned int size_t;".
|
||||
*/
|
||||
|
||||
#undef NEED_SPECIAL_INCLUDE /* assume we DON'T need it, for starters */
|
||||
@@ -102,20 +90,16 @@ typedef size_t my_size_t; /* The payoff: do we have size_t now? */
|
||||
typedef size_t my_size_t; /* The payoff: do we have size_t now? */
|
||||
|
||||
|
||||
#endif /* INCLUDES_ARE_ANSI */
|
||||
|
||||
|
||||
|
||||
/* The next question is whether your compiler supports ANSI-style function
|
||||
* definitions. You need to know this in order to choose between using
|
||||
* prototypes. You need to know this in order to choose between using
|
||||
* makefile.ansi and using makefile.unix.
|
||||
* The #define line below is set to assume you have ANSI function definitions.
|
||||
* If you get an error in this group of lines, undefine HAVE_ANSI_DEFINITIONS.
|
||||
* The #define line below is set to assume you have ANSI function prototypes.
|
||||
* If you get an error in this group of lines, undefine HAVE_PROTOTYPES.
|
||||
*/
|
||||
|
||||
#define HAVE_ANSI_DEFINITIONS
|
||||
#define HAVE_PROTOTYPES
|
||||
|
||||
#ifdef HAVE_ANSI_DEFINITIONS
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
int testfunction (int arg1, int * arg2); /* check prototypes */
|
||||
|
||||
struct methods_struct { /* check method-pointer declarations */
|
||||
@@ -129,7 +113,7 @@ int testfunction (int arg1, int * arg2) /* check definitions */
|
||||
return arg2[arg1];
|
||||
}
|
||||
|
||||
int testfunction1 (void) /* check void arg list */
|
||||
int test2function (void) /* check void arg list */
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
@@ -167,12 +151,21 @@ unsigned short un_short;
|
||||
#define HAVE_VOID
|
||||
|
||||
#ifdef HAVE_VOID
|
||||
/* Caution: a C++ compiler will insist on complete prototypes */
|
||||
typedef void * void_ptr; /* check void * */
|
||||
typedef void (*void_func) (); /* check ptr to function returning void */
|
||||
#ifdef HAVE_PROTOTYPES /* check ptr to function returning void */
|
||||
typedef void (*void_func) (int a, int b);
|
||||
#else
|
||||
typedef void (*void_func) ();
|
||||
#endif
|
||||
|
||||
void testfunction2 (arg1, arg2) /* check void function result */
|
||||
#ifdef HAVE_PROTOTYPES /* check void function result */
|
||||
void test3function (void_ptr arg1, void_func arg2)
|
||||
#else
|
||||
void test3function (arg1, arg2)
|
||||
void_ptr arg1;
|
||||
void_func arg2;
|
||||
#endif
|
||||
{
|
||||
char * locptr = (char *) arg1; /* check casting to and from void * */
|
||||
arg1 = (void *) locptr;
|
||||
@@ -190,214 +183,220 @@ void testfunction2 (arg1, arg2) /* check void function result */
|
||||
#ifdef HAVE_CONST
|
||||
static const int carray[3] = {1, 2, 3};
|
||||
|
||||
int testfunction3 (arg1)
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
int test4function (const int arg1)
|
||||
#else
|
||||
int test4function (arg1)
|
||||
const int arg1;
|
||||
#endif
|
||||
{
|
||||
return carray[arg1];
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* If you get an error or warning about this structure definition,
|
||||
* define INCOMPLETE_TYPES_BROKEN.
|
||||
*/
|
||||
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifndef INCOMPLETE_TYPES_BROKEN
|
||||
typedef struct undefined_structure * undef_struct_ptr;
|
||||
#endif
|
||||
|
||||
|
||||
/* If you get an error about duplicate names,
|
||||
* define NEED_SHORT_EXTERNAL_NAMES.
|
||||
*/
|
||||
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
|
||||
#ifndef NEED_SHORT_EXTERNAL_NAMES
|
||||
|
||||
int possibly_duplicate_function ()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
int possibly_dupli_function ()
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/************************************************************************
|
||||
* OK, that's it. You should not have to change anything beyond this
|
||||
* point in order to compile and execute this program. (You might get
|
||||
* some warnings, but you can ignore them.)
|
||||
* When you run the program, it will make a couple more tests that it
|
||||
* can do automatically, and then it will print out a summary of the changes
|
||||
* that you need to make to the makefile and jconfig.h.
|
||||
* can do automatically, and then it will create jconfig.h and print out
|
||||
* any additional suggestions it has.
|
||||
************************************************************************
|
||||
*/
|
||||
|
||||
|
||||
static int any_changes = 0;
|
||||
|
||||
int new_change ()
|
||||
{
|
||||
if (! any_changes) {
|
||||
printf("\nMost of the changes recommended by this program can be made either\n");
|
||||
printf("by editing jconfig.h, or by adding -Dsymbol switches to the CFLAGS\n");
|
||||
printf("line in your Makefile. (Some PC compilers expect /Dsymbol instead.)\n");
|
||||
printf("The CFLAGS method is simpler, but if your system doesn't use makefiles,\n");
|
||||
printf("or if your compiler doesn't support -D, then you must change jconfig.h.\n");
|
||||
any_changes = 1;
|
||||
}
|
||||
printf("\n"); /* blank line before each problem report */
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int test_char_sign (arg)
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
int is_char_signed (int arg)
|
||||
#else
|
||||
int is_char_signed (arg)
|
||||
int arg;
|
||||
#endif
|
||||
{
|
||||
if (arg == 189) { /* expected result for unsigned char */
|
||||
new_change();
|
||||
printf("You should add -DCHAR_IS_UNSIGNED to CFLAGS,\n");
|
||||
printf("or else remove the /* */ comment marks from the line\n");
|
||||
printf("/* #define CHAR_IS_UNSIGNED */ in jconfig.h.\n");
|
||||
printf("(Be sure to delete the space before the # character too.)\n");
|
||||
return 0; /* type char is unsigned */
|
||||
}
|
||||
else if (arg != -67) { /* expected result for signed char */
|
||||
new_change();
|
||||
printf("Hmm, it seems 'char' is less than eight bits wide on your machine.\n");
|
||||
printf("I fear the JPEG software will not work at all.\n");
|
||||
printf("Hmm, it seems 'char' is not eight bits wide on your machine.\n");
|
||||
printf("I fear the JPEG software will not work at all.\n\n");
|
||||
}
|
||||
return 0;
|
||||
return 1; /* assume char is signed otherwise */
|
||||
}
|
||||
|
||||
|
||||
int test_shifting (arg)
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
int is_shifting_signed (long arg)
|
||||
#else
|
||||
int is_shifting_signed (arg)
|
||||
long arg;
|
||||
#endif
|
||||
/* See whether right-shift on a long is signed or not. */
|
||||
{
|
||||
long res = arg >> 4;
|
||||
|
||||
if (res == 0x80817F4L) { /* expected result for unsigned */
|
||||
new_change();
|
||||
printf("You must add -DRIGHT_SHIFT_IS_UNSIGNED to CFLAGS,\n");
|
||||
printf("or else remove the /* */ comment marks from the line\n");
|
||||
printf("/* #define RIGHT_SHIFT_IS_UNSIGNED */ in jconfig.h.\n");
|
||||
if (res == -0x7F7E80CL) { /* expected result for signed shift */
|
||||
return 1; /* right shift is signed */
|
||||
}
|
||||
else if (res != -0x7F7E80CL) { /* expected result for signed */
|
||||
new_change();
|
||||
printf("Right shift isn't acting as I expect it to.\n");
|
||||
printf("I fear the JPEG software will not work at all.\n");
|
||||
/* see if unsigned-shift hack will fix it. */
|
||||
/* we can't just test exact value since it depends on width of long... */
|
||||
res |= (~0L) << (32-4);
|
||||
if (res == -0x7F7E80CL) { /* expected result now? */
|
||||
return 0; /* right shift is unsigned */
|
||||
}
|
||||
return 0;
|
||||
printf("Right shift isn't acting as I expect it to.\n");
|
||||
printf("I fear the JPEG software will not work at all.\n\n");
|
||||
return 0; /* try it with unsigned anyway */
|
||||
}
|
||||
|
||||
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
int main (int argc, char ** argv)
|
||||
#else
|
||||
int main (argc, argv)
|
||||
int argc;
|
||||
char ** argv;
|
||||
#endif
|
||||
{
|
||||
char signed_char_check = (char) (-67);
|
||||
FILE *outfile;
|
||||
|
||||
printf("Results of configuration check for Independent JPEG Group's software:\n");
|
||||
printf("\nIf there's not a specific makefile provided for your compiler,\n");
|
||||
#ifdef HAVE_ANSI_DEFINITIONS
|
||||
printf("you should use makefile.ansi as the starting point for your Makefile.\n");
|
||||
#else
|
||||
printf("you should use makefile.unix as the starting point for your Makefile.\n");
|
||||
#endif
|
||||
|
||||
/* Check whether we have all the ANSI features, */
|
||||
/* and whether this agrees with __STDC__ being predefined. */
|
||||
#ifdef __STDC__
|
||||
#define HAVE_STDC /* ANSI compilers won't allow redefining __STDC__ */
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_ANSI_DEFINITIONS
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
#ifdef HAVE_CONST
|
||||
#define HAVE_ALL_ANSI_FEATURES
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_ALL_ANSI_FEATURES
|
||||
#ifndef HAVE_STDC
|
||||
new_change();
|
||||
printf("Your compiler doesn't claim to be ANSI-compliant, but it is close enough\n");
|
||||
printf("for me. Either add -DHAVE_STDC to CFLAGS, or add #define HAVE_STDC at the\n");
|
||||
printf("beginning of jconfig.h.\n");
|
||||
#define HAVE_STDC
|
||||
#endif
|
||||
#else /* !HAVE_ALL_ANSI_FEATURES */
|
||||
#ifdef HAVE_STDC
|
||||
new_change();
|
||||
printf("Your compiler claims to be ANSI-compliant, but it is lying!\n");
|
||||
printf("Delete the line #define HAVE_STDC near the beginning of jconfig.h.\n");
|
||||
#undef HAVE_STDC
|
||||
#endif
|
||||
#endif /* HAVE_ALL_ANSI_FEATURES */
|
||||
|
||||
#ifndef HAVE_STDC
|
||||
|
||||
#ifdef HAVE_ANSI_DEFINITIONS
|
||||
new_change();
|
||||
printf("You should add -DPROTO to CFLAGS, or else take out the several\n");
|
||||
printf("#ifdef/#else/#endif lines surrounding #define PROTO in jconfig.h.\n");
|
||||
printf("(Leave only one #define PROTO line.)\n");
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
new_change();
|
||||
printf("You should add -DHAVE_UNSIGNED_CHAR and -DHAVE_UNSIGNED_SHORT\n");
|
||||
printf("to CFLAGS, or else take out the #ifdef HAVE_STDC/#endif lines\n");
|
||||
printf("surrounding #define HAVE_UNSIGNED_CHAR and #define HAVE_UNSIGNED_SHORT\n");
|
||||
printf("in jconfig.h.\n");
|
||||
#else /* only unsigned char */
|
||||
new_change();
|
||||
printf("You should add -DHAVE_UNSIGNED_CHAR to CFLAGS,\n");
|
||||
printf("or else move #define HAVE_UNSIGNED_CHAR outside the\n");
|
||||
printf("#ifdef HAVE_STDC/#endif lines surrounding it in jconfig.h.\n");
|
||||
#endif
|
||||
#else /* !HAVE_UNSIGNED_CHAR */
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
new_change();
|
||||
printf("You should add -DHAVE_UNSIGNED_SHORT to CFLAGS,\n");
|
||||
printf("or else move #define HAVE_UNSIGNED_SHORT outside the\n");
|
||||
printf("#ifdef HAVE_STDC/#endif lines surrounding it in jconfig.h.\n");
|
||||
#endif
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
#ifdef HAVE_CONST
|
||||
new_change();
|
||||
printf("You should delete the #define const line from jconfig.h.\n");
|
||||
#endif
|
||||
|
||||
#endif /* HAVE_STDC */
|
||||
|
||||
test_char_sign((int) signed_char_check);
|
||||
|
||||
test_shifting(-0x7F7E80B1L);
|
||||
|
||||
#ifndef HAVE_VOID
|
||||
new_change();
|
||||
printf("You should add -Dvoid=char to CFLAGS,\n");
|
||||
printf("or else remove the /* */ comment marks from the line\n");
|
||||
printf("/* #define void char */ in jconfig.h.\n");
|
||||
printf("(Be sure to delete the space before the # character too.)\n");
|
||||
#endif
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#ifndef __STDC__
|
||||
new_change();
|
||||
printf("You should add -DINCLUDES_ARE_ANSI to CFLAGS, or else add\n");
|
||||
printf("#define INCLUDES_ARE_ANSI at the beginning of jinclude.h (NOT jconfig.h).\n");
|
||||
#endif
|
||||
#else /* !INCLUDES_ARE_ANSI */
|
||||
#ifdef __STDC__
|
||||
new_change();
|
||||
printf("You should add -DNONANSI_INCLUDES to CFLAGS, or else add\n");
|
||||
printf("#define NONANSI_INCLUDES at the beginning of jinclude.h (NOT jconfig.h).\n");
|
||||
#endif
|
||||
#ifdef NEED_SPECIAL_INCLUDE
|
||||
new_change();
|
||||
printf("In jinclude.h, change the line reading #include <sys/types.h>\n");
|
||||
printf("to instead include the file you found size_t in.\n");
|
||||
#else /* !NEED_SPECIAL_INCLUDE */
|
||||
#ifndef HAVE_TYPES_H
|
||||
new_change();
|
||||
printf("In jinclude.h, delete the line reading #include <sys/types.h>.\n");
|
||||
#endif
|
||||
#endif /* NEED_SPECIAL_INCLUDE */
|
||||
#ifdef BSD
|
||||
new_change();
|
||||
printf("You should add -DBSD to CFLAGS, or else add\n");
|
||||
printf("#define BSD at the beginning of jinclude.h (NOT jconfig.h).\n");
|
||||
#endif
|
||||
#endif /* INCLUDES_ARE_ANSI */
|
||||
|
||||
if (any_changes) {
|
||||
printf("\nI think that's everything...\n");
|
||||
} else {
|
||||
printf("\nI think jconfig.h is OK as distributed.\n");
|
||||
/* Attempt to write jconfig.h */
|
||||
if ((outfile = fopen("jconfig.h", "w")) == NULL) {
|
||||
printf("Failed to write jconfig.h\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
return any_changes;
|
||||
/* Write out all the info */
|
||||
fprintf(outfile, "/* jconfig.h --- generated by ckconfig.c */\n");
|
||||
fprintf(outfile, "/* see jconfig.doc for explanations */\n\n");
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
fprintf(outfile, "#define HAVE_PROTOTYPES\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef HAVE_PROTOTYPES\n");
|
||||
#endif
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
fprintf(outfile, "#define HAVE_UNSIGNED_CHAR\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef HAVE_UNSIGNED_CHAR\n");
|
||||
#endif
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
fprintf(outfile, "#define HAVE_UNSIGNED_SHORT\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef HAVE_UNSIGNED_SHORT\n");
|
||||
#endif
|
||||
#ifdef HAVE_VOID
|
||||
fprintf(outfile, "/* #define void char */\n");
|
||||
#else
|
||||
fprintf(outfile, "#define void char\n");
|
||||
#endif
|
||||
#ifdef HAVE_CONST
|
||||
fprintf(outfile, "/* #define const */\n");
|
||||
#else
|
||||
fprintf(outfile, "#define const\n");
|
||||
#endif
|
||||
if (is_char_signed((int) signed_char_check))
|
||||
fprintf(outfile, "#undef CHAR_IS_UNSIGNED\n");
|
||||
else
|
||||
fprintf(outfile, "#define CHAR_IS_UNSIGNED\n");
|
||||
#ifdef HAVE_STDDEF_H
|
||||
fprintf(outfile, "#define HAVE_STDDEF_H\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef HAVE_STDDEF_H\n");
|
||||
#endif
|
||||
#ifdef HAVE_STDLIB_H
|
||||
fprintf(outfile, "#define HAVE_STDLIB_H\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef HAVE_STDLIB_H\n");
|
||||
#endif
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
fprintf(outfile, "#define NEED_BSD_STRINGS\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef NEED_BSD_STRINGS\n");
|
||||
#endif
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
fprintf(outfile, "#define NEED_SYS_TYPES_H\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef NEED_SYS_TYPES_H\n");
|
||||
#endif
|
||||
fprintf(outfile, "#undef NEED_FAR_POINTERS\n");
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
fprintf(outfile, "#define NEED_SHORT_EXTERNAL_NAMES\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef NEED_SHORT_EXTERNAL_NAMES\n");
|
||||
#endif
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||
fprintf(outfile, "#define INCOMPLETE_TYPES_BROKEN\n");
|
||||
#else
|
||||
fprintf(outfile, "#undef INCOMPLETE_TYPES_BROKEN\n");
|
||||
#endif
|
||||
fprintf(outfile, "\n#ifdef JPEG_INTERNALS\n\n");
|
||||
if (is_shifting_signed(-0x7F7E80B1L))
|
||||
fprintf(outfile, "#undef RIGHT_SHIFT_IS_UNSIGNED\n");
|
||||
else
|
||||
fprintf(outfile, "#define RIGHT_SHIFT_IS_UNSIGNED\n");
|
||||
fprintf(outfile, "\n#endif /* JPEG_INTERNALS */\n");
|
||||
fprintf(outfile, "\n#ifdef JPEG_CJPEG_DJPEG\n\n");
|
||||
fprintf(outfile, "#define BMP_SUPPORTED /* BMP image file format */\n");
|
||||
fprintf(outfile, "#define GIF_SUPPORTED /* GIF image file format */\n");
|
||||
fprintf(outfile, "#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */\n");
|
||||
fprintf(outfile, "#undef RLE_SUPPORTED /* Utah RLE image file format */\n");
|
||||
fprintf(outfile, "#define TARGA_SUPPORTED /* Targa image file format */\n\n");
|
||||
fprintf(outfile, "#undef TWO_FILE_COMMANDLINE /* You may need this on non-Unix systems */\n");
|
||||
fprintf(outfile, "#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */\n");
|
||||
fprintf(outfile, "#undef DONT_USE_B_MODE\n");
|
||||
fprintf(outfile, "/* #define PROGRESS_REPORT */ /* optional */\n");
|
||||
fprintf(outfile, "\n#endif /* JPEG_CJPEG_DJPEG */\n");
|
||||
|
||||
/* Close the jconfig.h file */
|
||||
fclose(outfile);
|
||||
|
||||
/* User report */
|
||||
printf("Configuration check for Independent JPEG Group's software done.\n");
|
||||
printf("\nI have written the jconfig.h file for you.\n\n");
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
printf("You should use makefile.ansi as the starting point for your Makefile.\n");
|
||||
#else
|
||||
printf("You should use makefile.unix as the starting point for your Makefile.\n");
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SPECIAL_INCLUDE
|
||||
printf("\nYou'll need to change jconfig.h to include the system include file\n");
|
||||
printf("that you found type size_t in, or add a direct definition of type\n");
|
||||
printf("size_t if that's what you used. Just add it to the end.\n");
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
118
coderules.doc
Normal file
118
coderules.doc
Normal file
@@ -0,0 +1,118 @@
|
||||
IJG JPEG LIBRARY: CODING RULES
|
||||
|
||||
Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
This file is part of the Independent JPEG Group's software.
|
||||
For conditions of distribution and use, see the accompanying README file.
|
||||
|
||||
|
||||
Since numerous people will be contributing code and bug fixes, it's important
|
||||
to establish a common coding style. The goal of using similar coding styles
|
||||
is much more important than the details of just what that style is.
|
||||
|
||||
In general we follow the recommendations of "Recommended C Style and Coding
|
||||
Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and
|
||||
Brader). This document is available in the IJG FTP archive (see
|
||||
jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl).
|
||||
|
||||
Block comments should be laid out thusly:
|
||||
|
||||
/*
|
||||
* Block comments in this style.
|
||||
*/
|
||||
|
||||
We indent statements in K&R style, e.g.,
|
||||
if (test) {
|
||||
then-part;
|
||||
} else {
|
||||
else-part;
|
||||
}
|
||||
with two spaces per indentation level. (This indentation convention is
|
||||
handled automatically by GNU Emacs and many other text editors.)
|
||||
|
||||
Multi-word names should be written in lower case with underscores, e.g.,
|
||||
multi_word_name (not multiWordName). Preprocessor symbols and enum constants
|
||||
are similar but upper case (MULTI_WORD_NAME). Names should be unique within
|
||||
the first fifteen characters. (On some older systems, global names must be
|
||||
unique within six characters. We accommodate this without cluttering the
|
||||
source code by using macros to substitute shorter names.)
|
||||
|
||||
We use function prototypes everywhere; we rely on automatic source code
|
||||
transformation to feed prototype-less C compilers. Transformation is done
|
||||
by the simple and portable tool 'ansi2knr.c' (courtesy of Ghostscript).
|
||||
ansi2knr is not very bright, so it imposes a format requirement on function
|
||||
declarations: the function name MUST BEGIN IN COLUMN 1. Thus all functions
|
||||
should be written in the following style:
|
||||
|
||||
LOCAL int *
|
||||
function_name (int a, char *b)
|
||||
{
|
||||
code...
|
||||
}
|
||||
|
||||
Note that each function definition is prefixed with GLOBAL, LOCAL, or
|
||||
METHODDEF. These macros expand to "static" or nothing as appropriate.
|
||||
They provide a readable indication of the routine's usage and can readily be
|
||||
changed for special needs. (For instance, all routines can be made global for
|
||||
use with debuggers or code profilers that require it.)
|
||||
|
||||
ansi2knr does not transform method declarations (function pointers in
|
||||
structs). We handle these with a macro JMETHOD, defined as
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
|
||||
#else
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
|
||||
#endif
|
||||
which is used like this:
|
||||
struct function_pointers {
|
||||
JMETHOD(void, init_entropy_encoder, (int somearg, jparms *jp));
|
||||
JMETHOD(void, term_entropy_encoder, (void));
|
||||
};
|
||||
Note the set of parentheses surrounding the parameter list.
|
||||
|
||||
A similar solution is used for external function declarations (see the JPP
|
||||
macro).
|
||||
|
||||
If the code is to work on non-ANSI compilers, we cannot rely on a prototype
|
||||
declaration to coerce actual parameters into the right types. Therefore, use
|
||||
explicit casts on actual parameters whenever the actual parameter type is not
|
||||
identical to the formal parameter. Beware of implicit conversions to "int".
|
||||
|
||||
It seems there are some non-ANSI compilers in which the sizeof() operator
|
||||
is defined to return int, yet size_t is defined as long. Needless to say,
|
||||
this is brain-damaged. Always use the SIZEOF() macro in place of sizeof(),
|
||||
so that the result is guaranteed to be of type size_t.
|
||||
|
||||
|
||||
The JPEG library is intended to be used within larger programs. Furthermore,
|
||||
we want it to be reentrant so that it can be used by applications that process
|
||||
multiple images concurrently. The following rules support these requirements:
|
||||
|
||||
1. Avoid direct use of file I/O, "malloc", error report printouts, etc;
|
||||
pass these through the common routines provided.
|
||||
|
||||
2. Minimize global namespace pollution. Functions should be declared static
|
||||
wherever possible. (Note that our method-based calling conventions help this
|
||||
a lot: in many modules only the initialization function will ever need to be
|
||||
called directly, so only that function need be externally visible.) All
|
||||
global function names should begin with "jpeg_", and should have an
|
||||
abbreviated name (unique in the first six characters) substituted by macro
|
||||
when NEED_SHORT_EXTERNAL_NAMES is set.
|
||||
|
||||
3. Don't use global variables; anything that must be used in another module
|
||||
should be in the common data structures.
|
||||
|
||||
4. Don't use static variables except for read-only constant tables. Variables
|
||||
that should be private to a module can be placed into private structures (see
|
||||
the system architecture document, structure.doc).
|
||||
|
||||
5. Source file names should begin with "j" for files that are part of the
|
||||
library proper; source files that are not part of the library, such as cjpeg.c
|
||||
and djpeg.c, do not begin with "j". Keep source file names to eight
|
||||
characters (plus ".c" or ".h", etc) to make life easy for MS-DOSers. Keep
|
||||
compression and decompression code in separate source files --- some
|
||||
applications may want only one half of the library.
|
||||
|
||||
Note: these rules (particularly #4) are not followed religiously in the
|
||||
modules that are used in cjpeg/djpeg but are not part of the JPEG library
|
||||
proper. Those modules are not really intended to be used in other
|
||||
applications.
|
||||
99
codingrules
99
codingrules
@@ -1,99 +0,0 @@
|
||||
|
||||
JPEG SYSTEM CODING RULES 27-SEP-91
|
||||
|
||||
Since numerous people will be contributing code and bug fixes, it's important
|
||||
to establish a common coding style. The goal of using similar coding styles
|
||||
is much more important than the details of just what that style is.
|
||||
|
||||
I suggest we follow the recommendations of "Recommended C Style and Coding
|
||||
Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and
|
||||
Brader). I have placed a copy of this document in the jpeg FTP archive (see
|
||||
jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl).
|
||||
|
||||
Unless someone has a real strong objection, let's do block comments thusly:
|
||||
|
||||
/*
|
||||
* Block comments in this style.
|
||||
*/
|
||||
|
||||
and indent statements in K&R style, e.g.,
|
||||
|
||||
if (test) {
|
||||
then-part;
|
||||
} else {
|
||||
else-part;
|
||||
}
|
||||
|
||||
I suggest that multi-word names be written in the style multi_word_name
|
||||
rather than multiWordName, but I am open to argument on this.
|
||||
|
||||
|
||||
I would like to use function prototypes everywhere, and rely on automatic
|
||||
source code transformation to feed non-ANSI C compilers. The best tool
|
||||
I have so far found for this is 'ansi2knr.c', which is part of Ghostscript.
|
||||
ansi2knr is not very bright, so it imposes a format requirement on function
|
||||
declarations: the function name MUST BEGIN IN COLUMN 1. Thus all functions
|
||||
should be written in the following style:
|
||||
|
||||
static int *
|
||||
function_name (int a, char *b)
|
||||
{
|
||||
code...
|
||||
}
|
||||
|
||||
ansi2knr won't help with method declarations (function pointers in structs).
|
||||
I suggest we use a macro to declare method pointers, something like this:
|
||||
|
||||
#ifdef PROTO
|
||||
#define METHOD(type,methodname,arglist) type (*methodname) arglist
|
||||
#else
|
||||
#define METHOD(type,methodname,arglist) type (*methodname) ()
|
||||
#endif
|
||||
|
||||
which is used like this:
|
||||
|
||||
struct function_pointers {
|
||||
METHOD(void, init_entropy_encoder, (functptrs fptrs, jparms *jp));
|
||||
METHOD(void, term_entropy_encoder, (void));
|
||||
};
|
||||
|
||||
Note the set of parentheses surrounding the parameter list.
|
||||
|
||||
A similar solution is used for external function declarations (see the PP
|
||||
macro in jpegdata.h).
|
||||
|
||||
If the code is to work on non-ANSI compilers, you cannot rely on a prototype
|
||||
declaration to coerce actual parameters into the right types. Therefore, use
|
||||
explicit casts on actual parameters whenever the actual parameter type is not
|
||||
identical to the formal parameter. Beware of implicit conversions to "int".
|
||||
|
||||
It seems there are some non-ANSI compilers in which the sizeof() operator
|
||||
is defined to return int, while size_t is defined as long. Needless to say,
|
||||
this is brain-damaged. Always use the SIZEOF() macro in place of sizeof(),
|
||||
so that the result is guaranteed to be of type size_t.
|
||||
|
||||
|
||||
We can expect that the JPEG compressor and decompressor will be incorporated
|
||||
into larger programs. Therefore, the following rules are important:
|
||||
|
||||
1. Avoid direct use of any file I/O, "malloc", error report printouts, etc;
|
||||
pass these through the common routines provided.
|
||||
|
||||
2. Assume that the JPEG code may be invoked more than once per program run;
|
||||
therefore, do not rely on static initialization of variables, and be careful
|
||||
to release all allocated storage at the end of processing.
|
||||
|
||||
3. Minimize global namespace pollution. Functions should be declared static
|
||||
wherever possible. (Note that our method-based calling conventions help this
|
||||
a lot: in many modules only the method-selector function will ever need to be
|
||||
called directly, so only that function need be externally visible.) All
|
||||
global function names should begin with "j", and should be unique in the first
|
||||
six characters for portability reasons.
|
||||
Don't use global variables at all; anything that must be used in another
|
||||
module should be put into parameters (there'll be some large structs passed
|
||||
around for this purpose).
|
||||
|
||||
4. Source file names should also begin with "j"; remember to keep them to
|
||||
eight characters (plus ".c" or ".h", etc) to make life easy for MS-DOSers.
|
||||
Do not put code for both compression and decompression into the same source
|
||||
file.
|
||||
257
djpeg.1
257
djpeg.1
@@ -1,16 +1,10 @@
|
||||
.TH DJPEG 1 "28 February 1992"
|
||||
.TH DJPEG 1 "28 August 1994"
|
||||
.SH NAME
|
||||
djpeg \- decompress a JPEG file to an image file
|
||||
.SH SYNOPSIS
|
||||
.B djpeg
|
||||
[
|
||||
.B \-GPRTgD1bd
|
||||
]
|
||||
[
|
||||
.BI \-q " colors"
|
||||
]
|
||||
[
|
||||
.BI \-m " memory"
|
||||
.I options
|
||||
]
|
||||
[
|
||||
.I filename
|
||||
@@ -20,94 +14,223 @@ djpeg \- decompress a JPEG file to an image file
|
||||
.LP
|
||||
.B djpeg
|
||||
decompresses the named JPEG file, or the standard input if no file is named,
|
||||
and produces an image file on the standard output. PPM, GIF, Targa, or RLE
|
||||
output format can be selected. (RLE is supported only if the URT library is
|
||||
available.)
|
||||
and produces an image file on the standard output. PBMPLUS (PPM/PGM), BMP,
|
||||
GIF, Targa, or RLE (Utah Raster Toolkit) output format can be selected.
|
||||
(RLE is supported only if the URT library is available.)
|
||||
.SH OPTIONS
|
||||
All switch names may be abbreviated; for example,
|
||||
.B \-grayscale
|
||||
may be written
|
||||
.B \-gray
|
||||
or
|
||||
.BR \-gr .
|
||||
Most of the "basic" switches can be abbreviated to as little as one letter.
|
||||
Upper and lower case are equivalent (thus
|
||||
.B \-GIF
|
||||
is the same as
|
||||
.BR \-gif ).
|
||||
British spellings are also accepted (e.g.,
|
||||
.BR \-greyscale ),
|
||||
though for brevity these are not mentioned below.
|
||||
.PP
|
||||
The basic switches are:
|
||||
.TP
|
||||
.B \-G
|
||||
Select GIF output format (implies
|
||||
.BR \-q ,
|
||||
with default of 256 colors).
|
||||
.BI \-colors " N"
|
||||
Reduce image to at most N colors. This reduces the number of colors used in
|
||||
the output image, so that it can be displayed on a colormapped display or
|
||||
stored in a colormapped file format. For example, if you have an 8-bit
|
||||
display, you'd need to reduce to 256 or fewer colors.
|
||||
.TP
|
||||
.B \-P
|
||||
Select PPM or PGM output format (this is the default). PGM is emitted if the
|
||||
JPEG file is gray-scale or if
|
||||
.B \-g
|
||||
is specified.
|
||||
.BI \-quantize " N"
|
||||
Same as
|
||||
.BR \-colors .
|
||||
.B \-colors
|
||||
is the recommended name,
|
||||
.B \-quantize
|
||||
is provided only for backwards compatibility.
|
||||
.TP
|
||||
.B \-R
|
||||
Select RLE output format. Requires URT library.
|
||||
.B \-fast
|
||||
Select recommended processing options for fast, low quality output. (The
|
||||
default options are chosen for highest quality output.) Currently, this is
|
||||
equivalent to \fB\-dct fast \-nosmooth \-onepass \-dither ordered\fR.
|
||||
.TP
|
||||
.B \-T
|
||||
.B \-grayscale
|
||||
Force gray-scale output even if JPEG file is color. Useful for viewing on
|
||||
monochrome displays; also,
|
||||
.B djpeg
|
||||
runs noticeably faster in this mode.
|
||||
.TP
|
||||
.BI \-scale " M/N"
|
||||
Scale the output image by a factor M/N. Currently the scale factor must be
|
||||
1/1, 1/2, 1/4, or 1/8. Scaling is handy if the image is larger than your
|
||||
screen; also,
|
||||
.B djpeg
|
||||
runs much faster when scaling down the output.
|
||||
.TP
|
||||
.B \-bmp
|
||||
Select BMP output format (Windows flavor). 8-bit colormapped format is
|
||||
emitted if
|
||||
.B \-colors
|
||||
or
|
||||
.B \-grayscale
|
||||
is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color
|
||||
format is emitted.
|
||||
.TP
|
||||
.B \-gif
|
||||
Select GIF output format. Since GIF does not support more than 256 colors,
|
||||
.B \-colors 256
|
||||
is assumed (unless you specify a smaller number of colors).
|
||||
.TP
|
||||
.B \-os2
|
||||
Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is
|
||||
emitted if
|
||||
.B \-colors
|
||||
or
|
||||
.B \-grayscale
|
||||
is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color
|
||||
format is emitted.
|
||||
.TP
|
||||
.B \-pnm
|
||||
Select PBMPLUS (PPM/PGM) output format (this is the default format).
|
||||
PGM is emitted if the JPEG file is gray-scale or if
|
||||
.B \-grayscale
|
||||
is specified; otherwise PPM is emitted.
|
||||
.TP
|
||||
.B \-rle
|
||||
Select RLE output format. (Requires URT library.)
|
||||
.TP
|
||||
.B \-targa
|
||||
Select Targa output format. Gray-scale format is emitted if the JPEG file is
|
||||
gray-scale or if
|
||||
.B \-g
|
||||
.B \-grayscale
|
||||
is specified; otherwise, colormapped format is emitted if
|
||||
.B \-q
|
||||
.B \-colors
|
||||
is specified; otherwise, 24-bit full-color format is emitted.
|
||||
.PP
|
||||
Switches for advanced users:
|
||||
.TP
|
||||
.B \-g
|
||||
Force gray-scale output even if input is color.
|
||||
.B \-dct int
|
||||
Use integer DCT method (default).
|
||||
.TP
|
||||
.BI \-q " N"
|
||||
Quantize to N colors. This reduces the number of colors in the output image
|
||||
so that it can be displayed on a colormapped display or stored in a
|
||||
colormapped file format. For example, if you have an 8-bit display, you'd
|
||||
need to quantize to 256 or fewer colors.
|
||||
.B \-dct fast
|
||||
Use fast integer DCT (less accurate).
|
||||
.TP
|
||||
.B \-D
|
||||
Do not use dithering in color quantization. By default, Floyd-Steinberg
|
||||
dithering is applied when quantizing colors, but on some images dithering may
|
||||
result in objectionable "graininess". If that happens, you can turn off
|
||||
dithering with
|
||||
.BR \-D .
|
||||
.B \-D
|
||||
is ignored unless you also say
|
||||
.B \-q
|
||||
or
|
||||
.BR \-G .
|
||||
.B \-dct float
|
||||
Use floating-point DCT method.
|
||||
The floating-point method is the most accurate, but will be the slowest unless
|
||||
your machine has very fast floating-point hardware. Also note that results of
|
||||
the floating-point method may vary slightly across machines, while the integer
|
||||
methods should give the same results everywhere. The fast integer method is
|
||||
much less accurate than the other two.
|
||||
.TP
|
||||
.B \-1
|
||||
.B \-dither fs
|
||||
Use Floyd-Steinberg dithering in color quantization.
|
||||
.TP
|
||||
.B \-dither ordered
|
||||
Use ordered dithering in color quantization.
|
||||
.TP
|
||||
.B \-dither none
|
||||
Do not use dithering in color quantization.
|
||||
By default, Floyd-Steinberg dithering is applied when quantizing colors; this
|
||||
is slow but usually produces the best results. Ordered dither is a compromise
|
||||
between speed and quality; no dithering is fast but usually looks awful. Note
|
||||
that these switches have no effect unless color quantization is being done.
|
||||
Ordered dither is only available in
|
||||
.B \-onepass
|
||||
mode.
|
||||
.TP
|
||||
.BI \-map " file"
|
||||
Quantize to the colors used in the specified image file. This is useful for
|
||||
producing multiple files with identical color maps, or for forcing a
|
||||
predefined set of colors to be used. The
|
||||
.I file
|
||||
must be a GIF or PPM file. This option overrides
|
||||
.B \-colors
|
||||
and
|
||||
.BR \-onepass .
|
||||
.TP
|
||||
.B \-nosmooth
|
||||
Use a faster, lower-quality upsampling routine.
|
||||
.TP
|
||||
.B \-onepass
|
||||
Use one-pass instead of two-pass color quantization. The one-pass method is
|
||||
faster and needs less memory, but it produces a lower-quality image.
|
||||
.B \-1
|
||||
.B \-onepass
|
||||
is ignored unless you also say
|
||||
.B \-q
|
||||
or
|
||||
.BR \-G .
|
||||
.B \-colors
|
||||
.IR N .
|
||||
Also, the one-pass method is always used for gray-scale output (the two-pass
|
||||
method is no improvement then).
|
||||
.TP
|
||||
.B \-b
|
||||
Perform cross-block smoothing. This is quite memory-intensive and only seems
|
||||
to improve the image at low quality settings (\fB\-Q\fR 10 to 20 or so).
|
||||
At normal
|
||||
.B \-Q
|
||||
settings it may make the image worse.
|
||||
.TP
|
||||
.B \-d
|
||||
Enable debug printout. More
|
||||
.BR \-d 's
|
||||
give more output. Also, version information is printed at startup.
|
||||
.TP
|
||||
.BI \-m " memory"
|
||||
.BI \-maxmemory " N"
|
||||
Set limit for amount of memory to use in processing large images. Value is
|
||||
in thousands of bytes, or millions of bytes if "M" is attached to the
|
||||
number. For example,
|
||||
.B \-m 4m
|
||||
.B \-max 4m
|
||||
selects 4000000 bytes. If more space is needed, temporary files will be used.
|
||||
.TP
|
||||
.BI \-outfile " name"
|
||||
Send output image to the named file, not to standard output.
|
||||
.TP
|
||||
.B \-verbose
|
||||
Enable debug printout. More
|
||||
.BR \-v 's
|
||||
give more output. Also, version information is printed at startup.
|
||||
.TP
|
||||
.B \-debug
|
||||
Same as
|
||||
.BR \-verbose .
|
||||
.SH EXAMPLES
|
||||
.LP
|
||||
This example decompresses the JPEG file foo.jpg, quantizes to 256 colors,
|
||||
and saves the output in GIF format in foo.gif:
|
||||
This example decompresses the JPEG file foo.jpg, automatically quantizes to
|
||||
256 colors, and saves the output in GIF format in foo.gif:
|
||||
.IP
|
||||
.B djpeg \-G
|
||||
.B djpeg \-gif
|
||||
.I foo.jpg
|
||||
.B >
|
||||
.I foo.gif
|
||||
.SH HINTS
|
||||
To get a quick preview of an image, use the
|
||||
.B \-grayscale
|
||||
and/or
|
||||
.B \-scale
|
||||
switches.
|
||||
.B \-grayscale \-scale 1/8
|
||||
is the fastest case.
|
||||
.PP
|
||||
Several options are available that trade off image quality to gain speed.
|
||||
.B \-fast
|
||||
turns on the recommended settings.
|
||||
.PP
|
||||
.B \-dct fast
|
||||
and/or
|
||||
.B \-nosmooth
|
||||
gain speed at a small sacrifice in quality.
|
||||
When producing a color-quantized image,
|
||||
.B \-onepass \-dither ordered
|
||||
is fast but much lower quality than the default behavior.
|
||||
.B \-dither none
|
||||
may give acceptable results in two-pass mode, but is seldom tolerable in
|
||||
one-pass mode.
|
||||
.PP
|
||||
If you are fortunate enough to have very fast floating point hardware,
|
||||
.B \-dct float
|
||||
may be even faster than \fB\-dct fast\fR.
|
||||
.SH ENVIRONMENT
|
||||
.TP
|
||||
.B JPEGMEM
|
||||
If this environment variable is set, its value is the default memory limit.
|
||||
The value is specified as described for the
|
||||
.B \-maxmemory
|
||||
switch.
|
||||
.B JPEGMEM
|
||||
overrides the default value specified when the program was compiled, and
|
||||
itself is overridden by an explicit
|
||||
.BR \-maxmemory .
|
||||
.SH SEE ALSO
|
||||
.BR cjpeg (1)
|
||||
.BR cjpeg (1),
|
||||
.BR rdjpgcom (1),
|
||||
.BR wrjpgcom (1)
|
||||
.br
|
||||
.BR ppm (5),
|
||||
.BR pgm (5)
|
||||
@@ -119,4 +242,4 @@ Independent JPEG Group
|
||||
.SH BUGS
|
||||
Arithmetic coding is not supported for legal reasons.
|
||||
.PP
|
||||
Not as fast as we'd like.
|
||||
Still not as fast as we'd like.
|
||||
|
||||
736
djpeg.c
Normal file
736
djpeg.c
Normal file
@@ -0,0 +1,736 @@
|
||||
/*
|
||||
* djpeg.c
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a command-line user interface for the JPEG decompressor.
|
||||
* It should work on any system with Unix- or MS-DOS-style command lines.
|
||||
*
|
||||
* Two different command line styles are permitted, depending on the
|
||||
* compile-time switch TWO_FILE_COMMANDLINE:
|
||||
* djpeg [options] inputfile outputfile
|
||||
* djpeg [options] [inputfile]
|
||||
* In the second style, output is always to standard output, which you'd
|
||||
* normally redirect to a file or pipe to some other program. Input is
|
||||
* either from a named file or from standard input (typically redirected).
|
||||
* The second style is convenient on Unix but is unhelpful on systems that
|
||||
* don't support pipes. Also, you MUST use the first style if your system
|
||||
* doesn't do binary I/O to stdin/stdout.
|
||||
* To simplify script writing, the "-outfile" switch is provided. The syntax
|
||||
* djpeg [options] -outfile outputfile inputfile
|
||||
* works regardless of which command line style is used.
|
||||
*/
|
||||
|
||||
#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
|
||||
#define JMAKE_MSG_TABLE
|
||||
#include "cderror.h" /* create message string table */
|
||||
#include "jversion.h" /* for version message */
|
||||
|
||||
#include <ctype.h> /* to declare isupper(),tolower(),isprint() */
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
#include <signal.h> /* to declare signal() */
|
||||
#endif
|
||||
#ifdef USE_SETMODE
|
||||
#include <fcntl.h> /* to declare setmode()'s parameter macros */
|
||||
/* If you have setmode() but not <io.h>, just delete this line: */
|
||||
#include <io.h> /* to declare setmode() */
|
||||
#endif
|
||||
|
||||
#ifdef USE_CCOMMAND /* command-line reader for Macintosh */
|
||||
#ifdef __MWERKS__
|
||||
#include <SIOUX.h> /* Metrowerks declares it here */
|
||||
#endif
|
||||
#ifdef THINK_C
|
||||
#include <console.h> /* Think declares it here */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define WRITE_BINARY "w"
|
||||
#else
|
||||
#define READ_BINARY "rb"
|
||||
#define WRITE_BINARY "wb"
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
#ifndef EXIT_SUCCESS
|
||||
#ifdef VMS
|
||||
#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
|
||||
#else
|
||||
#define EXIT_SUCCESS 0
|
||||
#endif
|
||||
#endif
|
||||
#ifndef EXIT_WARNING
|
||||
#ifdef VMS
|
||||
#define EXIT_WARNING 1 /* VMS is very nonstandard */
|
||||
#else
|
||||
#define EXIT_WARNING 2
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* This list defines the known output image formats
|
||||
* (not all of which need be supported by a given version).
|
||||
* You can change the default output format by defining DEFAULT_FMT;
|
||||
* indeed, you had better do so if you undefine PPM_SUPPORTED.
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
FMT_BMP, /* BMP format (Windows flavor) */
|
||||
FMT_GIF, /* GIF format */
|
||||
FMT_OS2, /* BMP format (OS/2 flavor) */
|
||||
FMT_PPM, /* PPM/PGM (PBMPLUS formats) */
|
||||
FMT_RLE, /* RLE format */
|
||||
FMT_TARGA, /* Targa format */
|
||||
FMT_TIFF /* TIFF format */
|
||||
} IMAGE_FORMATS;
|
||||
|
||||
#ifndef DEFAULT_FMT /* so can override from CFLAGS in Makefile */
|
||||
#define DEFAULT_FMT FMT_PPM
|
||||
#endif
|
||||
|
||||
static IMAGE_FORMATS requested_fmt;
|
||||
|
||||
|
||||
/*
|
||||
* Signal catcher to ensure that temporary files are removed before aborting.
|
||||
* NB: for Amiga Manx C this is actually a global routine named _abort();
|
||||
* we put "#define signal_catcher _abort" in jconfig.h. Talk about bogus...
|
||||
*/
|
||||
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
|
||||
static j_common_ptr sig_cinfo;
|
||||
|
||||
GLOBAL void
|
||||
signal_catcher (int signum)
|
||||
{
|
||||
if (sig_cinfo != NULL) {
|
||||
if (sig_cinfo->err != NULL) /* turn off trace output */
|
||||
sig_cinfo->err->trace_level = 0;
|
||||
jpeg_destroy(sig_cinfo); /* clean up memory allocation & temp files */
|
||||
}
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Optional routine to display a percent-done figure on stderr.
|
||||
*/
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
|
||||
METHODDEF void
|
||||
progress_monitor (j_common_ptr cinfo)
|
||||
{
|
||||
cd_progress_ptr prog = (cd_progress_ptr) cinfo->progress;
|
||||
int total_passes = prog->pub.total_passes + prog->total_extra_passes;
|
||||
int percent_done = (int) (prog->pub.pass_counter*100L/prog->pub.pass_limit);
|
||||
|
||||
if (percent_done != prog->percent_done) {
|
||||
prog->percent_done = percent_done;
|
||||
if (total_passes > 1) {
|
||||
fprintf(stderr, "\rPass %d/%d: %3d%% ",
|
||||
prog->pub.completed_passes + prog->completed_extra_passes + 1,
|
||||
total_passes, percent_done);
|
||||
} else {
|
||||
fprintf(stderr, "\r %3d%% ", percent_done);
|
||||
}
|
||||
fflush(stderr);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Argument-parsing code.
|
||||
* The switch parser is designed to be useful with DOS-style command line
|
||||
* syntax, ie, intermixed switches and file names, where only the switches
|
||||
* to the left of a given file name affect processing of that file.
|
||||
* The main program in this file doesn't actually use this capability...
|
||||
*/
|
||||
|
||||
|
||||
static const char * progname; /* program name for error messages */
|
||||
static char * outfilename; /* for -outfile switch */
|
||||
|
||||
|
||||
LOCAL void
|
||||
usage (void)
|
||||
/* complain about bad command line */
|
||||
{
|
||||
fprintf(stderr, "usage: %s [switches] ", progname);
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
fprintf(stderr, "inputfile outputfile\n");
|
||||
#else
|
||||
fprintf(stderr, "[inputfile]\n");
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "Switches (names may be abbreviated):\n");
|
||||
fprintf(stderr, " -colors N Reduce image to no more than N colors\n");
|
||||
fprintf(stderr, " -fast Fast, low-quality processing\n");
|
||||
fprintf(stderr, " -grayscale Force grayscale output\n");
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
fprintf(stderr, " -scale M/N Scale output image by fraction M/N, eg, 1/8\n");
|
||||
#endif
|
||||
#ifdef BMP_SUPPORTED
|
||||
fprintf(stderr, " -bmp Select BMP output format (Windows style)%s\n",
|
||||
(DEFAULT_FMT == FMT_BMP ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef GIF_SUPPORTED
|
||||
fprintf(stderr, " -gif Select GIF output format%s\n",
|
||||
(DEFAULT_FMT == FMT_GIF ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef BMP_SUPPORTED
|
||||
fprintf(stderr, " -os2 Select BMP output format (OS/2 style)%s\n",
|
||||
(DEFAULT_FMT == FMT_OS2 ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef PPM_SUPPORTED
|
||||
fprintf(stderr, " -pnm Select PBMPLUS (PPM/PGM) output format%s\n",
|
||||
(DEFAULT_FMT == FMT_PPM ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef RLE_SUPPORTED
|
||||
fprintf(stderr, " -rle Select Utah RLE output format%s\n",
|
||||
(DEFAULT_FMT == FMT_RLE ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef TARGA_SUPPORTED
|
||||
fprintf(stderr, " -targa Select Targa output format%s\n",
|
||||
(DEFAULT_FMT == FMT_TARGA ? " (default)" : ""));
|
||||
#endif
|
||||
fprintf(stderr, "Switches for advanced users:\n");
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
fprintf(stderr, " -dct int Use integer DCT method%s\n",
|
||||
(JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
fprintf(stderr, " -dct fast Use fast integer DCT (less accurate)%s\n",
|
||||
(JDCT_DEFAULT == JDCT_IFAST ? " (default)" : ""));
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fprintf(stderr, " -dct float Use floating-point DCT method%s\n",
|
||||
(JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : ""));
|
||||
#endif
|
||||
fprintf(stderr, " -dither fs Use F-S dithering (default)\n");
|
||||
fprintf(stderr, " -dither none Don't use dithering in quantization\n");
|
||||
fprintf(stderr, " -dither ordered Use ordered dither (medium speed, quality)\n");
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
fprintf(stderr, " -map FILE Map to colors used in named image file\n");
|
||||
#endif
|
||||
fprintf(stderr, " -nosmooth Don't use high-quality upsampling\n");
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
fprintf(stderr, " -onepass Use 1-pass quantization (fast, low quality)\n");
|
||||
#endif
|
||||
fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n");
|
||||
fprintf(stderr, " -outfile name Specify name for output file\n");
|
||||
fprintf(stderr, " -verbose or -debug Emit debug output\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
LOCAL boolean
|
||||
keymatch (char * arg, const char * keyword, int minchars)
|
||||
/* Case-insensitive matching of (possibly abbreviated) keyword switches. */
|
||||
/* keyword is the constant keyword (must be lower case already), */
|
||||
/* minchars is length of minimum legal abbreviation. */
|
||||
{
|
||||
register int ca, ck;
|
||||
register int nmatched = 0;
|
||||
|
||||
while ((ca = *arg++) != '\0') {
|
||||
if ((ck = *keyword++) == '\0')
|
||||
return FALSE; /* arg longer than keyword, no good */
|
||||
if (isupper(ca)) /* force arg to lcase (assume ck is already) */
|
||||
ca = tolower(ca);
|
||||
if (ca != ck)
|
||||
return FALSE; /* no good */
|
||||
nmatched++; /* count matched characters */
|
||||
}
|
||||
/* reached end of argument; fail if it's too short for unique abbrev */
|
||||
if (nmatched < minchars)
|
||||
return FALSE;
|
||||
return TRUE; /* A-OK */
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
parse_switches (j_decompress_ptr cinfo, int argc, char **argv,
|
||||
int last_file_arg_seen, boolean for_real)
|
||||
/* Parse optional switches.
|
||||
* Returns argv[] index of first file-name argument (== argc if none).
|
||||
* Any file names with indexes <= last_file_arg_seen are ignored;
|
||||
* they have presumably been processed in a previous iteration.
|
||||
* (Pass 0 for last_file_arg_seen on the first or only iteration.)
|
||||
* for_real is FALSE on the first (dummy) pass; we may skip any expensive
|
||||
* processing.
|
||||
*/
|
||||
{
|
||||
int argn;
|
||||
char * arg;
|
||||
|
||||
/* Set up default JPEG parameters. */
|
||||
requested_fmt = DEFAULT_FMT; /* set default output file format */
|
||||
outfilename = NULL;
|
||||
cinfo->err->trace_level = 0;
|
||||
|
||||
/* Scan command line options, adjust parameters */
|
||||
|
||||
for (argn = 1; argn < argc; argn++) {
|
||||
arg = argv[argn];
|
||||
if (*arg != '-') {
|
||||
/* Not a switch, must be a file name argument */
|
||||
if (argn <= last_file_arg_seen) {
|
||||
outfilename = NULL; /* -outfile applies to just one input file */
|
||||
continue; /* ignore this name if previously processed */
|
||||
}
|
||||
break; /* else done parsing switches */
|
||||
}
|
||||
arg++; /* advance past switch marker character */
|
||||
|
||||
if (keymatch(arg, "bmp", 1)) {
|
||||
/* BMP output format. */
|
||||
requested_fmt = FMT_BMP;
|
||||
|
||||
} else if (keymatch(arg, "colors", 1) || keymatch(arg, "colours", 1) ||
|
||||
keymatch(arg, "quantize", 1) || keymatch(arg, "quantise", 1)) {
|
||||
/* Do color quantization. */
|
||||
int val;
|
||||
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%d", &val) != 1)
|
||||
usage();
|
||||
cinfo->desired_number_of_colors = val;
|
||||
cinfo->quantize_colors = TRUE;
|
||||
|
||||
} else if (keymatch(arg, "dct", 2)) {
|
||||
/* Select IDCT algorithm. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (keymatch(argv[argn], "int", 1)) {
|
||||
cinfo->dct_method = JDCT_ISLOW;
|
||||
} else if (keymatch(argv[argn], "fast", 2)) {
|
||||
cinfo->dct_method = JDCT_IFAST;
|
||||
} else if (keymatch(argv[argn], "float", 2)) {
|
||||
cinfo->dct_method = JDCT_FLOAT;
|
||||
} else
|
||||
usage();
|
||||
|
||||
} else if (keymatch(arg, "dither", 2)) {
|
||||
/* Select dithering algorithm. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (keymatch(argv[argn], "fs", 2)) {
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
} else if (keymatch(argv[argn], "none", 2)) {
|
||||
cinfo->dither_mode = JDITHER_NONE;
|
||||
} else if (keymatch(argv[argn], "ordered", 2)) {
|
||||
cinfo->dither_mode = JDITHER_ORDERED;
|
||||
} else
|
||||
usage();
|
||||
|
||||
} else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
|
||||
/* Enable debug printouts. */
|
||||
/* On first -d, print version identification */
|
||||
static boolean printed_version = FALSE;
|
||||
|
||||
if (! printed_version) {
|
||||
fprintf(stderr, "Independent JPEG Group's DJPEG, version %s\n%s\n",
|
||||
JVERSION, JCOPYRIGHT);
|
||||
printed_version = TRUE;
|
||||
}
|
||||
cinfo->err->trace_level++;
|
||||
|
||||
} else if (keymatch(arg, "fast", 1)) {
|
||||
/* Select recommended processing options for quick-and-dirty output. */
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
cinfo->dither_mode = JDITHER_ORDERED;
|
||||
if (! cinfo->quantize_colors) /* don't override an earlier -colors */
|
||||
cinfo->desired_number_of_colors = 216;
|
||||
cinfo->dct_method = JDCT_FASTEST;
|
||||
cinfo->do_fancy_upsampling = FALSE;
|
||||
|
||||
} else if (keymatch(arg, "gif", 1)) {
|
||||
/* GIF output format. */
|
||||
requested_fmt = FMT_GIF;
|
||||
|
||||
} else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) {
|
||||
/* Force monochrome output. */
|
||||
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||
|
||||
} else if (keymatch(arg, "map", 3)) {
|
||||
/* Quantize to a color map taken from an input file. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (for_real) { /* too expensive to do twice! */
|
||||
#ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */
|
||||
FILE * mapfile;
|
||||
|
||||
if ((mapfile = fopen(argv[argn], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
read_color_map(cinfo, mapfile);
|
||||
fclose(mapfile);
|
||||
cinfo->quantize_colors = TRUE;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
|
||||
} else if (keymatch(arg, "maxmemory", 3)) {
|
||||
/* Maximum memory in Kb (or Mb with 'm'). */
|
||||
long lval;
|
||||
char ch = 'x';
|
||||
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
|
||||
usage();
|
||||
if (ch == 'm' || ch == 'M')
|
||||
lval *= 1000L;
|
||||
cinfo->mem->max_memory_to_use = lval * 1000L;
|
||||
|
||||
} else if (keymatch(arg, "nosmooth", 3)) {
|
||||
/* Suppress fancy upsampling */
|
||||
cinfo->do_fancy_upsampling = FALSE;
|
||||
|
||||
} else if (keymatch(arg, "onepass", 3)) {
|
||||
/* Use fast one-pass quantization. */
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
|
||||
} else if (keymatch(arg, "os2", 3)) {
|
||||
/* BMP output format (OS/2 flavor). */
|
||||
requested_fmt = FMT_OS2;
|
||||
|
||||
} else if (keymatch(arg, "outfile", 4)) {
|
||||
/* Set output file name. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
outfilename = argv[argn]; /* save it away for later use */
|
||||
|
||||
} else if (keymatch(arg, "pnm", 1) || keymatch(arg, "ppm", 1)) {
|
||||
/* PPM/PGM output format. */
|
||||
requested_fmt = FMT_PPM;
|
||||
|
||||
} else if (keymatch(arg, "rle", 1)) {
|
||||
/* RLE output format. */
|
||||
requested_fmt = FMT_RLE;
|
||||
|
||||
} else if (keymatch(arg, "scale", 1)) {
|
||||
/* Scale the output image by a fraction M/N. */
|
||||
if (++argn >= argc) /* advance to next argument */
|
||||
usage();
|
||||
if (sscanf(argv[argn], "%d/%d",
|
||||
&cinfo->scale_num, &cinfo->scale_denom) != 2)
|
||||
usage();
|
||||
|
||||
} else if (keymatch(arg, "targa", 1)) {
|
||||
/* Targa output format. */
|
||||
requested_fmt = FMT_TARGA;
|
||||
|
||||
} else {
|
||||
usage(); /* bogus switch */
|
||||
}
|
||||
}
|
||||
|
||||
return argn; /* return index of next arg (file name) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Marker processor for COM markers.
|
||||
* This replaces the library's built-in processor, which just skips the marker.
|
||||
* We want to print out the marker as text, if possible.
|
||||
* Note this code relies on a non-suspending data source.
|
||||
*/
|
||||
|
||||
LOCAL unsigned int
|
||||
jpeg_getc (j_decompress_ptr cinfo)
|
||||
/* Read next byte */
|
||||
{
|
||||
struct jpeg_source_mgr * datasrc = cinfo->src;
|
||||
|
||||
if (datasrc->bytes_in_buffer == 0) {
|
||||
if (! (*datasrc->fill_input_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
datasrc->bytes_in_buffer--;
|
||||
return GETJOCTET(*datasrc->next_input_byte++);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF boolean
|
||||
COM_handler (j_decompress_ptr cinfo)
|
||||
{
|
||||
boolean traceit = (cinfo->err->trace_level >= 1);
|
||||
INT32 length;
|
||||
unsigned int ch;
|
||||
unsigned int lastch = 0;
|
||||
|
||||
length = jpeg_getc(cinfo) << 8;
|
||||
length += jpeg_getc(cinfo);
|
||||
length -= 2; /* discount the length word itself */
|
||||
|
||||
if (traceit)
|
||||
fprintf(stderr, "Comment, length %ld:\n", (long) length);
|
||||
|
||||
while (--length >= 0) {
|
||||
ch = jpeg_getc(cinfo);
|
||||
if (traceit) {
|
||||
/* Emit the character in a readable form.
|
||||
* Nonprintables are converted to \nnn form,
|
||||
* while \ is converted to \\.
|
||||
* Newlines in CR, CR/LF, or LF form will be printed as one newline.
|
||||
*/
|
||||
if (ch == '\r') {
|
||||
fprintf(stderr, "\n");
|
||||
} else if (ch == '\n') {
|
||||
if (lastch != '\r')
|
||||
fprintf(stderr, "\n");
|
||||
} else if (ch == '\\') {
|
||||
fprintf(stderr, "\\\\");
|
||||
} else if (isprint(ch)) {
|
||||
putc(ch, stderr);
|
||||
} else {
|
||||
fprintf(stderr, "\\%03o", ch);
|
||||
}
|
||||
lastch = ch;
|
||||
}
|
||||
}
|
||||
|
||||
if (traceit)
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The main program.
|
||||
*/
|
||||
|
||||
GLOBAL int
|
||||
main (int argc, char **argv)
|
||||
{
|
||||
struct jpeg_decompress_struct cinfo;
|
||||
struct jpeg_error_mgr jerr;
|
||||
#ifdef PROGRESS_REPORT
|
||||
struct cdjpeg_progress_mgr progress;
|
||||
#endif
|
||||
int file_index;
|
||||
djpeg_dest_ptr dest_mgr = NULL;
|
||||
FILE * input_file;
|
||||
FILE * output_file;
|
||||
JDIMENSION num_scanlines;
|
||||
|
||||
/* On Mac, fetch a command line. */
|
||||
#ifdef USE_CCOMMAND
|
||||
argc = ccommand(&argv);
|
||||
#endif
|
||||
|
||||
progname = argv[0];
|
||||
if (progname == NULL || progname[0] == 0)
|
||||
progname = "djpeg"; /* in case C library doesn't provide it */
|
||||
|
||||
/* Initialize the JPEG decompression object with default error handling. */
|
||||
cinfo.err = jpeg_std_error(&jerr);
|
||||
jpeg_create_decompress(&cinfo);
|
||||
/* Add some application-specific error messages (from cderror.h) */
|
||||
jerr.addon_message_table = addon_message_table;
|
||||
jerr.first_addon_message = JMSG_FIRSTADDONCODE;
|
||||
jerr.last_addon_message = JMSG_LASTADDONCODE;
|
||||
/* Insert custom COM marker processor. */
|
||||
jpeg_set_marker_processor(&cinfo, JPEG_COM, COM_handler);
|
||||
|
||||
/* Now safe to enable signal catcher. */
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
sig_cinfo = (j_common_ptr) &cinfo;
|
||||
signal(SIGINT, signal_catcher);
|
||||
#ifdef SIGTERM /* not all systems have SIGTERM */
|
||||
signal(SIGTERM, signal_catcher);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Scan command line to find file names. */
|
||||
/* It is convenient to use just one switch-parsing routine, but the switch
|
||||
* values read here are ignored; we will rescan the switches after opening
|
||||
* the input file.
|
||||
* (Exception: tracing level set here controls verbosity for COM markers
|
||||
* found during jpeg_read_header...)
|
||||
*/
|
||||
|
||||
file_index = parse_switches(&cinfo, argc, argv, 0, FALSE);
|
||||
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
/* Must have either -outfile switch or explicit output file name */
|
||||
if (outfilename == NULL) {
|
||||
if (file_index != argc-2) {
|
||||
fprintf(stderr, "%s: must name one input and one output file\n",
|
||||
progname);
|
||||
usage();
|
||||
}
|
||||
outfilename = argv[file_index+1];
|
||||
} else {
|
||||
if (file_index != argc-1) {
|
||||
fprintf(stderr, "%s: must name one input and one output file\n",
|
||||
progname);
|
||||
usage();
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Unix style: expect zero or one file name */
|
||||
if (file_index < argc-1) {
|
||||
fprintf(stderr, "%s: only one input file\n", progname);
|
||||
usage();
|
||||
}
|
||||
#endif /* TWO_FILE_COMMANDLINE */
|
||||
|
||||
/* Open the input file. */
|
||||
if (file_index < argc) {
|
||||
if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
} else {
|
||||
/* default input file is stdin */
|
||||
#ifdef USE_SETMODE /* need to hack file mode? */
|
||||
setmode(fileno(stdin), O_BINARY);
|
||||
#endif
|
||||
#ifdef USE_FDOPEN /* need to re-open in binary mode? */
|
||||
if ((input_file = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open stdin\n", progname);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#else
|
||||
input_file = stdin;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Open the output file. */
|
||||
if (outfilename != NULL) {
|
||||
if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
} else {
|
||||
/* default output file is stdout */
|
||||
#ifdef USE_SETMODE /* need to hack file mode? */
|
||||
setmode(fileno(stdout), O_BINARY);
|
||||
#endif
|
||||
#ifdef USE_FDOPEN /* need to re-open in binary mode? */
|
||||
if ((output_file = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open stdout\n", progname);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#else
|
||||
output_file = stdout;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
/* Enable progress display, unless trace output is on */
|
||||
if (jerr.trace_level == 0) {
|
||||
progress.pub.progress_monitor = progress_monitor;
|
||||
progress.completed_extra_passes = 0;
|
||||
progress.total_extra_passes = 0;
|
||||
progress.percent_done = -1;
|
||||
cinfo.progress = &progress.pub;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Specify data source for decompression */
|
||||
jpeg_stdio_src(&cinfo, input_file);
|
||||
|
||||
/* Read file header, set default decompression parameters */
|
||||
(void) jpeg_read_header(&cinfo, TRUE);
|
||||
|
||||
/* Adjust default decompression parameters by re-parsing the options */
|
||||
file_index = parse_switches(&cinfo, argc, argv, 0, TRUE);
|
||||
|
||||
/* Initialize the output module now to let it override any crucial
|
||||
* option settings (for instance, GIF wants to force color quantization).
|
||||
*/
|
||||
switch (requested_fmt) {
|
||||
#ifdef BMP_SUPPORTED
|
||||
case FMT_BMP:
|
||||
dest_mgr = jinit_write_bmp(&cinfo, FALSE);
|
||||
break;
|
||||
case FMT_OS2:
|
||||
dest_mgr = jinit_write_bmp(&cinfo, TRUE);
|
||||
break;
|
||||
#endif
|
||||
#ifdef GIF_SUPPORTED
|
||||
case FMT_GIF:
|
||||
dest_mgr = jinit_write_gif(&cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef PPM_SUPPORTED
|
||||
case FMT_PPM:
|
||||
dest_mgr = jinit_write_ppm(&cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef RLE_SUPPORTED
|
||||
case FMT_RLE:
|
||||
dest_mgr = jinit_write_rle(&cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TARGA_SUPPORTED
|
||||
case FMT_TARGA:
|
||||
dest_mgr = jinit_write_targa(&cinfo);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(&cinfo, JERR_UNSUPPORTED_FORMAT);
|
||||
break;
|
||||
}
|
||||
dest_mgr->output_file = output_file;
|
||||
|
||||
/* Start decompressor */
|
||||
jpeg_start_decompress(&cinfo);
|
||||
|
||||
/* Write output file header */
|
||||
(*dest_mgr->start_output) (&cinfo, dest_mgr);
|
||||
|
||||
/* Process data */
|
||||
while (cinfo.output_scanline < cinfo.output_height) {
|
||||
num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer,
|
||||
dest_mgr->buffer_height);
|
||||
(*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines);
|
||||
}
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
/* Hack: count final pass as done in case finish_output does an extra pass.
|
||||
* The library won't have updated completed_passes.
|
||||
*/
|
||||
progress.pub.completed_passes = progress.pub.total_passes;
|
||||
#endif
|
||||
|
||||
/* Finish decompression and release memory.
|
||||
* I must do it in this order because output module has allocated memory
|
||||
* of lifespan JPOOL_IMAGE; it needs to finish before releasing memory.
|
||||
*/
|
||||
(*dest_mgr->finish_output) (&cinfo, dest_mgr);
|
||||
jpeg_finish_decompress(&cinfo);
|
||||
jpeg_destroy_decompress(&cinfo);
|
||||
|
||||
#ifdef PROGRESS_REPORT
|
||||
/* Clear away progress display */
|
||||
if (jerr.trace_level == 0) {
|
||||
fprintf(stderr, "\r \r");
|
||||
fflush(stderr);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* All done. */
|
||||
exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS);
|
||||
return 0; /* suppress no-return-value warnings */
|
||||
}
|
||||
286
egetopt.c
286
egetopt.c
@@ -1,286 +0,0 @@
|
||||
/*
|
||||
* egetopt.c -- Extended 'getopt'.
|
||||
*
|
||||
* A while back, a public-domain version of getopt() was posted to the
|
||||
* net. A bit later, a gentleman by the name of Keith Bostic made some
|
||||
* enhancements and reposted it.
|
||||
*
|
||||
* In recent weeks (i.e., early-to-mid 1988) there's been some
|
||||
* heated discussion in comp.lang.c about the merits and drawbacks
|
||||
* of getopt(), especially with regard to its handling of '?'.
|
||||
*
|
||||
* In light of this, I have taken Mr. Bostic's public-domain getopt()
|
||||
* and have made some changes that I hope will be considered to be
|
||||
* improvements. I call this routine 'egetopt' ("Extended getopt").
|
||||
* The default behavior of this routine is the same as that of getopt(),
|
||||
* but it has some optional features that make it more useful. These
|
||||
* options are controlled by the settings of some global variables.
|
||||
* By not setting any of these extra global variables, you will have
|
||||
* the same functionality as getopt(), which should satisfy those
|
||||
* purists who believe getopt() is perfect and can never be improved.
|
||||
* If, on the other hand, you are someone who isn't satisfied with the
|
||||
* status quo, egetopt() may very well give you the added capabilities
|
||||
* you want.
|
||||
*
|
||||
* Look at the enclosed README file for a description of egetopt()'s
|
||||
* new features.
|
||||
*
|
||||
* The code was originally posted to the net as getopt.c by ...
|
||||
*
|
||||
* Keith Bostic
|
||||
* ARPA: keith@seismo
|
||||
* UUCP: seismo!keith
|
||||
*
|
||||
* Current version: added enhancements and comments, reformatted code.
|
||||
*
|
||||
* Lloyd Zusman
|
||||
* Master Byte Software
|
||||
* Los Gatos, California
|
||||
* Internet: ljz@fx.com
|
||||
* UUCP: ...!ames!fxgrp!ljz
|
||||
*
|
||||
* May, 1988
|
||||
*
|
||||
* Modified for use in free JPEG code:
|
||||
*
|
||||
* Ed Hanway
|
||||
* UUCP: uunet!sisd!jeh
|
||||
*
|
||||
* October, 1991
|
||||
*/
|
||||
|
||||
/* The original egetopt.c was written not to need stdio.h.
|
||||
* For the JPEG code this is an unnecessary and unportable assumption.
|
||||
* Also, we make all the variables and routines "static" to avoid
|
||||
* possible conflicts with a system-library version of getopt.
|
||||
*
|
||||
* In the JPEG code, this file is compiled by #including it in jcmain.c
|
||||
* or jdmain.c. Since ANSI2KNR does not process include files, we can't
|
||||
* rely on it to convert function definitions to K&R style. Hence we
|
||||
* provide both styles of function header with an explicit #ifdef PROTO (ick).
|
||||
*/
|
||||
|
||||
#define GVAR static /* make empty to export these variables */
|
||||
|
||||
/*
|
||||
* None of these constants are referenced in the executable portion of
|
||||
* the code ... their sole purpose is to initialize global variables.
|
||||
*/
|
||||
#define BADCH (int)'?'
|
||||
#define NEEDSEP (int)':'
|
||||
#define MAYBESEP (int)'\0'
|
||||
#define EMSG ""
|
||||
#define START "-"
|
||||
|
||||
/*
|
||||
* Here are all the pertinent global variables.
|
||||
*/
|
||||
GVAR int opterr = 1; /* if true, output error message */
|
||||
GVAR int optind = 1; /* index into parent argv vector */
|
||||
GVAR int optopt; /* character checked for validity */
|
||||
GVAR int optbad = BADCH; /* character returned on error */
|
||||
GVAR int optchar = 0; /* character that begins returned option */
|
||||
GVAR int optneed = NEEDSEP; /* flag for mandatory argument */
|
||||
GVAR int optmaybe = MAYBESEP; /* flag for optional argument */
|
||||
GVAR const char *optarg; /* argument associated with option */
|
||||
GVAR const char *optstart = START; /* list of characters that start options */
|
||||
|
||||
|
||||
/*
|
||||
* Macros.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Conditionally print out an error message and return (depends on the
|
||||
* setting of 'opterr').
|
||||
*/
|
||||
#define TELL(S) { \
|
||||
if (opterr) \
|
||||
fprintf(stderr, "%s%s%c\n", *nargv, (S), optopt); \
|
||||
return (optbad); \
|
||||
}
|
||||
|
||||
/*
|
||||
* This works similarly to index() and strchr(). I include it so that you
|
||||
* don't need to be concerned as to which one your system has.
|
||||
*/
|
||||
|
||||
#ifdef PROTO
|
||||
LOCAL const char *
|
||||
_sindex (const char *string, int ch)
|
||||
#else
|
||||
LOCAL const char *
|
||||
_sindex (string, ch)
|
||||
const char *string;
|
||||
int ch;
|
||||
#endif
|
||||
{
|
||||
if (string != NULL) {
|
||||
for (; *string != '\0'; ++string) {
|
||||
if (*string == (char)ch) {
|
||||
return (string);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Here it is:
|
||||
*/
|
||||
|
||||
#ifdef PROTO
|
||||
LOCAL int
|
||||
egetopt (int nargc, char **nargv, const char *ostr)
|
||||
#else
|
||||
LOCAL int
|
||||
egetopt (nargc, nargv, ostr)
|
||||
int nargc;
|
||||
char **nargv;
|
||||
const char *ostr;
|
||||
#endif
|
||||
{
|
||||
static const char *place = EMSG; /* option letter processing */
|
||||
register const char *oli; /* option letter list index */
|
||||
register const char *osi = NULL; /* option start list index */
|
||||
|
||||
if (nargv == (char **)NULL) {
|
||||
return (EOF);
|
||||
}
|
||||
|
||||
if (nargc <= optind || nargv[optind] == NULL) {
|
||||
return (EOF);
|
||||
}
|
||||
|
||||
if (place == NULL) {
|
||||
place = EMSG;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update scanning pointer.
|
||||
*/
|
||||
if (*place == '\0') {
|
||||
place = nargv[optind];
|
||||
if (place == NULL) {
|
||||
return (EOF);
|
||||
}
|
||||
osi = _sindex(optstart, *place);
|
||||
if (osi != NULL) {
|
||||
optchar = (int)*osi;
|
||||
}
|
||||
if (optind >= nargc || osi == NULL || *++place == '\0') {
|
||||
return (EOF);
|
||||
}
|
||||
|
||||
/*
|
||||
* Two adjacent, identical flag characters were found.
|
||||
* This takes care of "--", for example.
|
||||
*/
|
||||
if (*place == place[-1]) {
|
||||
++optind;
|
||||
return (EOF);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If the option is a separator or the option isn't in the list,
|
||||
* we've got an error.
|
||||
*/
|
||||
optopt = (int)*place++;
|
||||
oli = _sindex(ostr, optopt);
|
||||
if (optopt == optneed || optopt == optmaybe || oli == NULL) {
|
||||
/*
|
||||
* If we're at the end of the current argument, bump the
|
||||
* argument index.
|
||||
*/
|
||||
if (*place == '\0') {
|
||||
++optind;
|
||||
}
|
||||
TELL(": illegal option -- "); /* byebye */
|
||||
}
|
||||
|
||||
/*
|
||||
* If there is no argument indicator, then we don't even try to
|
||||
* return an argument.
|
||||
*/
|
||||
++oli;
|
||||
if (*oli == '\0' || (*oli != optneed && *oli != optmaybe)) {
|
||||
/*
|
||||
* If we're at the end of the current argument, bump the
|
||||
* argument index.
|
||||
*/
|
||||
if (*place == '\0') {
|
||||
++optind;
|
||||
}
|
||||
optarg = NULL;
|
||||
}
|
||||
/*
|
||||
* If we're here, there's an argument indicator. It's handled
|
||||
* differently depending on whether it's a mandatory or an
|
||||
* optional argument.
|
||||
*/
|
||||
else {
|
||||
/*
|
||||
* If there's no white space, use the rest of the
|
||||
* string as the argument. In this case, it doesn't
|
||||
* matter if the argument is mandatory or optional.
|
||||
*/
|
||||
if (*place != '\0') {
|
||||
optarg = place;
|
||||
}
|
||||
/*
|
||||
* If we're here, there's whitespace after the option.
|
||||
*
|
||||
* Is it a mandatory argument? If so, return the
|
||||
* next command-line argument if there is one.
|
||||
*/
|
||||
else if (*oli == optneed) {
|
||||
/*
|
||||
* If we're at the end of the argument list, there
|
||||
* isn't an argument and hence we have an error.
|
||||
* Otherwise, make 'optarg' point to the argument.
|
||||
*/
|
||||
if (nargc <= ++optind) {
|
||||
place = EMSG;
|
||||
TELL(": option requires an argument -- ");
|
||||
}
|
||||
else {
|
||||
optarg = nargv[optind];
|
||||
}
|
||||
}
|
||||
/*
|
||||
* If we're here it must have been an optional argument.
|
||||
*/
|
||||
else {
|
||||
if (nargc <= ++optind) {
|
||||
place = EMSG;
|
||||
optarg = NULL;
|
||||
}
|
||||
else {
|
||||
optarg = nargv[optind];
|
||||
if (optarg == NULL) {
|
||||
place = EMSG;
|
||||
}
|
||||
/*
|
||||
* If the next item begins with a flag
|
||||
* character, we treat it like a new
|
||||
* argument. This is accomplished by
|
||||
* decrementing 'optind' and returning
|
||||
* a null argument.
|
||||
*/
|
||||
else if (_sindex(optstart, *optarg) != NULL) {
|
||||
--optind;
|
||||
optarg = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
place = EMSG;
|
||||
++optind;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return option letter.
|
||||
*/
|
||||
return (optopt);
|
||||
}
|
||||
817
example.c
817
example.c
@@ -1,31 +1,29 @@
|
||||
/*
|
||||
* example.c
|
||||
*
|
||||
* This file is not actually part of the JPEG software. Rather, it provides
|
||||
* a skeleton that may be useful for constructing applications that use the
|
||||
* JPEG software as subroutines. This code will NOT do anything useful as is.
|
||||
* This file illustrates how to use the IJG code as a subroutine library
|
||||
* to read or write JPEG image files. You should look at this code in
|
||||
* conjunction with the documentation file libjpeg.doc.
|
||||
*
|
||||
* This file illustrates how to use the JPEG code as a subroutine library
|
||||
* to read or write JPEG image files. We assume here that you are not
|
||||
* merely interested in converting the image to yet another image file format
|
||||
* (if you are, you should be adding another I/O module to cjpeg/djpeg, not
|
||||
* constructing a new application). Instead, we show how to pass the
|
||||
* decompressed image data into or out of routines that you provide. For
|
||||
* example, a viewer program might use the JPEG decompressor together with
|
||||
* routines that write the decompressed image directly to a display.
|
||||
* This code will not do anything useful as-is, but it may be helpful as a
|
||||
* skeleton for constructing routines that call the JPEG library.
|
||||
*
|
||||
* We present these routines in the same coding style used in the JPEG code
|
||||
* (ANSI function definitions, etc); but you are of course free to code your
|
||||
* routines in a different style if you prefer.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* Include file for declaring JPEG data structures.
|
||||
* This file also includes some system headers like <stdio.h>;
|
||||
* if you prefer, you can include "jconfig.h" and "jpegdata.h" instead.
|
||||
* Include file for users of JPEG library.
|
||||
* You will need to have included system headers that define at least
|
||||
* the typedefs FILE and size_t before you can include jpeglib.h.
|
||||
* (stdio.h is sufficient on ANSI-conforming systems.)
|
||||
* You may also wish to include "jerror.h".
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/*
|
||||
* <setjmp.h> is used for the optional error recovery mechanism shown in
|
||||
@@ -45,580 +43,375 @@
|
||||
|
||||
|
||||
/*
|
||||
* To supply the image data for compression, you must define three routines
|
||||
* input_init, get_input_row, and input_term. These routines will be called
|
||||
* from the JPEG compressor via function pointer values that you store in the
|
||||
* cinfo data structure; hence they need not be globally visible and the exact
|
||||
* names don't matter. (In fact, the "METHODDEF" macro expands to "static" if
|
||||
* you use the unmodified JPEG include files.)
|
||||
* IMAGE DATA FORMATS:
|
||||
*
|
||||
* The input file reading modules (jrdppm.c, jrdgif.c, jrdtarga.c, etc) may be
|
||||
* useful examples of what these routines should actually do, although each of
|
||||
* them is encrusted with a lot of specialized code for its own file format.
|
||||
* The standard input image format is a rectangular array of pixels, with
|
||||
* each pixel having the same number of "component" values (color channels).
|
||||
* Each pixel row is an array of JSAMPLEs (which typically are unsigned chars).
|
||||
* If you are working with color data, then the color values for each pixel
|
||||
* must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit
|
||||
* RGB color.
|
||||
*
|
||||
* For this example, we'll assume that this data structure matches the way
|
||||
* our application has stored the image in memory, so we can just pass a
|
||||
* pointer to our image buffer. In particular, let's say that the image is
|
||||
* RGB color and is described by:
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
input_init (compress_info_ptr cinfo)
|
||||
/* Initialize for input; return image size and component data. */
|
||||
{
|
||||
/* This routine must return five pieces of information about the incoming
|
||||
* image, and must do any setup needed for the get_input_row routine.
|
||||
* The image information is returned in fields of the cinfo struct.
|
||||
* (If you don't care about modularity, you could initialize these fields
|
||||
* in the main JPEG calling routine, and make this routine be a no-op.)
|
||||
* We show some example values here.
|
||||
*/
|
||||
cinfo->image_width = 640; /* width in pixels */
|
||||
cinfo->image_height = 480; /* height in pixels */
|
||||
/* JPEG views an image as being a rectangular array of pixels, with each
|
||||
* pixel having the same number of "component" values (color channels).
|
||||
* You must specify how many components there are and the colorspace
|
||||
* interpretation of the components. Most applications will use RGB data or
|
||||
* grayscale data. If you want to use something else, you'll need to study
|
||||
* and perhaps modify jcdeflts.c, jccolor.c, and jdcolor.c.
|
||||
*/
|
||||
cinfo->input_components = 3; /* or 1 for grayscale */
|
||||
cinfo->in_color_space = CS_RGB; /* or CS_GRAYSCALE for grayscale */
|
||||
cinfo->data_precision = 8; /* bits per pixel component value */
|
||||
/* In the current JPEG software, data_precision must be set equal to
|
||||
* BITS_IN_JSAMPLE, which is 8 unless you twiddle jconfig.h. Future
|
||||
* versions might allow you to say either 8 or 12 if compiled with
|
||||
* 12-bit JSAMPLEs, or up to 16 in lossless mode. In any case,
|
||||
* it is up to you to scale incoming pixel values to the range
|
||||
* 0 .. (1<<data_precision)-1.
|
||||
* If your image data format is fixed at a byte per component,
|
||||
* then saying "8" is probably the best long-term solution.
|
||||
*/
|
||||
}
|
||||
extern JSAMPLE * image_buffer; /* Points to large array of R,G,B-order data */
|
||||
extern int image_height; /* Number of rows in image */
|
||||
extern int image_width; /* Number of columns in image */
|
||||
|
||||
|
||||
/*
|
||||
* This function is called repeatedly and must supply the next row of pixels
|
||||
* on each call. The rows MUST be returned in top-to-bottom order if you want
|
||||
* your JPEG files to be compatible with everyone else's. (If you cannot
|
||||
* readily read your data in that order, you'll need an intermediate array to
|
||||
* hold the image. See jrdtarga.c or jrdrle.c for examples of handling
|
||||
* bottom-to-top source data using the JPEG code's portable mechanisms.)
|
||||
* The data is to be returned into a 2-D array of JSAMPLEs, indexed as
|
||||
* JSAMPLE pixel_row[component][column]
|
||||
* where component runs from 0 to cinfo->input_components-1, and column runs
|
||||
* from 0 to cinfo->image_width-1 (column 0 is left edge of image). Note that
|
||||
* this is actually an array of pointers to arrays rather than a true 2D array,
|
||||
* since C does not support variable-size multidimensional arrays.
|
||||
* JSAMPLE is typically typedef'd as "unsigned char".
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_input_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* Read next row of pixels into pixel_row[][] */
|
||||
{
|
||||
/* This example shows how you might read RGB data (3 components)
|
||||
* from an input file in which the data is stored 3 bytes per pixel
|
||||
* in left-to-right, top-to-bottom order.
|
||||
*/
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = 0; col < cinfo->image_width; col++) {
|
||||
*ptr0++ = (JSAMPLE) getc(infile); /* red */
|
||||
*ptr1++ = (JSAMPLE) getc(infile); /* green */
|
||||
*ptr2++ = (JSAMPLE) getc(infile); /* blue */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
input_term (compress_info_ptr cinfo)
|
||||
/* Finish up at the end of the input */
|
||||
{
|
||||
/* This termination routine will very often have no work to do, */
|
||||
/* but you must provide it anyway. */
|
||||
/* Note that the JPEG code will only call it during successful exit; */
|
||||
/* if you want it called during error exit, you gotta do that yourself. */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* That's it for the routines that deal with reading the input image data.
|
||||
* Now we have overall control and parameter selection routines.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This routine must determine what output JPEG file format is to be written,
|
||||
* and make any other compression parameter changes that are desirable.
|
||||
* This routine gets control after the input file header has been read
|
||||
* (i.e., right after input_init has been called). You could combine its
|
||||
* functions into input_init, or even into the main control routine, but
|
||||
* if you have several different input_init routines, it's a definite win
|
||||
* to keep this separate. You MUST supply this routine even if it's a no-op.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
c_ui_method_selection (compress_info_ptr cinfo)
|
||||
{
|
||||
/* If the input is gray scale, generate a monochrome JPEG file. */
|
||||
if (cinfo->in_color_space == CS_GRAYSCALE)
|
||||
j_monochrome_default(cinfo);
|
||||
/* For now, always select JFIF output format. */
|
||||
jselwjfif(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* OK, here is the main function that actually causes everything to happen.
|
||||
* We assume here that the target filename is supplied by the caller of this
|
||||
* routine, and that all JPEG compression parameters can be default values.
|
||||
* Sample routine for JPEG compression. We assume that the target file name
|
||||
* and a compression quality factor are passed in.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
write_JPEG_file (char * filename)
|
||||
write_JPEG_file (char * filename, int quality)
|
||||
{
|
||||
/* These three structs contain JPEG parameters and working data.
|
||||
* They must survive for the duration of parameter setup and one
|
||||
* call to jpeg_compress; typically, making them local data in the
|
||||
* calling routine is the best strategy.
|
||||
/* This struct contains the JPEG compression parameters and pointers to
|
||||
* working space (which is allocated as needed by the JPEG library).
|
||||
* It is possible to have several such structures, representing multiple
|
||||
* compression/decompression processes, in existence at once. We refer
|
||||
* to any one struct (and its associated working data) as a "JPEG object".
|
||||
*/
|
||||
struct compress_info_struct cinfo;
|
||||
struct compress_methods_struct c_methods;
|
||||
struct external_methods_struct e_methods;
|
||||
struct jpeg_compress_struct cinfo;
|
||||
/* This struct represents a JPEG error handler. It is declared separately
|
||||
* because applications often want to supply a specialized error handler
|
||||
* (see the second half of this file for an example). But here we just
|
||||
* take the easy way out and use the standard error handler, which will
|
||||
* print a message on stderr and call exit() if compression fails.
|
||||
*/
|
||||
struct jpeg_error_mgr jerr;
|
||||
/* More stuff */
|
||||
FILE * outfile; /* target file */
|
||||
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
|
||||
int row_stride; /* physical row width in image buffer */
|
||||
|
||||
/* Initialize the system-dependent method pointers. */
|
||||
cinfo.methods = &c_methods; /* links to method structs */
|
||||
cinfo.emethods = &e_methods;
|
||||
/* Here we use the default JPEG error handler, which will just print
|
||||
* an error message on stderr and call exit(). See the second half of
|
||||
* this file for an example of more graceful error recovery.
|
||||
*/
|
||||
jselerror(&e_methods); /* select std error/trace message routines */
|
||||
/* Here we use the standard memory manager provided with the JPEG code.
|
||||
* In some cases you might want to replace the memory manager, or at
|
||||
* least the system-dependent part of it, with your own code.
|
||||
*/
|
||||
jselmemmgr(&e_methods); /* select std memory allocation routines */
|
||||
/* If the compressor requires full-image buffers (for entropy-coding
|
||||
* optimization or a noninterleaved JPEG file), it will create temporary
|
||||
* files for anything that doesn't fit within the maximum-memory setting.
|
||||
* (Note that temp files are NOT needed if you use the default parameters.)
|
||||
* You can change the default maximum-memory setting by changing
|
||||
* e_methods.max_memory_to_use after jselmemmgr returns.
|
||||
* On some systems you may also need to set up a signal handler to
|
||||
* ensure that temporary files are deleted if the program is interrupted.
|
||||
* (This is most important if you are on MS-DOS and use the jmemdos.c
|
||||
* memory manager back end; it will try to grab extended memory for
|
||||
* temp files, and that space will NOT be freed automatically.)
|
||||
* See jcmain.c or jdmain.c for an example signal handler.
|
||||
*/
|
||||
/* Step 1: allocate and initialize JPEG compression object */
|
||||
|
||||
/* Here, set up pointers to your own routines for input data handling
|
||||
* and post-init parameter selection.
|
||||
/* We have to set up the error handler first, in case the initialization
|
||||
* step fails. (Unlikely, but it could happen if you are out of memory.)
|
||||
* This routine fills in the contents of struct jerr, and returns jerr's
|
||||
* address which we place into the link field in cinfo.
|
||||
*/
|
||||
c_methods.input_init = input_init;
|
||||
c_methods.get_input_row = get_input_row;
|
||||
c_methods.input_term = input_term;
|
||||
c_methods.c_ui_method_selection = c_ui_method_selection;
|
||||
cinfo.err = jpeg_std_error(&jerr);
|
||||
/* Now we can initialize the JPEG compression object. */
|
||||
jpeg_create_compress(&cinfo);
|
||||
|
||||
/* Set up default JPEG parameters in the cinfo data structure. */
|
||||
j_c_defaults(&cinfo, 75, FALSE);
|
||||
/* Note: 75 is the recommended default quality level; you may instead pass
|
||||
* a user-specified quality level. Be aware that values below 25 will cause
|
||||
* non-baseline JPEG files to be created (and a warning message to that
|
||||
* effect to be emitted on stderr). This won't bother our decoder, but some
|
||||
* commercial JPEG implementations may choke on non-baseline JPEG files.
|
||||
* If you want to force baseline compatibility, pass TRUE instead of FALSE.
|
||||
* (If non-baseline files are fine, but you could do without that warning
|
||||
* message, set e_methods.trace_level to -1.)
|
||||
*/
|
||||
/* Step 2: specify data destination (eg, a file) */
|
||||
/* Note: steps 2 and 3 can be done in either order. */
|
||||
|
||||
/* At this point you can modify the default parameters set by j_c_defaults
|
||||
* as needed. For a minimal implementation, you shouldn't need to change
|
||||
* anything. See jcmain.c for some examples of what you might change.
|
||||
*/
|
||||
|
||||
/* Select the input and output files.
|
||||
* Note that cinfo.input_file is only used if your input reading routines
|
||||
* use it; otherwise, you can just make it NULL.
|
||||
/* Here we use the library-supplied code to send compressed data to a
|
||||
* stdio stream. You can also write your own code to do something else.
|
||||
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
|
||||
* requires it in order to write binary files.
|
||||
*/
|
||||
|
||||
cinfo.input_file = NULL; /* if no actual input file involved */
|
||||
|
||||
if ((cinfo.output_file = fopen(filename, "wb")) == NULL) {
|
||||
if ((outfile = fopen(filename, "wb")) == NULL) {
|
||||
fprintf(stderr, "can't open %s\n", filename);
|
||||
exit(1);
|
||||
}
|
||||
jpeg_stdio_dest(&cinfo, outfile);
|
||||
|
||||
/* Here we go! */
|
||||
jpeg_compress(&cinfo);
|
||||
/* Step 3: set parameters for compression */
|
||||
|
||||
/* That's it, son. Nothin' else to do, except close files. */
|
||||
/* Here we assume only the output file need be closed. */
|
||||
fclose(cinfo.output_file);
|
||||
|
||||
/* Note: if you want to compress more than one image, we recommend you
|
||||
* repeat this whole routine. You MUST repeat the j_c_defaults()/alter
|
||||
* parameters/jpeg_compress() sequence, as some data structures allocated
|
||||
* in j_c_defaults are freed upon exit from jpeg_compress.
|
||||
/* First we supply a description of the input image.
|
||||
* Four fields of the cinfo struct must be filled in:
|
||||
*/
|
||||
cinfo.image_width = image_width; /* image width and height, in pixels */
|
||||
cinfo.image_height = image_height;
|
||||
cinfo.input_components = 3; /* # of color components per pixel */
|
||||
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
|
||||
/* Now use the library's routine to set default compression parameters.
|
||||
* (You must set at least cinfo.in_color_space before calling this,
|
||||
* since the defaults depend on the source color space.)
|
||||
*/
|
||||
jpeg_set_defaults(&cinfo);
|
||||
/* Now you can set any non-default parameters you wish to.
|
||||
* Here we just illustrate the use of quality (quantization table) scaling:
|
||||
*/
|
||||
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
|
||||
|
||||
/* Step 4: Start compressor */
|
||||
|
||||
/* TRUE ensures that we will write a complete interchange-JPEG file.
|
||||
* Pass TRUE unless you are very sure of what you're doing.
|
||||
*/
|
||||
jpeg_start_compress(&cinfo, TRUE);
|
||||
|
||||
/* Step 5: while (scan lines remain to be written) */
|
||||
/* jpeg_write_scanlines(...); */
|
||||
|
||||
/* Here we use the library's state variable cinfo.next_scanline as the
|
||||
* loop counter, so that we don't have to keep track ourselves.
|
||||
* To keep things simple, we pass one scanline per call; you can pass
|
||||
* more if you wish, though.
|
||||
*/
|
||||
row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
|
||||
|
||||
while (cinfo.next_scanline < cinfo.image_height) {
|
||||
row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
|
||||
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
|
||||
}
|
||||
|
||||
/* Step 6: Finish compression */
|
||||
|
||||
jpeg_finish_compress(&cinfo);
|
||||
/* After finish_compress, we can close the output file. */
|
||||
fclose(outfile);
|
||||
|
||||
/* Step 7: release JPEG compression object */
|
||||
|
||||
/* This is an important step since it will release a good deal of memory. */
|
||||
jpeg_destroy_compress(&cinfo);
|
||||
|
||||
/* And we're done! */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* SOME FINE POINTS:
|
||||
*
|
||||
* In the above loop, we ignored the return value of jpeg_write_scanlines,
|
||||
* which is the number of scanlines actually written. We could get away
|
||||
* with this because we were only relying on the value of cinfo.next_scanline,
|
||||
* which will be incremented correctly. If you maintain additional loop
|
||||
* variables then you should be careful to increment them properly.
|
||||
* Actually, for output to a stdio stream you needn't worry, because
|
||||
* then jpeg_write_scanlines will write all the lines passed (or else exit
|
||||
* with a fatal error). Partial writes can only occur if you use a data
|
||||
* destination module that can demand suspension of the compressor.
|
||||
* (If you don't know what that's for, you don't need it.)
|
||||
*
|
||||
* If the compressor requires full-image buffers (for entropy-coding
|
||||
* optimization or a noninterleaved JPEG file), it will create temporary
|
||||
* files for anything that doesn't fit within the maximum-memory setting.
|
||||
* (Note that temp files are NOT needed if you use the default parameters.)
|
||||
* On some systems you may need to set up a signal handler to ensure that
|
||||
* temporary files are deleted if the program is interrupted. See libjpeg.doc.
|
||||
*
|
||||
* Scanlines MUST be supplied in top-to-bottom order if you want your JPEG
|
||||
* files to be compatible with everyone else's. If you cannot readily read
|
||||
* your data in that order, you'll need an intermediate array to hold the
|
||||
* image. See rdtarga.c or rdbmp.c for examples of handling bottom-to-top
|
||||
* source data using the JPEG code's internal virtual-array mechanisms.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/
|
||||
|
||||
/* This half of the example shows how to read data from the JPEG decompressor.
|
||||
* It's a little more refined than the above in that we show how to do your
|
||||
* own error recovery. If you don't care about that, you don't need these
|
||||
* next two routines.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* These routines replace the default trace/error routines included with the
|
||||
* JPEG code. The example trace_message routine shown here is actually the
|
||||
* same as the standard one, but you could modify it if you don't want messages
|
||||
* sent to stderr. The example error_exit routine is set up to return
|
||||
* control to read_JPEG_file() rather than calling exit(). You can use the
|
||||
* same routines for both compression and decompression error recovery.
|
||||
*/
|
||||
|
||||
/* These static variables are needed by the error routines. */
|
||||
static jmp_buf setjmp_buffer; /* for return to caller */
|
||||
static external_methods_ptr emethods; /* needed for access to message_parm */
|
||||
|
||||
|
||||
/* This routine is used for any and all trace, debug, or error printouts
|
||||
* from the JPEG code. The parameter is a printf format string; up to 8
|
||||
* integer data values for the format string have been stored in the
|
||||
* message_parm[] field of the external_methods struct.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
trace_message (const char *msgtext)
|
||||
{
|
||||
fprintf(stderr, msgtext,
|
||||
emethods->message_parm[0], emethods->message_parm[1],
|
||||
emethods->message_parm[2], emethods->message_parm[3],
|
||||
emethods->message_parm[4], emethods->message_parm[5],
|
||||
emethods->message_parm[6], emethods->message_parm[7]);
|
||||
fprintf(stderr, "\n"); /* there is no \n in the format string! */
|
||||
}
|
||||
|
||||
/*
|
||||
* The error_exit() routine should not return to its caller. The default
|
||||
* routine calls exit(), but here we assume that we want to return to
|
||||
* read_JPEG_data, which has set up a setjmp context for the purpose.
|
||||
* You should make sure that the free_all method is called, either within
|
||||
* error_exit or after the return to the outer-level routine.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
error_exit (const char *msgtext)
|
||||
{
|
||||
trace_message(msgtext); /* report the error message */
|
||||
(*emethods->free_all) (); /* clean up memory allocation & temp files */
|
||||
longjmp(setjmp_buffer, 1); /* return control to outer routine */
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* To accept the image data from decompression, you must define four routines
|
||||
* output_init, put_color_map, put_pixel_rows, and output_term.
|
||||
* It's a bit more refined than the above, in that we show:
|
||||
* (a) how to modify the JPEG library's standard error-reporting behavior;
|
||||
* (b) how to allocate workspace using the library's memory manager.
|
||||
*
|
||||
* You must understand the distinction between full color output mode
|
||||
* (N independent color components) and colormapped output mode (a single
|
||||
* output component representing an index into a color map). You should use
|
||||
* colormapped mode to write to a colormapped display screen or output file.
|
||||
* Colormapped mode is also useful for reducing grayscale output to a small
|
||||
* number of gray levels: when using the 1-pass quantizer on grayscale data,
|
||||
* the colormap entries will be evenly spaced from 0 to MAX_JSAMPLE, so you
|
||||
* can regard the indexes are directly representing gray levels at reduced
|
||||
* precision. In any other case, you should not depend on the colormap
|
||||
* entries having any particular order.
|
||||
* To get colormapped output, set cinfo->quantize_colors to TRUE and set
|
||||
* cinfo->desired_number_of_colors to the maximum number of entries in the
|
||||
* colormap. This can be done either in your main routine or in
|
||||
* d_ui_method_selection. For grayscale quantization, also set
|
||||
* cinfo->two_pass_quantize to FALSE to ensure the 1-pass quantizer is used
|
||||
* (presently this is the default, but it may not be so in the future).
|
||||
*
|
||||
* The output file writing modules (jwrppm.c, jwrgif.c, jwrtarga.c, etc) may be
|
||||
* useful examples of what these routines should actually do, although each of
|
||||
* them is encrusted with a lot of specialized code for its own file format.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
output_init (decompress_info_ptr cinfo)
|
||||
/* This routine should do any setup required */
|
||||
{
|
||||
/* This routine can initialize for output based on the data passed in cinfo.
|
||||
* Useful fields include:
|
||||
* image_width, image_height Pretty obvious, I hope.
|
||||
* data_precision bits per pixel value; typically 8.
|
||||
* out_color_space output colorspace previously requested
|
||||
* color_out_comps number of color components in same
|
||||
* final_out_comps number of components actually output
|
||||
* final_out_comps is 1 if quantize_colors is true, else it is equal to
|
||||
* color_out_comps.
|
||||
*
|
||||
* If you have requested color quantization, the colormap is NOT yet set.
|
||||
* You may wish to defer output initialization until put_color_map is called.
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine is called if and only if you have set cinfo->quantize_colors
|
||||
* to TRUE. It is given the selected colormap and can complete any required
|
||||
* initialization. This call will occur after output_init and before any
|
||||
* calls to put_pixel_rows. Note that the colormap pointer is also placed
|
||||
* in a cinfo field, whence it can be used by put_pixel_rows or output_term.
|
||||
* num_colors will be less than or equal to desired_number_of_colors.
|
||||
*
|
||||
* The colormap data is supplied as a 2-D array of JSAMPLEs, indexed as
|
||||
* JSAMPLE colormap[component][indexvalue]
|
||||
* where component runs from 0 to cinfo->color_out_comps-1, and indexvalue
|
||||
* runs from 0 to num_colors-1. Note that this is actually an array of
|
||||
* pointers to arrays rather than a true 2D array, since C does not support
|
||||
* variable-size multidimensional arrays.
|
||||
* JSAMPLE is typically typedef'd as "unsigned char". If you want your code
|
||||
* to be as portable as the JPEG code proper, you should always access JSAMPLE
|
||||
* values with the GETJSAMPLE() macro, which will do the right thing if the
|
||||
* machine has only signed chars.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
put_color_map (decompress_info_ptr cinfo, int num_colors, JSAMPARRAY colormap)
|
||||
/* Write the color map */
|
||||
{
|
||||
/* You need not provide this routine if you always set cinfo->quantize_colors
|
||||
* FALSE; but a safer practice is to provide it and have it just print an
|
||||
* error message, like this:
|
||||
*/
|
||||
fprintf(stderr, "put_color_map called: there's a bug here somewhere!\n");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This function is called repeatedly, with a few more rows of pixels supplied
|
||||
* on each call. With the current JPEG code, some multiple of 8 rows will be
|
||||
* passed on each call except the last, but it is extremely bad form to depend
|
||||
* on this. You CAN assume num_rows > 0.
|
||||
* The data is supplied in top-to-bottom row order (the standard order within
|
||||
* a JPEG file). If you cannot readily use the data in that order, you'll
|
||||
* need an intermediate array to hold the image. See jwrrle.c for an example
|
||||
* of outputting data in bottom-to-top order.
|
||||
*
|
||||
* The data is supplied as a 3-D array of JSAMPLEs, indexed as
|
||||
* JSAMPLE pixel_data[component][row][column]
|
||||
* where component runs from 0 to cinfo->final_out_comps-1, row runs from 0 to
|
||||
* num_rows-1, and column runs from 0 to cinfo->image_width-1 (column 0 is
|
||||
* left edge of image). Note that this is actually an array of pointers to
|
||||
* pointers to arrays rather than a true 3D array, since C does not support
|
||||
* variable-size multidimensional arrays.
|
||||
* JSAMPLE is typically typedef'd as "unsigned char". If you want your code
|
||||
* to be as portable as the JPEG code proper, you should always access JSAMPLE
|
||||
* values with the GETJSAMPLE() macro, which will do the right thing if the
|
||||
* machine has only signed chars.
|
||||
*
|
||||
* If quantize_colors is true, then there is only one component, and its values
|
||||
* are indexes into the previously supplied colormap. Otherwise the values
|
||||
* are actual data in your selected output colorspace.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
put_pixel_rows (decompress_info_ptr cinfo, int num_rows, JSAMPIMAGE pixel_data)
|
||||
/* Write some rows of output data */
|
||||
{
|
||||
/* This example shows how you might write full-color RGB data (3 components)
|
||||
* to an output file in which the data is stored 3 bytes per pixel.
|
||||
*/
|
||||
register FILE * outfile = cinfo->output_file;
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
register int row;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptr0 = pixel_data[0][row];
|
||||
ptr1 = pixel_data[1][row];
|
||||
ptr2 = pixel_data[2][row];
|
||||
for (col = 0; col < cinfo->image_width; col++) {
|
||||
putc(GETJSAMPLE(*ptr0), outfile); /* red */
|
||||
ptr0++;
|
||||
putc(GETJSAMPLE(*ptr1), outfile); /* green */
|
||||
ptr1++;
|
||||
putc(GETJSAMPLE(*ptr2), outfile); /* blue */
|
||||
ptr2++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
output_term (decompress_info_ptr cinfo)
|
||||
/* Finish up at the end of the output */
|
||||
{
|
||||
/* This termination routine may not need to do anything. */
|
||||
/* Note that the JPEG code will only call it during successful exit; */
|
||||
/* if you want it called during error exit, you gotta do that yourself. */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* That's it for the routines that deal with writing the output image.
|
||||
* Now we have overall control and parameter selection routines.
|
||||
* Just to make this example a little different from the first one, we'll
|
||||
* assume that we do not intend to put the whole image into an in-memory
|
||||
* buffer, but to send it line-by-line someplace else. We need a one-
|
||||
* scanline-high JSAMPLE array as a work buffer, and we will let the JPEG
|
||||
* memory manager allocate it for us. This approach is actually quite useful
|
||||
* because we don't need to remember to deallocate the buffer separately: it
|
||||
* will go away automatically when the JPEG object is cleaned up.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This routine gets control after the JPEG file header has been read;
|
||||
* at this point the image size and colorspace are known.
|
||||
* The routine must determine what output routines are to be used, and make
|
||||
* any decompression parameter changes that are desirable. For example,
|
||||
* if it is found that the JPEG file is grayscale, you might want to do
|
||||
* things differently than if it is color. You can also delay setting
|
||||
* quantize_colors and associated options until this point.
|
||||
* ERROR HANDLING:
|
||||
*
|
||||
* j_d_defaults initializes out_color_space to CS_RGB. If you want grayscale
|
||||
* output you should set out_color_space to CS_GRAYSCALE. Note that you can
|
||||
* force grayscale output from a color JPEG file (though not vice versa).
|
||||
* The JPEG library's standard error handler (jerror.c) is divided into
|
||||
* several "methods" which you can override individually. This lets you
|
||||
* adjust the behavior without duplicating a lot of code, which you might
|
||||
* have to update with each future release.
|
||||
*
|
||||
* Our example here shows how to override the "error_exit" method so that
|
||||
* control is returned to the library's caller when a fatal error occurs,
|
||||
* rather than calling exit() as the standard error_exit method does.
|
||||
*
|
||||
* We use C's setjmp/longjmp facility to return control. This means that the
|
||||
* routine which calls the JPEG library must first execute a setjmp() call to
|
||||
* establish the return point. We want the replacement error_exit to do a
|
||||
* longjmp(). But we need to make the setjmp buffer accessible to the
|
||||
* error_exit routine. To do this, we make a private extension of the
|
||||
* standard JPEG error handler object. (If we were using C++, we'd say we
|
||||
* were making a subclass of the regular error handler.)
|
||||
*
|
||||
* Here's the extended error handler struct:
|
||||
*/
|
||||
|
||||
struct my_error_mgr {
|
||||
struct jpeg_error_mgr pub; /* "public" fields */
|
||||
|
||||
jmp_buf setjmp_buffer; /* for return to caller */
|
||||
};
|
||||
|
||||
typedef struct my_error_mgr * my_error_ptr;
|
||||
|
||||
/*
|
||||
* Here's the routine that will replace the standard error_exit method:
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
d_ui_method_selection (decompress_info_ptr cinfo)
|
||||
my_error_exit (j_common_ptr cinfo)
|
||||
{
|
||||
/* if grayscale input, force grayscale output; */
|
||||
/* else leave the output colorspace as set by main routine. */
|
||||
if (cinfo->jpeg_color_space == CS_GRAYSCALE)
|
||||
cinfo->out_color_space = CS_GRAYSCALE;
|
||||
/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
|
||||
my_error_ptr myerr = (my_error_ptr) cinfo->err;
|
||||
|
||||
/* select output routines */
|
||||
cinfo->methods->output_init = output_init;
|
||||
cinfo->methods->put_color_map = put_color_map;
|
||||
cinfo->methods->put_pixel_rows = put_pixel_rows;
|
||||
cinfo->methods->output_term = output_term;
|
||||
/* Always display the message. */
|
||||
/* We could postpone this until after returning, if we chose. */
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
|
||||
/* Return control to the setjmp point */
|
||||
longjmp(myerr->setjmp_buffer, 1);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* OK, here is the main function that actually causes everything to happen.
|
||||
* We assume here that the JPEG filename is supplied by the caller of this
|
||||
* routine, and that all decompression parameters can be default values.
|
||||
* The routine returns 1 if successful, 0 if not.
|
||||
* Sample routine for JPEG decompression. We assume that the source file name
|
||||
* is passed in. We want to return 1 on success, 0 on error.
|
||||
*/
|
||||
|
||||
|
||||
GLOBAL int
|
||||
read_JPEG_file (char * filename)
|
||||
{
|
||||
/* These three structs contain JPEG parameters and working data.
|
||||
* They must survive for the duration of parameter setup and one
|
||||
* call to jpeg_decompress; typically, making them local data in the
|
||||
* calling routine is the best strategy.
|
||||
/* This struct contains the JPEG decompression parameters and pointers to
|
||||
* working space (which is allocated as needed by the JPEG library).
|
||||
*/
|
||||
struct decompress_info_struct cinfo;
|
||||
struct decompress_methods_struct dc_methods;
|
||||
struct external_methods_struct e_methods;
|
||||
struct jpeg_decompress_struct cinfo;
|
||||
/* We use our private extension JPEG error handler. */
|
||||
struct my_error_mgr jerr;
|
||||
/* More stuff */
|
||||
FILE * infile; /* source file */
|
||||
JSAMPARRAY buffer; /* Output row buffer */
|
||||
int row_stride; /* physical row width in output buffer */
|
||||
|
||||
/* Select the input and output files.
|
||||
* In this example we want to open the input file before doing anything else,
|
||||
/* In this example we want to open the input file before doing anything else,
|
||||
* so that the setjmp() error recovery below can assume the file is open.
|
||||
* Note that cinfo.output_file is only used if your output handling routines
|
||||
* use it; otherwise, you can just make it NULL.
|
||||
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
|
||||
* requires it in order to read binary files.
|
||||
*/
|
||||
|
||||
if ((cinfo.input_file = fopen(filename, "rb")) == NULL) {
|
||||
if ((infile = fopen(filename, "rb")) == NULL) {
|
||||
fprintf(stderr, "can't open %s\n", filename);
|
||||
return 0;
|
||||
}
|
||||
|
||||
cinfo.output_file = NULL; /* if no actual output file involved */
|
||||
/* Step 1: allocate and initialize JPEG decompression object */
|
||||
|
||||
/* Initialize the system-dependent method pointers. */
|
||||
cinfo.methods = &dc_methods; /* links to method structs */
|
||||
cinfo.emethods = &e_methods;
|
||||
/* Here we supply our own error handler; compare to use of standard error
|
||||
* handler in the previous write_JPEG_file example.
|
||||
*/
|
||||
emethods = &e_methods; /* save struct addr for possible access */
|
||||
e_methods.error_exit = error_exit; /* supply error-exit routine */
|
||||
e_methods.trace_message = trace_message; /* supply trace-message routine */
|
||||
|
||||
/* prepare setjmp context for possible exit from error_exit */
|
||||
if (setjmp(setjmp_buffer)) {
|
||||
/* We set up the normal JPEG error routines, then override error_exit. */
|
||||
cinfo.err = jpeg_std_error(&jerr.pub);
|
||||
jerr.pub.error_exit = my_error_exit;
|
||||
/* Establish the setjmp return context for my_error_exit to use. */
|
||||
if (setjmp(jerr.setjmp_buffer)) {
|
||||
/* If we get here, the JPEG code has signaled an error.
|
||||
* Memory allocation has already been cleaned up (see free_all call in
|
||||
* error_exit), but we need to close the input file before returning.
|
||||
* You might also need to close an output file, etc.
|
||||
* We need to clean up the JPEG object, close the input file, and return.
|
||||
*/
|
||||
fclose(cinfo.input_file);
|
||||
jpeg_destroy_decompress(&cinfo);
|
||||
fclose(infile);
|
||||
return 0;
|
||||
}
|
||||
/* Now we can initialize the JPEG decompression object. */
|
||||
jpeg_create_decompress(&cinfo);
|
||||
|
||||
/* Here we use the standard memory manager provided with the JPEG code.
|
||||
* In some cases you might want to replace the memory manager, or at
|
||||
* least the system-dependent part of it, with your own code.
|
||||
*/
|
||||
jselmemmgr(&e_methods); /* select std memory allocation routines */
|
||||
/* If the decompressor requires full-image buffers (for two-pass color
|
||||
* quantization or a noninterleaved JPEG file), it will create temporary
|
||||
* files for anything that doesn't fit within the maximum-memory setting.
|
||||
* You can change the default maximum-memory setting by changing
|
||||
* e_methods.max_memory_to_use after jselmemmgr returns.
|
||||
* On some systems you may also need to set up a signal handler to
|
||||
* ensure that temporary files are deleted if the program is interrupted.
|
||||
* (This is most important if you are on MS-DOS and use the jmemdos.c
|
||||
* memory manager back end; it will try to grab extended memory for
|
||||
* temp files, and that space will NOT be freed automatically.)
|
||||
* See jcmain.c or jdmain.c for an example signal handler.
|
||||
/* Step 2: specify data source (eg, a file) */
|
||||
|
||||
jpeg_stdio_src(&cinfo, infile);
|
||||
|
||||
/* Step 3: read file parameters with jpeg_read_header() */
|
||||
|
||||
(void) jpeg_read_header(&cinfo, TRUE);
|
||||
/* We can ignore the return value from jpeg_read_header since
|
||||
* (a) suspension is not possible with the stdio data source, and
|
||||
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
|
||||
* See libjpeg.doc for more info.
|
||||
*/
|
||||
|
||||
/* Here, set up the pointer to your own routine for post-header-reading
|
||||
* parameter selection. You could also initialize the pointers to the
|
||||
* output data handling routines here, if they are not dependent on the
|
||||
* image type.
|
||||
*/
|
||||
dc_methods.d_ui_method_selection = d_ui_method_selection;
|
||||
/* Step 4: set parameters for decompression */
|
||||
|
||||
/* Set up default decompression parameters. */
|
||||
j_d_defaults(&cinfo, TRUE);
|
||||
/* TRUE indicates that an input buffer should be allocated.
|
||||
* In unusual cases you may want to allocate the input buffer yourself;
|
||||
* see jddeflts.c for commentary.
|
||||
/* In this example, we don't need to change any of the defaults set by
|
||||
* jpeg_read_header(), so we do nothing here.
|
||||
*/
|
||||
|
||||
/* At this point you can modify the default parameters set by j_d_defaults
|
||||
* as needed; for example, you can request color quantization or force
|
||||
* grayscale output. See jdmain.c for examples of what you might change.
|
||||
/* Step 5: Start decompressor */
|
||||
|
||||
jpeg_start_decompress(&cinfo);
|
||||
|
||||
/* We may need to do some setup of our own at this point before reading
|
||||
* the data. After jpeg_start_decompress() we have the correct scaled
|
||||
* output image dimensions available, as well as the output colormap
|
||||
* if we asked for color quantization.
|
||||
* In this example, we need to make an output work buffer of the right size.
|
||||
*/
|
||||
/* JSAMPLEs per row in output buffer */
|
||||
row_stride = cinfo.output_width * cinfo.output_components;
|
||||
/* Make a one-row-high sample array that will go away when done with image */
|
||||
buffer = (*cinfo.mem->alloc_sarray)
|
||||
((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
|
||||
|
||||
/* Step 6: while (scan lines remain to be read) */
|
||||
/* jpeg_read_scanlines(...); */
|
||||
|
||||
/* Here we use the library's state variable cinfo.output_scanline as the
|
||||
* loop counter, so that we don't have to keep track ourselves.
|
||||
*/
|
||||
while (cinfo.output_scanline < cinfo.output_height) {
|
||||
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
|
||||
/* Assume put_scanline_someplace wants a pointer and sample count. */
|
||||
put_scanline_someplace(buffer[0], row_stride);
|
||||
}
|
||||
|
||||
/* Step 7: Finish decompression */
|
||||
|
||||
(void) jpeg_finish_decompress(&cinfo);
|
||||
/* We can ignore the return value since suspension is not possible
|
||||
* with the stdio data source.
|
||||
*/
|
||||
|
||||
/* Set up to read a JFIF or baseline-JPEG file. */
|
||||
/* This is the only JPEG file format currently supported. */
|
||||
jselrjfif(&cinfo);
|
||||
/* Step 8: Release JPEG decompression object */
|
||||
|
||||
/* Here we go! */
|
||||
jpeg_decompress(&cinfo);
|
||||
/* This is an important step since it will release a good deal of memory. */
|
||||
jpeg_destroy_decompress(&cinfo);
|
||||
|
||||
/* That's it, son. Nothin' else to do, except close files. */
|
||||
/* Here we assume only the input file need be closed. */
|
||||
fclose(cinfo.input_file);
|
||||
|
||||
return 1; /* indicate success */
|
||||
|
||||
/* Note: if you want to decompress more than one image, we recommend you
|
||||
* repeat this whole routine. You MUST repeat the j_d_defaults()/alter
|
||||
* parameters/jpeg_decompress() sequence, as some data structures allocated
|
||||
* in j_d_defaults are freed upon exit from jpeg_decompress.
|
||||
/* After finish_decompress, we can close the input file.
|
||||
* Here we postpone it until after no more JPEG errors are possible,
|
||||
* so as to simplify the setjmp error logic above. (Actually, I don't
|
||||
* think that jpeg_destroy can do an error exit, but why assume anything...)
|
||||
*/
|
||||
fclose(infile);
|
||||
|
||||
/* At this point you may want to check to see whether any corrupt-data
|
||||
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
|
||||
*/
|
||||
|
||||
/* And we're done! */
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* SOME FINE POINTS:
|
||||
*
|
||||
* In the above code, we ignored the return value of jpeg_read_scanlines,
|
||||
* which is the number of scanlines actually read. We could get away with
|
||||
* this because we asked for only one line at a time and we weren't using
|
||||
* a suspending data source. See libjpeg.doc for more info.
|
||||
*
|
||||
* We cheated a bit by calling alloc_sarray() after jpeg_start_decompress();
|
||||
* we should have done it beforehand to ensure that the space would be
|
||||
* counted against the JPEG max_memory setting. In some systems the above
|
||||
* code would risk an out-of-memory error. However, in general we don't
|
||||
* know the output image dimensions before jpeg_start_decompress(), unless we
|
||||
* call jpeg_calc_output_dimensions(). See libjpeg.doc for more about this.
|
||||
*
|
||||
* Scanlines are returned in the same order as they appear in the JPEG file,
|
||||
* which is standardly top-to-bottom. If you must emit data bottom-to-top,
|
||||
* you can use one of the virtual arrays provided by the JPEG memory manager
|
||||
* to invert the data. See wrbmp.c for an example.
|
||||
*
|
||||
* As with compression, some operating modes may require temporary files.
|
||||
* On some systems you may need to set up a signal handler to ensure that
|
||||
* temporary files are deleted if the program is interrupted. See libjpeg.doc.
|
||||
*/
|
||||
|
||||
185
filelist.doc
Normal file
185
filelist.doc
Normal file
@@ -0,0 +1,185 @@
|
||||
IJG JPEG LIBRARY: FILE LIST
|
||||
|
||||
Copyright (C) 1994, Thomas G. Lane.
|
||||
This file is part of the Independent JPEG Group's software.
|
||||
For conditions of distribution and use, see the accompanying README file.
|
||||
|
||||
|
||||
Here is a road map to the files in the IJG JPEG distribution. The
|
||||
distribution includes the JPEG library proper, plus two application
|
||||
programs ("cjpeg" and "djpeg") which use the library to convert JPEG
|
||||
files to and from some other popular image formats. There are also
|
||||
two stand-alone applications, "rdjpgcom" and "wrjpgcom".
|
||||
|
||||
|
||||
THE JPEG LIBRARY
|
||||
================
|
||||
|
||||
Include files:
|
||||
|
||||
jpeglib.h JPEG library's exported data and function declarations.
|
||||
jconfig.h Configuration declarations. Note: this file is not present
|
||||
in the distribution; it is generated during installation.
|
||||
jmorecfg.h Additional configuration declarations; need not be changed
|
||||
for a standard installation.
|
||||
jerror.h Declares JPEG library's error and trace message codes.
|
||||
jinclude.h Central include file used by library's .c files.
|
||||
jpegint.h JPEG library's internal data structures.
|
||||
jdct.h Private declarations for forward & reverse DCT subsystems.
|
||||
jmemsys.h Private declarations for memory management subsystem.
|
||||
jversion.h Version information.
|
||||
|
||||
Applications using the library should include jpeglib.h (which in turn
|
||||
includes jconfig.h and jmorecfg.h). Optionally, jerror.h may be included
|
||||
if the application needs to reference individual JPEG error codes. The
|
||||
other include files are intended for internal use and would not normally
|
||||
be included by an application program. (cjpeg/djpeg do use jinclude.h,
|
||||
since its function is to improve portability of the whole IJG distribution.
|
||||
Most other applications will directly include the system include files they
|
||||
want, and hence won't need jinclude.h.)
|
||||
|
||||
|
||||
C source code files:
|
||||
|
||||
These files contain most of the functions intended to be called directly by
|
||||
an application program:
|
||||
|
||||
jcapi.c Application program interface routines for compression.
|
||||
jdapi.c Application program interface routines for decompression.
|
||||
jcomapi.c Application program interface routines common to compression
|
||||
and decompression.
|
||||
jcparam.c Compression parameter setting helper routines.
|
||||
|
||||
Compression side of the library:
|
||||
|
||||
jcmaster.c Master control: determines which other modules to use.
|
||||
jcmainct.c Main buffer controller (preprocessor => JPEG compressor).
|
||||
jcprepct.c Preprocessor buffer controller.
|
||||
jccoefct.c Buffer controller for DCT coefficient buffer.
|
||||
jccolor.c Color space conversion.
|
||||
jcsample.c Downsampling.
|
||||
jcdctmgr.c DCT manager (DCT implementation selection & control).
|
||||
jfdctint.c Forward DCT using slow-but-accurate integer method.
|
||||
jfdctfst.c Forward DCT using faster, less accurate integer method.
|
||||
jfdctflt.c Forward DCT using floating-point arithmetic.
|
||||
jchuff.c Huffman entropy coding.
|
||||
jcmarker.c JPEG marker writing.
|
||||
jdatadst.c Data destination manager for stdio output.
|
||||
|
||||
Decompression side of the library:
|
||||
|
||||
jdmaster.c Master control: determines which other modules to use.
|
||||
jdmainct.c Main buffer controller (JPEG decompressor => postprocessor).
|
||||
jdcoefct.c Buffer controller for DCT coefficient buffer.
|
||||
jdpostct.c Postprocessor buffer controller.
|
||||
jdmarker.c JPEG marker reading.
|
||||
jdhuff.c Huffman entropy decoding.
|
||||
jddctmgr.c IDCT manager (IDCT implementation selection & control).
|
||||
jidctint.c Inverse DCT using slow-but-accurate integer method.
|
||||
jidctfst.c Inverse DCT using faster, less accurate integer method.
|
||||
jidctflt.c Inverse DCT using floating-point arithmetic.
|
||||
jidctred.c Inverse DCTs with reduced-size outputs.
|
||||
jdsample.c Upsampling.
|
||||
jdcolor.c Color space conversion.
|
||||
jdmerge.c Merged upsampling/color conversion (faster, lower quality).
|
||||
jquant1.c One-pass color quantization using a fixed-spacing colormap.
|
||||
jquant2.c Two-pass color quantization using a custom-generated colormap.
|
||||
Also handles one-pass quantization to an externally given map.
|
||||
jdatasrc.c Data source manager for stdio input.
|
||||
|
||||
Support files for both compression and decompression:
|
||||
|
||||
jerror.c Standard error handling routines (application replaceable).
|
||||
jmemmgr.c System-independent (more or less) memory management code.
|
||||
jutils.c Miscellaneous utility routines.
|
||||
|
||||
jmemmgr.c relies on a system-dependent memory management module. The IJG
|
||||
distribution includes the following implementations of the system-dependent
|
||||
module:
|
||||
|
||||
jmemnobs.c "No backing store": assumes adequate virtual memory exists.
|
||||
jmemansi.c Makes temporary files with ANSI-standard routine tmpfile().
|
||||
jmemname.c Makes temporary files with program-generated file names.
|
||||
jmemdos.c Custom implementation for MS-DOS: knows about extended and
|
||||
expanded memory as well as temporary files.
|
||||
|
||||
Exactly one of the system-dependent modules should be configured into an
|
||||
installed JPEG library (see install.doc for hints about which one to use).
|
||||
On unusual systems you may find it worthwhile to make a special
|
||||
system-dependent memory manager.
|
||||
|
||||
|
||||
Non-C source code files:
|
||||
|
||||
jmemdosa.asm 80x86 assembly code support for jmemdos.c; used only in
|
||||
MS-DOS-specific configurations of the JPEG library.
|
||||
|
||||
|
||||
CJPEG/DJPEG
|
||||
===========
|
||||
|
||||
Include files:
|
||||
|
||||
cdjpeg.h Declarations shared by cjpeg/djpeg modules.
|
||||
cderror.h Additional error and trace message codes for cjpeg/djpeg.
|
||||
|
||||
C source code files:
|
||||
|
||||
cjpeg.c Main program for cjpeg.
|
||||
djpeg.c Main program for djpeg.
|
||||
rdcolmap.c Code to read a colormap file for djpeg's "-map" option.
|
||||
|
||||
Image file reader modules for cjpeg:
|
||||
|
||||
rdbmp.c BMP file input.
|
||||
rdgif.c GIF file input.
|
||||
rdppm.c PPM/PGM file input.
|
||||
rdrle.c Utah RLE file input.
|
||||
rdtarga.c Targa file input.
|
||||
|
||||
Image file writer modules for djpeg:
|
||||
|
||||
wrbmp.c BMP file output.
|
||||
wrgif.c GIF file output.
|
||||
wrppm.c PPM/PGM file output.
|
||||
wrrle.c Utah RLE file output.
|
||||
wrtarga.c Targa file output.
|
||||
|
||||
|
||||
RDJPGCOM/WRJPGCOM
|
||||
=================
|
||||
|
||||
C source code files:
|
||||
|
||||
rdjpgcom.c Stand-alone rdjpgcom application.
|
||||
wrjpgcom.c Stand-alone wrjpgcom application.
|
||||
|
||||
These programs do not depend on the IJG library. They do use
|
||||
jconfig.h and jinclude.h, simply to improve portability.
|
||||
|
||||
|
||||
ADDITIONAL FILES
|
||||
================
|
||||
|
||||
Documentation (see README for a guide to the documentation files):
|
||||
|
||||
README Master documentation file.
|
||||
*.doc Other documentation files.
|
||||
*.1 Documentation in Unix man page format.
|
||||
change.log Version-to-version change highlights.
|
||||
example.c Sample code for calling JPEG library.
|
||||
|
||||
Configuration/installation files and programs (see install.doc for more info):
|
||||
|
||||
configure Unix shell script to perform automatic configuration.
|
||||
ckconfig.c Program to generate jconfig.h on non-Unix systems.
|
||||
jconfig.doc Template for making jconfig.h by hand.
|
||||
makefile.* Sample makefiles for particular systems.
|
||||
jconfig.* Sample jconfig.h for particular systems.
|
||||
ansi2knr.c De-ANSIfier for pre-ANSI C compilers (courtesy of
|
||||
L. Peter Deutsch and Aladdin Enterprises).
|
||||
|
||||
Test files (see install.doc for test procedure):
|
||||
|
||||
test*.* Source and comparison files for confidence test.
|
||||
These are binary image files, NOT text files.
|
||||
745
install.doc
Normal file
745
install.doc
Normal file
@@ -0,0 +1,745 @@
|
||||
INSTALLATION INSTRUCTIONS for the Independent JPEG Group's JPEG software
|
||||
|
||||
Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
This file is part of the Independent JPEG Group's software.
|
||||
For conditions of distribution and use, see the accompanying README file.
|
||||
|
||||
|
||||
This file explains how to configure and install the IJG software. We have
|
||||
tried to make this software extremely portable and flexible, so that it can be
|
||||
adapted to almost any environment. The downside of this decision is that the
|
||||
installation process is complicated. We have provided shortcuts to simplify
|
||||
the task on common systems. But in any case, you will need at least a little
|
||||
familiarity with C programming and program build procedures for your system.
|
||||
|
||||
If you are only using this software as part of a larger program, the larger
|
||||
program's installation procedure may take care of configuring the IJG code.
|
||||
For example, Ghostscript's installation script will configure the IJG code.
|
||||
You don't need to read this file if you just want to compile Ghostscript.
|
||||
|
||||
If you are on a Unix machine, you may not need to read this file at all.
|
||||
Try doing
|
||||
./configure
|
||||
make
|
||||
make test
|
||||
If that doesn't complain, do
|
||||
make install
|
||||
(better do "make -n install" first to see if the makefile will put the files
|
||||
where you want them). Read further if you run into snags or want to customize
|
||||
the code for your system.
|
||||
|
||||
|
||||
TABLE OF CONTENTS
|
||||
-----------------
|
||||
|
||||
Before you start
|
||||
Configuring the software:
|
||||
using the automatic "configure" script
|
||||
using one of the supplied jconfig and makefile files
|
||||
by hand
|
||||
Building the software
|
||||
Testing the software
|
||||
Installing the software
|
||||
Optional stuff
|
||||
Optimization
|
||||
Hints for specific systems
|
||||
|
||||
|
||||
BEFORE YOU START
|
||||
================
|
||||
|
||||
Before installing the software you must unpack the distributed source code.
|
||||
Since you are reading this file, you have probably already succeeded in this
|
||||
task. However, there is a potential for error if you needed to convert the
|
||||
files to the local standard text file format (for example, if you are on
|
||||
MS-DOS you may have converted LF end-of-line to CR/LF). You must apply
|
||||
such conversion to all the files EXCEPT those whose names begin with "test".
|
||||
The test files contain binary data; if you change them in any way then the
|
||||
self-test will give bad results.
|
||||
|
||||
Please check the last section of this file to see if there are hints for the
|
||||
specific machine or compiler you are using.
|
||||
|
||||
|
||||
CONFIGURING THE SOFTWARE
|
||||
========================
|
||||
|
||||
To configure the IJG code for your system, you need to create two files:
|
||||
* jconfig.h: contains values for system-dependent #define symbols.
|
||||
* Makefile: controls the compilation process.
|
||||
(On a non-Unix machine, you may create "project files" or some other
|
||||
substitute for a Makefile. jconfig.h is needed in any environment.)
|
||||
|
||||
We provide three different ways to generate these files:
|
||||
* On a Unix system, you can just run the "configure" script.
|
||||
* We provide sample jconfig files and makefiles for popular machines;
|
||||
if your machine matches one of the samples, just copy the right sample
|
||||
files to jconfig.h and Makefile.
|
||||
* If all else fails, read the instructions below and make your own files.
|
||||
|
||||
|
||||
Configuring the software using the automatic "configure" script
|
||||
---------------------------------------------------------------
|
||||
|
||||
If you are on a Unix machine, you can just type
|
||||
./configure
|
||||
and let the configure script construct appropriate configuration files.
|
||||
If you're using "csh" on an old version of System V, you might need to type
|
||||
sh configure
|
||||
instead to prevent csh from trying to execute configure itself.
|
||||
Expect configure to run for a few minutes, particularly on slower machines;
|
||||
it works by compiling a series of test programs.
|
||||
|
||||
Configure was created with GNU Autoconf and it follows the usual conventions
|
||||
for GNU configure scripts. It makes a few assumptions that you may want to
|
||||
override. You can do this by providing optional switches to configure:
|
||||
|
||||
* Configure will use gcc (GNU C compiler) if it's available, otherwise cc.
|
||||
To force a particular compiler to be selected, use the CC option, for example
|
||||
./configure CC='cc'
|
||||
The same method can be used to include any unusual compiler switches.
|
||||
For example, on HP-UX you probably want to say
|
||||
./configure CC='cc -Aa'
|
||||
to get HP's compiler to run in ANSI mode.
|
||||
|
||||
* Configure will set up the makefile so that "make install" will install files
|
||||
into /usr/local/bin, /usr/local/man, etc. You can specify an installation
|
||||
prefix other than "/usr/local" by giving configure the option "--prefix=PATH".
|
||||
|
||||
* If you don't have a lot of swap space, you may need to enable the IJG
|
||||
software's internal virtual memory mechanism. To do this, give the option
|
||||
"--with-maxmem=N" where N is the default maxmemory limit in megabytes.
|
||||
This is discussed in more detail under "Selecting a memory manager", below.
|
||||
You probably don't need to worry about this on reasonably-sized Unix machines,
|
||||
unless you plan to process very large images.
|
||||
|
||||
Configure has some other features that are useful if you are cross-compiling
|
||||
or working in a network of multiple machine types; but if you need those
|
||||
features, you probably already know how to use them.
|
||||
|
||||
|
||||
Configuring the software using one of the supplied jconfig and makefile files
|
||||
-----------------------------------------------------------------------------
|
||||
|
||||
If you have one of these systems, you can just use the provided configuration
|
||||
files:
|
||||
|
||||
Makefile jconfig file System and/or compiler
|
||||
|
||||
makefile.manx jconfig.manx Amiga, Manx Aztec C
|
||||
makefile.sas jconfig.sas Amiga, SAS C
|
||||
mak*jpeg.st jconfig.st Atari ST/STE/TT, Pure C or Turbo C
|
||||
makefile.bcc jconfig.bcc MS-DOS, Borland C (Turbo C)
|
||||
makefile.dj jconfig.dj MS-DOS, DJGPP (Delorie's port of GNU C)
|
||||
makefile.mc6 jconfig.mc6 MS-DOS, Microsoft C version 6.x and up
|
||||
makefile.mms jconfig.vms Digital VMS, with MMS software
|
||||
makefile.vms jconfig.vms Digital VMS, without MMS software
|
||||
|
||||
Copy the proper jconfig file to jconfig.h and the makefile to Makefile
|
||||
(or whatever your system uses as the standard makefile name). For the
|
||||
Atari, we provide three project files; see the Atari hints below.
|
||||
|
||||
|
||||
Configuring the software by hand
|
||||
--------------------------------
|
||||
|
||||
First, generate a jconfig.h file. If you are moderately familiar with C,
|
||||
the comments in jconfig.doc should be enough information to do this; just
|
||||
copy jconfig.doc to jconfig.h and edit it appropriately. Otherwise, you may
|
||||
prefer to use the ckconfig.c program. You will need to compile and execute
|
||||
ckconfig.c by hand --- we hope you know at least enough to do that.
|
||||
ckconfig.c may not compile the first try (in fact, the whole idea is for it
|
||||
to fail if anything is going to). If you get compile errors, fix them by
|
||||
editing ckconfig.c according to the directions given in ckconfig.c. Once
|
||||
you get it to run, it will write a suitable jconfig.h file, and will also
|
||||
print out some advice about which makefile to use.
|
||||
|
||||
You may also want to look at the canned jconfig files, if there is one for a
|
||||
system similar to yours.
|
||||
|
||||
Second, select a makefile and copy it to Makefile (or whatever your system
|
||||
uses as the standard makefile name). The most generic makefiles we provide
|
||||
are
|
||||
makefile.ansi: if your C compiler supports function prototypes
|
||||
makefile.unix: if not.
|
||||
(You have function prototypes if ckconfig.c put "#define HAVE_PROTOTYPES"
|
||||
in jconfig.h.) You may want to start from one of the other makefiles if
|
||||
there is one for a system similar to yours.
|
||||
|
||||
Look over the selected Makefile and adjust options as needed. In particular
|
||||
you may want to change the CC and CFLAGS definitions. For instance, if you
|
||||
are using GCC, set CC=gcc. If you had to use any compiler switches to get
|
||||
ckconfig.c to work, make sure the same switches are in CFLAGS.
|
||||
|
||||
If you are on a system that doesn't use makefiles, you'll need to set up
|
||||
project files (or whatever you do use) to compile all the source files and
|
||||
link them into executable files cjpeg, djpeg, rdjpgcom, and wrjpgcom. See
|
||||
the file lists in any of the makefiles to find out which files go into each
|
||||
program. Note that the provided makefiles all make a "library" file libjpeg
|
||||
first, but you don't have to do that if you don't want to; the file lists
|
||||
identify which source files are actually needed for compression,
|
||||
decompression, or both. As a last resort, you can make a batch script that
|
||||
just compiles everything and links it all together; makefile.vms is an
|
||||
example of this (it's for VMS systems that have no make-like utility).
|
||||
|
||||
Here are comments about some specific configuration decisions you'll
|
||||
need to make:
|
||||
|
||||
Command line style
|
||||
------------------
|
||||
|
||||
cjpeg and djpeg can use a Unix-like command line style which supports
|
||||
redirection and piping, like this:
|
||||
cjpeg inputfile >outputfile
|
||||
cjpeg <inputfile >outputfile
|
||||
source program | cjpeg >outputfile
|
||||
The simpler "two file" command line style is just
|
||||
cjpeg inputfile outputfile
|
||||
You may prefer the two-file style, particularly if you don't have pipes.
|
||||
|
||||
You MUST use two-file style on any system that doesn't cope well with binary
|
||||
data fed through stdin/stdout; this is true for some MS-DOS compilers, for
|
||||
example. If you're not on a Unix system, it's safest to assume you need
|
||||
two-file style. (But if your compiler provides either the Posix-standard
|
||||
fdopen() library routine or a Microsoft-compatible setmode() routine, you
|
||||
can safely use the Unix command line style, by defining USE_FDOPEN or
|
||||
USE_SETMODE respectively.)
|
||||
|
||||
To use the two-file style, make jconfig.h say "#define TWO_FILE_COMMANDLINE".
|
||||
|
||||
Selecting a memory manager
|
||||
--------------------------
|
||||
|
||||
The IJG code is capable of working on images that are too big to fit in main
|
||||
memory; data is swapped out to temporary files as necessary. However, the
|
||||
code to do this is rather system-dependent. We provide four different
|
||||
memory managers:
|
||||
|
||||
* jmemansi.c This version uses the ANSI-standard library routine tmpfile(),
|
||||
which not all non-ANSI systems have. On some systems
|
||||
tmpfile() may put the temporary file in a non-optimal
|
||||
location; if you don't like what it does, use jmemname.c.
|
||||
|
||||
* jmemname.c This version creates named temporary files. For anything
|
||||
except a Unix machine, you'll need to configure the
|
||||
select_file_name() routine appropriately; see the comments
|
||||
near the head of jmemname.c. If you use this version, define
|
||||
NEED_SIGNAL_CATCHER in jconfig.h to make sure the temp files
|
||||
are removed if the program is aborted.
|
||||
|
||||
* jmemnobs.c (That stands for No Backing Store :-).) This will compile on
|
||||
almost any system, but it assumes you have enough main memory
|
||||
or virtual memory to hold the biggest images you work with.
|
||||
|
||||
* jmemdos.c This should be used with most 16-bit MS-DOS compilers.
|
||||
See the system-specific notes about MS-DOS for more info.
|
||||
IMPORTANT: if you use this, define USE_MSDOS_MEMMGR in
|
||||
jconfig.h, and include the assembly file jmemdosa.asm in the
|
||||
programs. The supplied makefiles and jconfig files for
|
||||
MS-DOS compilers already do both.
|
||||
|
||||
To use a particular memory manager, change the SYSDEPMEM variable in your
|
||||
makefile to equal the corresponding object file name (for example, jmemansi.o
|
||||
or jmemansi.obj for jmemansi.c).
|
||||
|
||||
If you have plenty of (real or virtual) main memory, just use jmemnobs.c.
|
||||
"Plenty" means about ten bytes for every pixel in the largest images
|
||||
you plan to process, so a lot of systems don't meet this criterion.
|
||||
If yours doesn't, try jmemansi.c first. If that doesn't compile, you'll have
|
||||
to use jmemname.c; be sure to adjust select_file_name() for local conditions.
|
||||
You may also need to change unlink() to remove() in close_backing_store().
|
||||
|
||||
Except with jmemnobs.c, you need to adjust the DEFAULT_MAX_MEM setting to a
|
||||
reasonable value for your system (either by adding a #define for
|
||||
DEFAULT_MAX_MEM to jconfig.h, or by adding a -D switch to the Makefile).
|
||||
This value limits the amount of data space the program will attempt to
|
||||
allocate. Code and static data space isn't counted, so the actual memory
|
||||
needs for cjpeg or djpeg are typically 100 to 150Kb more than the max-memory
|
||||
setting. Larger max-memory settings reduce the amount of I/O needed to
|
||||
process a large image, but too large a value can result in "insufficient
|
||||
memory" failures. On most Unix machines (and other systems with virtual
|
||||
memory), just set DEFAULT_MAX_MEM to several million and forget it. At the
|
||||
other end of the spectrum, for MS-DOS machines you probably can't go much
|
||||
above 300K to 400K. (On MS-DOS the value refers to conventional memory only.
|
||||
Extended/expanded memory is handled separately by jmemdos.c.)
|
||||
|
||||
|
||||
BUILDING THE SOFTWARE
|
||||
=====================
|
||||
|
||||
Now you should be able to compile the software. Just say "make" (or
|
||||
whatever's necessary to start the compilation). Have a cup of coffee.
|
||||
|
||||
Here are some things that could go wrong:
|
||||
|
||||
If your compiler complains about undefined structures, you should be able to
|
||||
shut it up by putting "#define INCOMPLETE_TYPES_BROKEN" in jconfig.h.
|
||||
|
||||
If you have trouble with missing system include files or inclusion of the
|
||||
wrong ones, read jinclude.h. This shouldn't happen if you used configure
|
||||
or ckconfig.c to set up jconfig.h.
|
||||
|
||||
There are a fair number of routines that do not use all of their parameters;
|
||||
some compilers will issue warnings about this, which you can ignore. There
|
||||
are also a few configuration checks that may give "unreachable code" warnings.
|
||||
Any other warning deserves investigation.
|
||||
|
||||
If you don't have a getenv() library routine, define NO_GETENV.
|
||||
|
||||
Also see the system-specific hints, below.
|
||||
|
||||
|
||||
TESTING THE SOFTWARE
|
||||
====================
|
||||
|
||||
As a quick test of functionality we've included a small sample image in
|
||||
several forms:
|
||||
testorig.jpg Starting point for the djpeg tests.
|
||||
testimg.ppm The output of djpeg testorig.jpg
|
||||
testimg.gif The output of djpeg -gif testorig.jpg
|
||||
testimg.jpg The output of cjpeg testimg.ppm
|
||||
(The two .jpg files aren't identical since JPEG is lossy.) If you can
|
||||
generate duplicates of the testimg.* files then you probably have working
|
||||
programs.
|
||||
|
||||
With most of the makefiles, "make test" will perform the necessary
|
||||
comparisons.
|
||||
|
||||
If you're using a makefile that doesn't provide the test option, run djpeg
|
||||
and cjpeg by hand to generate testout.ppm, testout.gif, and testout.jpg,
|
||||
then compare these to testimg.* with whatever binary file comparison tool
|
||||
you have. The files should be bit-for-bit identical.
|
||||
|
||||
If the programs complain "MAX_ALLOC_CHUNK is wrong, please fix", then you
|
||||
need to reduce MAX_ALLOC_CHUNK to a value that fits in type size_t.
|
||||
Try adding "#define MAX_ALLOC_CHUNK 65520L" to jconfig.h. A less likely
|
||||
configuration error is "ALIGN_TYPE is wrong, please fix": defining ALIGN_TYPE
|
||||
as long should take care of that one.
|
||||
|
||||
If the cjpeg test run fails with "Missing Huffman code table entry", it's a
|
||||
good bet that you needed to define RIGHT_SHIFT_IS_UNSIGNED. Go back to the
|
||||
configuration step and run ckconfig.c. (This is a good plan for any other
|
||||
test failure, too.)
|
||||
|
||||
If you are using Unix (one-file) command line style on a non-Unix system,
|
||||
it's a good idea to check that binary I/O through stdin/stdout actually
|
||||
works. You should get the same results from "djpeg <testorig.jpg >out.ppm"
|
||||
as from "djpeg -outfile out.ppm testorig.jpg". Note that the makefiles all
|
||||
use the latter style and therefore do not exercise stdin/stdout! If this
|
||||
check fails, try recompiling cjpeg.c and djpeg.c with USE_SETMODE or
|
||||
USE_FDOPEN. If it still doesn't work, better use two-file style.
|
||||
(rdjpgcom.c and wrjpgcom.c will also need to be recompiled.)
|
||||
|
||||
If you chose a memory manager other than jmemnobs.c, you should test that
|
||||
temporary-file usage works. Try "djpeg -gif -max 0 testorig.jpg" and make
|
||||
sure its output matches testimg.gif. If you have any really large images
|
||||
handy, try compressing them with -optimize and/or decompressing with -gif to
|
||||
make sure your DEFAULT_MAX_MEM setting is not too large.
|
||||
|
||||
NOTE: this is far from an exhaustive test of the JPEG software; some modules,
|
||||
such as 1-pass color quantization, are not exercised at all. It's just a
|
||||
quick test to give you some confidence that you haven't missed something
|
||||
major.
|
||||
|
||||
|
||||
INSTALLING THE SOFTWARE
|
||||
=======================
|
||||
|
||||
Once you're done with the above steps, you can install the software by
|
||||
copying the executable files (cjpeg, djpeg, rdjpgcom, and wrjpgcom) to
|
||||
wherever you normally install programs. On Unix systems, you'll also want
|
||||
to put the man pages (cjpeg.1, djpeg.1, rdjpgcom.1, wrjpgcom.1) in the
|
||||
man-page directory. The canned makefiles don't support this step since
|
||||
there's such a wide variety of installation procedures on different systems.
|
||||
|
||||
If you generated a Makefile with the "configure" script, you can just say
|
||||
make install
|
||||
to install the programs and their man pages into the standard places.
|
||||
(You'll probably need to be root to do this.) We recommend first saying
|
||||
make -n install
|
||||
to see where configure thought the files should go. You may need to edit
|
||||
the Makefile, particularly if your system's conventions for man page
|
||||
filenames don't match what configure expects.
|
||||
|
||||
If you want to install the library file libjpeg.a and the include files j*.h
|
||||
(for use in compiling other programs besides cjpeg/djpeg), then say
|
||||
make install-lib
|
||||
|
||||
|
||||
OPTIONAL STUFF
|
||||
==============
|
||||
|
||||
Progress monitor:
|
||||
|
||||
If you like, you can #define PROGRESS_REPORT (in jconfig.h) to enable display
|
||||
of percent-done progress reports. The routines provided in cjpeg.c/djpeg.c
|
||||
merely print percentages to stderr, but you can customize them to do
|
||||
something fancier.
|
||||
|
||||
Utah RLE file format support:
|
||||
|
||||
We distribute the software with support for RLE image files (Utah Raster
|
||||
Toolkit format) disabled, because the RLE support won't compile without the
|
||||
Utah library. If you have URT version 3.1 or later, you can enable RLE
|
||||
support as follows:
|
||||
1. #define RLE_SUPPORTED in jconfig.h.
|
||||
2. Add a -I option to CFLAGS in the Makefile for the directory
|
||||
containing the URT .h files (typically the "include"
|
||||
subdirectory of the URT distribution).
|
||||
3. Add -L... -lrle to LDLIBS in the Makefile, where ... specifies
|
||||
the directory containing the URT "librle.a" file (typically the
|
||||
"lib" subdirectory of the URT distribution).
|
||||
|
||||
Removing code:
|
||||
|
||||
If you need to make a smaller version of the JPEG software, some optional
|
||||
functions can be removed at compile time. See the xxx_SUPPORTED #defines in
|
||||
jconfig.h and jmorecfg.h. If at all possible, we recommend that you leave in
|
||||
decoder support for all valid JPEG files, to ensure that you can read anyone's
|
||||
output. Taking out support for image file formats that you don't use is the
|
||||
most painless way to make the programs smaller. Another possibility is to
|
||||
remove some of the DCT methods: in particular, the "IFAST" method may not be
|
||||
enough faster than the others to be worth keeping on your machine. (If you
|
||||
do remove ISLOW or IFAST, be sure to redefine JDCT_DEFAULT or JDCT_FASTEST
|
||||
to a supported method, by adding a #define in jconfig.h.)
|
||||
|
||||
|
||||
OPTIMIZATION
|
||||
============
|
||||
|
||||
Unless you own a Cray, you'll probably be interested in making the JPEG
|
||||
software go as fast as possible. This section covers some machine-dependent
|
||||
optimizations you may want to try. We suggest that before trying any of
|
||||
this, you first get the basic installation to pass the self-test step.
|
||||
Repeat the self-test after any optimization to make sure that you haven't
|
||||
broken anything.
|
||||
|
||||
The integer DCT routines perform a lot of multiplications. These
|
||||
multiplications must yield 32-bit results, but none of their input values
|
||||
are more than 16 bits wide. On many machines, notably the 680x0 and 80x86
|
||||
CPUs, a 16x16=>32 bit multiply instruction is faster than a full 32x32=>32
|
||||
bit multiply. Unfortunately there is no portable way to specify such a
|
||||
multiplication in C, but some compilers can generate one when you use the
|
||||
right combination of casts. See the MULTIPLYxxx macro definitions in
|
||||
jdct.h. If your compiler makes "int" be 32 bits and "short" be 16 bits,
|
||||
defining SHORTxSHORT_32 is fairly likely to work. When experimenting with
|
||||
alternate definitions, be sure to test not only whether the code still works
|
||||
(use the self-test), but also whether it is actually faster --- on some
|
||||
compilers, alternate definitions may compute the right answer, yet be slower
|
||||
than the default. Timing cjpeg on a large PPM input file is the best way to
|
||||
check this, as the DCT will be the largest fraction of the runtime in that
|
||||
mode. (Note: some of the distributed compiler-specific jconfig files
|
||||
already contain #define switches to select appropriate MULTIPLYxxx
|
||||
definitions.)
|
||||
|
||||
If your machine has sufficiently fast floating point hardware, you may find
|
||||
that the float DCT method is faster than the integer DCT methods, even
|
||||
after tweaking the integer multiply macros. In that case you may want to
|
||||
make the float DCT be the default method. (The only objection to this is
|
||||
that float DCT results may vary slightly across machines.) To do that, add
|
||||
"#define JDCT_DEFAULT JDCT_FLOAT" to jconfig.h. Even if you don't change
|
||||
the default, you should redefine JDCT_FASTEST, which is the method selected
|
||||
by djpeg's -fast switch. Don't forget to update the documentation files
|
||||
(usage.doc and/or cjpeg.1, djpeg.1) to agree with what you've done.
|
||||
|
||||
If access to "short" arrays is slow on your machine, it may be a win to
|
||||
define type JCOEF as int rather than short. This will cost a good deal of
|
||||
memory though, particularly in some multi-pass modes, so don't do it unless
|
||||
you have memory to burn and short is REALLY slow.
|
||||
|
||||
If your compiler can compile function calls in-line, make sure the INLINE
|
||||
macro in jmorecfg.h is defined as the keyword that marks a function
|
||||
inline-able. Some compilers have a switch that tells the compiler to inline
|
||||
any function it thinks is profitable (e.g., -finline-functions for gcc).
|
||||
Enabling such a switch is likely to make the compiled code bigger but faster.
|
||||
|
||||
In general, it's worth trying the maximum optimization level of your compiler,
|
||||
and experimenting with any optional optimizations such as loop unrolling.
|
||||
(Unfortunately, far too many compilers have optimizer bugs ... be prepared to
|
||||
back off if the code fails self-test.) If you do any experimentation along
|
||||
these lines, please report the optimal settings to jpeg-info@uunet.uu.net so
|
||||
we can mention them in future releases. Be sure to specify your machine and
|
||||
compiler version.
|
||||
|
||||
|
||||
HINTS FOR SPECIFIC SYSTEMS
|
||||
==========================
|
||||
|
||||
We welcome reports on changes needed for systems not mentioned here. Submit
|
||||
'em to jpeg-info@uunet.uu.net. Also, if configure or ckconfig.c is wrong
|
||||
about how to configure the JPEG software for your system, please let us know.
|
||||
|
||||
|
||||
Acorn RISC OS:
|
||||
|
||||
(Thanks to Simon Middleton for these hints on compiling with Desktop C.)
|
||||
After renaming the files according to Acorn conventions, take a copy of
|
||||
makefile.ansi, change all occurrences of 'libjpeg.a' to 'libjpeg.o' and
|
||||
change these definitions as indicated:
|
||||
|
||||
CFLAGS= -throwback -IC: -Wn
|
||||
LDLIBS=C:o.Stubs
|
||||
SYSDEPMEM=jmemansi.o
|
||||
LN=Link
|
||||
AR=LibFile -c -o
|
||||
|
||||
Also add a new line '.c.o:; $(cc) $< $(cflags) -c -o $@'. Remove the
|
||||
lines '$(RM) libjpeg.o' and '$(AR2) libjpeg.o' and the 'jconfig.h'
|
||||
dependency section.
|
||||
|
||||
Copy jconfig.doc to jconfig.h. Edit jconfig.h to define TWO_FILE_COMMANDLINE
|
||||
and CHAR_IS_UNSIGNED.
|
||||
|
||||
Run the makefile using !AMU not !Make. If you want to use the 'clean' and
|
||||
'test' makefile entries then you will have to fiddle with the syntax a bit
|
||||
and rename the test files.
|
||||
|
||||
|
||||
Amiga:
|
||||
|
||||
SAS C 6.50 reportedly is too buggy to compile the IJG code properly.
|
||||
A patch to update to 6.51 is available from SAS or AmiNet FTP sites.
|
||||
|
||||
|
||||
Atari ST/STE/TT:
|
||||
|
||||
Copy the project files makcjpeg.st, makdjpeg.st, and makljpeg.st to cjpeg.prj,
|
||||
djpeg.prj, and libjpeg.prj respectively. The project files should work as-is
|
||||
with Pure C. For Turbo C, change library filenames "PC..." to "TC..." in
|
||||
cjpeg.prj and djpeg.prj. Note that libjpeg.prj selects jmemansi.c as the
|
||||
recommended memory manager. You'll probably want to adjust the
|
||||
DEFAULT_MAX_MEM setting --- you want it to be a couple hundred K less than
|
||||
your normal free memory. Put "#define DEFAULT_MAX_MEM nnnn" into jconfig.h
|
||||
to do this.
|
||||
|
||||
To use the 68881/68882 coprocessor for the floating point DCT, add the
|
||||
compiler option "-8" to the project files and replace PCFLTLIB.LIB with
|
||||
PC881LIB.LIB in cjpeg.prj and djpeg.prj. Or if you don't have a
|
||||
coprocessor, you may prefer to remove the float DCT code by undefining
|
||||
DCT_FLOAT_SUPPORTED in jmorecfg.h (since without a coprocessor, the float
|
||||
code will be too slow to be useful). In that case, you can delete
|
||||
PCFLTLIB.LIB from the project files.
|
||||
|
||||
Note that you must make libjpeg.lib before making cjpeg.ttp or djpeg.ttp.
|
||||
You'll have to perform the self-test by hand.
|
||||
|
||||
We haven't bothered to include project files for rdjpgcom and wrjpgcom.
|
||||
Those source files should just be compiled by themselves; they don't
|
||||
depend on the JPEG library.
|
||||
|
||||
There is a bug in some older versions of the Turbo C library which causes the
|
||||
space used by temporary files created with "tmpfile()" not to be freed after
|
||||
an abnormal program exit. If you check your disk afterwards, you will find
|
||||
cluster chains that are allocated but not used by a file. This should not
|
||||
happen in cjpeg or djpeg, since we enable a signal catcher to explicitly close
|
||||
temp files before exiting. But if you use the JPEG library with your own
|
||||
code, be sure to supply a signal catcher, or else use a different
|
||||
system-dependent memory manager.
|
||||
|
||||
|
||||
Cray:
|
||||
|
||||
Should you be so fortunate as to be running JPEG on a Cray YMP, there is a
|
||||
compiler bug in old versions of Cray's Standard C (prior to 3.1). If you
|
||||
still have an old compiler, you'll need to insert a line reading
|
||||
"#pragma novector" just before the loop
|
||||
for (i = 1; i <= (int) htbl->bits[l]; i++)
|
||||
huffsize[p++] = (char) l;
|
||||
in fix_huff_tbl (in V5beta1, line 204 of jchuff.c and line 176 of jdhuff.c).
|
||||
[This bug may or may not still occur with the current IJG code, but it's
|
||||
probably a dead issue anyway...]
|
||||
|
||||
|
||||
HP-UX:
|
||||
|
||||
If you have HP-UX 7.05 or later with the "software development" C compiler,
|
||||
you should run the compiler in ANSI mode. If using the configure script,
|
||||
say
|
||||
./configure CC='cc -Aa'
|
||||
(or -Ae if you prefer). If configuring by hand, use makefile.ansi and add
|
||||
"-Aa" to the CFLAGS line in the makefile.
|
||||
|
||||
If you have a pre-7.05 system, or if you are using the non-ANSI C compiler
|
||||
delivered with a minimum HP-UX system, then you must use makefile.unix
|
||||
(and do NOT add -Aa); or just run configure without the CC option.
|
||||
|
||||
On HP 9000 series 800 machines, the HP C compiler is buggy in revisions prior
|
||||
to A.08.07. If you get complaints about "not a typedef name", you'll have to
|
||||
use makefile.unix, or run configure without the CC option.
|
||||
|
||||
|
||||
Macintosh, MPW:
|
||||
|
||||
We don't directly support MPW in the current release, but Larry Rosenstein
|
||||
ported an earlier version of the IJG code without very much trouble. There's
|
||||
useful notes and conversion scripts in his kit for porting PBMPLUS to MPW.
|
||||
You can obtain the kit by FTP to ftp.apple.com, files /pub/lsr/pbmplus-port*.
|
||||
|
||||
|
||||
Macintosh, Metrowerks CodeWarrior:
|
||||
|
||||
Metrowerks release DR2 has problems with the IJG code; don't use it. Release
|
||||
DR3.5 or later should be OK.
|
||||
|
||||
The command-line-style interface can be used by defining USE_CCOMMAND and
|
||||
TWO_FILE_COMMANDLINE (see next entry for more details).
|
||||
|
||||
On 680x0 Macs, Metrowerks defines type "double" as a 10-byte IEEE extended
|
||||
float. jmemmgr.c won't like this: it wants sizeof(ALIGN_TYPE) to be a power
|
||||
of 2. Add "#define ALIGN_TYPE long" to jconfig.h to eliminate the complaint.
|
||||
|
||||
|
||||
Macintosh, Think C:
|
||||
|
||||
The supplied user-interface files (cjpeg.c and djpeg.c) are set up to provide
|
||||
a Unix-style command line interface. You can use this interface on the Mac
|
||||
by means of Think's ccommand() library routine. However, a much better
|
||||
Mac-style user interface has been prepared by Jim Brunner. You can obtain
|
||||
the additional source code needed for that user interface by FTP to
|
||||
sumex-aim.stanford.edu, file /info-mac/dev/src/jpeg-convert-c.hqx. Jim's
|
||||
documentation also includes more detailed build instructions for Think C.
|
||||
(Jim is working on updating this code to work with v5 of the IJG library,
|
||||
but it wasn't ready as of v5 release time. Should be out before too long.)
|
||||
|
||||
If you want to build the minimal command line version, proceed as follows.
|
||||
You'll have to prepare project files for the programs; we don't include any
|
||||
in the distribution since they are not text files. Use the file lists in
|
||||
any of the supplied makefiles as a guide. Also add the ANSI and Unix C
|
||||
libraries in a separate segment. You may need to divide the JPEG files into
|
||||
more than one segment; we recommend dividing compression and decompression
|
||||
modules. Define USE_CCOMMAND in jconfig.h so that the ccommand() routine is
|
||||
called. You must also define TWO_FILE_COMMANDLINE because stdin/stdout
|
||||
don't handle binary data correctly.
|
||||
|
||||
On 680x0 Macs, Think C defines type "double" as a 12-byte IEEE extended float.
|
||||
jmemmgr.c won't like this: it wants sizeof(ALIGN_TYPE) to be a power of 2.
|
||||
Add "#define ALIGN_TYPE long" to jconfig.h to eliminate the complaint.
|
||||
|
||||
|
||||
MIPS R3000:
|
||||
|
||||
MIPS's cc version 1.31 has a rather nasty optimization bug. Don't use -O
|
||||
if you have that compiler version. (Use "cc -V" to check the version.)
|
||||
Note that the R3000 chip is found in workstations from DEC and others.
|
||||
|
||||
|
||||
MS-DOS, generic comments for 16-bit compilers:
|
||||
|
||||
The IJG code is designed to be compiled in 80x86 "small" or "medium" memory
|
||||
models (i.e., data pointers are 16 bits unless explicitly declared "far";
|
||||
code pointers can be either size). You may be able to use small model to
|
||||
compile cjpeg or djpeg by itself, but you will probably have to use medium
|
||||
model for any larger application. This won't make much difference in
|
||||
performance. You *will* take a noticeable performance hit if you use a
|
||||
large-data memory model, and you should avoid "huge" model if at all
|
||||
possible. Be sure that NEED_FAR_POINTERS is defined in jconfig.h if you use
|
||||
a small-data memory model; be sure it is NOT defined if you use a large-data
|
||||
model. (The supplied makefiles and jconfig files for Borland and Microsoft C
|
||||
compile in medium model and define NEED_FAR_POINTERS.)
|
||||
|
||||
The DOS-specific memory manager, jmemdos.c, should be used if possible.
|
||||
It needs some assembly-code routines which are in jmemdosa.asm; make sure
|
||||
your makefile assembles that file and includes it in the library. If you
|
||||
don't have a suitable assembler, you can get pre-assembled object files for
|
||||
jmemdosa by FTP from ftp.uu.net: graphics/jpeg/jdosaobj.zip.
|
||||
|
||||
When using jmemdos.c, jconfig.h must define USE_MSDOS_MEMMGR and must set
|
||||
MAX_ALLOC_CHUNK to less than 64K (65520L is a typical value). If your
|
||||
C library's far-heap malloc() can't allocate blocks that large, reduce
|
||||
MAX_ALLOC_CHUNK to whatever it can handle.
|
||||
|
||||
If you can't use jmemdos.c for some reason --- for example, because you
|
||||
don't have an assembler to assemble jmemdosa.asm --- you'll have to fall
|
||||
back to jmemansi.c or jmemname.c. You'll probably still need to set
|
||||
MAX_ALLOC_CHUNK in jconfig.h, because most DOS C libraries won't malloc()
|
||||
more than 64K at a time. IMPORTANT: if you use jmemansi.c or jmemname.c,
|
||||
you will have to compile in a large-data memory model in order to get the
|
||||
right stdio library. Too bad.
|
||||
|
||||
wrjpgcom needs to be compiled in large model, because it malloc()s a 64KB
|
||||
work area to hold the comment text. If your C library's malloc can't
|
||||
handle that, reduce MAX_COM_LENGTH as necessary in wrjpgcom.c.
|
||||
|
||||
Most MS-DOS compilers treat stdin/stdout as text files, so you must use
|
||||
two-file command line style. But if your compiler has either fdopen() or
|
||||
setmode(), you can use one-file style if you like. To do this, define
|
||||
USE_SETMODE or USE_FDOPEN so that stdin/stdout will be set to binary mode.
|
||||
(USE_SETMODE seems to work with more DOS compilers than USE_FDOPEN.) You
|
||||
should test that I/O through stdin/stdout produces the same results as I/O
|
||||
to explicitly named files... the "make test" procedures in the supplied
|
||||
makefiles do NOT use stdin/stdout.
|
||||
|
||||
|
||||
MS-DOS, generic comments for 32-bit compilers:
|
||||
|
||||
None of the above comments about memory models apply if you are using a
|
||||
32-bit flat-memory-space environment, such as DJGPP or Watcom C. (And you
|
||||
should use one if you have it, as performance will be much better than
|
||||
8086-compatible code!) For flat-memory-space compilers, do NOT define
|
||||
NEED_FAR_POINTERS, and do NOT use jmemdos.c. Use jmemnobs.c if the
|
||||
environment supplies adequate virtual memory, otherwise use jmemansi.c or
|
||||
jmemname.c.
|
||||
|
||||
You'll still need to be careful about binary I/O through stdin/stdout.
|
||||
See the last paragraph of the previous section.
|
||||
|
||||
|
||||
MS-DOS, Borland C:
|
||||
|
||||
If you want one-file command line style, just undefine TWO_FILE_COMMANDLINE.
|
||||
jconfig.bcc includes #define USE_SETMODE. (fdopen does not work correctly.)
|
||||
|
||||
Be sure to convert all the source files to DOS text format (CR/LF newlines).
|
||||
Although Borland C will often work OK with unmodified Unix (LF newlines)
|
||||
source files, sometimes it will give bogus compile errors.
|
||||
"Illegal character '#'" is the most common such error.
|
||||
|
||||
|
||||
MS-DOS, DJGPP:
|
||||
|
||||
Use a recent version of DJGPP (1.11 or better). If you prefer two-file
|
||||
command line style, change the supplied jconfig.dj to define
|
||||
TWO_FILE_COMMANDLINE. makefile.dj is set up to generate only COFF files
|
||||
(cjpeg, djpeg, etc) when you say make. After testing, say "make exe" to
|
||||
make executables with stub.exe, or "make standalone" if you want executables
|
||||
that include go32. You will probably need to tweak the makefile's pointer to
|
||||
go32.exe to do "make standalone".
|
||||
|
||||
|
||||
MS-DOS, Microsoft C:
|
||||
|
||||
If you want one-file command line style, just undefine TWO_FILE_COMMANDLINE.
|
||||
jconfig.mc6 includes #define USE_SETMODE. (fdopen does not work correctly.)
|
||||
|
||||
Old versions of MS C fail with an "out of macro expansion space" error
|
||||
because they can't cope with the macro TRACEMS8 (defined in jerror.h).
|
||||
If this happens to you, the easiest solution is to change TRACEMS8 to
|
||||
expand to nothing. You'll lose the ability to dump out JPEG coefficient
|
||||
tables with djpeg -debug -debug, but at least you can compile.
|
||||
|
||||
Original MS C 6.0 is very buggy; it compiles incorrect code unless you turn
|
||||
off optimization entirely (remove -O from CFLAGS). 6.00A is better, but it
|
||||
still generates bad code if you enable loop optimizations (-Ol or -Ox).
|
||||
|
||||
MS C 8.0 reportedly fails to compile jquant1.c if optimization is turned off
|
||||
(yes, off).
|
||||
|
||||
|
||||
SGI:
|
||||
|
||||
Set "AR2= ar -ts" rather than "AR2= ranlib" in the Makefile. If you are
|
||||
using configure, you should say
|
||||
./configure RANLIB='ar -ts'
|
||||
|
||||
|
||||
VMS:
|
||||
|
||||
On an Alpha/VMS system with MMS, be sure to use the "/Marco=Alpha=1"
|
||||
qualifier with MMS when building the JPEG package.
|
||||
|
||||
VAX/VMS v5.5-1 may have problems with the test step of the build procedure
|
||||
reporting differences when it compares the original and test GIF and JPG
|
||||
images. If the error points to the last block of the files, it is most
|
||||
likely bogus and may be safely ignored. It seems to be because the files
|
||||
are Stream_LF and Backup/Compare has difficulty with the (presumably) null
|
||||
padded files. This problem was not observed on VAX/VMS v6.1 or AXP/VMS v6.1.
|
||||
118
jbsmooth.c
118
jbsmooth.c
@@ -1,118 +0,0 @@
|
||||
/*
|
||||
* jbsmooth.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains cross-block smoothing routines.
|
||||
* These routines are invoked via the smooth_coefficients method.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* Cross-block coefficient smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
smooth_coefficients (decompress_info_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JBLOCKROW above,
|
||||
JBLOCKROW currow,
|
||||
JBLOCKROW below,
|
||||
JBLOCKROW output)
|
||||
{
|
||||
QUANT_TBL_PTR Qptr = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no];
|
||||
long blocks_in_row = compptr->subsampled_width / DCTSIZE;
|
||||
long col;
|
||||
|
||||
/* First, copy the block row as-is.
|
||||
* This takes care of the first & last blocks in the row, the top/bottom
|
||||
* special cases, and the higher-order coefficients in each block.
|
||||
*/
|
||||
jcopy_block_row(currow, output, blocks_in_row);
|
||||
|
||||
/* Now apply the smoothing calculation, but not to any blocks on the
|
||||
* edges of the image.
|
||||
*/
|
||||
|
||||
if (above != NULL && below != NULL) {
|
||||
for (col = 1; col < blocks_in_row-1; col++) {
|
||||
|
||||
/* See section K.8 of the JPEG standard.
|
||||
*
|
||||
* As I understand it, this produces approximations
|
||||
* for the low frequency AC components, based on the
|
||||
* DC values of the block and its eight neighboring blocks.
|
||||
* (Thus it can't be used for blocks on the image edges.)
|
||||
*/
|
||||
|
||||
/* The layout of these variables corresponds to text and figure in K.8 */
|
||||
|
||||
JCOEF DC1, DC2, DC3;
|
||||
JCOEF DC4, DC5, DC6;
|
||||
JCOEF DC7, DC8, DC9;
|
||||
|
||||
long AC01, AC02;
|
||||
long AC10, AC11;
|
||||
long AC20;
|
||||
|
||||
DC1 = above [col-1][0];
|
||||
DC2 = above [col ][0];
|
||||
DC3 = above [col+1][0];
|
||||
DC4 = currow[col-1][0];
|
||||
DC5 = currow[col ][0];
|
||||
DC6 = currow[col+1][0];
|
||||
DC7 = below [col-1][0];
|
||||
DC8 = below [col ][0];
|
||||
DC9 = below [col+1][0];
|
||||
|
||||
#define DIVIDE_256(x) x = ( (x) < 0 ? -((128-(x))/256) : ((x)+128)/256 )
|
||||
|
||||
AC01 = (36 * (DC4 - DC6));
|
||||
DIVIDE_256(AC01);
|
||||
AC10 = (36 * (DC2 - DC8));
|
||||
DIVIDE_256(AC10);
|
||||
AC20 = (9 * (DC2 + DC8 - 2*DC5));
|
||||
DIVIDE_256(AC20);
|
||||
AC11 = (5 * ((DC1 - DC3) - (DC7 - DC9)));
|
||||
DIVIDE_256(AC11);
|
||||
AC02 = (9 * (DC4 + DC6 - 2*DC5));
|
||||
DIVIDE_256(AC02);
|
||||
|
||||
/* I think that this checks to see if the quantisation
|
||||
* on the transmitting side would have produced this
|
||||
* answer. If so, then we use our (hopefully better)
|
||||
* estimate.
|
||||
*/
|
||||
|
||||
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
||||
|
||||
#define COND_ASSIGN(_ac,_n,_z) if ((ABS(output[col][_n] - (_ac))<<1) <= Qptr[_z]) output[col][_n] = (JCOEF) (_ac)
|
||||
|
||||
COND_ASSIGN(AC01, 1, 1);
|
||||
COND_ASSIGN(AC02, 2, 5);
|
||||
COND_ASSIGN(AC10, 8, 2);
|
||||
COND_ASSIGN(AC11, 9, 4);
|
||||
COND_ASSIGN(AC20, 16, 3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for cross-block smoothing.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselbsmooth (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* just one implementation for now */
|
||||
cinfo->methods->smooth_coefficients = smooth_coefficients;
|
||||
}
|
||||
|
||||
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
||||
369
jcapi.c
Normal file
369
jcapi.c
Normal file
@@ -0,0 +1,369 @@
|
||||
/*
|
||||
* jcapi.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half of
|
||||
* the JPEG library. Most of the routines intended to be called directly by
|
||||
* an application are in this file. But also see jcparam.c for
|
||||
* parameter-setup helper routines, and jcomapi.c for routines shared by
|
||||
* compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_create_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* For debugging purposes, zero the whole master structure.
|
||||
* But error manager pointer is already there, so save and restore it.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
|
||||
cinfo->err = err;
|
||||
}
|
||||
cinfo->is_decompressor = FALSE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->dest = NULL;
|
||||
|
||||
cinfo->comp_info = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_destroy_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables.
|
||||
* Marks all currently defined tables as already written (if suppress)
|
||||
* or not written (if !suppress). This will control whether they get emitted
|
||||
* by a subsequent jpeg_start_compress call.
|
||||
*
|
||||
* This routine is exported for use by applications that want to produce
|
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
|
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise
|
||||
* jcparam.o would be linked whether the application used it or not.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
|
||||
{
|
||||
int i;
|
||||
JQUANT_TBL * qtbl;
|
||||
JHUFF_TBL * htbl;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
|
||||
qtbl->sent_table = suppress;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* We require a write_all_tables parameter as a failsafe check when writing
|
||||
* multiple datastreams from the same compression object. Since prior runs
|
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
||||
* would emit an abbreviated stream (no tables) by default. This may be what
|
||||
* is wanted, but for safety's sake it should not be the default behavior:
|
||||
* programmers should have to make a deliberate choice to emit abbreviated
|
||||
* images. Therefore the documentation and examples should encourage people
|
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
||||
* wrong thing.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (write_all_tables)
|
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
jinit_master_compress(cinfo);
|
||||
/* Set up for the first pass */
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||
* or jpeg_write_raw_data.
|
||||
*/
|
||||
cinfo->next_scanline = 0;
|
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor.
|
||||
*
|
||||
* The return value will be the number of lines actually written.
|
||||
* This should be less than the supplied num_lines only in case that
|
||||
* the data destination module has requested suspension of the compressor,
|
||||
* or if more than image_height scanlines are passed in.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_write_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* excess scanlines passed in the last valid call are *silently* ignored,
|
||||
* so that the application need not adjust num_lines for end-of-image
|
||||
* when using a multiple-scanline buffer.
|
||||
*/
|
||||
|
||||
GLOBAL JDIMENSION
|
||||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION row_ctr, rows_left;
|
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height)
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_scanlines. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_scanlines.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */
|
||||
rows_left = cinfo->image_height - cinfo->next_scanline;
|
||||
if (num_lines > rows_left)
|
||||
num_lines = rows_left;
|
||||
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
||||
cinfo->next_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data.
|
||||
* Processes exactly one iMCU row per call.
|
||||
*/
|
||||
|
||||
GLOBAL JDIMENSION
|
||||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION mcu_ctr, lines_per_MCU_row;
|
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_raw_data. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_raw_data.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Verify that at least one iMCU row has been passed. */
|
||||
lines_per_MCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
if (num_lines < lines_per_MCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Directly compress the row. */
|
||||
mcu_ctr = 0;
|
||||
(*cinfo->coef->compress_data) (cinfo, data, &mcu_ctr);
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing; this is not currently supported.
|
||||
*/
|
||||
if (mcu_ctr != cinfo->MCUs_per_row)
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->next_scanline += lines_per_MCU_row;
|
||||
return lines_per_MCU_row;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression.
|
||||
*
|
||||
* If a multipass operating mode was selected, this may do a great deal of
|
||||
* work including most of the actual output.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_finish_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
JDIMENSION iMCU_row, mcu_ctr;
|
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline < cinfo->image_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
/* Terminate first pass */
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
/* Perform any remaining passes */
|
||||
while (! cinfo->master->is_last_pass) {
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) iMCU_row;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer.
|
||||
*/
|
||||
mcu_ctr = 0;
|
||||
(*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL, &mcu_ctr);
|
||||
if (mcu_ctr != cinfo->MCUs_per_row)
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
}
|
||||
/* Write EOI, do final cleanup */
|
||||
(*cinfo->marker->write_file_trailer) (cinfo);
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write a special marker.
|
||||
* This is only recommended for writing COM or APPn markers.
|
||||
* Must be called after jpeg_start_compress() and before
|
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_write_marker (j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen)
|
||||
{
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_any_marker) (cinfo, marker, dataptr, datalen);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* To produce a pair of files containing abbreviated tables and abbreviated
|
||||
* image data, one would proceed as follows:
|
||||
*
|
||||
* initialize JPEG object
|
||||
* set JPEG parameters
|
||||
* set destination to table file
|
||||
* jpeg_write_tables(cinfo);
|
||||
* set destination to image file
|
||||
* jpeg_start_compress(cinfo, FALSE);
|
||||
* write data...
|
||||
* jpeg_finish_compress(cinfo);
|
||||
*
|
||||
* jpeg_write_tables has the side effect of marking all tables written
|
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
|
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_write_tables (j_compress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Initialize the marker writer ... bit of a crock to do it here. */
|
||||
jinit_marker_writer(cinfo);
|
||||
/* Write them tables! */
|
||||
(*cinfo->marker->write_tables_only) (cinfo);
|
||||
/* And clean up. */
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/* We can use jpeg_abort to release memory ... is this necessary? */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_abort_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
42
jcarith.c
42
jcarith.c
@@ -1,42 +0,0 @@
|
||||
/*
|
||||
* jcarith.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains arithmetic entropy encoding routines.
|
||||
* These routines are invoked via the methods entropy_encode,
|
||||
* entropy_encoder_init/term, and entropy_optimize.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef ARITH_CODING_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* The arithmetic coding option of the JPEG standard specifies Q-coding,
|
||||
* which is covered by patents held by IBM (and possibly AT&T and Mitsubishi).
|
||||
* At this time it does not appear to be legal for the Independent JPEG
|
||||
* Group to distribute software that implements arithmetic coding.
|
||||
* We have therefore removed arithmetic coding support from the
|
||||
* distributed source code.
|
||||
*
|
||||
* We're not happy about it either.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for arithmetic entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselcarithmetic (compress_info_ptr cinfo)
|
||||
{
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo->emethods, "Sorry, there are legal restrictions on arithmetic coding");
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARITH_CODING_SUPPORTED */
|
||||
414
jccoefct.c
Normal file
414
jccoefct.c
Normal file
@@ -0,0 +1,414 @@
|
||||
/*
|
||||
* jccoefct.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for compression.
|
||||
* This controller is the top level of the JPEG compressor proper.
|
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
||||
* step is run during the first pass, and subsequent passes need only read
|
||||
* the buffered coefficients.
|
||||
*/
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#else
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION MCU_row_num; /* keep track of MCU row # within image */
|
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). We allocate a
|
||||
* workspace of MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
||||
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
||||
* it's not really very big; this is to keep the module interfaces unchanged
|
||||
* when a large coefficient buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF void compress_data
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr));
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
METHODDEF void compress_first_pass
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr));
|
||||
METHODDEF void compress_output
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
coef->MCU_row_num = 0;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (coef->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_data;
|
||||
break;
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_first_pass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_output;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case.
|
||||
* Up to one MCU row is processed (less if suspension is forced).
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image.
|
||||
* For single pass, this is the same as the components in the scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
compress_data (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1;
|
||||
int blkn, bi, ci, yindex, blockcnt;
|
||||
JDIMENSION ypos, xpos;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Loop to write as much as one whole MCU row */
|
||||
|
||||
for (MCU_col_num = *in_mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) {
|
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks
|
||||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
||||
* sequentially. Dummy blocks at the right or bottom edge are filled in
|
||||
* specially. The data in them does not matter for image reconstruction,
|
||||
* so we fill them with values that will encode to the smallest amount of
|
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
||||
*/
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
xpos = MCU_col_num * compptr->MCU_sample_width;
|
||||
ypos = 0;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->MCU_row_num < last_MCU_row ||
|
||||
yindex < compptr->last_row_height) {
|
||||
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
||||
input_buf[ci], coef->MCU_buffer[blkn],
|
||||
ypos, xpos, (JDIMENSION) blockcnt);
|
||||
if (blockcnt < compptr->MCU_width) {
|
||||
/* Create some dummy blocks at the right edge of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
||||
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
||||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Create a whole row of dummy blocks at the bottom of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
||||
compptr->MCU_width * SIZEOF(JBLOCK));
|
||||
for (bi = 0; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
ypos += DCTSIZE;
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
||||
*/
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer))
|
||||
break; /* suspension forced; exit loop */
|
||||
}
|
||||
if (MCU_col_num > last_MCU_col)
|
||||
coef->MCU_row_num++; /* advance if we finished the row */
|
||||
*in_mcu_ctr = MCU_col_num;
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* This amount of data is read from the source buffer, DCT'd and quantized,
|
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
||||
* as needed at the right and lower edges. (The dummy blocks are constructed
|
||||
* in the virtual arrays, which have been padded appropriately.) This makes
|
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
||||
*
|
||||
* We must also emit the data to the entropy encoder. This is conveniently
|
||||
* done by calling compress_output() after we've loaded the current strip
|
||||
* of the virtual arrays.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image. All
|
||||
* components are DCT'd and loaded into the virtual arrays in this pass.
|
||||
* However, it may be that only a subset of the components are emitted to
|
||||
* the entropy encoder during this first pass; be careful about looking
|
||||
* at the scan-dependent variables (MCU dimensions, etc).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
compress_first_pass (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_MCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
||||
JCOEF lastDC;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW thisblockrow, lastblockrow;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
coef->MCU_row_num * compptr->v_samp_factor, TRUE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (coef->MCU_row_num < last_MCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
blocks_across = compptr->width_in_blocks;
|
||||
h_samp_factor = compptr->h_samp_factor;
|
||||
/* Count number of dummy blocks to be added at the right margin. */
|
||||
ndummy = (int) (blocks_across % h_samp_factor);
|
||||
if (ndummy > 0)
|
||||
ndummy = h_samp_factor - ndummy;
|
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
||||
*/
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
||||
input_buf[ci], thisblockrow,
|
||||
(JDIMENSION) (block_row * DCTSIZE),
|
||||
(JDIMENSION) 0, blocks_across);
|
||||
if (ndummy > 0) {
|
||||
/* Create dummy blocks at the right edge of the image. */
|
||||
thisblockrow += blocks_across; /* => first dummy block */
|
||||
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
||||
lastDC = thisblockrow[-1][0];
|
||||
for (bi = 0; bi < ndummy; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values
|
||||
* of the dummy blocks to match the last real block's DC value.
|
||||
* This squeezes a few more bytes out of the resulting file...
|
||||
*/
|
||||
if (coef->MCU_row_num == last_MCU_row) {
|
||||
blocks_across += ndummy; /* include lower right corner */
|
||||
MCUs_across = blocks_across / h_samp_factor;
|
||||
for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
||||
block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
lastblockrow = buffer[block_row-1];
|
||||
jzero_far((void FAR *) thisblockrow,
|
||||
(size_t) (blocks_across * SIZEOF(JBLOCK)));
|
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
||||
lastDC = lastblockrow[h_samp_factor-1][0];
|
||||
for (bi = 0; bi < h_samp_factor; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
||||
lastblockrow += h_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* NB: compress_output will increment MCU_row_num */
|
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
||||
compress_output(cinfo, input_buf, in_mcu_ctr);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
*
|
||||
* Note that output suspension is not supported during multi-pass operation,
|
||||
* so the complete MCU row will always be emitted to the entropy encoder
|
||||
* before returning.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
compress_output (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset, num_MCU_rows;
|
||||
JDIMENSION remaining_rows, start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will
|
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->MCU_row_num * compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* In an interleaved scan, we process exactly one MCU row.
|
||||
* In a noninterleaved scan, we need to process v_samp_factor MCU rows,
|
||||
* each of which contains a single block row.
|
||||
*/
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
num_MCU_rows = compptr->v_samp_factor;
|
||||
/* but watch out for the bottom of the image */
|
||||
remaining_rows = cinfo->MCU_rows_in_scan -
|
||||
coef->MCU_row_num * compptr->v_samp_factor;
|
||||
if (remaining_rows < (JDIMENSION) num_MCU_rows)
|
||||
num_MCU_rows = (int) remaining_rows;
|
||||
} else {
|
||||
num_MCU_rows = 1;
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = 0; yoffset < num_MCU_rows; yoffset++) {
|
||||
for (MCU_col_num = 0; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); /* not supported */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
coef->MCU_row_num++; /* advance to next iMCU row */
|
||||
*in_mcu_ctr = cinfo->MCUs_per_row;
|
||||
}
|
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKROW buffer;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
/* Note memmgr implicitly pads the vertical direction. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
compptr->height_in_blocks,
|
||||
(JDIMENSION) compptr->v_samp_factor);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
||||
464
jccolor.c
464
jccolor.c
@@ -1,237 +1,449 @@
|
||||
/*
|
||||
* jccolor.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input colorspace conversion routines.
|
||||
* These routines are invoked via the methods get_sample_rows
|
||||
* and colorin_init/term.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
static JSAMPARRAY pixel_row; /* Workspace for a pixel row in input format */
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_converter pub; /* public fields */
|
||||
|
||||
/* Private state for RGB->YCC conversion */
|
||||
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
|
||||
} my_color_converter;
|
||||
|
||||
typedef my_color_converter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* Initialize for colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
colorin_init (compress_info_ptr cinfo)
|
||||
{
|
||||
/* Allocate a workspace for the result of get_input_row. */
|
||||
pixel_row = (*cinfo->emethods->alloc_small_sarray)
|
||||
(cinfo->image_width, (long) cinfo->input_components);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fetch some rows of pixels from get_input_row and convert to the
|
||||
* JPEG colorspace.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This version handles RGB -> YCbCr conversion.
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
|
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B
|
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B
|
||||
* where Cb and Cr must be incremented by MAXJSAMPLE/2 to create a
|
||||
* nonnegative output value.
|
||||
* (These numbers are derived from TIFF Appendix O, draft of 4/10/91.)
|
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + MAXJSAMPLE/2
|
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + MAXJSAMPLE/2
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^14 (about 4 digits precision); we have to divide
|
||||
* the products by 2^14, with appropriate rounding, to get the correct answer.
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
*
|
||||
* For even more speed, we could avoid any multiplications in the inner loop
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times R,G,B for all possible values.
|
||||
* This is not currently implemented.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The MAXJSAMPLE/2 offsets and the rounding fudge-factor of 0.5 are included
|
||||
* in the tables to save adding them separately in the inner loop.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 14
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base
|
||||
* address, which can be held in a register in the inner loops on many
|
||||
* machines (more than can hold all eight addresses, anyway).
|
||||
*/
|
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
|
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
|
||||
#define R_CB_OFF (3*(MAXJSAMPLE+1))
|
||||
#define G_CB_OFF (4*(MAXJSAMPLE+1))
|
||||
#define B_CB_OFF (5*(MAXJSAMPLE+1))
|
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
|
||||
#define G_CR_OFF (6*(MAXJSAMPLE+1))
|
||||
#define B_CR_OFF (7*(MAXJSAMPLE+1))
|
||||
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
get_rgb_ycc_rows (compress_info_ptr cinfo,
|
||||
int rows_to_read, JSAMPIMAGE image_data)
|
||||
rgb_ycc_start (j_compress_ptr cinfo)
|
||||
{
|
||||
register INT32 r, g, b;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JSAMPROW outptr0, outptr1, outptr2;
|
||||
register long col;
|
||||
long width = cinfo->image_width;
|
||||
int row;
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
INT32 * rgb_ycc_tab;
|
||||
INT32 i;
|
||||
|
||||
for (row = 0; row < rows_to_read; row++) {
|
||||
/* Read one row from the source file */
|
||||
(*cinfo->methods->get_input_row) (cinfo, pixel_row);
|
||||
/* Convert colorspace */
|
||||
inptr0 = pixel_row[0];
|
||||
inptr1 = pixel_row[1];
|
||||
inptr2 = pixel_row[2];
|
||||
outptr0 = image_data[0][row];
|
||||
outptr1 = image_data[1][row];
|
||||
outptr2 = image_data[2][row];
|
||||
for (col = width; col > 0; col--) {
|
||||
r = GETJSAMPLE(*inptr0++);
|
||||
g = GETJSAMPLE(*inptr1++);
|
||||
b = GETJSAMPLE(*inptr2++);
|
||||
/* Allocate and fill in the conversion tables. */
|
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(TABLE_SIZE * SIZEOF(INT32)));
|
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
|
||||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
|
||||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
|
||||
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
|
||||
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
|
||||
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + ONE_HALF*(MAXJSAMPLE+1);
|
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + ONE_HALF*(MAXJSAMPLE+1);
|
||||
*/
|
||||
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
|
||||
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*
|
||||
* Note that we change from the application's interleaved-pixel format
|
||||
* to our internal noninterleaved, one-plane-per-component format.
|
||||
* The input buffer is therefore three times as wide as the output buffer.
|
||||
*
|
||||
* A starting row offset is provided only for the output buffer. The caller
|
||||
* can easily adjust the passed input_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
rgb_ycc_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
*outptr0++ = (JSAMPLE)
|
||||
(( FIX(0.29900)*r + FIX(0.58700)*g + FIX(0.11400)*b
|
||||
+ ONE_HALF) >> SCALEBITS);
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
*outptr1++ = (JSAMPLE)
|
||||
(((-FIX(0.16874))*r - FIX(0.33126)*g + FIX(0.50000)*b
|
||||
+ ONE_HALF*(MAXJSAMPLE+1)) >> SCALEBITS);
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
*outptr2++ = (JSAMPLE)
|
||||
(( FIX(0.50000)*r - FIX(0.41869)*g - FIX(0.08131)*b
|
||||
+ ONE_HALF*(MAXJSAMPLE+1)) >> SCALEBITS);
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles RGB->grayscale conversion, which is the same
|
||||
* as the RGB->Y portion of RGB->YCbCr.
|
||||
* We assume rgb_ycc_start has been called (we only use the Y tables).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
rgb_gray_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* Y */
|
||||
outptr[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fetch some rows of pixels from get_input_row and convert to the
|
||||
* JPEG colorspace.
|
||||
* This version handles grayscale (no conversion).
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles Adobe-style CMYK->YCCK conversion,
|
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume rgb_ycc_start has been called.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
get_grayscale_rows (compress_info_ptr cinfo,
|
||||
int rows_to_read, JSAMPIMAGE image_data)
|
||||
cmyk_ycck_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
int row;
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
for (row = 0; row < rows_to_read; row++) {
|
||||
/* Read one row from the source file */
|
||||
(*cinfo->methods->get_input_row) (cinfo, pixel_row);
|
||||
/* Convert colorspace (gamma mapping needed here) */
|
||||
jcopy_sample_rows(pixel_row, 0, image_data[0], row,
|
||||
1, cinfo->image_width);
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
outptr3 = output_buf[3][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
|
||||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
|
||||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
|
||||
/* K passes through as-is */
|
||||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
|
||||
inptr += 4;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fetch some rows of pixels from get_input_row and convert to the
|
||||
* JPEG colorspace.
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles grayscale output with no conversion.
|
||||
* The source can be either plain grayscale or YCbCr (since Y == gray).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
grayscale_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
int instride = cinfo->input_components;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
|
||||
inptr += instride;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles multi-component colorspaces without conversion.
|
||||
* We assume input_components == num_components.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
get_noconvert_rows (compress_info_ptr cinfo,
|
||||
int rows_to_read, JSAMPIMAGE image_data)
|
||||
null_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
int row, ci;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
register int ci;
|
||||
int nc = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
for (row = 0; row < rows_to_read; row++) {
|
||||
/* Read one row from the source file */
|
||||
(*cinfo->methods->get_input_row) (cinfo, pixel_row);
|
||||
/* Convert colorspace (gamma mapping needed here) */
|
||||
for (ci = 0; ci < cinfo->input_components; ci++) {
|
||||
jcopy_sample_rows(pixel_row, ci, image_data[ci], row,
|
||||
1, cinfo->image_width);
|
||||
while (--num_rows >= 0) {
|
||||
/* It seems fastest to make a separate pass for each component. */
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
inptr = *input_buf;
|
||||
outptr = output_buf[ci][output_row];
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
|
||||
inptr += nc;
|
||||
}
|
||||
}
|
||||
input_buf++;
|
||||
output_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
colorin_term (compress_info_ptr cinfo)
|
||||
null_method (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for input colorspace conversion.
|
||||
* Module initialization routine for input colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselccolor (compress_info_ptr cinfo)
|
||||
jinit_color_converter (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_converter));
|
||||
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
|
||||
/* set start_pass to null method until we find out differently */
|
||||
cconvert->pub.start_pass = null_method;
|
||||
|
||||
/* Make sure input_components agrees with in_color_space */
|
||||
switch (cinfo->in_color_space) {
|
||||
case CS_GRAYSCALE:
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->input_components != 1)
|
||||
ERREXIT(cinfo->emethods, "Bogus input colorspace");
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case CS_RGB:
|
||||
case CS_YCbCr:
|
||||
case CS_YIQ:
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
if (cinfo->input_components != RGB_PIXELSIZE)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->input_components != 3)
|
||||
ERREXIT(cinfo->emethods, "Bogus input colorspace");
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case CS_CMYK:
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->input_components != 4)
|
||||
ERREXIT(cinfo->emethods, "Bogus input colorspace");
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Unsupported input colorspace");
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->input_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check num_components, set conversion method based on requested space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case CS_GRAYSCALE:
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo->emethods, "Bogus JPEG colorspace");
|
||||
if (cinfo->in_color_space == CS_GRAYSCALE)
|
||||
cinfo->methods->get_sample_rows = get_grayscale_rows;
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_GRAYSCALE)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_gray_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Unsupported color conversion request");
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case CS_YCbCr:
|
||||
case JCS_RGB:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo->emethods, "Bogus JPEG colorspace");
|
||||
if (cinfo->in_color_space == CS_RGB)
|
||||
cinfo->methods->get_sample_rows = get_rgb_ycc_rows;
|
||||
else if (cinfo->in_color_space == CS_YCbCr)
|
||||
cinfo->methods->get_sample_rows = get_noconvert_rows;
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Unsupported color conversion request");
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case CS_CMYK:
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_ycc_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo->emethods, "Bogus JPEG colorspace");
|
||||
if (cinfo->in_color_space == CS_CMYK)
|
||||
cinfo->methods->get_sample_rows = get_noconvert_rows;
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Unsupported color conversion request");
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Unsupported JPEG colorspace");
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = cmyk_ycck_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCCK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */
|
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
|
||||
cinfo->num_components != cinfo->input_components)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
break;
|
||||
}
|
||||
|
||||
cinfo->methods->colorin_init = colorin_init;
|
||||
cinfo->methods->colorin_term = colorin_term;
|
||||
}
|
||||
|
||||
398
jcdctmgr.c
Normal file
398
jcdctmgr.c
Normal file
@@ -0,0 +1,398 @@
|
||||
/*
|
||||
* jcdctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the forward-DCT management logic.
|
||||
* This code selects a particular DCT implementation to be used,
|
||||
* and it performs related housekeeping chores including coefficient
|
||||
* quantization.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_forward_dct pub; /* public fields */
|
||||
|
||||
/* Pointer to the DCT routine actually in use */
|
||||
forward_DCT_method_ptr do_dct;
|
||||
|
||||
/* The actual post-DCT divisors --- not identical to the quant table
|
||||
* entries, because of scaling (especially for an unnormalized DCT).
|
||||
* Each table is given in zigzag order.
|
||||
*/
|
||||
DCTELEM * divisors[NUM_QUANT_TBLS];
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
/* Same as above for the floating-point case. */
|
||||
float_DCT_method_ptr do_float_dct;
|
||||
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
||||
#endif
|
||||
} my_fdct_controller;
|
||||
|
||||
typedef my_fdct_controller * my_fdct_ptr;
|
||||
|
||||
|
||||
/* ZAG[i] is the natural-order position of the i'th element of zigzag order. */
|
||||
|
||||
static const int ZAG[DCTSIZE2] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
* Verify that all referenced Q-tables are present, and set up
|
||||
* the divisor table for each one.
|
||||
* In the current implementation, DCT of all components is done during
|
||||
* the first pass, even if only some components will be output in the
|
||||
* first scan. Hence all components should be examined here.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_fdctmgr (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
int ci, qtblno, i;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtbl;
|
||||
DCTELEM * dtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
/* Make sure specified quantization table is present */
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||
/* Compute divisors for this quant table */
|
||||
/* We may do this more than once for same table, but it's not a big deal */
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling).
|
||||
*/
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
*/
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits: in natural order */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = (DCTELEM)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[ZAG[i]]),
|
||||
CONST_BITS-3);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
* What's actually stored is 1/divisor so that the inner loop can
|
||||
* use a multiplication rather than a division.
|
||||
*/
|
||||
FAST_FLOAT * fdtbl;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
if (fdct->float_divisors[qtblno] == NULL) {
|
||||
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
||||
}
|
||||
fdtbl = fdct->float_divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
row = ZAG[i] >> 3;
|
||||
col = ZAG[i] & 7;
|
||||
fdtbl[i] = (FAST_FLOAT)
|
||||
(1.0 / (((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component.
|
||||
*
|
||||
* The input samples are taken from the sample_data[] array starting at
|
||||
* position start_row/start_col, and moving to the right for any additional
|
||||
* blocks. The quantized, zigzagged coefficients are returned in coef_blocks[].
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for integer DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
forward_DCT_method_ptr do_dct = fdct->do_dct;
|
||||
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
||||
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||||
/* Load data into workspace, applying unsigned->signed conversion */
|
||||
{ register DCTELEM *workspaceptr;
|
||||
register JSAMPROW elemptr;
|
||||
register int elemr;
|
||||
|
||||
workspaceptr = workspace;
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = sample_data[elemr] + start_col;
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
#else
|
||||
{ register int elemc;
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register DCTELEM temp, qval;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
qval = divisors[i];
|
||||
temp = workspace[ZAG[i]];
|
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
*
|
||||
* In most files, at least half of the output values will be zero
|
||||
* (at default quantization settings, more like three-quarters...)
|
||||
* so we should ensure that this case is fast. On many machines,
|
||||
* a comparison is enough cheaper than a divide to make a special test
|
||||
* a win. Since both inputs will be nonnegative, we need only test
|
||||
* for a < b to discover whether a/b is 0.
|
||||
* If your machine's division is fast enough, define FAST_DIVIDE.
|
||||
*/
|
||||
#ifdef FAST_DIVIDE
|
||||
#define DIVIDE_BY(a,b) a /= b
|
||||
#else
|
||||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
||||
#endif
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
temp = -temp;
|
||||
} else {
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
}
|
||||
output_ptr[i] = (JCOEF) temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
METHODDEF void
|
||||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for floating-point DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
float_DCT_method_ptr do_dct = fdct->do_float_dct;
|
||||
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
||||
/* Load data into workspace, applying unsigned->signed conversion */
|
||||
{ register FAST_FLOAT *workspaceptr;
|
||||
register JSAMPROW elemptr;
|
||||
register int elemr;
|
||||
|
||||
workspaceptr = workspace;
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = sample_data[elemr] + start_col;
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
#else
|
||||
{ register int elemc;
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
||||
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register FAST_FLOAT temp;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* Apply the quantization and scaling factor */
|
||||
temp = workspace[ZAG[i]] * divisors[i];
|
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||||
* code should work for either 16-bit or 32-bit ints.
|
||||
*/
|
||||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_forward_dct (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct;
|
||||
int i;
|
||||
|
||||
fdct = (my_fdct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_fdct_controller));
|
||||
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
||||
fdct->pub.start_pass = start_pass_fdctmgr;
|
||||
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
fdct->pub.forward_DCT = forward_DCT;
|
||||
fdct->do_dct = jpeg_fdct_islow;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
fdct->pub.forward_DCT = forward_DCT;
|
||||
fdct->do_dct = jpeg_fdct_ifast;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
fdct->pub.forward_DCT = forward_DCT_float;
|
||||
fdct->do_float_dct = jpeg_fdct_float;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Mark divisor tables unallocated */
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
fdct->divisors[i] = NULL;
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fdct->float_divisors[i] = NULL;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
371
jcdeflts.c
371
jcdeflts.c
@@ -1,371 +0,0 @@
|
||||
/*
|
||||
* jcdeflts.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG compressor.
|
||||
* User interfaces do not have to use this file, but those that don't use it
|
||||
* must know a lot more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
|
||||
/* Default do-nothing progress monitoring routine.
|
||||
* This can be overridden by a user interface that wishes to
|
||||
* provide progress monitoring; just set methods->progress_monitor
|
||||
* after j_c_defaults is done. The routine will be called periodically
|
||||
* during the compression process.
|
||||
*
|
||||
* During any one pass, loopcounter increases from 0 up to (not including)
|
||||
* looplimit; the step size is not necessarily 1. Both the step size and
|
||||
* the limit may differ between passes. The expected total number of passes
|
||||
* is in cinfo->total_passes, and the number of passes already completed is
|
||||
* in cinfo->completed_passes. Thus the fraction of work completed may be
|
||||
* estimated as
|
||||
* completed_passes + (loopcounter/looplimit)
|
||||
* ------------------------------------------
|
||||
* total_passes
|
||||
* ignoring the fact that the passes may not be equal amounts of work.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
progress_monitor (compress_info_ptr cinfo, long loopcounter, long looplimit)
|
||||
{
|
||||
/* do nothing */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Table setup routines
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
add_huff_table (compress_info_ptr cinfo,
|
||||
HUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
|
||||
/* Define a Huffman table */
|
||||
{
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = (HUFF_TBL *) (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
|
||||
|
||||
memcpy((void *) (*htblptr)->bits, (const void *) bits,
|
||||
SIZEOF((*htblptr)->bits));
|
||||
memcpy((void *) (*htblptr)->huffval, (const void *) val,
|
||||
SIZEOF((*htblptr)->huffval));
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file.
|
||||
* In an application where we are writing non-interchange JPEG files,
|
||||
* it might be desirable to save space by leaving default Huffman tables
|
||||
* out of the file. To do that, just initialize sent_table = TRUE...
|
||||
*/
|
||||
|
||||
(*htblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
std_huff_tables (compress_info_ptr cinfo)
|
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */
|
||||
{
|
||||
static const UINT8 dc_luminance_bits[17] =
|
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 dc_luminance_val[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 dc_chrominance_bits[17] =
|
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 dc_chrominance_val[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 ac_luminance_bits[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
||||
static const UINT8 ac_luminance_val[] =
|
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
static const UINT8 ac_chrominance_bits[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
||||
static const UINT8 ac_chrominance_val[] =
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
|
||||
dc_luminance_bits, dc_luminance_val);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
|
||||
ac_luminance_bits, ac_luminance_val);
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
|
||||
dc_chrominance_bits, dc_chrominance_val);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
|
||||
ac_chrominance_bits, ac_chrominance_val);
|
||||
}
|
||||
|
||||
|
||||
/* This is the sample quantization table given in the JPEG spec section K.1,
|
||||
* but expressed in zigzag order (as are all of our quant. tables).
|
||||
* The spec says that the values given produce "good" quality, and
|
||||
* when divided by 2, "very good" quality. (These two settings are
|
||||
* selected by quality=50 and quality=75 in j_set_quality, below.)
|
||||
*/
|
||||
|
||||
|
||||
static const QUANT_VAL std_luminance_quant_tbl[DCTSIZE2] = {
|
||||
16, 11, 12, 14, 12, 10, 16, 14,
|
||||
13, 14, 18, 17, 16, 19, 24, 40,
|
||||
26, 24, 22, 22, 24, 49, 35, 37,
|
||||
29, 40, 58, 51, 61, 60, 57, 51,
|
||||
56, 55, 64, 72, 92, 78, 64, 68,
|
||||
87, 69, 55, 56, 80, 109, 81, 87,
|
||||
95, 98, 103, 104, 103, 62, 77, 113,
|
||||
121, 112, 100, 120, 92, 101, 103, 99
|
||||
};
|
||||
|
||||
static const QUANT_VAL std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||
17, 18, 18, 24, 21, 24, 47, 26,
|
||||
26, 47, 99, 66, 56, 66, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99
|
||||
};
|
||||
|
||||
|
||||
LOCAL void
|
||||
add_quant_table (compress_info_ptr cinfo, int which_tbl,
|
||||
const QUANT_VAL *basic_table, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Define a quantization table equal to the basic_table times */
|
||||
/* a scale factor (given as a percentage) */
|
||||
{
|
||||
QUANT_TBL_PTR * qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
||||
int i;
|
||||
long temp;
|
||||
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = (QUANT_TBL_PTR) (*cinfo->emethods->alloc_small) (SIZEOF(QUANT_TBL));
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
||||
/* limit the values to the valid range */
|
||||
if (temp <= 0L) temp = 1L;
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
if (temp > 32767L) temp = 32767L; /* QUANT_VALs are 'short' */
|
||||
#else
|
||||
if (temp > 65535L) temp = 65535L; /* QUANT_VALs are 'UINT16' */
|
||||
#endif
|
||||
if (force_baseline && temp > 255L)
|
||||
temp = 255L; /* limit to baseline range if requested */
|
||||
(*qtblptr)[i] = (QUANT_VAL) temp;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GLOBAL void
|
||||
j_set_quality (compress_info_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting. */
|
||||
/* The 'quality' factor should be 0 (terrible) to 100 (very good). */
|
||||
/* Quality 50 corresponds to the JPEG basic tables given above; */
|
||||
/* quality 100 results in no quantization scaling at all. */
|
||||
/* If force_baseline is TRUE, quantization table entries are limited */
|
||||
/* to 0..255 for JPEG baseline compatibility; this is only an issue */
|
||||
/* for quality settings below 24. */
|
||||
{
|
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||
if (quality <= 0) quality = 1;
|
||||
if (quality > 100) quality = 100;
|
||||
|
||||
/* Convert quality rating to a percentage scaling of the basic tables.
|
||||
* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||
* note that at Q=100 the scaling is 0, which will cause add_quant_table
|
||||
* to make all the table entries 1 (hence, no quantization loss).
|
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||
*/
|
||||
if (quality < 50)
|
||||
quality = 5000 / quality;
|
||||
else
|
||||
quality = 200 - quality*2;
|
||||
|
||||
/* Set up two quantization tables using the specified quality scaling */
|
||||
add_quant_table(cinfo, 0, std_luminance_quant_tbl, quality, force_baseline);
|
||||
add_quant_table(cinfo, 1, std_chrominance_quant_tbl, quality, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Default parameter setup for compression.
|
||||
*
|
||||
* User interfaces that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*
|
||||
* See above for the meaning of the 'quality' and 'force_baseline' parameters.
|
||||
* Typically, the application's default quality setting will be passed to this
|
||||
* routine. A later call on j_set_quality() can be used to change to a
|
||||
* user-specified quality setting.
|
||||
*
|
||||
* This routine sets up for a color image; to output a grayscale image,
|
||||
* do this first and call j_monochrome_default() afterwards.
|
||||
* (The latter can be called within c_ui_method_selection, so the
|
||||
* choice can depend on the input file header.)
|
||||
* Note that if you want a JPEG colorspace other than GRAYSCALE or YCbCr,
|
||||
* you should also change the component ID codes, and you should NOT emit
|
||||
* a JFIF header (set write_JFIF_header = FALSE).
|
||||
*
|
||||
* CAUTION: if you want to compress multiple images per run, it's necessary
|
||||
* to call j_c_defaults before *each* call to jpeg_compress, since subsidiary
|
||||
* structures like the Huffman tables are automatically freed during cleanup.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
j_c_defaults (compress_info_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* NB: the external methods must already be set up. */
|
||||
{
|
||||
short i;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Initialize pointers as needed to mark stuff unallocated. */
|
||||
cinfo->comp_info = NULL;
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE; /* default; can be overridden by input_init */
|
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
cinfo->input_gamma = 1.0; /* no gamma correction by default */
|
||||
|
||||
/* Prepare three color components; first is luminance which is also usable */
|
||||
/* for grayscale. The others are assumed to be UV or similar chrominance. */
|
||||
cinfo->write_JFIF_header = TRUE;
|
||||
cinfo->jpeg_color_space = CS_YCbCr;
|
||||
cinfo->num_components = 3;
|
||||
cinfo->comp_info = (jpeg_component_info *)
|
||||
(*cinfo->emethods->alloc_small) (4 * SIZEOF(jpeg_component_info));
|
||||
/* Note: we allocate a 4-entry comp_info array so that user interface can
|
||||
* easily change over to CMYK color space if desired.
|
||||
*/
|
||||
|
||||
compptr = &cinfo->comp_info[0];
|
||||
compptr->component_index = 0;
|
||||
compptr->component_id = 1; /* JFIF specifies IDs 1,2,3 */
|
||||
compptr->h_samp_factor = 2; /* default to 2x2 subsamples of chrominance */
|
||||
compptr->v_samp_factor = 2;
|
||||
compptr->quant_tbl_no = 0; /* use tables 0 for luminance */
|
||||
compptr->dc_tbl_no = 0;
|
||||
compptr->ac_tbl_no = 0;
|
||||
|
||||
compptr = &cinfo->comp_info[1];
|
||||
compptr->component_index = 1;
|
||||
compptr->component_id = 2;
|
||||
compptr->h_samp_factor = 1;
|
||||
compptr->v_samp_factor = 1;
|
||||
compptr->quant_tbl_no = 1; /* use tables 1 for chrominance */
|
||||
compptr->dc_tbl_no = 1;
|
||||
compptr->ac_tbl_no = 1;
|
||||
|
||||
compptr = &cinfo->comp_info[2];
|
||||
compptr->component_index = 2;
|
||||
compptr->component_id = 3;
|
||||
compptr->h_samp_factor = 1;
|
||||
compptr->v_samp_factor = 1;
|
||||
compptr->quant_tbl_no = 1; /* use tables 1 for chrominance */
|
||||
compptr->dc_tbl_no = 1;
|
||||
compptr->ac_tbl_no = 1;
|
||||
|
||||
/* Set up two quantization tables using the specified quality scaling */
|
||||
j_set_quality(cinfo, quality, force_baseline);
|
||||
|
||||
/* Set up two Huffman tables in case user interface wants Huffman coding */
|
||||
std_huff_tables(cinfo);
|
||||
|
||||
/* Initialize default arithmetic coding conditioning */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */
|
||||
cinfo->arith_code = FALSE;
|
||||
|
||||
/* Color images are interleaved by default */
|
||||
cinfo->interleave = TRUE;
|
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */
|
||||
cinfo->optimize_coding = FALSE;
|
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */
|
||||
cinfo->CCIR601_sampling = FALSE;
|
||||
|
||||
/* No restart markers */
|
||||
cinfo->restart_interval = 0;
|
||||
|
||||
/* Install default do-nothing progress monitoring method. */
|
||||
cinfo->methods->progress_monitor = progress_monitor;
|
||||
}
|
||||
|
||||
|
||||
|
||||
GLOBAL void
|
||||
j_monochrome_default (compress_info_ptr cinfo)
|
||||
/* Change the j_c_defaults() values to emit a monochrome JPEG file. */
|
||||
{
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
cinfo->jpeg_color_space = CS_GRAYSCALE;
|
||||
cinfo->num_components = 1;
|
||||
/* Set single component to 1x1 subsampling */
|
||||
compptr = &cinfo->comp_info[0];
|
||||
compptr->h_samp_factor = 1;
|
||||
compptr->v_samp_factor = 1;
|
||||
}
|
||||
75
jcexpand.c
75
jcexpand.c
@@ -1,75 +0,0 @@
|
||||
/*
|
||||
* jcexpand.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains image edge-expansion routines.
|
||||
* These routines are invoked via the edge_expand method.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
|
||||
/*
|
||||
* Expand an image so that it is a multiple of the MCU dimensions.
|
||||
* This is to be accomplished by duplicating the rightmost column
|
||||
* and/or bottommost row of pixels. The image has not yet been
|
||||
* subsampled, so all components have the same dimensions.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
edge_expand (compress_info_ptr cinfo,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPIMAGE image_data)
|
||||
{
|
||||
/* Expand horizontally */
|
||||
if (input_cols < output_cols) {
|
||||
register JSAMPROW ptr;
|
||||
register JSAMPLE pixval;
|
||||
register long count;
|
||||
register int row;
|
||||
short ci;
|
||||
long numcols = output_cols - input_cols;
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
for (row = 0; row < input_rows; row++) {
|
||||
ptr = image_data[ci][row] + (input_cols-1);
|
||||
pixval = GETJSAMPLE(*ptr++);
|
||||
for (count = numcols; count > 0; count--)
|
||||
*ptr++ = pixval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Expand vertically */
|
||||
/* This happens only once at the bottom of the image, */
|
||||
/* so it needn't be super-efficient */
|
||||
if (input_rows < output_rows) {
|
||||
register int row;
|
||||
short ci;
|
||||
JSAMPARRAY this_component;
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
this_component = image_data[ci];
|
||||
for (row = input_rows; row < output_rows; row++) {
|
||||
jcopy_sample_rows(this_component, input_rows-1, this_component, row,
|
||||
1, output_cols);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for edge expansion.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselexpand (compress_info_ptr cinfo)
|
||||
{
|
||||
/* just one implementation for now */
|
||||
cinfo->methods->edge_expand = edge_expand;
|
||||
}
|
||||
358
jcmain.c
358
jcmain.c
@@ -1,358 +0,0 @@
|
||||
/*
|
||||
* jcmain.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a trivial test user interface for the JPEG compressor.
|
||||
* It should work on any system with Unix- or MS-DOS-style command lines.
|
||||
*
|
||||
* Two different command line styles are permitted, depending on the
|
||||
* compile-time switch TWO_FILE_COMMANDLINE:
|
||||
* cjpeg [options] inputfile outputfile
|
||||
* cjpeg [options] [inputfile]
|
||||
* In the second style, output is always to standard output, which you'd
|
||||
* normally redirect to a file or pipe to some other program. Input is
|
||||
* either from a named file or from standard input (typically redirected).
|
||||
* The second style is convenient on Unix but is unhelpful on systems that
|
||||
* don't support pipes. Also, you MUST use the first style if your system
|
||||
* doesn't do binary I/O to stdin/stdout.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare exit() */
|
||||
#endif
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
#include <signal.h> /* to declare signal() */
|
||||
#endif
|
||||
|
||||
#ifdef THINK_C
|
||||
#include <console.h> /* command-line reader for Macintosh */
|
||||
#endif
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define WRITE_BINARY "w"
|
||||
#else
|
||||
#define READ_BINARY "rb"
|
||||
#define WRITE_BINARY "wb"
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
#ifndef EXIT_SUCCESS
|
||||
#ifdef VMS
|
||||
#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
|
||||
#else
|
||||
#define EXIT_SUCCESS 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#include "jversion.h" /* for version message */
|
||||
|
||||
|
||||
/*
|
||||
* PD version of getopt(3).
|
||||
*/
|
||||
|
||||
#include "egetopt.c"
|
||||
|
||||
|
||||
/*
|
||||
* This routine determines what format the input file is,
|
||||
* and selects the appropriate input-reading module.
|
||||
*
|
||||
* To determine which family of input formats the file belongs to,
|
||||
* we may look only at the first byte of the file, since C does not
|
||||
* guarantee that more than one character can be pushed back with ungetc.
|
||||
* Looking at additional bytes would require one of these approaches:
|
||||
* 1) assume we can fseek() the input file (fails for piped input);
|
||||
* 2) assume we can push back more than one character (works in
|
||||
* some C implementations, but unportable);
|
||||
* 3) provide our own buffering as is done in djpeg (breaks input readers
|
||||
* that want to use stdio directly, such as the RLE library);
|
||||
* or 4) don't put back the data, and modify the input_init methods to assume
|
||||
* they start reading after the start of file (also breaks RLE library).
|
||||
* #1 is attractive for MS-DOS but is untenable on Unix.
|
||||
*
|
||||
* The most portable solution for file types that can't be identified by their
|
||||
* first byte is to make the user tell us what they are. This is also the
|
||||
* only approach for "raw" file types that contain only arbitrary values.
|
||||
* We presently apply this method for Targa files. Most of the time Targa
|
||||
* files start with 0x00, so we recognize that case. Potentially, however,
|
||||
* a Targa file could start with any byte value (byte 0 is the length of the
|
||||
* seldom-used ID field), so we accept a -T switch to force Targa input mode.
|
||||
*/
|
||||
|
||||
static boolean is_targa; /* records user -T switch */
|
||||
|
||||
|
||||
LOCAL void
|
||||
select_file_type (compress_info_ptr cinfo)
|
||||
{
|
||||
int c;
|
||||
|
||||
if (is_targa) {
|
||||
#ifdef TARGA_SUPPORTED
|
||||
jselrtarga(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo->emethods, "Targa support was not compiled");
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
if ((c = getc(cinfo->input_file)) == EOF)
|
||||
ERREXIT(cinfo->emethods, "Empty input file");
|
||||
|
||||
switch (c) {
|
||||
#ifdef GIF_SUPPORTED
|
||||
case 'G':
|
||||
jselrgif(cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef PPM_SUPPORTED
|
||||
case 'P':
|
||||
jselrppm(cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef RLE_SUPPORTED
|
||||
case 'R':
|
||||
jselrrle(cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TARGA_SUPPORTED
|
||||
case 0x00:
|
||||
jselrtarga(cinfo);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
#ifdef TARGA_SUPPORTED
|
||||
ERREXIT(cinfo->emethods, "Unrecognized input file format --- did you forget -T ?");
|
||||
#else
|
||||
ERREXIT(cinfo->emethods, "Unrecognized input file format");
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
||||
if (ungetc(c, cinfo->input_file) == EOF)
|
||||
ERREXIT(cinfo->emethods, "ungetc failed");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine gets control after the input file header has been read.
|
||||
* It must determine what output JPEG file format is to be written,
|
||||
* and make any other compression parameter changes that are desirable.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
c_ui_method_selection (compress_info_ptr cinfo)
|
||||
{
|
||||
/* If the input is gray scale, generate a monochrome JPEG file. */
|
||||
if (cinfo->in_color_space == CS_GRAYSCALE)
|
||||
j_monochrome_default(cinfo);
|
||||
/* For now, always select JFIF output format. */
|
||||
#ifdef JFIF_SUPPORTED
|
||||
jselwjfif(cinfo);
|
||||
#else
|
||||
You shoulda defined JFIF_SUPPORTED. /* deliberate syntax error */
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Signal catcher to ensure that temporary files are removed before aborting.
|
||||
* NB: for Amiga Manx C this is actually a global routine named _abort();
|
||||
* see -Dsignal_catcher=_abort in CFLAGS. Talk about bogus...
|
||||
*/
|
||||
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
|
||||
static external_methods_ptr emethods; /* for access to free_all */
|
||||
|
||||
GLOBAL void
|
||||
signal_catcher (int signum)
|
||||
{
|
||||
emethods->trace_level = 0; /* turn off trace output */
|
||||
(*emethods->free_all) (); /* clean up memory allocation & temp files */
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL void
|
||||
usage (char * progname)
|
||||
/* complain about bad command line */
|
||||
{
|
||||
fprintf(stderr, "usage: %s ", progname);
|
||||
fprintf(stderr, "[-Q quality 0..100] [-o] [-T] [-I] [-a] [-d] [-m mem]");
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
fprintf(stderr, " inputfile outputfile\n");
|
||||
#else
|
||||
fprintf(stderr, " [inputfile]\n");
|
||||
#endif
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The main program.
|
||||
*/
|
||||
|
||||
GLOBAL int
|
||||
main (int argc, char **argv)
|
||||
{
|
||||
struct compress_info_struct cinfo;
|
||||
struct compress_methods_struct c_methods;
|
||||
struct external_methods_struct e_methods;
|
||||
int c;
|
||||
|
||||
/* On Mac, fetch a command line. */
|
||||
#ifdef THINK_C
|
||||
argc = ccommand(&argv);
|
||||
#endif
|
||||
|
||||
/* Initialize the system-dependent method pointers. */
|
||||
cinfo.methods = &c_methods;
|
||||
cinfo.emethods = &e_methods;
|
||||
jselerror(&e_methods); /* error/trace message routines */
|
||||
jselmemmgr(&e_methods); /* memory allocation routines */
|
||||
c_methods.c_ui_method_selection = c_ui_method_selection;
|
||||
|
||||
/* Now OK to enable signal catcher. */
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
emethods = &e_methods;
|
||||
signal(SIGINT, signal_catcher);
|
||||
#ifdef SIGTERM /* not all systems have SIGTERM */
|
||||
signal(SIGTERM, signal_catcher);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Set up default JPEG parameters. */
|
||||
j_c_defaults(&cinfo, 75, FALSE); /* default quality level = 75 */
|
||||
is_targa = FALSE;
|
||||
|
||||
/* Scan command line options, adjust parameters */
|
||||
|
||||
while ((c = egetopt(argc, argv, "IQ:Taom:d")) != EOF)
|
||||
switch (c) {
|
||||
case 'I': /* Create noninterleaved file. */
|
||||
#ifdef MULTISCAN_FILES_SUPPORTED
|
||||
cinfo.interleave = FALSE;
|
||||
#else
|
||||
fprintf(stderr, "%s: sorry, multiple-scan support was not compiled\n",
|
||||
argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
#endif
|
||||
break;
|
||||
case 'Q': /* Quality factor. */
|
||||
{ int val;
|
||||
if (optarg == NULL)
|
||||
usage(argv[0]);
|
||||
if (sscanf(optarg, "%d", &val) != 1)
|
||||
usage(argv[0]);
|
||||
/* Note: for now, we make force_baseline FALSE.
|
||||
* This means non-baseline JPEG files can be created with low Q values.
|
||||
* To ensure only baseline files are generated, pass TRUE instead.
|
||||
*/
|
||||
j_set_quality(&cinfo, val, FALSE);
|
||||
}
|
||||
break;
|
||||
case 'T': /* Input file is Targa format. */
|
||||
is_targa = TRUE;
|
||||
break;
|
||||
case 'a': /* Use arithmetic coding. */
|
||||
#ifdef ARITH_CODING_SUPPORTED
|
||||
cinfo.arith_code = TRUE;
|
||||
#else
|
||||
fprintf(stderr, "%s: sorry, arithmetic coding not supported\n",
|
||||
argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
#endif
|
||||
break;
|
||||
case 'o': /* Enable entropy parm optimization. */
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
cinfo.optimize_coding = TRUE;
|
||||
#else
|
||||
fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n",
|
||||
argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
#endif
|
||||
break;
|
||||
case 'm': /* Maximum memory in Kb (or Mb with 'm'). */
|
||||
{ long lval;
|
||||
char ch = 'x';
|
||||
|
||||
if (optarg == NULL)
|
||||
usage(argv[0]);
|
||||
if (sscanf(optarg, "%ld%c", &lval, &ch) < 1)
|
||||
usage(argv[0]);
|
||||
if (ch == 'm' || ch == 'M')
|
||||
lval *= 1000L;
|
||||
e_methods.max_memory_to_use = lval * 1000L;
|
||||
}
|
||||
break;
|
||||
case 'd': /* Debugging. */
|
||||
e_methods.trace_level++;
|
||||
break;
|
||||
case '?':
|
||||
default:
|
||||
usage(argv[0]);
|
||||
break;
|
||||
}
|
||||
|
||||
/* If -d appeared, print version identification */
|
||||
if (e_methods.trace_level > 0)
|
||||
fprintf(stderr, "Independent JPEG Group's CJPEG, version %s\n%s\n",
|
||||
JVERSION, JCOPYRIGHT);
|
||||
|
||||
/* Select the input and output files */
|
||||
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
|
||||
if (optind != argc-2) {
|
||||
fprintf(stderr, "%s: must name one input and one output file\n", argv[0]);
|
||||
usage(argv[0]);
|
||||
}
|
||||
if ((cinfo.input_file = fopen(argv[optind], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", argv[0], argv[optind]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ((cinfo.output_file = fopen(argv[optind+1], WRITE_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", argv[0], argv[optind+1]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
#else /* not TWO_FILE_COMMANDLINE -- use Unix style */
|
||||
|
||||
cinfo.input_file = stdin; /* default input file */
|
||||
cinfo.output_file = stdout; /* always the output file */
|
||||
|
||||
if (optind < argc-1) {
|
||||
fprintf(stderr, "%s: only one input file\n", argv[0]);
|
||||
usage(argv[0]);
|
||||
}
|
||||
if (optind < argc) {
|
||||
if ((cinfo.input_file = fopen(argv[optind], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", argv[0], argv[optind]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* TWO_FILE_COMMANDLINE */
|
||||
|
||||
/* Figure out the input file format, and set up to read it. */
|
||||
select_file_type(&cinfo);
|
||||
|
||||
/* Do it to it! */
|
||||
jpeg_compress(&cinfo);
|
||||
|
||||
/* All done. */
|
||||
exit(EXIT_SUCCESS);
|
||||
return 0; /* suppress no-return-value warnings */
|
||||
}
|
||||
298
jcmainct.c
Normal file
298
jcmainct.c
Normal file
@@ -0,0 +1,298 @@
|
||||
/*
|
||||
* jcmainct.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for compression.
|
||||
* The main buffer lies between the pre-processor and the JPEG
|
||||
* compressor proper; it holds downsampled data in the JPEG colorspace.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Note: currently, there is no operating mode in which a full-image buffer
|
||||
* is needed at this step. If there were, that mode could not be used with
|
||||
* "raw data" input, since this module is bypassed in that case. However,
|
||||
* we've left the code here for possible use in special applications.
|
||||
*/
|
||||
#undef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_main_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION cur_mcu_row; /* number of current iMCU row */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs output from current row */
|
||||
boolean suspended; /* remember if we suspended output */
|
||||
J_BUF_MODE pass_mode; /* current operating mode */
|
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this
|
||||
* points to the currently accessible strips of the virtual arrays.
|
||||
*/
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* If using full-image storage, this array holds pointers to virtual-array
|
||||
* control blocks for each component. Unused if not full-image storage.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF void process_data_simple_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
METHODDEF void process_data_buffer_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Do nothing in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
main->cur_mcu_row = 0; /* initialize counters */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->mcu_ctr = 0;
|
||||
main->suspended = FALSE;
|
||||
main->pass_mode = pass_mode; /* save mode for use by process_data */
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
if (main->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
break;
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_SOURCE:
|
||||
case JBUF_CRANK_DEST:
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (main->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
main->pub.process_data = process_data_buffer_main;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles the simple pass-through mode,
|
||||
* where we have only a strip buffer.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
process_data_simple_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
while (main->cur_mcu_row < cinfo->total_iMCU_rows) {
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (main->rowgroup_ctr < DCTSIZE)
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) DCTSIZE);
|
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row
|
||||
* at the bottom of the image.
|
||||
*/
|
||||
if (main->rowgroup_ctr != DCTSIZE)
|
||||
return;
|
||||
|
||||
/* Send the completed row to the compressor */
|
||||
(*cinfo->coef->compress_data) (cinfo, main->buffer, &main->mcu_ctr);
|
||||
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (main->mcu_ctr < cinfo->MCUs_per_row) {
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
main->mcu_ctr = 0;
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_mcu_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles all of the modes that use a full-size buffer.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
process_data_buffer_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
|
||||
|
||||
while (main->cur_mcu_row < cinfo->total_iMCU_rows) {
|
||||
/* Realign the virtual buffers if at the start of an iMCU row. */
|
||||
if (main->rowgroup_ctr == 0) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, main->whole_image[ci],
|
||||
main->cur_mcu_row * (compptr->v_samp_factor * DCTSIZE), writing);
|
||||
}
|
||||
/* In a read pass, pretend we just read some source data. */
|
||||
if (! writing) {
|
||||
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
|
||||
main->rowgroup_ctr = DCTSIZE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If a write pass, read input data until the current iMCU row is full. */
|
||||
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
|
||||
if (writing) {
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) DCTSIZE);
|
||||
/* Return to application if we need more data to fill the iMCU row. */
|
||||
if (main->rowgroup_ctr < DCTSIZE)
|
||||
return;
|
||||
}
|
||||
|
||||
/* Emit data, unless this is a sink-only pass. */
|
||||
if (main->pass_mode != JBUF_SAVE_SOURCE) {
|
||||
(*cinfo->coef->compress_data) (cinfo, main->buffer, &main->mcu_ctr);
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (main->mcu_ctr < cinfo->MCUs_per_row) {
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If get here, we are done with this iMCU row. Mark buffer empty. */
|
||||
main->mcu_ctr = 0;
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_mcu_row++;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_c_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size.
|
||||
*/
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component */
|
||||
/* Note we implicitly pad the bottom to a multiple of the iMCU height */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
compptr->height_in_blocks * DCTSIZE,
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
main->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
#endif
|
||||
/* Allocate a strip buffer for each component */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
|
||||
}
|
||||
}
|
||||
}
|
||||
605
jcmarker.c
Normal file
605
jcmarker.c
Normal file
@@ -0,0 +1,605 @@
|
||||
/*
|
||||
* jcmarker.c
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to write JPEG datastream markers.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */
|
||||
M_SOF0 = 0xc0,
|
||||
M_SOF1 = 0xc1,
|
||||
M_SOF2 = 0xc2,
|
||||
M_SOF3 = 0xc3,
|
||||
|
||||
M_SOF5 = 0xc5,
|
||||
M_SOF6 = 0xc6,
|
||||
M_SOF7 = 0xc7,
|
||||
|
||||
M_JPG = 0xc8,
|
||||
M_SOF9 = 0xc9,
|
||||
M_SOF10 = 0xca,
|
||||
M_SOF11 = 0xcb,
|
||||
|
||||
M_SOF13 = 0xcd,
|
||||
M_SOF14 = 0xce,
|
||||
M_SOF15 = 0xcf,
|
||||
|
||||
M_DHT = 0xc4,
|
||||
|
||||
M_DAC = 0xcc,
|
||||
|
||||
M_RST0 = 0xd0,
|
||||
M_RST1 = 0xd1,
|
||||
M_RST2 = 0xd2,
|
||||
M_RST3 = 0xd3,
|
||||
M_RST4 = 0xd4,
|
||||
M_RST5 = 0xd5,
|
||||
M_RST6 = 0xd6,
|
||||
M_RST7 = 0xd7,
|
||||
|
||||
M_SOI = 0xd8,
|
||||
M_EOI = 0xd9,
|
||||
M_SOS = 0xda,
|
||||
M_DQT = 0xdb,
|
||||
M_DNL = 0xdc,
|
||||
M_DRI = 0xdd,
|
||||
M_DHP = 0xde,
|
||||
M_EXP = 0xdf,
|
||||
|
||||
M_APP0 = 0xe0,
|
||||
M_APP1 = 0xe1,
|
||||
M_APP2 = 0xe2,
|
||||
M_APP3 = 0xe3,
|
||||
M_APP4 = 0xe4,
|
||||
M_APP5 = 0xe5,
|
||||
M_APP6 = 0xe6,
|
||||
M_APP7 = 0xe7,
|
||||
M_APP8 = 0xe8,
|
||||
M_APP9 = 0xe9,
|
||||
M_APP10 = 0xea,
|
||||
M_APP11 = 0xeb,
|
||||
M_APP12 = 0xec,
|
||||
M_APP13 = 0xed,
|
||||
M_APP14 = 0xee,
|
||||
M_APP15 = 0xef,
|
||||
|
||||
M_JPG0 = 0xf0,
|
||||
M_JPG13 = 0xfd,
|
||||
M_COM = 0xfe,
|
||||
|
||||
M_TEM = 0x01,
|
||||
|
||||
M_ERROR = 0x100
|
||||
} JPEG_MARKER;
|
||||
|
||||
|
||||
/*
|
||||
* Basic output routines.
|
||||
*
|
||||
* Note that we do not support suspension while writing a marker.
|
||||
* Therefore, an application using suspension must ensure that there is
|
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before
|
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI
|
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
|
||||
* modes are not supported at all with suspension, so those two are the only
|
||||
* points where markers will be written.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
emit_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit a byte */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0) {
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
|
||||
/* Emit a marker code */
|
||||
{
|
||||
emit_byte(cinfo, 0xFF);
|
||||
emit_byte(cinfo, (int) mark);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_2bytes (j_compress_ptr cinfo, int value)
|
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
|
||||
{
|
||||
emit_byte(cinfo, (value >> 8) & 0xFF);
|
||||
emit_byte(cinfo, value & 0xFF);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types.
|
||||
*/
|
||||
|
||||
LOCAL int
|
||||
emit_dqt (j_compress_ptr cinfo, int index)
|
||||
/* Emit a DQT marker */
|
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
|
||||
{
|
||||
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
|
||||
int prec;
|
||||
int i;
|
||||
|
||||
if (qtbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
|
||||
|
||||
prec = 0;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
if (qtbl->quantval[i] > 255)
|
||||
prec = 1;
|
||||
}
|
||||
|
||||
if (! qtbl->sent_table) {
|
||||
emit_marker(cinfo, M_DQT);
|
||||
|
||||
emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
|
||||
|
||||
emit_byte(cinfo, index + (prec<<4));
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
if (prec)
|
||||
emit_byte(cinfo, qtbl->quantval[i] >> 8);
|
||||
emit_byte(cinfo, qtbl->quantval[i] & 0xFF);
|
||||
}
|
||||
|
||||
qtbl->sent_table = TRUE;
|
||||
}
|
||||
|
||||
return prec;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
|
||||
/* Emit a DHT marker */
|
||||
{
|
||||
JHUFF_TBL * htbl;
|
||||
int length, i;
|
||||
|
||||
if (is_ac) {
|
||||
htbl = cinfo->ac_huff_tbl_ptrs[index];
|
||||
index += 0x10; /* output index has AC bit set */
|
||||
} else {
|
||||
htbl = cinfo->dc_huff_tbl_ptrs[index];
|
||||
}
|
||||
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
|
||||
|
||||
if (! htbl->sent_table) {
|
||||
emit_marker(cinfo, M_DHT);
|
||||
|
||||
length = 0;
|
||||
for (i = 1; i <= 16; i++)
|
||||
length += htbl->bits[i];
|
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16);
|
||||
emit_byte(cinfo, index);
|
||||
|
||||
for (i = 1; i <= 16; i++)
|
||||
emit_byte(cinfo, htbl->bits[i]);
|
||||
|
||||
for (i = 0; i < length; i++)
|
||||
emit_byte(cinfo, htbl->huffval[i]);
|
||||
|
||||
htbl->sent_table = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_dac (j_compress_ptr cinfo)
|
||||
/* Emit a DAC marker */
|
||||
/* Since the useful info is so small, we want to emit all the tables in */
|
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */
|
||||
{
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
char dc_in_use[NUM_ARITH_TBLS];
|
||||
char ac_in_use[NUM_ARITH_TBLS];
|
||||
int length, i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
dc_in_use[i] = ac_in_use[i] = 0;
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
dc_in_use[compptr->dc_tbl_no] = 1;
|
||||
ac_in_use[compptr->ac_tbl_no] = 1;
|
||||
}
|
||||
|
||||
length = 0;
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
length += dc_in_use[i] + ac_in_use[i];
|
||||
|
||||
emit_marker(cinfo, M_DAC);
|
||||
|
||||
emit_2bytes(cinfo, length*2 + 2);
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
if (dc_in_use[i]) {
|
||||
emit_byte(cinfo, i);
|
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
|
||||
}
|
||||
if (ac_in_use[i]) {
|
||||
emit_byte(cinfo, i + 0x10);
|
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]);
|
||||
}
|
||||
}
|
||||
#endif /* C_ARITH_CODING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_dri (j_compress_ptr cinfo)
|
||||
/* Emit a DRI marker */
|
||||
{
|
||||
emit_marker(cinfo, M_DRI);
|
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */
|
||||
|
||||
emit_2bytes(cinfo, (int) cinfo->restart_interval);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
|
||||
/* Emit a SOF marker */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, code);
|
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
|
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */
|
||||
if ((long) cinfo->image_height > 65535L ||
|
||||
(long) cinfo->image_width > 65535L)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
|
||||
|
||||
emit_byte(cinfo, cinfo->data_precision);
|
||||
emit_2bytes(cinfo, (int) cinfo->image_height);
|
||||
emit_2bytes(cinfo, (int) cinfo->image_width);
|
||||
|
||||
emit_byte(cinfo, cinfo->num_components);
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
|
||||
emit_byte(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_sos (j_compress_ptr cinfo)
|
||||
/* Emit a SOS marker */
|
||||
{
|
||||
int i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, M_SOS);
|
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
|
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan);
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
emit_byte(cinfo, (compptr->dc_tbl_no << 4) + compptr->ac_tbl_no);
|
||||
}
|
||||
|
||||
emit_byte(cinfo, 0); /* Spectral selection start */
|
||||
emit_byte(cinfo, DCTSIZE2-1); /* Spectral selection end */
|
||||
emit_byte(cinfo, 0); /* Successive approximation */
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_jfif_app0 (j_compress_ptr cinfo)
|
||||
/* Emit a JFIF-compliant APP0 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP0 block (2 bytes)
|
||||
* Block ID (4 bytes - ASCII "JFIF")
|
||||
* Zero byte (1 byte to terminate the ID string)
|
||||
* Version Major, Minor (2 bytes - 0x01, 0x01)
|
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
|
||||
* Xdpu (2 bytes - dots per unit horizontal)
|
||||
* Ydpu (2 bytes - dots per unit vertical)
|
||||
* Thumbnail X size (1 byte)
|
||||
* Thumbnail Y size (1 byte)
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP0);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0x49);
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0);
|
||||
/* We currently emit version code 1.01 since we use no 1.02 features.
|
||||
* This may avoid complaints from some older decoders.
|
||||
*/
|
||||
emit_byte(cinfo, 1); /* Major version */
|
||||
emit_byte(cinfo, 1); /* Minor version */
|
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
|
||||
emit_2bytes(cinfo, (int) cinfo->X_density);
|
||||
emit_2bytes(cinfo, (int) cinfo->Y_density);
|
||||
emit_byte(cinfo, 0); /* No thumbnail image */
|
||||
emit_byte(cinfo, 0);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
emit_adobe_app14 (j_compress_ptr cinfo)
|
||||
/* Emit an Adobe APP14 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP14 block (2 bytes)
|
||||
* Block ID (5 bytes - ASCII "Adobe")
|
||||
* Version Number (2 bytes - currently 100)
|
||||
* Flags0 (2 bytes - currently 0)
|
||||
* Flags1 (2 bytes - currently 0)
|
||||
* Color transform (1 byte)
|
||||
*
|
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
|
||||
* now in circulation seem to use Version = 100, so that's what we write.
|
||||
*
|
||||
* We write the color transform byte as 1 if the JPEG color space is
|
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
|
||||
* whether the encoder performed a transformation, which is pretty useless.
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP14);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
|
||||
emit_byte(cinfo, 0x64);
|
||||
emit_byte(cinfo, 0x6F);
|
||||
emit_byte(cinfo, 0x62);
|
||||
emit_byte(cinfo, 0x65);
|
||||
emit_2bytes(cinfo, 100); /* Version */
|
||||
emit_2bytes(cinfo, 0); /* Flags0 */
|
||||
emit_2bytes(cinfo, 0); /* Flags1 */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_YCbCr:
|
||||
emit_byte(cinfo, 1); /* Color transform = 1 */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
emit_byte(cinfo, 2); /* Color transform = 2 */
|
||||
break;
|
||||
default:
|
||||
emit_byte(cinfo, 0); /* Color transform = 0 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine is exported for possible use by applications.
|
||||
* The intended use is to emit COM or APPn markers after calling
|
||||
* jpeg_start_compress() and before the first jpeg_write_scanlines() call
|
||||
* (hence, after write_file_header but before write_frame_header).
|
||||
* Other uses are not guaranteed to produce desirable results.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
write_any_marker (j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen)
|
||||
/* Emit an arbitrary marker with parameters */
|
||||
{
|
||||
if (datalen <= (unsigned int) 65533) { /* safety check */
|
||||
emit_marker(cinfo, (JPEG_MARKER) marker);
|
||||
|
||||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
|
||||
|
||||
while (datalen--) {
|
||||
emit_byte(cinfo, *dataptr);
|
||||
dataptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream header.
|
||||
* This consists of an SOI and optional APPn markers.
|
||||
* We recommend use of the JFIF marker, but not the Adobe marker,
|
||||
* when using YCbCr or grayscale data. The JFIF marker should NOT
|
||||
* be used for any other JPEG colorspace. The Adobe marker is helpful
|
||||
* to distinguish RGB, CMYK, and YCCK colorspaces.
|
||||
* Note that an application can write additional header markers after
|
||||
* jpeg_start_decompress returns.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
write_file_header (j_compress_ptr cinfo)
|
||||
{
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */
|
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
|
||||
emit_jfif_app0(cinfo);
|
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
|
||||
emit_adobe_app14(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write frame header.
|
||||
* This consists of DQT and SOFn markers.
|
||||
* Note that we do not emit the SOF until we have emitted the DQT(s).
|
||||
* This avoids compatibility problems with incorrect implementations that
|
||||
* try to error-check the quant table numbers as soon as they see the SOF.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
write_frame_header (j_compress_ptr cinfo)
|
||||
{
|
||||
int ci, prec;
|
||||
boolean is_baseline;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables.
|
||||
*/
|
||||
prec = 0;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */
|
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later.
|
||||
*/
|
||||
is_baseline = TRUE;
|
||||
if (cinfo->arith_code || (cinfo->data_precision != 8))
|
||||
is_baseline = FALSE;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
|
||||
is_baseline = FALSE;
|
||||
}
|
||||
if (prec && is_baseline) {
|
||||
is_baseline = FALSE;
|
||||
/* If it's baseline except for quantizer size, warn the user */
|
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
|
||||
}
|
||||
|
||||
/* Emit the proper SOF marker */
|
||||
if (cinfo->arith_code)
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for arithmetic coding */
|
||||
else if (is_baseline)
|
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write scan header.
|
||||
* This consists of DHT or DAC markers, optional DRI, and SOS.
|
||||
* Compressed data will be written following the SOS.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
write_scan_header (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->arith_code) {
|
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly
|
||||
* worth worrying about.
|
||||
*/
|
||||
emit_dac(cinfo);
|
||||
} else {
|
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables.
|
||||
*/
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* If it doesn't, a tiny amount of space is wasted in multiple-scan files.
|
||||
* We assume DRI will never be nonzero for one scan and zero for a later one.
|
||||
*/
|
||||
if (cinfo->restart_interval)
|
||||
emit_dri(cinfo);
|
||||
|
||||
emit_sos(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
write_file_trailer (j_compress_ptr cinfo)
|
||||
{
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream.
|
||||
* This consists of SOI, DQT and DHT tables, and EOI.
|
||||
* Any table that is defined and not marked sent_table = TRUE will be
|
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
write_tables_only (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
emit_marker(cinfo, M_SOI);
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if (cinfo->quant_tbl_ptrs[i] != NULL)
|
||||
(void) emit_dqt(cinfo, i);
|
||||
}
|
||||
|
||||
if (! cinfo->arith_code) {
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, FALSE);
|
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_marker_writer (j_compress_ptr cinfo)
|
||||
{
|
||||
/* Create the subobject */
|
||||
cinfo->marker = (struct jpeg_marker_writer *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(struct jpeg_marker_writer));
|
||||
/* Initialize method pointers */
|
||||
cinfo->marker->write_any_marker = write_any_marker;
|
||||
cinfo->marker->write_file_header = write_file_header;
|
||||
cinfo->marker->write_frame_header = write_frame_header;
|
||||
cinfo->marker->write_scan_header = write_scan_header;
|
||||
cinfo->marker->write_file_trailer = write_file_trailer;
|
||||
cinfo->marker->write_tables_only = write_tables_only;
|
||||
}
|
||||
436
jcmaster.c
436
jcmaster.c
@@ -1,133 +1,387 @@
|
||||
/*
|
||||
* jcmaster.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main control for the JPEG compressor.
|
||||
* The system-dependent (user interface) code should call jpeg_compress()
|
||||
* after doing appropriate setup of the compress_info_struct parameter.
|
||||
* This file contains master control logic for the JPEG compressor.
|
||||
* These routines are concerned with selecting the modules to be executed
|
||||
* and with determining the number of passes and the work to be done in each
|
||||
* pass.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
METHODDEF void
|
||||
c_per_scan_method_selection (compress_info_ptr cinfo)
|
||||
/* Central point for per-scan method selection */
|
||||
{
|
||||
/* Edge expansion */
|
||||
jselexpand(cinfo);
|
||||
/* Subsampling of pixels */
|
||||
jselsubsample(cinfo);
|
||||
/* MCU extraction */
|
||||
jselcmcu(cinfo);
|
||||
}
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_comp_master pub; /* public fields */
|
||||
|
||||
int pass_number; /* eventually need more complex state... */
|
||||
} my_comp_master;
|
||||
|
||||
typedef my_comp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
c_initial_method_selection (compress_info_ptr cinfo)
|
||||
/* Central point for initial method selection */
|
||||
initial_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
/* Input image reading method selection is already done. */
|
||||
/* So is output file header formatting (both are done by user interface). */
|
||||
|
||||
/* Gamma and color space conversion */
|
||||
jselccolor(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
#ifdef ARITH_CODING_SUPPORTED
|
||||
jselcarithmetic(cinfo);
|
||||
#else
|
||||
cinfo->arith_code = FALSE; /* force Huffman mode */
|
||||
#endif
|
||||
jselchuffman(cinfo);
|
||||
/* Pipeline control */
|
||||
jselcpipeline(cinfo);
|
||||
/* Overall control (that's me!) */
|
||||
cinfo->methods->c_per_scan_method_selection = c_per_scan_method_selection;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
initial_setup (compress_info_ptr cinfo)
|
||||
/* Do computations that are needed before initial method selection */
|
||||
{
|
||||
short ci;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Sanity check on image dimensions */
|
||||
if (cinfo->image_height <= 0 || cinfo->image_width <= 0
|
||||
|| cinfo->num_components <= 0 || cinfo->input_components <= 0)
|
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
compptr = &cinfo->comp_info[ci];
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo->emethods, "Bogus sampling factors");
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* For compression, we never do DCT scaling. */
|
||||
compptr->DCT_scaled_size = DCTSIZE;
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) cinfo->max_v_samp_factor);
|
||||
/* Mark component needed (this flag isn't actually used for compression) */
|
||||
compptr->component_needed = TRUE;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller).
|
||||
*/
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
per_scan_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = DCTSIZE;
|
||||
compptr->last_col_width = 1;
|
||||
compptr->last_row_height = 1;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Compute logical subsampled dimensions of components */
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
compptr = &cinfo->comp_info[ci];
|
||||
compptr->true_comp_width = (cinfo->image_width * compptr->h_samp_factor
|
||||
+ cinfo->max_h_samp_factor - 1)
|
||||
/ cinfo->max_h_samp_factor;
|
||||
compptr->true_comp_height = (cinfo->image_height * compptr->v_samp_factor
|
||||
+ cinfo->max_v_samp_factor - 1)
|
||||
/ cinfo->max_v_samp_factor;
|
||||
/* Convert restart specified in rows to actual MCU count. */
|
||||
/* Note that count must fit in 16 bits, so we provide limiting. */
|
||||
if (cinfo->restart_in_rows > 0) {
|
||||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
|
||||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is the main entry point to the JPEG compressor.
|
||||
* Master selection of compression modules.
|
||||
* This is done once at the start of processing an image. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
master_selection (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
initial_setup(cinfo);
|
||||
master->pass_number = 0;
|
||||
|
||||
/* There's not a lot of smarts here right now, but it'll get more
|
||||
* complicated when we have multiple implementations available...
|
||||
*/
|
||||
|
||||
/* Preprocessing */
|
||||
if (! cinfo->raw_data_in) {
|
||||
jinit_color_converter(cinfo);
|
||||
jinit_downsampler(cinfo);
|
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
}
|
||||
/* Forward DCT */
|
||||
jinit_forward_dct(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
jinit_arith_encoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_encoder(cinfo);
|
||||
|
||||
/* For now, a full buffer is needed only for Huffman optimization. */
|
||||
jinit_c_coef_controller(cinfo, cinfo->optimize_coding);
|
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each pass. We determine which modules
|
||||
* will be active during this pass and give them appropriate start_pass calls.
|
||||
* We also set is_last_pass to indicate whether any more passes will be
|
||||
* required.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
prepare_for_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
int ci;
|
||||
int npasses;
|
||||
|
||||
/* ???? JUST A QUICK CROCK FOR NOW ??? */
|
||||
|
||||
/* For now, handle only single interleaved output scan; */
|
||||
/* we support two passes for Huffman optimization. */
|
||||
|
||||
/* Prepare for single scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
|
||||
per_scan_setup(cinfo);
|
||||
|
||||
if (! cinfo->optimize_coding) {
|
||||
/* Standard single-pass case */
|
||||
npasses = 1;
|
||||
master->pub.call_pass_startup = TRUE;
|
||||
master->pub.is_last_pass = TRUE;
|
||||
if (! cinfo->raw_data_in) {
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->downsample->start_pass) (cinfo);
|
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
(*cinfo->fdct->start_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
} else {
|
||||
npasses = 2;
|
||||
switch (master->pass_number) {
|
||||
case 0:
|
||||
/* Huffman optimization: run all modules, gather statistics */
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
master->pub.is_last_pass = FALSE;
|
||||
if (! cinfo->raw_data_in) {
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->downsample->start_pass) (cinfo);
|
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
(*cinfo->fdct->start_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_SAVE_AND_PASS);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
break;
|
||||
case 1:
|
||||
/* Second pass: reread data from coefficient buffer */
|
||||
master->pub.is_last_pass = TRUE;
|
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
/* We emit frame/scan headers now */
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = npasses;
|
||||
}
|
||||
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook.
|
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
|
||||
* In single-pass processing, we need this hook because we don't want to
|
||||
* write frame/scan headers during jpeg_start_compress; we want to let the
|
||||
* application write COM markers etc. between jpeg_start_compress and the
|
||||
* jpeg_write_scanlines loop.
|
||||
* In multi-pass processing, this routine is not used.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
pass_startup (j_compress_ptr cinfo)
|
||||
{
|
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
|
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
finish_pass_master (j_compress_ptr cinfo)
|
||||
{
|
||||
/* More complex logic later ??? */
|
||||
|
||||
/* The entropy coder needs an end-of-pass call, either to analyze
|
||||
* statistics or to flush its output buffer.
|
||||
*/
|
||||
(*cinfo->entropy->finish_pass) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control.
|
||||
* This creates my own subrecord and also performs the master selection phase,
|
||||
* which causes other modules to create their subrecords.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_compress (compress_info_ptr cinfo)
|
||||
jinit_master_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
/* Init pass counts to 0 --- total_passes is adjusted in method selection */
|
||||
cinfo->total_passes = 0;
|
||||
cinfo->completed_passes = 0;
|
||||
my_master_ptr master;
|
||||
|
||||
/* Read the input file header: determine image size & component count.
|
||||
* NOTE: the user interface must have initialized the input_init method
|
||||
* pointer (eg, by calling jselrppm) before calling me.
|
||||
* The other file reading methods (get_input_row etc.) were probably
|
||||
* set at the same time, but could be set up by input_init itself,
|
||||
* or by c_ui_method_selection.
|
||||
*/
|
||||
(*cinfo->methods->input_init) (cinfo);
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_comp_master));
|
||||
cinfo->master = (struct jpeg_comp_master *) master;
|
||||
master->pub.prepare_for_pass = prepare_for_pass;
|
||||
master->pub.pass_startup = pass_startup;
|
||||
master->pub.finish_pass = finish_pass_master;
|
||||
|
||||
/* Give UI a chance to adjust compression parameters and select */
|
||||
/* output file format based on results of input_init. */
|
||||
(*cinfo->methods->c_ui_method_selection) (cinfo);
|
||||
|
||||
/* Now select methods for compression steps. */
|
||||
initial_setup(cinfo);
|
||||
c_initial_method_selection(cinfo);
|
||||
|
||||
/* Initialize the output file & other modules as needed */
|
||||
/* (entropy_encoder is inited by pipeline controller) */
|
||||
|
||||
(*cinfo->methods->colorin_init) (cinfo);
|
||||
(*cinfo->methods->write_file_header) (cinfo);
|
||||
|
||||
/* And let the pipeline controller do the rest. */
|
||||
(*cinfo->methods->c_pipeline_controller) (cinfo);
|
||||
|
||||
/* Finish output file, release working storage, etc */
|
||||
(*cinfo->methods->write_file_trailer) (cinfo);
|
||||
(*cinfo->methods->colorin_term) (cinfo);
|
||||
(*cinfo->methods->input_term) (cinfo);
|
||||
|
||||
(*cinfo->emethods->free_all) ();
|
||||
|
||||
/* My, that was easy, wasn't it? */
|
||||
master_selection(cinfo);
|
||||
}
|
||||
|
||||
212
jcmcu.c
212
jcmcu.c
@@ -1,212 +0,0 @@
|
||||
/*
|
||||
* jcmcu.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains MCU extraction routines and quantization scaling.
|
||||
* These routines are invoked via the extract_MCUs and
|
||||
* extract_init/term methods.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
|
||||
/*
|
||||
* If this file is compiled with -DDCT_ERR_STATS, it will reverse-DCT each
|
||||
* block and sum the total errors across the whole picture. This provides
|
||||
* a convenient method of using real picture data to test the roundoff error
|
||||
* of a DCT algorithm. DCT_ERR_STATS should *not* be defined for a production
|
||||
* compression program, since compression is much slower with it defined.
|
||||
* Also note that jrevdct.o must be linked into the compressor when this
|
||||
* switch is defined.
|
||||
*/
|
||||
|
||||
#ifdef DCT_ERR_STATS
|
||||
static int dcterrorsum; /* these hold the error statistics */
|
||||
static int dcterrormax;
|
||||
static int dctcoefcount; /* This will probably overflow on a 16-bit-int machine */
|
||||
#endif
|
||||
|
||||
|
||||
/* ZAG[i] is the natural-order position of the i'th element of zigzag order. */
|
||||
|
||||
static const short ZAG[DCTSIZE2] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63
|
||||
};
|
||||
|
||||
|
||||
LOCAL void
|
||||
extract_block (JSAMPARRAY input_data, int start_row, long start_col,
|
||||
JBLOCK output_data, QUANT_TBL_PTR quanttbl)
|
||||
/* Extract one 8x8 block from the specified location in the sample array; */
|
||||
/* perform forward DCT, quantization scaling, and zigzag reordering on it. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
DCTBLOCK block;
|
||||
#ifdef DCT_ERR_STATS
|
||||
DCTBLOCK svblock; /* saves input data for comparison */
|
||||
#endif
|
||||
|
||||
{ register JSAMPROW elemptr;
|
||||
register DCTELEM *localblkptr = block;
|
||||
#if DCTSIZE != 8
|
||||
register short elemc;
|
||||
#endif
|
||||
register short elemr;
|
||||
|
||||
for (elemr = DCTSIZE; elemr > 0; elemr--) {
|
||||
elemptr = input_data[start_row++] + start_col;
|
||||
#if DCTSIZE == 8 /* unroll the inner loop */
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
#else
|
||||
for (elemc = DCTSIZE; elemc > 0; elemc--) {
|
||||
*localblkptr++ = (DCTELEM) GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DCT_ERR_STATS
|
||||
memcpy((void *) svblock, (void *) block, SIZEOF(DCTBLOCK));
|
||||
#endif
|
||||
|
||||
j_fwd_dct(block);
|
||||
|
||||
{ register JCOEF temp;
|
||||
register short i;
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = (JCOEF) block[ZAG[i]];
|
||||
/* divide by *quanttbl, ensuring proper rounding */
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
temp += *quanttbl>>1;
|
||||
temp /= *quanttbl;
|
||||
temp = -temp;
|
||||
} else {
|
||||
temp += *quanttbl>>1;
|
||||
temp /= *quanttbl;
|
||||
}
|
||||
*output_data++ = temp;
|
||||
quanttbl++;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DCT_ERR_STATS
|
||||
j_rev_dct(block);
|
||||
|
||||
{ register int diff;
|
||||
register short i;
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
diff = block[i] - svblock[i];
|
||||
if (diff < 0) diff = -diff;
|
||||
dcterrorsum += diff;
|
||||
if (dcterrormax < diff) dcterrormax = diff;
|
||||
}
|
||||
dctcoefcount += DCTSIZE2;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Extract samples in MCU order, process & hand off to output_method.
|
||||
* The input is always exactly N MCU rows worth of data.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
extract_MCUs (compress_info_ptr cinfo,
|
||||
JSAMPIMAGE image_data,
|
||||
int num_mcu_rows,
|
||||
MCU_output_method_ptr output_method)
|
||||
{
|
||||
JBLOCK MCU_data[MAX_BLOCKS_IN_MCU];
|
||||
int mcurow;
|
||||
long mcuindex;
|
||||
short blkn, ci, xpos, ypos;
|
||||
jpeg_component_info * compptr;
|
||||
QUANT_TBL_PTR quant_ptr;
|
||||
|
||||
for (mcurow = 0; mcurow < num_mcu_rows; mcurow++) {
|
||||
for (mcuindex = 0; mcuindex < cinfo->MCUs_per_row; mcuindex++) {
|
||||
/* Extract data from the image array, DCT it, and quantize it */
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
quant_ptr = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no];
|
||||
for (ypos = 0; ypos < compptr->MCU_height; ypos++) {
|
||||
for (xpos = 0; xpos < compptr->MCU_width; xpos++) {
|
||||
extract_block(image_data[ci],
|
||||
(mcurow * compptr->MCU_height + ypos)*DCTSIZE,
|
||||
(mcuindex * compptr->MCU_width + xpos)*DCTSIZE,
|
||||
MCU_data[blkn], quant_ptr);
|
||||
blkn++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Send the MCU whereever the pipeline controller wants it to go */
|
||||
(*output_method) (cinfo, MCU_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for processing a scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
extract_init (compress_info_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
#ifdef DCT_ERR_STATS
|
||||
dcterrorsum = dcterrormax = dctcoefcount = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Clean up after a scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
extract_term (compress_info_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
#ifdef DCT_ERR_STATS
|
||||
TRACEMS3(cinfo->emethods, 0, "DCT roundoff errors = %d/%d, max = %d",
|
||||
dcterrorsum, dctcoefcount, dcterrormax);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for MCU extraction.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselcmcu (compress_info_ptr cinfo)
|
||||
{
|
||||
/* just one implementation for now */
|
||||
cinfo->methods->extract_init = extract_init;
|
||||
cinfo->methods->extract_MCUs = extract_MCUs;
|
||||
cinfo->methods->extract_term = extract_term;
|
||||
}
|
||||
94
jcomapi.c
Normal file
94
jcomapi.c
Normal file
@@ -0,0 +1,94 @@
|
||||
/*
|
||||
* jcomapi.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface routines that are used for both
|
||||
* compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*
|
||||
* For this, we merely clean up all the nonpermanent memory pools.
|
||||
* Note that temp files (virtual arrays) are not allowed to belong to
|
||||
* the permanent pool, so we will be able to close all temp files here.
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_abort (j_common_ptr cinfo)
|
||||
{
|
||||
int pool;
|
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries.
|
||||
*/
|
||||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
|
||||
(*cinfo->mem->free_pool) (cinfo, pool);
|
||||
}
|
||||
|
||||
/* Reset overall state for possible reuse of object */
|
||||
cinfo->global_state = (cinfo->is_decompressor ? DSTATE_START : CSTATE_START);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object.
|
||||
*
|
||||
* Everything gets deallocated except the master jpeg_compress_struct itself
|
||||
* and the error manager struct. Both of these are supplied by the application
|
||||
* and must be freed, if necessary, by the application. (Often they are on
|
||||
* the stack and so don't need to be freed anyway.)
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_destroy (j_common_ptr cinfo)
|
||||
{
|
||||
/* We need only tell the memory manager to release everything. */
|
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
|
||||
if (cinfo->mem != NULL)
|
||||
(*cinfo->mem->self_destruct) (cinfo);
|
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
|
||||
cinfo->global_state = 0; /* mark it destroyed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables.
|
||||
* (Would jutils.c be a more reasonable place to put these?)
|
||||
*/
|
||||
|
||||
GLOBAL JQUANT_TBL *
|
||||
jpeg_alloc_quant_table (j_common_ptr cinfo)
|
||||
{
|
||||
JQUANT_TBL *tbl;
|
||||
|
||||
tbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL JHUFF_TBL *
|
||||
jpeg_alloc_huff_table (j_common_ptr cinfo)
|
||||
{
|
||||
JHUFF_TBL *tbl;
|
||||
|
||||
tbl = (JHUFF_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
44
jconfig.auto
Normal file
44
jconfig.auto
Normal file
@@ -0,0 +1,44 @@
|
||||
/* jconfig.auto --- source file edited by configure script */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#undef HAVE_PROTOTYPES
|
||||
#undef HAVE_UNSIGNED_CHAR
|
||||
#undef HAVE_UNSIGNED_SHORT
|
||||
#undef void
|
||||
#undef const
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#undef HAVE_STDDEF_H
|
||||
#undef HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
/* Define this if you get warnings about undefined structures. */
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#undef INLINE
|
||||
/* These are for configuring the JPEG memory manager. */
|
||||
#undef DEFAULT_MAX_MEM
|
||||
#undef NO_MKTEMP
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#undef TWO_FILE_COMMANDLINE
|
||||
#undef NEED_SIGNAL_CATCHER
|
||||
#undef DONT_USE_B_MODE
|
||||
|
||||
/* Define this if you want percent-done progress reports from cjpeg/djpeg. */
|
||||
#undef PROGRESS_REPORT
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
44
jconfig.bcc
Normal file
44
jconfig.bcc
Normal file
@@ -0,0 +1,44 @@
|
||||
/* jconfig.bcc --- jconfig.h for Borland C (Turbo C) on MS-DOS. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#define NEED_FAR_POINTERS /* for small or medium memory model */
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define INCOMPLETE_TYPES_BROKEN /* suppress undefined-structure warnings */
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#define USE_MSDOS_MEMMGR /* Define this if you use jmemdos.c */
|
||||
|
||||
#define MAX_ALLOC_CHUNK 65520L /* Maximum request to malloc() */
|
||||
|
||||
#define USE_FMEM /* Borland has _fmemcpy() and _fmemset() */
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE
|
||||
#define USE_SETMODE /* Borland has setmode() */
|
||||
#define NEED_SIGNAL_CATCHER /* Define this if you use jmemdos.c */
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
38
jconfig.dj
Normal file
38
jconfig.dj
Normal file
@@ -0,0 +1,38 @@
|
||||
/* jconfig.dj --- jconfig.h for DJGPP (Delorie's GNU C port) on MS-DOS. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS /* DJGPP uses flat 32-bit addressing */
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#undef TWO_FILE_COMMANDLINE /* optional */
|
||||
#define USE_SETMODE /* Needed to make one-file style work in DJGPP */
|
||||
#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
155
jconfig.doc
Normal file
155
jconfig.doc
Normal file
@@ -0,0 +1,155 @@
|
||||
/*
|
||||
* jconfig.doc
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file documents the configuration options that are required to
|
||||
* customize the JPEG software for a particular system.
|
||||
*
|
||||
* The actual configuration options for a particular installation are stored
|
||||
* in jconfig.h. On many machines, jconfig.h can be generated automatically
|
||||
* or copied from one of the "canned" jconfig files that we supply. But if
|
||||
* you need to generate a jconfig.h file by hand, this file tells you how.
|
||||
*
|
||||
* DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
|
||||
* EDIT A COPY NAMED JCONFIG.H.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* These symbols indicate the properties of your machine or compiler.
|
||||
* #define the symbol if yes, #undef it if no.
|
||||
*/
|
||||
|
||||
/* Does your compiler support function prototypes?
|
||||
* (If not, you also need to use ansi2knr, see install.doc)
|
||||
*/
|
||||
#define HAVE_PROTOTYPES
|
||||
|
||||
/* Does your compiler support the declaration "unsigned char" ?
|
||||
* How about "unsigned short" ?
|
||||
*/
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
|
||||
/* Define "void" as "char" if your compiler doesn't know about type void.
|
||||
* NOTE: be sure to define void such that "void *" represents the most general
|
||||
* pointer type, e.g., that returned by malloc().
|
||||
*/
|
||||
/* #define void char */
|
||||
|
||||
/* Define "const" as empty if your compiler doesn't know the "const" keyword.
|
||||
*/
|
||||
/* #define const */
|
||||
|
||||
/* Define this if an ordinary "char" type is unsigned.
|
||||
* If you're not sure, leaving it undefined will work at some cost in speed.
|
||||
* If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
|
||||
*/
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
|
||||
/* Define this if your system has an ANSI-conforming <stddef.h> file.
|
||||
*/
|
||||
#define HAVE_STDDEF_H
|
||||
|
||||
/* Define this if your system has an ANSI-conforming <stdlib.h> file.
|
||||
*/
|
||||
#define HAVE_STDLIB_H
|
||||
|
||||
/* Define this if your system does not have an ANSI/SysV <string.h>,
|
||||
* but does have a BSD-style <strings.h>.
|
||||
*/
|
||||
#undef NEED_BSD_STRINGS
|
||||
|
||||
/* Define this if your system does not provide typedef size_t in any of the
|
||||
* ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
|
||||
* <sys/types.h> instead.
|
||||
*/
|
||||
#undef NEED_SYS_TYPES_H
|
||||
|
||||
/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
|
||||
* unless you are using a large-data memory model or 80386 flat-memory mode.
|
||||
* On less brain-damaged CPUs this symbol must not be defined.
|
||||
* (Defining this symbol causes large data structures to be referenced through
|
||||
* "far" pointers and to be allocated with a special version of malloc.)
|
||||
*/
|
||||
#undef NEED_FAR_POINTERS
|
||||
|
||||
/* Define this if your linker needs global names to be unique in less
|
||||
* than the first 15 characters.
|
||||
*/
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
|
||||
/* Although a real ANSI C compiler can deal perfectly well with pointers to
|
||||
* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
|
||||
* and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
|
||||
* define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you
|
||||
* actually get "missing structure definition" warnings or errors while
|
||||
* compiling the JPEG code.
|
||||
*/
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
|
||||
/*
|
||||
* The following options affect code selection within the JPEG library,
|
||||
* but they don't need to be visible to applications using the library.
|
||||
* To minimize application namespace pollution, the symbols won't be
|
||||
* defined unless JPEG_INTERNALS has been defined.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
/* Define this if your compiler implements ">>" on signed values as a logical
|
||||
* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
|
||||
* which is the normal and rational definition.
|
||||
*/
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
|
||||
/*
|
||||
* The remaining options do not affect the JPEG library proper,
|
||||
* but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
|
||||
* Other applications can ignore these.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
/* These defines indicate which image (non-JPEG) file formats are allowed. */
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
/* Define this if you want to name both input and output files on the command
|
||||
* line, rather than using stdout and optionally stdin. You MUST do this if
|
||||
* your system can't cope with binary I/O to stdin/stdout. See comments at
|
||||
* head of cjpeg.c or djpeg.c.
|
||||
*/
|
||||
#undef TWO_FILE_COMMANDLINE
|
||||
|
||||
/* Define this if your system needs explicit cleanup of temporary files.
|
||||
* This is crucial under MS-DOS, where the temporary "files" may be areas
|
||||
* of extended memory; on most other systems it's not as important.
|
||||
*/
|
||||
#undef NEED_SIGNAL_CATCHER
|
||||
|
||||
/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
|
||||
* This is necessary on systems that distinguish text files from binary files,
|
||||
* and is harmless on most systems that don't. If you have one of the rare
|
||||
* systems that complains about the "b" spec, define this symbol.
|
||||
*/
|
||||
#undef DONT_USE_B_MODE
|
||||
|
||||
/* Define this if you want percent-done progress reports from cjpeg/djpeg.
|
||||
*/
|
||||
#undef PROGRESS_REPORT
|
||||
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
339
jconfig.h
339
jconfig.h
@@ -1,339 +0,0 @@
|
||||
/*
|
||||
* jconfig.h
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains preprocessor declarations that help customize
|
||||
* the JPEG software for a particular application, machine, or compiler.
|
||||
* Edit these declarations as needed (or add -D flags to the Makefile).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* These symbols indicate the properties of your machine or compiler.
|
||||
* The conditional definitions given may do the right thing already,
|
||||
* but you'd best look them over closely, especially if your compiler
|
||||
* does not handle full ANSI C. An ANSI-compliant C compiler should
|
||||
* provide all the necessary features; __STDC__ is supposed to be
|
||||
* predefined by such compilers.
|
||||
*/
|
||||
|
||||
/*
|
||||
* HAVE_STDC is tested below to see whether ANSI features are available.
|
||||
* We avoid testing __STDC__ directly for arcane reasons of portability.
|
||||
* (On some compilers, __STDC__ is only defined if a switch is given,
|
||||
* but the switch also disables machine-specific features we need to get at.
|
||||
* In that case, -DHAVE_STDC in the Makefile is a convenient solution.)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__ /* if compiler claims to be ANSI, believe it */
|
||||
#define HAVE_STDC
|
||||
#endif
|
||||
|
||||
|
||||
/* Does your compiler support function prototypes? */
|
||||
/* (If not, you also need to use ansi2knr, see SETUP) */
|
||||
|
||||
#ifdef HAVE_STDC /* ANSI C compilers always have prototypes */
|
||||
#define PROTO
|
||||
#else
|
||||
#ifdef __cplusplus /* So do C++ compilers */
|
||||
#define PROTO
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Does your compiler support the declaration "unsigned char" ? */
|
||||
/* How about "unsigned short" ? */
|
||||
|
||||
#ifdef HAVE_STDC /* ANSI C compilers must support both */
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
#endif
|
||||
|
||||
/* Define this if an ordinary "char" type is unsigned.
|
||||
* If you're not sure, leaving it undefined will work at some cost in speed.
|
||||
* If you defined HAVE_UNSIGNED_CHAR then it doesn't matter very much.
|
||||
*/
|
||||
|
||||
/* #define CHAR_IS_UNSIGNED */
|
||||
|
||||
/* Define this if your compiler implements ">>" on signed values as a logical
|
||||
* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
|
||||
* which is the normal and rational definition.
|
||||
*/
|
||||
|
||||
/* #define RIGHT_SHIFT_IS_UNSIGNED */
|
||||
|
||||
/* Define "void" as "char" if your compiler doesn't know about type void.
|
||||
* NOTE: be sure to define void such that "void *" represents the most general
|
||||
* pointer type, e.g., that returned by malloc().
|
||||
*/
|
||||
|
||||
/* #define void char */
|
||||
|
||||
/* Define const as empty if your compiler doesn't know the "const" keyword. */
|
||||
/* (Even if it does, defining const as empty won't break anything.) */
|
||||
|
||||
#ifndef HAVE_STDC /* ANSI C and C++ compilers should know it. */
|
||||
#ifndef __cplusplus
|
||||
#define const
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
|
||||
* unless you are using a large-data memory model or 80386 flat-memory mode.
|
||||
* On less brain-damaged CPUs this symbol must not be defined.
|
||||
* (Defining this symbol causes large data structures to be referenced through
|
||||
* "far" pointers and to be allocated with a special version of malloc.)
|
||||
*/
|
||||
|
||||
#ifdef MSDOS
|
||||
#define NEED_FAR_POINTERS
|
||||
#endif
|
||||
|
||||
|
||||
/* The next three symbols only affect the system-dependent user interface
|
||||
* modules (jcmain.c, jdmain.c). You can ignore these if you are supplying
|
||||
* your own user interface code.
|
||||
*/
|
||||
|
||||
/* Define this if you want to name both input and output files on the command
|
||||
* line, rather than using stdout and optionally stdin. You MUST do this if
|
||||
* your system can't cope with binary I/O to stdin/stdout. See comments at
|
||||
* head of jcmain.c or jdmain.c.
|
||||
*/
|
||||
|
||||
#ifdef MSDOS /* two-file style is needed for PCs */
|
||||
#define TWO_FILE_COMMANDLINE
|
||||
#endif
|
||||
#ifdef THINK_C /* needed for Macintosh too */
|
||||
#define TWO_FILE_COMMANDLINE
|
||||
#endif
|
||||
|
||||
/* Define this if your system needs explicit cleanup of temporary files.
|
||||
* This is crucial under MS-DOS, where the temporary "files" may be areas
|
||||
* of extended memory; on most other systems it's not as important.
|
||||
*/
|
||||
|
||||
#ifdef MSDOS
|
||||
#define NEED_SIGNAL_CATCHER
|
||||
#endif
|
||||
|
||||
/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
|
||||
* This is necessary on systems that distinguish text files from binary files,
|
||||
* and is harmless on most systems that don't. If you have one of the rare
|
||||
* systems that complains about the "b" spec, define this symbol.
|
||||
*/
|
||||
|
||||
/* #define DONT_USE_B_MODE */
|
||||
|
||||
|
||||
/* If you're getting bored, that's the end of the symbols you HAVE to
|
||||
* worry about. Go fix the makefile and compile.
|
||||
*/
|
||||
|
||||
|
||||
/* On a few systems, type boolean and/or macros FALSE, TRUE may appear
|
||||
* in standard header files. Or you may have conflicts with application-
|
||||
* specific header files that you want to include together with these files.
|
||||
* In that case you need only comment out these definitions.
|
||||
*/
|
||||
|
||||
typedef int boolean;
|
||||
#undef FALSE /* in case these macros already exist */
|
||||
#undef TRUE
|
||||
#define FALSE 0 /* values of boolean */
|
||||
#define TRUE 1
|
||||
|
||||
/* This defines the size of the I/O buffers for entropy compression
|
||||
* and decompression; you could reduce it if memory is tight.
|
||||
*/
|
||||
|
||||
#define JPEG_BUF_SIZE 4096 /* bytes */
|
||||
|
||||
|
||||
|
||||
/* These symbols determine the JPEG functionality supported. */
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions.
|
||||
* Undefining some of these symbols will produce a smaller but less capable
|
||||
* program file. Note that you can leave certain source files out of the
|
||||
* compilation/linking process if you've #undef'd the corresponding symbols.
|
||||
* (You may HAVE to do that if your compiler doesn't like null source files.)
|
||||
*/
|
||||
|
||||
/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
|
||||
#undef ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing during decoding? */
|
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
|
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
|
||||
/* these defines indicate which JPEG file formats are allowed */
|
||||
#define JFIF_SUPPORTED /* JFIF or "raw JPEG" files */
|
||||
#undef JTIFF_SUPPORTED /* JPEG-in-TIFF (not yet implemented) */
|
||||
/* these defines indicate which image (non-JPEG) file formats are allowed */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
/* #define RLE_SUPPORTED */ /* RLE image file format (by default, no) */
|
||||
#define PPM_SUPPORTED /* PPM/PGM image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
#undef TIFF_SUPPORTED /* TIFF image file format (not yet impl.) */
|
||||
|
||||
/* more capability options later, no doubt */
|
||||
|
||||
|
||||
/*
|
||||
* Define exactly one of these three symbols to indicate whether you want
|
||||
* 8-bit, 12-bit, or 16-bit sample (pixel component) values. 8-bit is the
|
||||
* default and is nearly always the right thing to use. You can use 12-bit if
|
||||
* you need to support image formats with more than 8 bits of resolution in a
|
||||
* color value. 16-bit should only be used for the lossless JPEG mode (not
|
||||
* currently supported). Note that 12- and 16-bit values take up twice as
|
||||
* much memory as 8-bit!
|
||||
* Note: if you select 12- or 16-bit precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
* precision, so jchuff.c normally uses entropy optimization to compute
|
||||
* usable tables for higher precision. If you don't want to do optimization,
|
||||
* you'll have to supply different default Huffman tables.
|
||||
*/
|
||||
|
||||
#define EIGHT_BIT_SAMPLES
|
||||
#undef TWELVE_BIT_SAMPLES
|
||||
#undef SIXTEEN_BIT_SAMPLES
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* The remaining definitions don't need to be hand-edited in most cases.
|
||||
* You may need to change these if you have a machine with unusual data
|
||||
* types; for example, "char" not 8 bits, "short" not 16 bits,
|
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
|
||||
* but it had better be at least 16.
|
||||
*/
|
||||
|
||||
/* First define the representation of a single pixel element value. */
|
||||
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
|
||||
* If you have only signed chars, and you are more worried about speed than
|
||||
* memory usage, it might be a win to make JSAMPLE be short.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JSAMPLE;
|
||||
#define GETJSAMPLE(value) (value)
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
|
||||
typedef char JSAMPLE;
|
||||
#define GETJSAMPLE(value) (value)
|
||||
|
||||
#else /* not CHAR_IS_UNSIGNED */
|
||||
|
||||
typedef char JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((value) & 0xFF)
|
||||
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
#define BITS_IN_JSAMPLE 8
|
||||
#define MAXJSAMPLE 255
|
||||
#define CENTERJSAMPLE 128
|
||||
|
||||
#endif /* EIGHT_BIT_SAMPLES */
|
||||
|
||||
|
||||
#ifdef TWELVE_BIT_SAMPLES
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..4095. */
|
||||
/* On nearly all machines "short" will do nicely. */
|
||||
|
||||
typedef short JSAMPLE;
|
||||
#define GETJSAMPLE(value) (value)
|
||||
|
||||
#define BITS_IN_JSAMPLE 12
|
||||
#define MAXJSAMPLE 4095
|
||||
#define CENTERJSAMPLE 2048
|
||||
|
||||
#endif /* TWELVE_BIT_SAMPLES */
|
||||
|
||||
|
||||
#ifdef SIXTEEN_BIT_SAMPLES
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..65535. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
|
||||
typedef unsigned short JSAMPLE;
|
||||
#define GETJSAMPLE(value) (value)
|
||||
|
||||
#else /* not HAVE_UNSIGNED_SHORT */
|
||||
|
||||
/* If int is 32 bits this'll be horrendously inefficient storage-wise.
|
||||
* But since we don't actually support 16-bit samples (ie lossless coding) yet,
|
||||
* I'm not going to worry about making a smarter definition ...
|
||||
*/
|
||||
typedef unsigned int JSAMPLE;
|
||||
#define GETJSAMPLE(value) (value)
|
||||
|
||||
#endif /* HAVE_UNSIGNED_SHORT */
|
||||
|
||||
#define BITS_IN_JSAMPLE 16
|
||||
#define MAXJSAMPLE 65535
|
||||
#define CENTERJSAMPLE 32768
|
||||
|
||||
#endif /* SIXTEEN_BIT_SAMPLES */
|
||||
|
||||
|
||||
/* Here we define the representation of a DCT frequency coefficient.
|
||||
* This should be a signed 16-bit value; "short" is usually right.
|
||||
* It's important that this be exactly 16 bits, no more and no less;
|
||||
* more will cost you a BIG hit of memory, less will give wrong answers.
|
||||
*/
|
||||
|
||||
typedef short JCOEF;
|
||||
|
||||
|
||||
/* The remaining typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big
|
||||
* won't cost a huge amount of memory, so we don't provide special
|
||||
* extraction code like we did for JSAMPLE. (In other words, these
|
||||
* typedefs live at a different point on the speed/space tradeoff curve.)
|
||||
*/
|
||||
|
||||
/* UINT8 must hold at least the values 0..255. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
typedef unsigned char UINT8;
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
typedef char UINT8;
|
||||
#else /* not CHAR_IS_UNSIGNED */
|
||||
typedef short UINT8;
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
typedef unsigned short UINT16;
|
||||
#else /* not HAVE_UNSIGNED_SHORT */
|
||||
typedef unsigned int UINT16;
|
||||
#endif /* HAVE_UNSIGNED_SHORT */
|
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
|
||||
typedef short INT16;
|
||||
#endif
|
||||
|
||||
/* INT32 must hold signed 32-bit values; if your machine happens */
|
||||
/* to have 64-bit longs, you might want to change this. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
|
||||
typedef long INT32;
|
||||
#endif
|
||||
43
jconfig.manx
Normal file
43
jconfig.manx
Normal file
@@ -0,0 +1,43 @@
|
||||
/* jconfig.manx --- jconfig.h for Amiga systems using Manx Aztec C ver 5.x. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#define TEMP_DIRECTORY "JPEGTMP:" /* recommended setting for Amiga */
|
||||
|
||||
#define SHORTxSHORT_32 /* produces better DCT code with Aztec C */
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE
|
||||
#define NEED_SIGNAL_CATCHER
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#define signal_catcher _abort /* hack for Aztec C naming requirements */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
52
jconfig.mc6
Normal file
52
jconfig.mc6
Normal file
@@ -0,0 +1,52 @@
|
||||
/* jconfig.mc6 --- jconfig.h for Microsoft C on MS-DOS, version 6.00A & up. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#define NEED_FAR_POINTERS /* for small or medium memory model */
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#define USE_MSDOS_MEMMGR /* Define this if you use jmemdos.c */
|
||||
|
||||
#define MAX_ALLOC_CHUNK 65520L /* Maximum request to malloc() */
|
||||
|
||||
#define USE_FMEM /* Microsoft has _fmemcpy() and _fmemset() */
|
||||
|
||||
#define NEED_FHEAPMIN /* far heap management routines are broken */
|
||||
|
||||
#define SHORTxLCONST_32 /* enable compiler-specific DCT optimization */
|
||||
/* Note: the above define is known to improve the code with Microsoft C 6.00A.
|
||||
* I do not know whether it is good for later compiler versions.
|
||||
* Please report any info on this point to jpeg-info@uunet.uu.net.
|
||||
*/
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE
|
||||
#define USE_SETMODE /* Microsoft has setmode() */
|
||||
#define NEED_SIGNAL_CATCHER /* Define this if you use jmemdos.c */
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
43
jconfig.sas
Normal file
43
jconfig.sas
Normal file
@@ -0,0 +1,43 @@
|
||||
/* jconfig.sas --- jconfig.h for Amiga systems using SAS C 6.0 and up. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#define TEMP_DIRECTORY "JPEGTMP:" /* recommended setting for Amiga */
|
||||
|
||||
#define NO_MKTEMP /* SAS C doesn't have mktemp() */
|
||||
|
||||
#define SHORTxSHORT_32 /* produces better DCT code with SAS C */
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE
|
||||
#define NEED_SIGNAL_CATCHER
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
39
jconfig.st
Normal file
39
jconfig.st
Normal file
@@ -0,0 +1,39 @@
|
||||
/* jconfig.st --- jconfig.h for Atari ST/STE/TT using Pure C or Turbo C. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define INCOMPLETE_TYPES_BROKEN /* suppress undefined-structure warnings */
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#define ALIGN_TYPE long /* apparently double is a weird size? */
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE /* optional -- undef if you like Unix style */
|
||||
#define NEED_SIGNAL_CATCHER /* needed if you use jmemname.c */
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
37
jconfig.vms
Normal file
37
jconfig.vms
Normal file
@@ -0,0 +1,37 @@
|
||||
/* jconfig.vms --- jconfig.h for use on Digital VMS. */
|
||||
/* see jconfig.doc for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE /* Needed on VMS */
|
||||
#undef NEED_SIGNAL_CATCHER
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
443
jcparam.c
Normal file
443
jcparam.c
Normal file
@@ -0,0 +1,443 @@
|
||||
/*
|
||||
* jcparam.c
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG compressor.
|
||||
* Applications do not have to use this file, but those that don't use it
|
||||
* must know a lot more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
||||
const unsigned int *basic_table,
|
||||
int scale_factor, boolean force_baseline)
|
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage).
|
||||
* If force_baseline is TRUE, the computed quantization table entries
|
||||
* are limited to 1..255 for JPEG baseline compatibility.
|
||||
*/
|
||||
{
|
||||
JQUANT_TBL ** qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
||||
int i;
|
||||
long temp;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
||||
/* limit the values to the valid range */
|
||||
if (temp <= 0L) temp = 1L;
|
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
||||
if (force_baseline && temp > 255L)
|
||||
temp = 255L; /* limit to baseline range if requested */
|
||||
(*qtblptr)->quantval[i] = (UINT16) temp;
|
||||
}
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL void
|
||||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better
|
||||
* to use jpeg_set_quality (below); this entry point is provided for
|
||||
* applications that insist on a linear percentage scaling.
|
||||
*/
|
||||
{
|
||||
/* This is the sample quantization table given in the JPEG spec section K.1,
|
||||
* but expressed in zigzag order (as are all of our quant. tables).
|
||||
* The spec says that the values given produce "good" quality, and
|
||||
* when divided by 2, "very good" quality.
|
||||
*/
|
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
||||
16, 11, 12, 14, 12, 10, 16, 14,
|
||||
13, 14, 18, 17, 16, 19, 24, 40,
|
||||
26, 24, 22, 22, 24, 49, 35, 37,
|
||||
29, 40, 58, 51, 61, 60, 57, 51,
|
||||
56, 55, 64, 72, 92, 78, 64, 68,
|
||||
87, 69, 55, 56, 80, 109, 81, 87,
|
||||
95, 98, 103, 104, 103, 62, 77, 113,
|
||||
121, 112, 100, 120, 92, 101, 103, 99
|
||||
};
|
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||
17, 18, 18, 24, 21, 24, 47, 26,
|
||||
26, 47, 99, 66, 56, 66, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99
|
||||
};
|
||||
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL int
|
||||
jpeg_quality_scaling (int quality)
|
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve.
|
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
||||
*/
|
||||
{
|
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||
if (quality <= 0) quality = 1;
|
||||
if (quality > 100) quality = 100;
|
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||
* note that at Q=100 the scaling is 0, which will cause j_add_quant_table
|
||||
* to make all the table entries 1 (hence, no quantization loss).
|
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||
*/
|
||||
if (quality < 50)
|
||||
quality = 5000 / quality;
|
||||
else
|
||||
quality = 200 - quality*2;
|
||||
|
||||
return quality;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL void
|
||||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user
|
||||
* interfaces; only those who want detailed control over quantization tables
|
||||
* would use the preceding three routines directly.
|
||||
*/
|
||||
{
|
||||
/* Convert user 0-100 rating to percentage scaling */
|
||||
quality = jpeg_quality_scaling(quality);
|
||||
|
||||
/* Set up standard quality tables */
|
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman table setup routines
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
add_huff_table (j_compress_ptr cinfo,
|
||||
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
|
||||
/* Define a Huffman table */
|
||||
{
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
|
||||
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
|
||||
MEMCOPY((*htblptr)->huffval, val, SIZEOF((*htblptr)->huffval));
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*htblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
std_huff_tables (j_compress_ptr cinfo)
|
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */
|
||||
{
|
||||
static const UINT8 bits_dc_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_luminance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_dc_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_chrominance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_ac_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
||||
static const UINT8 val_ac_luminance[] =
|
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
static const UINT8 bits_ac_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
||||
static const UINT8 val_ac_chrominance[] =
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
|
||||
bits_dc_luminance, val_dc_luminance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
|
||||
bits_ac_luminance, val_ac_luminance);
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
|
||||
bits_dc_chrominance, val_dc_chrominance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
|
||||
bits_ac_chrominance, val_ac_chrominance);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression.
|
||||
*
|
||||
* Applications that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_set_defaults (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress
|
||||
* multiple images at same param settings.
|
||||
*/
|
||||
if (cinfo->comp_info == NULL)
|
||||
cinfo->comp_info = (jpeg_component_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
|
||||
|
||||
/* Initialize everything not dependent on the color space */
|
||||
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
/* Set up two quantization tables using default quality of 75 */
|
||||
jpeg_set_quality(cinfo, 75, TRUE);
|
||||
/* Set up two Huffman tables */
|
||||
std_huff_tables(cinfo);
|
||||
|
||||
/* Initialize default arithmetic coding conditioning */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
|
||||
/* Expect normal source image, not raw downsampled data */
|
||||
cinfo->raw_data_in = FALSE;
|
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */
|
||||
cinfo->arith_code = FALSE;
|
||||
|
||||
/* Color images are interleaved by default */
|
||||
cinfo->interleave = TRUE;
|
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */
|
||||
cinfo->optimize_coding = FALSE;
|
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, force optimization on so that usable
|
||||
* tables will be computed. This test can be removed if default tables
|
||||
* are supplied that are valid for the desired precision.
|
||||
*/
|
||||
if (cinfo->data_precision > 8)
|
||||
cinfo->optimize_coding = TRUE;
|
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */
|
||||
cinfo->CCIR601_sampling = FALSE;
|
||||
|
||||
/* No input smoothing */
|
||||
cinfo->smoothing_factor = 0;
|
||||
|
||||
/* DCT algorithm preference */
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
|
||||
/* No restart markers */
|
||||
cinfo->restart_interval = 0;
|
||||
cinfo->restart_in_rows = 0;
|
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace.
|
||||
*/
|
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */
|
||||
|
||||
jpeg_default_colorspace(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_default_colorspace (j_compress_ptr cinfo)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCCK);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
||||
{
|
||||
jpeg_component_info * compptr;
|
||||
int ci;
|
||||
|
||||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
|
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_index = (index), \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) )
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components.
|
||||
*/
|
||||
|
||||
cinfo->jpeg_color_space = colorspace;
|
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
||||
|
||||
switch (colorspace) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 1;
|
||||
/* JFIF specifies component ID 1 */
|
||||
SET_COMP(0, 1, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
||||
cinfo->num_components = 3;
|
||||
SET_COMP(0, 'R', 1,1, 0, 0,0);
|
||||
SET_COMP(1, 'G', 1,1, 0, 0,0);
|
||||
SET_COMP(2, 'B', 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 3;
|
||||
/* JFIF specifies component IDs 1,2,3 */
|
||||
/* We default to 2x2 subsamples of chrominance */
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 'C', 1,1, 0, 0,0);
|
||||
SET_COMP(1, 'M', 1,1, 0, 0,0);
|
||||
SET_COMP(2, 'Y', 1,1, 0, 0,0);
|
||||
SET_COMP(3, 'K', 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
SET_COMP(3, 4, 2,2, 0, 0,0);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
cinfo->num_components = cinfo->input_components;
|
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
SET_COMP(ci, ci, 1,1, 0, 0,0);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
}
|
||||
}
|
||||
720
jcpipe.c
720
jcpipe.c
@@ -1,720 +0,0 @@
|
||||
/*
|
||||
* jcpipe.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains compression pipeline controllers.
|
||||
* These routines are invoked via the c_pipeline_controller method.
|
||||
*
|
||||
* There are four basic pipeline controllers, one for each combination of:
|
||||
* single-scan JPEG file (single component or fully interleaved)
|
||||
* vs. multiple-scan JPEG file (noninterleaved or partially interleaved).
|
||||
*
|
||||
* optimization of entropy encoding parameters
|
||||
* vs. usage of default encoding parameters.
|
||||
*
|
||||
* Note that these conditions determine the needs for "big" arrays:
|
||||
* multiple scans imply a big array for splitting the color components;
|
||||
* entropy encoding optimization needs a big array for the MCU data.
|
||||
*
|
||||
* All but the simplest controller (single-scan, no optimization) can be
|
||||
* compiled out through configuration options, if you need to make a minimal
|
||||
* implementation.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
|
||||
/*
|
||||
* About the data structures:
|
||||
*
|
||||
* The processing chunk size for subsampling is referred to in this file as
|
||||
* a "row group": a row group is defined as Vk (v_samp_factor) sample rows of
|
||||
* any component after subsampling, or Vmax (max_v_samp_factor) unsubsampled
|
||||
* rows. In an interleaved scan each MCU row contains exactly DCTSIZE row
|
||||
* groups of each component in the scan. In a noninterleaved scan an MCU row
|
||||
* is one row of blocks, which might not be an integral number of row groups;
|
||||
* for convenience we use a buffer of the same size as in interleaved scans,
|
||||
* and process Vk MCU rows in each burst of subsampling.
|
||||
* To provide context for the subsampling step, we have to retain the last
|
||||
* two row groups of the previous MCU row while reading in the next MCU row
|
||||
* (or set of Vk MCU rows). To do this without copying data about, we create
|
||||
* a rather strange data structure. Exactly DCTSIZE+2 row groups of samples
|
||||
* are allocated, but we create two different sets of pointers to this array.
|
||||
* The second set swaps the last two pairs of row groups. By working
|
||||
* alternately with the two sets of pointers, we can access the data in the
|
||||
* desired order.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Utility routines: common code for pipeline controllers
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
interleaved_scan_setup (compress_info_ptr cinfo)
|
||||
/* Compute all derived info for an interleaved (multi-component) scan */
|
||||
/* On entry, cinfo->comps_in_scan and cinfo->cur_comp_info[] are set up */
|
||||
{
|
||||
short ci, mcublks;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT(cinfo->emethods, "Too many components for interleaved scan");
|
||||
|
||||
cinfo->MCUs_per_row = (cinfo->image_width
|
||||
+ cinfo->max_h_samp_factor*DCTSIZE - 1)
|
||||
/ (cinfo->max_h_samp_factor*DCTSIZE);
|
||||
|
||||
cinfo->MCU_rows_in_scan = (cinfo->image_height
|
||||
+ cinfo->max_v_samp_factor*DCTSIZE - 1)
|
||||
/ (cinfo->max_v_samp_factor*DCTSIZE);
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* for interleaved scan, sampling factors give # of blocks per component */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
/* compute physical dimensions of component */
|
||||
compptr->subsampled_width = jround_up(compptr->true_comp_width,
|
||||
(long) (compptr->MCU_width*DCTSIZE));
|
||||
compptr->subsampled_height = jround_up(compptr->true_comp_height,
|
||||
(long) (compptr->MCU_height*DCTSIZE));
|
||||
/* Sanity check */
|
||||
if (compptr->subsampled_width !=
|
||||
(cinfo->MCUs_per_row * (compptr->MCU_width*DCTSIZE)))
|
||||
ERREXIT(cinfo->emethods, "I'm confused about the image width");
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo->emethods, "Sampling factors too large for interleaved scan");
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
(*cinfo->methods->c_per_scan_method_selection) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
noninterleaved_scan_setup (compress_info_ptr cinfo)
|
||||
/* Compute all derived info for a noninterleaved (single-component) scan */
|
||||
/* On entry, cinfo->comps_in_scan = 1 and cinfo->cur_comp_info[0] is set up */
|
||||
{
|
||||
jpeg_component_info *compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* for noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
/* compute physical dimensions of component */
|
||||
compptr->subsampled_width = jround_up(compptr->true_comp_width,
|
||||
(long) DCTSIZE);
|
||||
compptr->subsampled_height = jround_up(compptr->true_comp_height,
|
||||
(long) DCTSIZE);
|
||||
|
||||
cinfo->MCUs_per_row = compptr->subsampled_width / DCTSIZE;
|
||||
cinfo->MCU_rows_in_scan = compptr->subsampled_height / DCTSIZE;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
(*cinfo->methods->c_per_scan_method_selection) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
|
||||
LOCAL void
|
||||
alloc_sampling_buffer (compress_info_ptr cinfo, JSAMPIMAGE fullsize_data[2],
|
||||
long fullsize_width)
|
||||
/* Create a pre-subsampling data buffer having the desired structure */
|
||||
/* (see comments at head of file) */
|
||||
{
|
||||
short ci, vs, i;
|
||||
|
||||
vs = cinfo->max_v_samp_factor; /* row group height */
|
||||
|
||||
/* Get top-level space for array pointers */
|
||||
fullsize_data[0] = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
|
||||
(cinfo->num_components * SIZEOF(JSAMPARRAY));
|
||||
fullsize_data[1] = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
|
||||
(cinfo->num_components * SIZEOF(JSAMPARRAY));
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
/* Allocate the real storage */
|
||||
fullsize_data[0][ci] = (*cinfo->emethods->alloc_small_sarray)
|
||||
(fullsize_width,
|
||||
(long) (vs * (DCTSIZE+2)));
|
||||
/* Create space for the scrambled-order pointers */
|
||||
fullsize_data[1][ci] = (JSAMPARRAY) (*cinfo->emethods->alloc_small)
|
||||
(vs * (DCTSIZE+2) * SIZEOF(JSAMPROW));
|
||||
/* Duplicate the first DCTSIZE-2 row groups */
|
||||
for (i = 0; i < vs * (DCTSIZE-2); i++) {
|
||||
fullsize_data[1][ci][i] = fullsize_data[0][ci][i];
|
||||
}
|
||||
/* Copy the last four row groups in swapped order */
|
||||
for (i = 0; i < vs * 2; i++) {
|
||||
fullsize_data[1][ci][vs*DCTSIZE + i] = fullsize_data[0][ci][vs*(DCTSIZE-2) + i];
|
||||
fullsize_data[1][ci][vs*(DCTSIZE-2) + i] = fullsize_data[0][ci][vs*DCTSIZE + i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#if 0 /* this routine not currently needed */
|
||||
|
||||
LOCAL void
|
||||
free_sampling_buffer (compress_info_ptr cinfo, JSAMPIMAGE fullsize_data[2])
|
||||
/* Release a sampling buffer created by alloc_sampling_buffer */
|
||||
{
|
||||
short ci;
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
/* Free the real storage */
|
||||
(*cinfo->emethods->free_small_sarray) (fullsize_data[0][ci]);
|
||||
/* Free the scrambled-order pointers */
|
||||
(*cinfo->emethods->free_small) ((void *) fullsize_data[1][ci]);
|
||||
}
|
||||
|
||||
/* Free the top-level space */
|
||||
(*cinfo->emethods->free_small) ((void *) fullsize_data[0]);
|
||||
(*cinfo->emethods->free_small) ((void *) fullsize_data[1]);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL void
|
||||
subsample (compress_info_ptr cinfo,
|
||||
JSAMPIMAGE fullsize_data, JSAMPIMAGE subsampled_data,
|
||||
long fullsize_width,
|
||||
short above, short current, short below, short out)
|
||||
/* Do subsampling of a single row group (of each component). */
|
||||
/* above, current, below are indexes of row groups in fullsize_data; */
|
||||
/* out is the index of the target row group in subsampled_data. */
|
||||
/* Special case: above, below can be -1 to indicate top, bottom of image. */
|
||||
{
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY above_ptr, below_ptr;
|
||||
JSAMPROW dummy[MAX_SAMP_FACTOR]; /* for subsample expansion at top/bottom */
|
||||
short ci, vs, i;
|
||||
|
||||
vs = cinfo->max_v_samp_factor; /* row group height */
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
compptr = & cinfo->comp_info[ci];
|
||||
|
||||
if (above >= 0)
|
||||
above_ptr = fullsize_data[ci] + above * vs;
|
||||
else {
|
||||
/* Top of image: make a dummy above-context with copies of 1st row */
|
||||
/* We assume current=0 in this case */
|
||||
for (i = 0; i < vs; i++)
|
||||
dummy[i] = fullsize_data[ci][0];
|
||||
above_ptr = (JSAMPARRAY) dummy; /* possible near->far pointer conv */
|
||||
}
|
||||
|
||||
if (below >= 0)
|
||||
below_ptr = fullsize_data[ci] + below * vs;
|
||||
else {
|
||||
/* Bot of image: make a dummy below-context with copies of last row */
|
||||
for (i = 0; i < vs; i++)
|
||||
dummy[i] = fullsize_data[ci][(current+1)*vs-1];
|
||||
below_ptr = (JSAMPARRAY) dummy; /* possible near->far pointer conv */
|
||||
}
|
||||
|
||||
(*cinfo->methods->subsample[ci])
|
||||
(cinfo, (int) ci,
|
||||
fullsize_width, (int) vs,
|
||||
compptr->subsampled_width, (int) compptr->v_samp_factor,
|
||||
above_ptr,
|
||||
fullsize_data[ci] + current * vs,
|
||||
below_ptr,
|
||||
subsampled_data[ci] + out * compptr->v_samp_factor);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* These vars are initialized by the pipeline controller for use by
|
||||
* MCU_output_catcher.
|
||||
* To avoid a lot of row-pointer overhead, we cram as many MCUs into each
|
||||
* row of whole_scan_MCUs as we can get without exceeding 64KB per row.
|
||||
*/
|
||||
|
||||
#define MAX_WHOLE_ROW_BLOCKS ((int) (65500 / SIZEOF(JBLOCK))) /* max blocks/row */
|
||||
|
||||
static big_barray_ptr whole_scan_MCUs; /* Big array for saving the MCUs */
|
||||
static int MCUs_in_big_row; /* # of MCUs in each row of whole_scan_MCUs */
|
||||
static long next_whole_row; /* next row to access in whole_scan_MCUs */
|
||||
static int next_MCU_index; /* next MCU in current row */
|
||||
|
||||
|
||||
METHODDEF void
|
||||
MCU_output_catcher (compress_info_ptr cinfo, JBLOCK *MCU_data)
|
||||
/* Output method for siphoning off extract_MCUs output into a big array */
|
||||
{
|
||||
static JBLOCKARRAY rowptr;
|
||||
|
||||
if (next_MCU_index >= MCUs_in_big_row) {
|
||||
rowptr = (*cinfo->emethods->access_big_barray) (whole_scan_MCUs,
|
||||
next_whole_row, TRUE);
|
||||
next_whole_row++;
|
||||
next_MCU_index = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* note that on 80x86, the cast applied to MCU_data implies
|
||||
* near to far pointer conversion.
|
||||
*/
|
||||
jcopy_block_row((JBLOCKROW) MCU_data,
|
||||
rowptr[0] + next_MCU_index * cinfo->blocks_in_MCU,
|
||||
(long) cinfo->blocks_in_MCU);
|
||||
next_MCU_index++;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
dump_scan_MCUs (compress_info_ptr cinfo, MCU_output_method_ptr output_method)
|
||||
/* Dump the MCUs saved in whole_scan_MCUs to the output method. */
|
||||
/* The method may be either the entropy encoder or some routine supplied */
|
||||
/* by the entropy optimizer. */
|
||||
{
|
||||
/* On an 80x86 machine, the entropy encoder expects the passed data block
|
||||
* to be in NEAR memory (for performance reasons), so we have to copy it
|
||||
* back from the big array to a local array. On less brain-damaged CPUs
|
||||
* we needn't do that.
|
||||
*/
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
JBLOCK MCU_data[MAX_BLOCKS_IN_MCU];
|
||||
#endif
|
||||
long mcurow, mcuindex, next_row;
|
||||
int next_index;
|
||||
JBLOCKARRAY rowptr = NULL; /* init only to suppress compiler complaint */
|
||||
|
||||
next_row = 0;
|
||||
next_index = MCUs_in_big_row;
|
||||
|
||||
for (mcurow = 0; mcurow < cinfo->MCU_rows_in_scan; mcurow++) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, mcurow,
|
||||
cinfo->MCU_rows_in_scan);
|
||||
for (mcuindex = 0; mcuindex < cinfo->MCUs_per_row; mcuindex++) {
|
||||
if (next_index >= MCUs_in_big_row) {
|
||||
rowptr = (*cinfo->emethods->access_big_barray) (whole_scan_MCUs,
|
||||
next_row, FALSE);
|
||||
next_row++;
|
||||
next_index = 0;
|
||||
}
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
jcopy_block_row(rowptr[0] + next_index * cinfo->blocks_in_MCU,
|
||||
(JBLOCKROW) MCU_data, /* casts near to far pointer! */
|
||||
(long) cinfo->blocks_in_MCU);
|
||||
(*output_method) (cinfo, MCU_data);
|
||||
#else
|
||||
(*output_method) (cinfo, rowptr[0] + next_index * cinfo->blocks_in_MCU);
|
||||
#endif
|
||||
next_index++;
|
||||
}
|
||||
}
|
||||
|
||||
cinfo->completed_passes++;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Compression pipeline controller used for single-scan files
|
||||
* with no optimization of entropy parameters.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
single_ccontroller (compress_info_ptr cinfo)
|
||||
{
|
||||
int rows_in_mem; /* # of sample rows in full-size buffers */
|
||||
long fullsize_width; /* # of samples per row in full-size buffers */
|
||||
long cur_pixel_row; /* counts # of pixel rows processed */
|
||||
long mcu_rows_output; /* # of MCU rows actually emitted */
|
||||
int mcu_rows_per_loop; /* # of MCU rows processed per outer loop */
|
||||
/* Work buffer for pre-subsampling data (see comments at head of file) */
|
||||
JSAMPIMAGE fullsize_data[2];
|
||||
/* Work buffer for subsampled data */
|
||||
JSAMPIMAGE subsampled_data;
|
||||
int rows_this_time;
|
||||
short ci, whichss, i;
|
||||
|
||||
/* Prepare for single scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT(cinfo->emethods, "Too many components for interleaved scan");
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
noninterleaved_scan_setup(cinfo);
|
||||
/* Vk block rows constitute the same number of MCU rows */
|
||||
mcu_rows_per_loop = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
} else {
|
||||
interleaved_scan_setup(cinfo);
|
||||
/* in an interleaved scan, one MCU row contains Vk block rows */
|
||||
mcu_rows_per_loop = 1;
|
||||
}
|
||||
cinfo->total_passes++;
|
||||
|
||||
/* Compute dimensions of full-size pixel buffers */
|
||||
/* Note these are the same whether interleaved or not. */
|
||||
rows_in_mem = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
fullsize_width = jround_up(cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
|
||||
/* Allocate working memory: */
|
||||
/* fullsize_data is sample data before subsampling */
|
||||
alloc_sampling_buffer(cinfo, fullsize_data, fullsize_width);
|
||||
/* subsampled_data is sample data after subsampling */
|
||||
subsampled_data = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
|
||||
(cinfo->num_components * SIZEOF(JSAMPARRAY));
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
subsampled_data[ci] = (*cinfo->emethods->alloc_small_sarray)
|
||||
(cinfo->comp_info[ci].subsampled_width,
|
||||
(long) (cinfo->comp_info[ci].v_samp_factor * DCTSIZE));
|
||||
}
|
||||
|
||||
/* Tell the memory manager to instantiate big arrays.
|
||||
* We don't need any big arrays in this controller,
|
||||
* but some other module (like the input file reader) may need one.
|
||||
*/
|
||||
(*cinfo->emethods->alloc_big_arrays)
|
||||
((long) 0, /* no more small sarrays */
|
||||
(long) 0, /* no more small barrays */
|
||||
(long) 0); /* no more "medium" objects */
|
||||
|
||||
/* Initialize output file & do per-scan object init */
|
||||
|
||||
(*cinfo->methods->write_scan_header) (cinfo);
|
||||
cinfo->methods->entropy_output = cinfo->methods->write_jpeg_data;
|
||||
(*cinfo->methods->entropy_encoder_init) (cinfo);
|
||||
(*cinfo->methods->subsample_init) (cinfo);
|
||||
(*cinfo->methods->extract_init) (cinfo);
|
||||
|
||||
/* Loop over input image: rows_in_mem pixel rows are processed per loop */
|
||||
|
||||
mcu_rows_output = 0;
|
||||
whichss = 1; /* arrange to start with fullsize_data[0] */
|
||||
|
||||
for (cur_pixel_row = 0; cur_pixel_row < cinfo->image_height;
|
||||
cur_pixel_row += rows_in_mem) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, cur_pixel_row,
|
||||
cinfo->image_height);
|
||||
|
||||
whichss ^= 1; /* switch to other fullsize_data buffer */
|
||||
|
||||
/* Obtain rows_this_time pixel rows and expand to rows_in_mem rows. */
|
||||
/* Then we have exactly DCTSIZE row groups for subsampling. */
|
||||
rows_this_time = (int) MIN((long) rows_in_mem,
|
||||
cinfo->image_height - cur_pixel_row);
|
||||
|
||||
(*cinfo->methods->get_sample_rows) (cinfo, rows_this_time,
|
||||
fullsize_data[whichss]);
|
||||
(*cinfo->methods->edge_expand) (cinfo,
|
||||
cinfo->image_width, rows_this_time,
|
||||
fullsize_width, rows_in_mem,
|
||||
fullsize_data[whichss]);
|
||||
|
||||
/* Subsample the data (all components) */
|
||||
/* First time through is a special case */
|
||||
|
||||
if (cur_pixel_row) {
|
||||
/* Subsample last row group of previous set */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) DCTSIZE, (short) (DCTSIZE+1), (short) 0,
|
||||
(short) (DCTSIZE-1));
|
||||
/* and dump the previous set's subsampled data */
|
||||
(*cinfo->methods->extract_MCUs) (cinfo, subsampled_data,
|
||||
mcu_rows_per_loop,
|
||||
cinfo->methods->entropy_encode);
|
||||
mcu_rows_output += mcu_rows_per_loop;
|
||||
/* Subsample first row group of this set */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (DCTSIZE+1), (short) 0, (short) 1,
|
||||
(short) 0);
|
||||
} else {
|
||||
/* Subsample first row group with dummy above-context */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (-1), (short) 0, (short) 1,
|
||||
(short) 0);
|
||||
}
|
||||
/* Subsample second through next-to-last row groups of this set */
|
||||
for (i = 1; i <= DCTSIZE-2; i++) {
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (i-1), (short) i, (short) (i+1),
|
||||
(short) i);
|
||||
}
|
||||
} /* end of outer loop */
|
||||
|
||||
/* Subsample the last row group with dummy below-context */
|
||||
/* Note whichss points to last buffer side used */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (DCTSIZE-2), (short) (DCTSIZE-1), (short) (-1),
|
||||
(short) (DCTSIZE-1));
|
||||
/* Dump the remaining data (may be less than full height if uninterleaved) */
|
||||
(*cinfo->methods->extract_MCUs) (cinfo, subsampled_data,
|
||||
(int) (cinfo->MCU_rows_in_scan - mcu_rows_output),
|
||||
cinfo->methods->entropy_encode);
|
||||
|
||||
/* Finish output file */
|
||||
(*cinfo->methods->extract_term) (cinfo);
|
||||
(*cinfo->methods->subsample_term) (cinfo);
|
||||
(*cinfo->methods->entropy_encoder_term) (cinfo);
|
||||
(*cinfo->methods->write_scan_trailer) (cinfo);
|
||||
cinfo->completed_passes++;
|
||||
|
||||
/* Release working memory */
|
||||
/* (no work -- we let free_all release what's needful) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compression pipeline controller used for single-scan files
|
||||
* with optimization of entropy parameters.
|
||||
*/
|
||||
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
|
||||
METHODDEF void
|
||||
single_eopt_ccontroller (compress_info_ptr cinfo)
|
||||
{
|
||||
int rows_in_mem; /* # of sample rows in full-size buffers */
|
||||
long fullsize_width; /* # of samples per row in full-size buffers */
|
||||
long cur_pixel_row; /* counts # of pixel rows processed */
|
||||
long mcu_rows_output; /* # of MCU rows actually emitted */
|
||||
int mcu_rows_per_loop; /* # of MCU rows processed per outer loop */
|
||||
/* Work buffer for pre-subsampling data (see comments at head of file) */
|
||||
JSAMPIMAGE fullsize_data[2];
|
||||
/* Work buffer for subsampled data */
|
||||
JSAMPIMAGE subsampled_data;
|
||||
int rows_this_time;
|
||||
int blocks_in_big_row;
|
||||
short ci, whichss, i;
|
||||
|
||||
/* Prepare for single scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT(cinfo->emethods, "Too many components for interleaved scan");
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
noninterleaved_scan_setup(cinfo);
|
||||
/* Vk block rows constitute the same number of MCU rows */
|
||||
mcu_rows_per_loop = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
} else {
|
||||
interleaved_scan_setup(cinfo);
|
||||
/* in an interleaved scan, one MCU row contains Vk block rows */
|
||||
mcu_rows_per_loop = 1;
|
||||
}
|
||||
cinfo->total_passes += 2; /* entropy encoder must add # passes it uses */
|
||||
|
||||
/* Compute dimensions of full-size pixel buffers */
|
||||
/* Note these are the same whether interleaved or not. */
|
||||
rows_in_mem = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
fullsize_width = jround_up(cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
|
||||
/* Allocate working memory: */
|
||||
/* fullsize_data is sample data before subsampling */
|
||||
alloc_sampling_buffer(cinfo, fullsize_data, fullsize_width);
|
||||
/* subsampled_data is sample data after subsampling */
|
||||
subsampled_data = (JSAMPIMAGE) (*cinfo->emethods->alloc_small)
|
||||
(cinfo->num_components * SIZEOF(JSAMPARRAY));
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
subsampled_data[ci] = (*cinfo->emethods->alloc_small_sarray)
|
||||
(cinfo->comp_info[ci].subsampled_width,
|
||||
(long) (cinfo->comp_info[ci].v_samp_factor * DCTSIZE));
|
||||
}
|
||||
|
||||
/* Figure # of MCUs to be packed in a row of whole_scan_MCUs */
|
||||
MCUs_in_big_row = MAX_WHOLE_ROW_BLOCKS / cinfo->blocks_in_MCU;
|
||||
blocks_in_big_row = MCUs_in_big_row * cinfo->blocks_in_MCU;
|
||||
|
||||
/* Request a big array: whole_scan_MCUs saves the MCU data for the scan */
|
||||
whole_scan_MCUs = (*cinfo->emethods->request_big_barray)
|
||||
((long) blocks_in_big_row,
|
||||
(long) (cinfo->MCUs_per_row * cinfo->MCU_rows_in_scan
|
||||
+ MCUs_in_big_row-1) / MCUs_in_big_row,
|
||||
1L); /* unit height is 1 row */
|
||||
|
||||
next_whole_row = 0; /* init output ptr for MCU_output_catcher */
|
||||
next_MCU_index = MCUs_in_big_row; /* forces access on first call! */
|
||||
|
||||
/* Tell the memory manager to instantiate big arrays */
|
||||
(*cinfo->emethods->alloc_big_arrays)
|
||||
((long) 0, /* no more small sarrays */
|
||||
(long) 0, /* no more small barrays */
|
||||
(long) 0); /* no more "medium" objects */
|
||||
|
||||
/* Do per-scan object init */
|
||||
|
||||
(*cinfo->methods->subsample_init) (cinfo);
|
||||
(*cinfo->methods->extract_init) (cinfo);
|
||||
|
||||
/* Loop over input image: rows_in_mem pixel rows are processed per loop */
|
||||
/* MCU data goes into whole_scan_MCUs, not to the entropy encoder */
|
||||
|
||||
mcu_rows_output = 0;
|
||||
whichss = 1; /* arrange to start with fullsize_data[0] */
|
||||
|
||||
for (cur_pixel_row = 0; cur_pixel_row < cinfo->image_height;
|
||||
cur_pixel_row += rows_in_mem) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, cur_pixel_row,
|
||||
cinfo->image_height);
|
||||
|
||||
whichss ^= 1; /* switch to other fullsize_data buffer */
|
||||
|
||||
/* Obtain rows_this_time pixel rows and expand to rows_in_mem rows. */
|
||||
/* Then we have exactly DCTSIZE row groups for subsampling. */
|
||||
rows_this_time = (int) MIN((long) rows_in_mem,
|
||||
cinfo->image_height - cur_pixel_row);
|
||||
|
||||
(*cinfo->methods->get_sample_rows) (cinfo, rows_this_time,
|
||||
fullsize_data[whichss]);
|
||||
(*cinfo->methods->edge_expand) (cinfo,
|
||||
cinfo->image_width, rows_this_time,
|
||||
fullsize_width, rows_in_mem,
|
||||
fullsize_data[whichss]);
|
||||
|
||||
/* Subsample the data (all components) */
|
||||
/* First time through is a special case */
|
||||
|
||||
if (cur_pixel_row) {
|
||||
/* Subsample last row group of previous set */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) DCTSIZE, (short) (DCTSIZE+1), (short) 0,
|
||||
(short) (DCTSIZE-1));
|
||||
/* and dump the previous set's subsampled data */
|
||||
(*cinfo->methods->extract_MCUs) (cinfo, subsampled_data,
|
||||
mcu_rows_per_loop,
|
||||
MCU_output_catcher);
|
||||
mcu_rows_output += mcu_rows_per_loop;
|
||||
/* Subsample first row group of this set */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (DCTSIZE+1), (short) 0, (short) 1,
|
||||
(short) 0);
|
||||
} else {
|
||||
/* Subsample first row group with dummy above-context */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (-1), (short) 0, (short) 1,
|
||||
(short) 0);
|
||||
}
|
||||
/* Subsample second through next-to-last row groups of this set */
|
||||
for (i = 1; i <= DCTSIZE-2; i++) {
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (i-1), (short) i, (short) (i+1),
|
||||
(short) i);
|
||||
}
|
||||
} /* end of outer loop */
|
||||
|
||||
/* Subsample the last row group with dummy below-context */
|
||||
/* Note whichss points to last buffer side used */
|
||||
subsample(cinfo, fullsize_data[whichss], subsampled_data, fullsize_width,
|
||||
(short) (DCTSIZE-2), (short) (DCTSIZE-1), (short) (-1),
|
||||
(short) (DCTSIZE-1));
|
||||
/* Dump the remaining data (may be less than full height if uninterleaved) */
|
||||
(*cinfo->methods->extract_MCUs) (cinfo, subsampled_data,
|
||||
(int) (cinfo->MCU_rows_in_scan - mcu_rows_output),
|
||||
MCU_output_catcher);
|
||||
|
||||
/* Clean up after that stuff, then find the optimal entropy parameters */
|
||||
|
||||
(*cinfo->methods->extract_term) (cinfo);
|
||||
(*cinfo->methods->subsample_term) (cinfo);
|
||||
|
||||
cinfo->completed_passes++;
|
||||
|
||||
(*cinfo->methods->entropy_optimize) (cinfo, dump_scan_MCUs);
|
||||
|
||||
/* Emit scan to output file */
|
||||
/* Note: we can't do write_scan_header until entropy parameters are set! */
|
||||
|
||||
(*cinfo->methods->write_scan_header) (cinfo);
|
||||
cinfo->methods->entropy_output = cinfo->methods->write_jpeg_data;
|
||||
(*cinfo->methods->entropy_encoder_init) (cinfo);
|
||||
dump_scan_MCUs(cinfo, cinfo->methods->entropy_encode);
|
||||
(*cinfo->methods->entropy_encoder_term) (cinfo);
|
||||
(*cinfo->methods->write_scan_trailer) (cinfo);
|
||||
|
||||
/* Release working memory */
|
||||
/* (no work -- we let free_all release what's needful) */
|
||||
}
|
||||
|
||||
#endif /* ENTROPY_OPT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Compression pipeline controller used for multiple-scan files
|
||||
* with no optimization of entropy parameters.
|
||||
*/
|
||||
|
||||
#ifdef MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
METHODDEF void
|
||||
multi_ccontroller (compress_info_ptr cinfo)
|
||||
{
|
||||
ERREXIT(cinfo->emethods, "Not implemented yet");
|
||||
}
|
||||
|
||||
#endif /* MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Compression pipeline controller used for multiple-scan files
|
||||
* with optimization of entropy parameters.
|
||||
*/
|
||||
|
||||
#ifdef MULTISCAN_FILES_SUPPORTED
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
|
||||
METHODDEF void
|
||||
multi_eopt_ccontroller (compress_info_ptr cinfo)
|
||||
{
|
||||
ERREXIT(cinfo->emethods, "Not implemented yet");
|
||||
}
|
||||
|
||||
#endif /* ENTROPY_OPT_SUPPORTED */
|
||||
#endif /* MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for compression pipeline controllers.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselcpipeline (compress_info_ptr cinfo)
|
||||
{
|
||||
if (cinfo->interleave || cinfo->num_components == 1) {
|
||||
/* single scan needed */
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
if (cinfo->optimize_coding)
|
||||
cinfo->methods->c_pipeline_controller = single_eopt_ccontroller;
|
||||
else
|
||||
#endif
|
||||
cinfo->methods->c_pipeline_controller = single_ccontroller;
|
||||
} else {
|
||||
/* multiple scans needed */
|
||||
#ifdef MULTISCAN_FILES_SUPPORTED
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
if (cinfo->optimize_coding)
|
||||
cinfo->methods->c_pipeline_controller = multi_eopt_ccontroller;
|
||||
else
|
||||
#endif
|
||||
cinfo->methods->c_pipeline_controller = multi_ccontroller;
|
||||
#else
|
||||
ERREXIT(cinfo->emethods, "Multiple-scan support was not compiled");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
371
jcprepct.c
Normal file
371
jcprepct.c
Normal file
@@ -0,0 +1,371 @@
|
||||
/*
|
||||
* jcprepct.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the compression preprocessing controller.
|
||||
* This controller manages the color conversion, downsampling,
|
||||
* and edge expansion steps.
|
||||
*
|
||||
* Most of the complexity here is associated with buffering input rows
|
||||
* as required by the downsampler. See the comments at the head of
|
||||
* jcsample.c for the downsampler's needs.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling
|
||||
* or other more-complex downsampling procedures. The code to support
|
||||
* context rows should be compiled only if needed.
|
||||
*/
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
#define CONTEXT_ROWS_SUPPORTED
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one
|
||||
* row group's worth of pixels for the downsampling step. At the bottom of
|
||||
* the image, we pad to a full row group by replicating the last pixel row.
|
||||
* The downsampler's last output row is then replicated if needed to pad
|
||||
* out to a full iMCU row.
|
||||
*
|
||||
* When providing context rows, we must buffer three row groups' worth of
|
||||
* pixels. Three row groups are physically allocated, but the row pointer
|
||||
* arrays are made five row groups high, with the extra pointers above and
|
||||
* below "wrapping around" to point to the last and first real row groups.
|
||||
* This allows the downsampler to access the proper context rows.
|
||||
* At the top and bottom of the image, we create dummy context rows by
|
||||
* copying the first or last real pixel row. This copying could be avoided
|
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
|
||||
* trouble on the compression side.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_prep_controller pub; /* public fields */
|
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */
|
||||
int next_buf_row; /* index of next row to store in color_buf */
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
|
||||
int this_row_group; /* starting row index of group to process */
|
||||
int next_buf_stop; /* downsample when we reach this index */
|
||||
#endif
|
||||
} my_prep_controller;
|
||||
|
||||
typedef my_prep_controller * my_prep_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
|
||||
if (pass_mode != JBUF_PASS_THRU)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
prep->rows_to_go = cinfo->image_height;
|
||||
/* Mark the conversion buffer empty */
|
||||
prep->next_buf_row = 0;
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode.
|
||||
*/
|
||||
prep->this_row_group = 0;
|
||||
/* Set next_buf_stop to stop after two row groups have been read in. */
|
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows,
|
||||
* by duplicating the bottom row.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
|
||||
int input_rows, int output_rows)
|
||||
{
|
||||
register int row;
|
||||
|
||||
for (row = input_rows; row < output_rows; row++) {
|
||||
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
|
||||
1, num_cols);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case.
|
||||
*
|
||||
* Preprocessor output data is counted in "row groups". A row group
|
||||
* is defined to be v_samp_factor sample rows of each component.
|
||||
* Downsampling will produce this much data from each max_v_samp_factor
|
||||
* input rows.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
pre_process_data (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
JDIMENSION inrows;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
while (*in_row_ctr < in_rows_avail &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->rows_to_go == 0 &&
|
||||
prep->next_buf_row < cinfo->max_v_samp_factor) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, cinfo->max_v_samp_factor);
|
||||
}
|
||||
prep->next_buf_row = cinfo->max_v_samp_factor;
|
||||
}
|
||||
/* If we've filled the conversion buffer, empty it. */
|
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf, (JDIMENSION) 0,
|
||||
output_buf, *out_row_group_ctr);
|
||||
prep->next_buf_row = 0;
|
||||
(*out_row_group_ctr)++;
|
||||
}
|
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||
*/
|
||||
if (prep->rows_to_go == 0 &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
expand_bottom_edge(output_buf[ci],
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
(int) (*out_row_group_ctr * compptr->v_samp_factor),
|
||||
(int) (out_row_groups_avail * compptr->v_samp_factor));
|
||||
}
|
||||
*out_row_group_ctr = out_row_groups_avail;
|
||||
break; /* can exit outer loop without test */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the context case.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
pre_process_context (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
int buf_height = cinfo->max_v_samp_factor * 3;
|
||||
JDIMENSION inrows;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) {
|
||||
if (*in_row_ctr < in_rows_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = prep->next_buf_stop - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
/* Pad at top of image, if first time through */
|
||||
if (prep->rows_to_go == cinfo->image_height) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
int row;
|
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
|
||||
jcopy_sample_rows(prep->color_buf[ci], 0,
|
||||
prep->color_buf[ci], -row,
|
||||
1, cinfo->image_width);
|
||||
}
|
||||
}
|
||||
}
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
} else {
|
||||
/* Return for more data, unless we are at the bottom of the image. */
|
||||
if (prep->rows_to_go != 0)
|
||||
break;
|
||||
}
|
||||
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->rows_to_go == 0 &&
|
||||
prep->next_buf_row < prep->next_buf_stop) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, prep->next_buf_stop);
|
||||
}
|
||||
prep->next_buf_row = prep->next_buf_stop;
|
||||
}
|
||||
/* If we've gotten enough data, downsample a row group. */
|
||||
if (prep->next_buf_row == prep->next_buf_stop) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->this_row_group,
|
||||
output_buf, *out_row_group_ctr);
|
||||
(*out_row_group_ctr)++;
|
||||
/* Advance pointers with wraparound as necessary. */
|
||||
prep->this_row_group += cinfo->max_v_samp_factor;
|
||||
if (prep->this_row_group >= buf_height)
|
||||
prep->this_row_group = 0;
|
||||
if (prep->next_buf_row >= buf_height)
|
||||
prep->next_buf_row = 0;
|
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
|
||||
}
|
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||
*/
|
||||
if (prep->rows_to_go == 0 &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
expand_bottom_edge(output_buf[ci],
|
||||
compptr->width_in_blocks * DCTSIZE,
|
||||
(int) (*out_row_group_ctr * compptr->v_samp_factor),
|
||||
(int) (out_row_groups_avail * compptr->v_samp_factor));
|
||||
}
|
||||
*out_row_group_ctr = out_row_groups_avail;
|
||||
break; /* can exit outer loop without test */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
create_context_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int rgroup_height = cinfo->max_v_samp_factor;
|
||||
int ci, i;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY true_buffer, fake_buffer;
|
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component.
|
||||
*/
|
||||
fake_buffer = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(cinfo->num_components * 5 * rgroup_height) *
|
||||
SIZEOF(JSAMPROW));
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
true_buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) (3 * rgroup_height));
|
||||
/* Copy true buffer row pointers into the middle of the fake row array */
|
||||
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
|
||||
3 * rgroup_height * SIZEOF(JSAMPROW));
|
||||
/* Fill in the above and below wraparound pointers */
|
||||
for (i = 0; i < rgroup_height; i++) {
|
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
|
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
|
||||
}
|
||||
prep->color_buf[ci] = fake_buffer + rgroup_height;
|
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_prep_ptr prep;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (need_full_buffer) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
prep = (my_prep_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_prep_controller));
|
||||
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
|
||||
prep->pub.start_pass = start_pass_prep;
|
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
if (cinfo->downsample->need_context_rows) {
|
||||
/* Set up to provide context rows */
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
prep->pub.pre_process_data = pre_process_context;
|
||||
create_context_buffer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* No context, just make it tall enough for one row group */
|
||||
prep->pub.pre_process_data = pre_process_data;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
494
jcsample.c
494
jcsample.c
@@ -1,67 +1,171 @@
|
||||
/*
|
||||
* jcsample.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains subsampling routines.
|
||||
* These routines are invoked via the subsample and
|
||||
* subsample_init/term methods.
|
||||
* This file contains downsampling routines.
|
||||
*
|
||||
* Downsampling input data is counted in "row groups". A row group
|
||||
* is defined to be max_v_samp_factor pixel rows of each component,
|
||||
* from which the downsampler produces v_samp_factor sample rows.
|
||||
* A single row group is processed in each call to the downsampler module.
|
||||
*
|
||||
* The downsampler is responsible for edge-expansion of its output data
|
||||
* to fill an integral number of DCT blocks horizontally. The source buffer
|
||||
* may be modified if it is helpful for this purpose (the source buffer is
|
||||
* allocated wide enough to correspond to the desired output width).
|
||||
* The caller (the prep controller) is responsible for vertical padding.
|
||||
*
|
||||
* The downsampler may request "context rows" by setting need_context_rows
|
||||
* during startup. In this case, the input arrays will contain at least
|
||||
* one row group's worth of pixels above and below the passed-in data;
|
||||
* the caller will create dummy rows at image top and bottom by replicating
|
||||
* the first or last real pixel row.
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*
|
||||
* The downsampling algorithm used here is a simple average of the source
|
||||
* pixels covered by the output pixel. The hi-falutin sampling literature
|
||||
* refers to this as a "box filter". In general the characteristics of a box
|
||||
* filter are not very good, but for the specific cases we normally use (1:1
|
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
||||
* advised to improve this code.
|
||||
*
|
||||
* A simple input-smoothing capability is provided. This is mainly intended
|
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
||||
* we suggest using an external filtering program such as pnmconvol). When
|
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
||||
* where SF = (smoothing_factor / 1024).
|
||||
* Currently, smoothing is only supported for 2h2v sampling factors.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to downsample a single component */
|
||||
typedef JMETHOD(void, downsample1_ptr,
|
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_downsampler pub; /* public fields */
|
||||
|
||||
/* Downsampling method pointers, one per component */
|
||||
downsample1_ptr methods[MAX_COMPONENTS];
|
||||
} my_downsampler;
|
||||
|
||||
typedef my_downsampler * my_downsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for subsampling a scan.
|
||||
* Initialize for a downsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
subsample_init (compress_info_ptr cinfo)
|
||||
start_pass_downsample (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Subsample pixel values of a single component.
|
||||
* This version only handles integral sampling ratios.
|
||||
* Expand a component horizontally from width input_cols to width output_cols,
|
||||
* by duplicating the rightmost samples.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
||||
JDIMENSION input_cols, JDIMENSION output_cols)
|
||||
{
|
||||
register JSAMPROW ptr;
|
||||
register JSAMPLE pixval;
|
||||
register int count;
|
||||
int row;
|
||||
int numcols = (int) (output_cols - input_cols);
|
||||
|
||||
if (numcols > 0) {
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptr = image_data[row] + input_cols;
|
||||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
||||
for (count = numcols; count > 0; count--)
|
||||
*ptr++ = pixval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components).
|
||||
*
|
||||
* In this version we simply downsample each component independently.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
subsample (compress_info_ptr cinfo, int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below,
|
||||
JSAMPARRAY output_data)
|
||||
sep_downsample (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY in_ptr, out_ptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
in_ptr = input_buf[ci] + in_row_index;
|
||||
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
|
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* One row group is processed per call.
|
||||
* This version handles arbitrary integral sampling ratios, without smoothing.
|
||||
* Note that this version is not actually used for customary sampling ratios.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
jpeg_component_info * compptr = cinfo->cur_comp_info[which_component];
|
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
||||
long outcol;
|
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
JSAMPROW inptr, outptr;
|
||||
INT32 outvalue;
|
||||
|
||||
/* TEMP FOR DEBUGGING PIPELINE CONTROLLER */
|
||||
if (output_rows != compptr->v_samp_factor ||
|
||||
input_rows != cinfo->max_v_samp_factor ||
|
||||
(output_cols % compptr->h_samp_factor) != 0 ||
|
||||
(input_cols % cinfo->max_h_samp_factor) != 0 ||
|
||||
input_cols*compptr->h_samp_factor != output_cols*cinfo->max_h_samp_factor)
|
||||
ERREXIT(cinfo->emethods, "Bogus subsample parameters");
|
||||
|
||||
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
|
||||
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
||||
numpix = h_expand * v_expand;
|
||||
numpix2 = numpix/2;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * h_expand);
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < output_rows; outrow++) {
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
||||
outcol++, outcol_h += h_expand) {
|
||||
outvalue = 0;
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow+v] + (outcol*h_expand);
|
||||
inptr = input_data[inrow+v] + outcol_h;
|
||||
for (h = 0; h < h_expand; h++) {
|
||||
outvalue += (INT32) GETJSAMPLE(*inptr++);
|
||||
}
|
||||
@@ -74,62 +178,342 @@ subsample (compress_info_ptr cinfo, int which_component,
|
||||
|
||||
|
||||
/*
|
||||
* Subsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component.
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
fullsize_subsample (compress_info_ptr cinfo, int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below,
|
||||
JSAMPARRAY output_data)
|
||||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
if (input_cols != output_cols || input_rows != output_rows) /* DEBUG */
|
||||
ERREXIT(cinfo->emethods, "Pipeline controller messed up");
|
||||
|
||||
jcopy_sample_rows(input_data, 0, output_data, 0, output_rows, output_cols);
|
||||
/* Copy the data */
|
||||
jcopy_sample_rows(input_data, 0, output_data, 0,
|
||||
cinfo->max_v_samp_factor, cinfo->image_width);
|
||||
/* Edge-expand */
|
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Clean up after a scan.
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
||||
* without smoothing.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
subsample_term (compress_info_ptr cinfo)
|
||||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
/* no work for now */
|
||||
int outrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr = input_data[outrow];
|
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
||||
+ bias) >> 1);
|
||||
bias ^= 1; /* 0=>1, 1=>0 */
|
||||
inptr += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr0, inptr1, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
||||
+ bias) >> 2);
|
||||
bias ^= 3; /* 1=>2, 2=>1 */
|
||||
inptr0 += 2; inptr1 += 2;
|
||||
}
|
||||
inrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* The method selection routine for subsampling.
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four
|
||||
* smoothed values. Each of the four member pixels contributes a fraction
|
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
||||
* factors are scaled by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
||||
|
||||
inrow = 0;
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
above_ptr = input_data[inrow-1];
|
||||
below_ptr = input_data[inrow+2];
|
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
/* sum of pixels directly mapped to this output element */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
/* sum of edge-neighbor pixels */
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
||||
/* The edge-neighbors count twice as much as corner-neighbors */
|
||||
neighsum += neighsum;
|
||||
/* Add in the corner-neighbors */
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
||||
/* form final output scaled up by 2^16 */
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
/* round, descale and output it */
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
inrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int outrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
||||
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
int colsum, lastcolsum, nextcolsum;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols);
|
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
||||
|
||||
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
||||
outptr = output_data[outrow];
|
||||
inptr = input_data[outrow];
|
||||
above_ptr = input_data[outrow-1];
|
||||
below_ptr = input_data[outrow+1];
|
||||
|
||||
/* Special case for first column */
|
||||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
||||
GETJSAMPLE(*inptr);
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
above_ptr++; below_ptr++;
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling.
|
||||
* Note that we must select a routine for each component.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselsubsample (compress_info_ptr cinfo)
|
||||
jinit_downsampler (j_compress_ptr cinfo)
|
||||
{
|
||||
short ci;
|
||||
my_downsample_ptr downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean smoothok = TRUE;
|
||||
|
||||
downsample = (my_downsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_downsampler));
|
||||
cinfo->downsample = (struct jpeg_downsampler *) downsample;
|
||||
downsample->pub.start_pass = start_pass_downsample;
|
||||
downsample->pub.downsample = sep_downsample;
|
||||
downsample->pub.need_context_rows = FALSE;
|
||||
|
||||
if (cinfo->CCIR601_sampling)
|
||||
ERREXIT(cinfo->emethods, "CCIR601 subsampling not implemented yet");
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor)
|
||||
cinfo->methods->subsample[ci] = fullsize_subsample;
|
||||
else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0)
|
||||
cinfo->methods->subsample[ci] = subsample;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Fractional subsampling not implemented yet");
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = fullsize_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = fullsize_downsample;
|
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = h2v1_downsample;
|
||||
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = h2v2_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v2_downsample;
|
||||
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = int_downsample;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
}
|
||||
|
||||
cinfo->methods->subsample_init = subsample_init;
|
||||
cinfo->methods->subsample_term = subsample_term;
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor && !smoothok)
|
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
|
||||
438
jdapi.c
Normal file
438
jdapi.c
Normal file
@@ -0,0 +1,438 @@
|
||||
/*
|
||||
* jdapi.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half of
|
||||
* the JPEG library. Most of the routines intended to be called directly by
|
||||
* an application are in this file. But also see jcomapi.c for routines
|
||||
* shared by compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_create_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* For debugging purposes, zero the whole master structure.
|
||||
* But error manager pointer is already there, so save and restore it.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
|
||||
cinfo->err = err;
|
||||
}
|
||||
cinfo->is_decompressor = TRUE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->src = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
cinfo->sample_range_limit = NULL;
|
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header.
|
||||
*/
|
||||
cinfo->marker = NULL;
|
||||
jinit_marker_reader(cinfo);
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = DSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_destroy_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Install a special processing method for COM or APPn markers.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
|
||||
jpeg_marker_parser_method routine)
|
||||
{
|
||||
if (marker_code == JPEG_COM)
|
||||
cinfo->marker->process_COM = routine;
|
||||
else if (marker_code >= JPEG_APP0 && marker_code <= JPEG_APP0+15)
|
||||
cinfo->marker->process_APPn[marker_code-JPEG_APP0] = routine;
|
||||
else
|
||||
ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
default_decompress_parms (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Guess the input colorspace, and set output colorspace accordingly. */
|
||||
/* (Wish JPEG committee had provided a real way to specify this...) */
|
||||
/* Note application may override our guesses. */
|
||||
switch (cinfo->num_components) {
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE;
|
||||
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (cinfo->saw_JFIF_marker) {
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
|
||||
} else if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_RGB;
|
||||
break;
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* Saw no special markers, try to guess from the component IDs */
|
||||
int cid0 = cinfo->comp_info[0].component_id;
|
||||
int cid1 = cinfo->comp_info[1].component_id;
|
||||
int cid2 = cinfo->comp_info[2].component_id;
|
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
|
||||
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
|
||||
else {
|
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
}
|
||||
}
|
||||
/* Always guess RGB is proper output colorspace. */
|
||||
cinfo->out_color_space = JCS_RGB;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
break;
|
||||
case 2:
|
||||
cinfo->jpeg_color_space = JCS_YCCK;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* No special markers, assume straight CMYK. */
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
}
|
||||
cinfo->out_color_space = JCS_CMYK;
|
||||
break;
|
||||
|
||||
default:
|
||||
cinfo->jpeg_color_space = JCS_UNKNOWN;
|
||||
cinfo->out_color_space = JCS_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set defaults for other decompression parameters. */
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||
cinfo->scale_denom = 1;
|
||||
cinfo->output_gamma = 1.0;
|
||||
cinfo->raw_data_out = FALSE;
|
||||
cinfo->quantize_colors = FALSE;
|
||||
/* We set these in case application only sets quantize_colors. */
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
cinfo->desired_number_of_colors = 256;
|
||||
cinfo->colormap = NULL;
|
||||
/* DCT algorithm preference */
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
cinfo->do_fancy_upsampling = TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there.
|
||||
* Need only initialize JPEG object and supply a data source before calling.
|
||||
*
|
||||
* This routine will read as far as the first SOS marker (ie, actual start of
|
||||
* compressed data), and will save all tables and parameters in the JPEG
|
||||
* object. It will also initialize the decompression parameters to default
|
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may
|
||||
* adjust the decompression parameters and then call jpeg_start_decompress.
|
||||
* (Or, if the application only wanted to determine the image parameters,
|
||||
* the data need not be decompressed. In that case, call jpeg_abort or
|
||||
* jpeg_destroy to release any temporary space.)
|
||||
* If an abbreviated (tables only) datastream is presented, the routine will
|
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
|
||||
* re-use the JPEG object to read the abbreviated image datastream(s).
|
||||
* It is unnecessary (but OK) to call jpeg_abort in this case.
|
||||
* The JPEG_SUSPENDED return code only occurs if the data source module
|
||||
* requests suspension of the decompressor. In this case the application
|
||||
* should load more source data and then re-call jpeg_read_header to resume
|
||||
* processing.
|
||||
* If a non-suspending data source is used and require_image is TRUE, then the
|
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible.
|
||||
*/
|
||||
|
||||
GLOBAL int
|
||||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
|
||||
{
|
||||
int retcode;
|
||||
|
||||
if (cinfo->global_state == DSTATE_START) {
|
||||
/* First-time actions: reset appropriate modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->marker->reset_marker_reader) (cinfo);
|
||||
(*cinfo->src->init_source) (cinfo);
|
||||
cinfo->global_state = DSTATE_INHEADER;
|
||||
} else if (cinfo->global_state != DSTATE_INHEADER) {
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
|
||||
retcode = (*cinfo->marker->read_markers) (cinfo);
|
||||
|
||||
switch (retcode) {
|
||||
case JPEG_HEADER_OK: /* Found SOS, prepare to decompress */
|
||||
/* Set up default parameters based on header data */
|
||||
default_decompress_parms(cinfo);
|
||||
/* Set global state: ready for start_decompress */
|
||||
cinfo->global_state = DSTATE_READY;
|
||||
break;
|
||||
|
||||
case JPEG_HEADER_TABLES_ONLY: /* Found EOI before any SOS */
|
||||
if (cinfo->marker->saw_SOF)
|
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS);
|
||||
if (require_image) /* Complain if application wants an image */
|
||||
ERREXIT(cinfo, JERR_NO_IMAGE);
|
||||
/* We need not do any cleanup since only permanent storage (for DQT, DHT)
|
||||
* has been allocated.
|
||||
*/
|
||||
/* Set global state: ready for a new datastream */
|
||||
cinfo->global_state = DSTATE_START;
|
||||
break;
|
||||
|
||||
case JPEG_SUSPENDED: /* Had to suspend before end of headers */
|
||||
/* no work */
|
||||
break;
|
||||
}
|
||||
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* If a multipass operating mode was selected, this will do all but the
|
||||
* last pass, and thus may take a great deal of time.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_start_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
JDIMENSION chunk_ctr, last_chunk_ctr;
|
||||
|
||||
if (cinfo->global_state != DSTATE_READY)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform master selection of active modules */
|
||||
jinit_master_decompress(cinfo);
|
||||
/* Do all but the final (output) pass, and set up for that one. */
|
||||
for (;;) {
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
if (cinfo->master->is_last_pass)
|
||||
break;
|
||||
chunk_ctr = 0;
|
||||
while (chunk_ctr < cinfo->main->num_chunks) {
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) chunk_ctr;
|
||||
cinfo->progress->pass_limit = (long) cinfo->main->num_chunks;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* Process some data */
|
||||
last_chunk_ctr = chunk_ctr;
|
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
|
||||
&chunk_ctr, (JDIMENSION) 0);
|
||||
if (chunk_ctr == last_chunk_ctr) /* check for failure to make progress */
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
}
|
||||
/* Ready for application to drive last pass through jpeg_read_scanlines
|
||||
* or jpeg_read_raw_data.
|
||||
*/
|
||||
cinfo->output_scanline = 0;
|
||||
cinfo->global_state = (cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor.
|
||||
*
|
||||
* The return value will be the number of lines actually read.
|
||||
* This may be less than the number requested in several cases,
|
||||
* including bottom of image, data source suspension, and operating
|
||||
* modes that emit multiple scanlines at a time.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_read_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error.
|
||||
*/
|
||||
|
||||
GLOBAL JDIMENSION
|
||||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION row_ctr;
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height)
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Process some data */
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
|
||||
cinfo->output_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data.
|
||||
* Processes exactly one MCU row per call.
|
||||
*/
|
||||
|
||||
GLOBAL JDIMENSION
|
||||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION lines_per_MCU_row;
|
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Verify that at least one MCU row can be returned. */
|
||||
lines_per_MCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
|
||||
if (max_lines < lines_per_MCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Decompress directly into user's buffer. */
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, data))
|
||||
return 0; /* suspension forced, can do nothing more */
|
||||
|
||||
/* OK, we processed one MCU row. */
|
||||
cinfo->output_scanline += lines_per_MCU_row;
|
||||
return lines_per_MCU_row;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression.
|
||||
*
|
||||
* This will normally just verify the file trailer and release temp storage.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL boolean
|
||||
jpeg_finish_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) {
|
||||
/* Terminate final pass */
|
||||
if (cinfo->output_scanline < cinfo->output_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state != DSTATE_STOPPING) {
|
||||
/* Repeat call after a suspension? */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Check for EOI in source file, unless master control already read it */
|
||||
if (! cinfo->master->eoi_processed) {
|
||||
switch ((*cinfo->marker->read_markers) (cinfo)) {
|
||||
case JPEG_HEADER_OK: /* Found SOS!? */
|
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED);
|
||||
break;
|
||||
case JPEG_HEADER_TABLES_ONLY: /* Found EOI, A-OK */
|
||||
break;
|
||||
case JPEG_SUSPENDED: /* Suspend, come back later */
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Do final cleanup */
|
||||
(*cinfo->src->term_source) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_abort_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
42
jdarith.c
42
jdarith.c
@@ -1,42 +0,0 @@
|
||||
/*
|
||||
* jdarith.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains arithmetic entropy decoding routines.
|
||||
* These routines are invoked via the methods entropy_decode
|
||||
* and entropy_decoder_init/term.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef ARITH_CODING_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* The arithmetic coding option of the JPEG standard specifies Q-coding,
|
||||
* which is covered by patents held by IBM (and possibly AT&T and Mitsubishi).
|
||||
* At this time it does not appear to be legal for the Independent JPEG
|
||||
* Group to distribute software that implements arithmetic coding.
|
||||
* We have therefore removed arithmetic coding support from the
|
||||
* distributed source code.
|
||||
*
|
||||
* We're not happy about it either.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for arithmetic entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jseldarithmetic (decompress_info_ptr cinfo)
|
||||
{
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo->emethods, "Sorry, there are legal restrictions on arithmetic coding");
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARITH_CODING_SUPPORTED */
|
||||
151
jdatadst.c
Normal file
151
jdatadst.c
Normal file
@@ -0,0 +1,151 @@
|
||||
/*
|
||||
* jdatadst.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains compression data destination routines for the case of
|
||||
* emitting JPEG data to a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* destination manager.
|
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
FILE * outfile; /* target stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
} my_destination_mgr;
|
||||
|
||||
typedef my_destination_mgr * my_dest_ptr;
|
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress
|
||||
* before any data is actually written.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
init_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
/* Allocate the output buffer --- it will be released when done with image */
|
||||
dest->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up.
|
||||
*
|
||||
* In typical applications, this should write the entire output buffer
|
||||
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been dumped.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to output
|
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||
* In this situation, the compressor will return to its caller (possibly with
|
||||
* an indication that it has not accepted all the supplied scanlines). The
|
||||
* application should resume compression after it has made more room in the
|
||||
* output buffer. Note that there are substantial restrictions on the use of
|
||||
* suspension --- see the documentation.
|
||||
*
|
||||
* When suspending, the compressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point will be regenerated after resumption, so do not
|
||||
* write it out when emptying the buffer externally.
|
||||
*/
|
||||
|
||||
METHODDEF boolean
|
||||
empty_output_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
|
||||
(size_t) OUTPUT_BUF_SIZE)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress
|
||||
* after all data has been written. Usually needs to flush buffer.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
term_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
|
||||
|
||||
/* Write any data remaining in the buffer */
|
||||
if (datacount > 0) {
|
||||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
fflush(dest->outfile);
|
||||
/* Make sure we wrote the output file OK */
|
||||
if (ferror(dest->outfile))
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing compression.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
|
||||
{
|
||||
my_dest_ptr dest;
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||||
* This makes it dangerous to use this manager and a different destination
|
||||
* manager serially with the same JPEG object, because their private object
|
||||
* sizes may be different. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_destination_mgr));
|
||||
}
|
||||
|
||||
dest = (my_dest_ptr) cinfo->dest;
|
||||
dest->pub.init_destination = init_destination;
|
||||
dest->pub.empty_output_buffer = empty_output_buffer;
|
||||
dest->pub.term_destination = term_destination;
|
||||
dest->outfile = outfile;
|
||||
}
|
||||
209
jdatasrc.c
Normal file
209
jdatasrc.c
Normal file
@@ -0,0 +1,209 @@
|
||||
/*
|
||||
* jdatasrc.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains decompression data source routines for the case of
|
||||
* reading JPEG data from a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* source manager.
|
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data source object for stdio input */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_source_mgr pub; /* public fields */
|
||||
|
||||
FILE * infile; /* source stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
boolean start_of_file; /* have we gotten any data yet? */
|
||||
} my_source_mgr;
|
||||
|
||||
typedef my_source_mgr * my_src_ptr;
|
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header
|
||||
* before any data is actually read.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
init_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer.
|
||||
* This is correct behavior for reading a series of images from one source.
|
||||
*/
|
||||
src->start_of_file = TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied.
|
||||
*
|
||||
* In typical applications, this should read fresh data into the buffer
|
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been reloaded. It is not necessary to
|
||||
* fill the buffer entirely, only to obtain at least one more byte.
|
||||
*
|
||||
* There is no such thing as an EOF return. If the end of the file has been
|
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||
* the buffer. In most cases, generating a warning message and inserting a
|
||||
* fake EOI marker is the best course of action --- this will allow the
|
||||
* decompressor to output however much of the image is there. However,
|
||||
* the resulting error message is misleading if the real problem is an empty
|
||||
* input file, so we handle that case specially.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to input
|
||||
* not being available yet, a FALSE return indicates that no more data can be
|
||||
* obtained right now, but more may be forthcoming later. In this situation,
|
||||
* the decompressor will return to its caller (with an indication of the
|
||||
* number of scanlines it has read, if any). The application should resume
|
||||
* decompression after it has loaded more data into the input buffer. Note
|
||||
* that there are substantial restrictions on the use of suspension --- see
|
||||
* the documentation.
|
||||
*
|
||||
* When suspending, the decompressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point must be rescanned after resumption, so move it to
|
||||
* the front of the buffer rather than discarding it.
|
||||
*/
|
||||
|
||||
METHODDEF boolean
|
||||
fill_input_buffer (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
size_t nbytes;
|
||||
|
||||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
|
||||
|
||||
if (nbytes <= 0) {
|
||||
if (src->start_of_file) /* Treat empty input file as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
/* Insert a fake EOI marker */
|
||||
src->buffer[0] = (JOCTET) 0xFF;
|
||||
src->buffer[1] = (JOCTET) JPEG_EOI;
|
||||
nbytes = 2;
|
||||
}
|
||||
|
||||
src->pub.next_input_byte = src->buffer;
|
||||
src->pub.bytes_in_buffer = nbytes;
|
||||
src->start_of_file = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of
|
||||
* uninteresting data (such as an APPn marker).
|
||||
*
|
||||
* Writers of suspendable-input applications must note that skip_input_data
|
||||
* is not granted the right to give a suspension return. If the skip extends
|
||||
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||
* Arranging for additional bytes to be discarded before reloading the input
|
||||
* buffer is the application writer's problem.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth
|
||||
* any trouble anyway --- large skips are infrequent.
|
||||
*/
|
||||
if (num_bytes > 0) {
|
||||
while (num_bytes > (long) src->pub.bytes_in_buffer) {
|
||||
num_bytes -= (long) src->pub.bytes_in_buffer;
|
||||
(void) fill_input_buffer(cinfo);
|
||||
}
|
||||
src->pub.next_input_byte += (size_t) num_bytes;
|
||||
src->pub.bytes_in_buffer -= (size_t) num_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the
|
||||
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||
* For the moment, this source module just uses the default resync method
|
||||
* provided by the JPEG library. That method assumes that no backtracking
|
||||
* is possible.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress
|
||||
* after all data has been read. Often a no-op.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
term_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing decompression.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
|
||||
{
|
||||
my_src_ptr src;
|
||||
|
||||
/* The source object and input buffer are made permanent so that a series
|
||||
* of JPEG images can be read from the same file by calling jpeg_stdio_src
|
||||
* only before the first one. (If we discarded the buffer at the end of
|
||||
* one image, we'd likely lose the start of the next one.)
|
||||
* This makes it unsafe to use this manager and a different source
|
||||
* manager serially with the same JPEG object. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_source_mgr));
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
INPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
}
|
||||
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->pub.init_source = init_source;
|
||||
src->pub.fill_input_buffer = fill_input_buffer;
|
||||
src->pub.skip_input_data = skip_input_data;
|
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->pub.term_source = term_source;
|
||||
src->infile = infile;
|
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
|
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */
|
||||
}
|
||||
359
jdcoefct.c
Normal file
359
jdcoefct.c
Normal file
@@ -0,0 +1,359 @@
|
||||
/*
|
||||
* jdcoefct.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for decompression.
|
||||
* This controller is the top level of the JPEG decompressor proper.
|
||||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION MCU_col_num; /* saves next MCU column to process */
|
||||
JDIMENSION MCU_row_num; /* keep track of MCU row # within image */
|
||||
|
||||
/* In single-pass modes without block smoothing, it's sufficient to buffer
|
||||
* just one MCU (although this may prove a bit slow in practice).
|
||||
* We allocate a workspace of MAX_BLOCKS_IN_MCU coefficient blocks,
|
||||
* and let the entropy decoder write into that workspace each time.
|
||||
* (On 80x86, the workspace is FAR even though it's not really very big;
|
||||
* this is to keep the module interfaces unchanged when a large coefficient
|
||||
* buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF boolean decompress_data
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
METHODDEF boolean decompress_read
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
METHODDEF boolean decompress_output
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_coef (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
coef->MCU_col_num = 0;
|
||||
coef->MCU_row_num = 0;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (coef->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.decompress_data = decompress_data;
|
||||
break;
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
case JBUF_SAVE_SOURCE:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.decompress_data = decompress_read;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.decompress_data = decompress_output;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Returns TRUE if it completed a row, FALSE if not (suspension).
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image.
|
||||
* For single pass, this is the same as the components in the scan.
|
||||
*/
|
||||
|
||||
METHODDEF boolean
|
||||
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1;
|
||||
int blkn, ci, xindex, yindex, useful_width;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION start_col, output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Loop to process as much as one whole MCU row */
|
||||
|
||||
for (MCU_col_num = coef->MCU_col_num; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
|
||||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[0],
|
||||
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
|
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; return with row unfinished */
|
||||
coef->MCU_col_num = MCU_col_num; /* update my state */
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||
* We skip dummy blocks at the right and bottom edges (but blkn gets
|
||||
* incremented past them!). Note the inner loop relies on having
|
||||
* allocated the MCU_buffer[] blocks sequentially.
|
||||
*/
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed) {
|
||||
blkn += compptr->MCU_blocks;
|
||||
continue;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
||||
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
output_ptr = output_buf[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_sample_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->MCU_row_num < last_MCU_row ||
|
||||
yindex < compptr->last_row_height) {
|
||||
output_col = start_col;
|
||||
for (xindex = 0; xindex < useful_width; xindex++) {
|
||||
(*inverse_DCT) (cinfo, compptr,
|
||||
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
|
||||
output_ptr, output_col);
|
||||
output_col += compptr->DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
output_ptr += compptr->DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We finished the row successfully */
|
||||
coef->MCU_col_num = 0; /* prepare for next row */
|
||||
coef->MCU_row_num++;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data: handle an input pass for a multiple-scan file.
|
||||
* We read the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* No data is returned; we just stash it in the virtual arrays.
|
||||
*
|
||||
* Returns TRUE if it completed a row, FALSE if not (suspension).
|
||||
* Currently, the suspension case is not supported.
|
||||
*/
|
||||
|
||||
METHODDEF boolean
|
||||
decompress_read (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset, num_MCU_rows;
|
||||
JDIMENSION total_width, remaining_rows, start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->MCU_row_num * compptr->v_samp_factor, TRUE);
|
||||
/* Entropy decoder expects buffer to be zeroed. */
|
||||
total_width = (JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor);
|
||||
for (yindex = 0; yindex < compptr->v_samp_factor; yindex++) {
|
||||
jzero_far((void FAR *) buffer[ci][yindex],
|
||||
(size_t) (total_width * SIZEOF(JBLOCK)));
|
||||
}
|
||||
}
|
||||
|
||||
/* In an interleaved scan, we process exactly one MCU row.
|
||||
* In a noninterleaved scan, we need to process v_samp_factor MCU rows,
|
||||
* each of which contains a single block row.
|
||||
*/
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
num_MCU_rows = compptr->v_samp_factor;
|
||||
/* but watch out for the bottom of the image */
|
||||
remaining_rows = cinfo->MCU_rows_in_scan -
|
||||
coef->MCU_row_num * compptr->v_samp_factor;
|
||||
if (remaining_rows < (JDIMENSION) num_MCU_rows)
|
||||
num_MCU_rows = (int) remaining_rows;
|
||||
} else {
|
||||
num_MCU_rows = 1;
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = 0; yoffset < num_MCU_rows; yoffset++) {
|
||||
for (MCU_col_num = 0; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to fetch the MCU. */
|
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND); /* not supported */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
coef->MCU_row_num++;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data: output from the virtual arrays after reading is done.
|
||||
* Always emits one fully interleaved MCU row ("iMCU" row).
|
||||
* Always returns TRUE --- suspension is not possible.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image.
|
||||
*/
|
||||
|
||||
METHODDEF boolean
|
||||
decompress_output (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_MCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num;
|
||||
int ci, block_row, block_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed)
|
||||
continue;
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
coef->MCU_row_num * compptr->v_samp_factor, FALSE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (coef->MCU_row_num < last_MCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
buffer_ptr = buffer[block_row];
|
||||
output_col = 0;
|
||||
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
|
||||
output_ptr, output_col);
|
||||
buffer_ptr++;
|
||||
output_col += compptr->DCT_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->DCT_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
coef->MCU_row_num++;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKROW buffer;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_d_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
/* Note memmgr implicitly pads the vertical direction. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
compptr->height_in_blocks,
|
||||
(JDIMENSION) compptr->v_samp_factor);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
||||
372
jdcolor.c
372
jdcolor.c
@@ -1,16 +1,31 @@
|
||||
/*
|
||||
* jdcolor.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
* These routines are invoked via the methods color_convert
|
||||
* and colorout_init/term.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_deconverter pub; /* public fields */
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
} my_color_deconverter;
|
||||
|
||||
typedef my_color_deconverter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** YCbCr -> RGB conversion: most common case **************/
|
||||
@@ -23,274 +38,337 @@
|
||||
* G = Y - 0.34414 * Cb - 0.71414 * Cr
|
||||
* B = Y + 1.77200 * Cb
|
||||
* where Cb and Cr represent the incoming values less MAXJSAMPLE/2.
|
||||
* (These numbers are derived from TIFF Appendix O, draft of 4/10/91.)
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^14 (about 4 digits precision); we have to divide
|
||||
* the products by 2^14, with appropriate rounding, to get the correct answer.
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
* Notice that Y, being an integral input, does not contribute any fraction
|
||||
* so it need not participate in the rounding.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times Cb and Cr for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 table entries); for
|
||||
* 12-bit samples it is still acceptable. It's not very reasonable for 16-bit
|
||||
* samples, but if you want lossless storage you shouldn't be changing
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
|
||||
* values for the G calculation are left scaled up, since we must add them
|
||||
* together before rounding.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 14
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
static INT16 * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
static INT16 * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
static INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
static INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for colorspace conversion.
|
||||
* Initialize for YCC->RGB colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
ycc_rgb_init (decompress_info_ptr cinfo)
|
||||
ycc_rgb_start (j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef SIXTEEN_BIT_SAMPLES
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
INT32 i, x2;
|
||||
#else
|
||||
int i, x2; /* smart compiler may do 16x16=>32 multiply */
|
||||
#endif
|
||||
SHIFT_TEMPS
|
||||
|
||||
Cr_r_tab = (INT16 *) (*cinfo->emethods->alloc_small)
|
||||
((MAXJSAMPLE+1) * SIZEOF(INT16));
|
||||
Cb_b_tab = (INT16 *) (*cinfo->emethods->alloc_small)
|
||||
((MAXJSAMPLE+1) * SIZEOF(INT16));
|
||||
Cr_g_tab = (INT32 *) (*cinfo->emethods->alloc_small)
|
||||
((MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
Cb_g_tab = (INT32 *) (*cinfo->emethods->alloc_small)
|
||||
((MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
cconvert->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
cconvert->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - MAXJSAMPLE/2 */
|
||||
x2 = 2*i - MAXJSAMPLE; /* twice x */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
Cr_r_tab[i] = (INT16)
|
||||
cconvert->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200/2) * x2 + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
Cb_b_tab[i] = (INT16)
|
||||
cconvert->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200/2) * x2 + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
Cr_g_tab[i] = (- FIX(0.71414/2)) * x2;
|
||||
cconvert->Cr_g_tab[i] = (- FIX(0.71414/2)) * x2;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
Cb_g_tab[i] = (- FIX(0.34414/2)) * x2 + ONE_HALF;
|
||||
cconvert->Cb_g_tab[i] = (- FIX(0.34414/2)) * x2 + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace.
|
||||
*
|
||||
* Note that we change from noninterleaved, one-plane-per-component format
|
||||
* to interleaved-pixel format. The output buffer is therefore three times
|
||||
* as wide as the input buffer.
|
||||
* A starting row offset is provided only for the input buffer. The caller
|
||||
* can easily adjust the passed output_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
ycc_rgb_convert (decompress_info_ptr cinfo, int num_rows, long num_cols,
|
||||
JSAMPIMAGE input_data, JSAMPIMAGE output_data)
|
||||
ycc_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
#ifdef SIXTEEN_BIT_SAMPLES
|
||||
register UINT16 y, cb, cr;
|
||||
register INT32 x;
|
||||
#else
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register int x;
|
||||
#endif
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JSAMPROW outptr0, outptr1, outptr2;
|
||||
long col;
|
||||
int row;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
inptr0 = input_data[0][row];
|
||||
inptr1 = input_data[1][row];
|
||||
inptr2 = input_data[2][row];
|
||||
outptr0 = output_data[0][row];
|
||||
outptr1 = output_data[1][row];
|
||||
outptr2 = output_data[2][row];
|
||||
for (col = num_cols; col > 0; col--) {
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Note: if the inputs were computed directly from RGB values,
|
||||
* range-limiting would be unnecessary here; but due to possible
|
||||
* noise in the DCT/IDCT phase, we do need to apply range limits.
|
||||
*/
|
||||
x = y + Cr_r_tab[cr]; /* red */
|
||||
if (x < 0) x = 0;
|
||||
else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
*outptr0++ = (JSAMPLE) x;
|
||||
x = y + ((int) RIGHT_SHIFT(Cb_g_tab[cb] + Cr_g_tab[cr], SCALEBITS));
|
||||
if (x < 0) x = 0;
|
||||
else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
*outptr1++ = (JSAMPLE) x;
|
||||
x = y + Cb_b_tab[cb]; /* blue */
|
||||
if (x < 0) x = 0;
|
||||
else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
*outptr2++ = (JSAMPLE) x;
|
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||
outptr[RGB_GREEN] = range_limit[y +
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
ycc_rgb_term (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than YCbCr -> RGB **************/
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for colorspace conversion.
|
||||
* Color conversion for no colorspace change: just copy the data,
|
||||
* converting from separate-planes to interleaved representation.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
null_init (decompress_info_ptr cinfo)
|
||||
/* colorout_init for cases where no setup is needed */
|
||||
null_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION count;
|
||||
register int num_components = cinfo->output_components;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
int ci;
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
null_convert (decompress_info_ptr cinfo, int num_rows, long num_cols,
|
||||
JSAMPIMAGE input_data, JSAMPIMAGE output_data)
|
||||
{
|
||||
short ci;
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
jcopy_sample_rows(input_data[ci], 0, output_data[ci], 0,
|
||||
num_rows, num_cols);
|
||||
while (--num_rows >= 0) {
|
||||
for (ci = 0; ci < num_components; ci++) {
|
||||
inptr = input_buf[ci][input_row];
|
||||
outptr = output_buf[0] + ci;
|
||||
for (count = num_cols; count > 0; count--) {
|
||||
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||
outptr += num_components;
|
||||
}
|
||||
}
|
||||
input_row++;
|
||||
output_buf++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data.
|
||||
* This also works for YCbCr/YIQ -> grayscale conversion, in which
|
||||
* This also works for YCbCr -> grayscale conversion, in which
|
||||
* we just copy the Y (luminance) component and ignore chrominance.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
grayscale_convert (decompress_info_ptr cinfo, int num_rows, long num_cols,
|
||||
JSAMPIMAGE input_data, JSAMPIMAGE output_data)
|
||||
grayscale_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
jcopy_sample_rows(input_data[0], 0, output_data[0], 0,
|
||||
num_rows, num_cols);
|
||||
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
|
||||
num_rows, cinfo->output_width);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
* Adobe-style YCCK->CMYK conversion.
|
||||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume ycc_rgb_start has been called.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
null_term (decompress_info_ptr cinfo)
|
||||
/* colorout_term for cases where no teardown is needed */
|
||||
ycck_cmyk_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
inptr3 = input_buf[3][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Note: if the inputs were computed directly from RGB values,
|
||||
* range-limiting would be unnecessary here; but due to possible
|
||||
* noise in the DCT/IDCT phase, we do need to apply range limits.
|
||||
*/
|
||||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
|
||||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)))];
|
||||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
|
||||
/* K passes through unchanged */
|
||||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
null_method (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for output colorspace conversion.
|
||||
* Module initialization routine for output colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jseldcolor (decompress_info_ptr cinfo)
|
||||
jinit_color_deconverter (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
int ci;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_deconverter));
|
||||
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
|
||||
/* set start_pass to null method until we find out differently */
|
||||
cconvert->pub.start_pass = null_method;
|
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case CS_GRAYSCALE:
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo->emethods, "Bogus JPEG colorspace");
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case CS_RGB:
|
||||
case CS_YCbCr:
|
||||
case CS_YIQ:
|
||||
case JCS_RGB:
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo->emethods, "Bogus JPEG colorspace");
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case CS_CMYK:
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo->emethods, "Bogus JPEG colorspace");
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Unsupported JPEG colorspace");
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->num_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set color_out_comps and conversion method based on requested space */
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also clear the component_needed flags for any unused components,
|
||||
* so that earlier pipeline stages can avoid useless computation.
|
||||
*/
|
||||
|
||||
switch (cinfo->out_color_space) {
|
||||
case CS_GRAYSCALE:
|
||||
cinfo->color_out_comps = 1;
|
||||
if (cinfo->jpeg_color_space == CS_GRAYSCALE ||
|
||||
cinfo->jpeg_color_space == CS_YCbCr ||
|
||||
cinfo->jpeg_color_space == CS_YIQ) {
|
||||
cinfo->methods->color_convert = grayscale_convert;
|
||||
cinfo->methods->colorout_init = null_init;
|
||||
cinfo->methods->colorout_term = null_term;
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
|
||||
cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
/* For color->grayscale conversion, only the Y (0) component is needed */
|
||||
for (ci = 1; ci < cinfo->num_components; ci++)
|
||||
cinfo->comp_info[ci].component_needed = FALSE;
|
||||
} else
|
||||
ERREXIT(cinfo->emethods, "Unsupported color conversion request");
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case CS_RGB:
|
||||
cinfo->color_out_comps = 3;
|
||||
if (cinfo->jpeg_color_space == CS_YCbCr) {
|
||||
cinfo->methods->color_convert = ycc_rgb_convert;
|
||||
cinfo->methods->colorout_init = ycc_rgb_init;
|
||||
cinfo->methods->colorout_term = ycc_rgb_term;
|
||||
} else if (cinfo->jpeg_color_space == CS_RGB) {
|
||||
cinfo->methods->color_convert = null_convert;
|
||||
cinfo->methods->colorout_init = null_init;
|
||||
cinfo->methods->colorout_term = null_term;
|
||||
case JCS_RGB:
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.start_pass = ycc_rgb_start;
|
||||
cconvert->pub.color_convert = ycc_rgb_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo->emethods, "Unsupported color conversion request");
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
cinfo->out_color_components = 4;
|
||||
if (cinfo->jpeg_color_space == JCS_YCCK) {
|
||||
cconvert->pub.start_pass = ycc_rgb_start;
|
||||
cconvert->pub.color_convert = ycck_cmyk_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Permit null conversion from CMYK or YCbCr to same output space */
|
||||
/* Permit null conversion to same output space */
|
||||
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
|
||||
cinfo->color_out_comps = cinfo->num_components;
|
||||
cinfo->methods->color_convert = null_convert;
|
||||
cinfo->methods->colorout_init = null_init;
|
||||
cinfo->methods->colorout_term = null_term;
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else /* unsupported non-null conversion */
|
||||
ERREXIT(cinfo->emethods, "Unsupported color conversion request");
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
}
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
cinfo->final_out_comps = 1; /* single colormapped output component */
|
||||
cinfo->output_components = 1; /* single colormapped output component */
|
||||
else
|
||||
cinfo->final_out_comps = cinfo->color_out_comps;
|
||||
cinfo->output_components = cinfo->out_color_components;
|
||||
}
|
||||
|
||||
176
jdct.h
Normal file
176
jdct.h
Normal file
@@ -0,0 +1,176 @@
|
||||
/*
|
||||
* jdct.h
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file contains common declarations for the forward and
|
||||
* inverse DCT modules. These declarations are private to the DCT managers
|
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
||||
* The individual DCT algorithms are kept in separate files to ease
|
||||
* machine-dependent tuning (e.g., assembly coding).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
|
||||
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
|
||||
* for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
|
||||
* implementations use an array of type FAST_FLOAT, instead.)
|
||||
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
|
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
||||
* convention improves accuracy in integer implementations and saves some
|
||||
* work in floating-point ones.
|
||||
* Quantization of the output coefficients is done by jcdctmgr.c.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */
|
||||
#else
|
||||
typedef INT32 DCTELEM; /* must have 32 bits */
|
||||
#endif
|
||||
|
||||
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
|
||||
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
|
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
||||
* to an output sample array. The routine must dequantize the input data as
|
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
||||
* pointed to by compptr->dct_table. The output data is to be placed into the
|
||||
* sample array starting at a specified column. (Any row offset needed will
|
||||
* be applied to the array pointer before it is passed to the IDCT code.)
|
||||
* Note that the number of samples emitted by the IDCT routine is
|
||||
* DCT_scaled_size * DCT_scaled_size.
|
||||
*/
|
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type.
|
||||
*/
|
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
||||
#else
|
||||
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
||||
#endif
|
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and
|
||||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
||||
* be quite far out of range if the input data is corrupt, so a bulletproof
|
||||
* range-limiting step is required. We use a mask-and-table-lookup method
|
||||
* to do the combined operations quickly. See the comments with
|
||||
* prepare_range_limit_table (in jdmaster.c) for more info.
|
||||
*/
|
||||
|
||||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
|
||||
|
||||
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_fdct_islow jFDislow
|
||||
#define jpeg_fdct_ifast jFDifast
|
||||
#define jpeg_fdct_float jFDfloat
|
||||
#define jpeg_idct_islow jRDislow
|
||||
#define jpeg_idct_ifast jRDifast
|
||||
#define jpeg_idct_float jRDfloat
|
||||
#define jpeg_idct_4x4 jRD4x4
|
||||
#define jpeg_idct_2x2 jRD2x2
|
||||
#define jpeg_idct_1x1 jRD1x1
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */
|
||||
|
||||
EXTERN void jpeg_fdct_islow JPP((DCTELEM * data));
|
||||
EXTERN void jpeg_fdct_ifast JPP((DCTELEM * data));
|
||||
EXTERN void jpeg_fdct_float JPP((FAST_FLOAT * data));
|
||||
|
||||
EXTERN void jpeg_idct_islow
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN void jpeg_idct_ifast
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN void jpeg_idct_float
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN void jpeg_idct_4x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN void jpeg_idct_2x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN void jpeg_idct_1x1
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many
|
||||
* but not all of the DCT/IDCT modules.
|
||||
*
|
||||
* All values are expected to be of type INT32.
|
||||
* Fractional constants are scaled left by CONST_BITS bits.
|
||||
* CONST_BITS is defined within each module using these macros,
|
||||
* and may differ from one module to the next.
|
||||
*/
|
||||
|
||||
#define ONE ((INT32) 1)
|
||||
#define CONST_SCALE (ONE << CONST_BITS)
|
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
||||
* thus causing a lot of useless floating-point operations at run time.
|
||||
*/
|
||||
|
||||
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||||
* the fudge factor is correct for either sign of X.
|
||||
*/
|
||||
|
||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* This macro is used only when the two inputs will actually be no more than
|
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
||||
* full 32x32 multiply. This provides a useful speedup on many machines.
|
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
||||
* in C, but some C compilers will do the right thing if you provide the
|
||||
* correct combination of casts.
|
||||
*/
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
||||
#endif
|
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */
|
||||
#define MULTIPLY16C16(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
/* Same except both inputs are variables. */
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */
|
||||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
||||
#endif
|
||||
282
jddctmgr.c
Normal file
282
jddctmgr.c
Normal file
@@ -0,0 +1,282 @@
|
||||
/*
|
||||
* jddctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the inverse-DCT management logic.
|
||||
* This code selects a particular IDCT implementation to be used,
|
||||
* and it performs related housekeeping chores. No code in this file
|
||||
* is executed per IDCT step, only during pass setup.
|
||||
*
|
||||
* Note that the IDCT routines are responsible for performing coefficient
|
||||
* dequantization as well as the IDCT proper. This module sets up the
|
||||
* dequantization multiplier table needed by the IDCT routine.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_inverse_dct pub; /* public fields */
|
||||
|
||||
/* Record the IDCT method type actually selected for each component */
|
||||
J_DCT_METHOD real_method[MAX_COMPONENTS];
|
||||
} my_idct_controller;
|
||||
|
||||
typedef my_idct_controller * my_idct_ptr;
|
||||
|
||||
|
||||
/* ZIG[i] is the zigzag-order position of the i'th element of a DCT block */
|
||||
/* read in natural order (left to right, top to bottom). */
|
||||
static const int ZIG[DCTSIZE2] = {
|
||||
0, 1, 5, 6, 14, 15, 27, 28,
|
||||
2, 4, 7, 13, 16, 26, 29, 42,
|
||||
3, 8, 12, 17, 25, 30, 41, 43,
|
||||
9, 11, 18, 24, 31, 40, 44, 53,
|
||||
10, 19, 23, 32, 39, 45, 52, 54,
|
||||
20, 22, 33, 38, 46, 51, 55, 60,
|
||||
21, 34, 37, 47, 50, 56, 59, 61,
|
||||
35, 36, 48, 49, 57, 58, 62, 63
|
||||
};
|
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an input scan.
|
||||
*
|
||||
* Verify that all referenced Q-tables are present, and set up
|
||||
* the multiplier table for each one.
|
||||
* With a multiple-scan JPEG file, this is called during each input scan,
|
||||
* NOT during the final output pass where the IDCT is actually done.
|
||||
* The purpose is to save away the current Q-table contents just in case
|
||||
* the encoder changes tables between scans. This decoder will dequantize
|
||||
* any component using the Q-table which was current at the start of the
|
||||
* first scan using that component.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
||||
int ci, qtblno, i;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
/* Make sure specified quantization table is present */
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||
/* Create multiplier table from quant table, unless we already did so. */
|
||||
if (compptr->dct_table != NULL)
|
||||
continue;
|
||||
switch (idct->real_method[compptr->component_index]) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
{
|
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored in natural order as ints.
|
||||
*/
|
||||
ISLOW_MULT_TYPE * ismtbl;
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(ISLOW_MULT_TYPE));
|
||||
ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[ZIG[i]];
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* For integer operation, the multiplier table is to be scaled by
|
||||
* IFAST_SCALE_BITS. The multipliers are stored in natural order.
|
||||
*/
|
||||
IFAST_MULT_TYPE * ifmtbl;
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(IFAST_MULT_TYPE));
|
||||
ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ifmtbl[i] = (IFAST_MULT_TYPE)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[ZIG[i]],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-IFAST_SCALE_BITS);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* The multipliers are stored in natural order.
|
||||
*/
|
||||
FLOAT_MULT_TYPE * fmtbl;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(FLOAT_MULT_TYPE));
|
||||
fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fmtbl[i] = (FLOAT_MULT_TYPE)
|
||||
((double) qtbl->quantval[ZIG[i]] *
|
||||
aanscalefactor[row] * aanscalefactor[col]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass that will actually perform IDCTs.
|
||||
*
|
||||
* start_input_pass should already have been done for all components
|
||||
* of interest; we need only verify that this is true.
|
||||
* Note that uninteresting components are not required to have loaded tables.
|
||||
* This allows the master controller to stop before reading the whole file
|
||||
* if it has obtained the data for the interesting component(s).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_component_info *compptr;
|
||||
int ci;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (! compptr->component_needed)
|
||||
continue;
|
||||
if (compptr->dct_table == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_inverse_dct (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
idct = (my_idct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_idct_controller));
|
||||
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
||||
idct->pub.start_input_pass = start_input_pass;
|
||||
idct->pub.start_output_pass = start_output_pass;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
compptr->dct_table = NULL; /* initialize tables to "not prepared" */
|
||||
switch (compptr->DCT_scaled_size) {
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
case 1:
|
||||
idct->pub.inverse_DCT[ci] = jpeg_idct_1x1;
|
||||
idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 2:
|
||||
idct->pub.inverse_DCT[ci] = jpeg_idct_2x2;
|
||||
idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
case 4:
|
||||
idct->pub.inverse_DCT[ci] = jpeg_idct_4x4;
|
||||
idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case DCTSIZE:
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
idct->pub.inverse_DCT[ci] = jpeg_idct_islow;
|
||||
idct->real_method[ci] = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
idct->pub.inverse_DCT[ci] = jpeg_idct_ifast;
|
||||
idct->real_method[ci] = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
idct->pub.inverse_DCT[ci] = jpeg_idct_float;
|
||||
idct->real_method[ci] = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
154
jddeflts.c
154
jddeflts.c
@@ -1,154 +0,0 @@
|
||||
/*
|
||||
* jddeflts.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG decompressor.
|
||||
* User interfaces do not have to use this file, but those that don't use it
|
||||
* must know more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
|
||||
/* Default do-nothing progress monitoring routine.
|
||||
* This can be overridden by a user interface that wishes to
|
||||
* provide progress monitoring; just set methods->progress_monitor
|
||||
* after j_d_defaults is done. The routine will be called periodically
|
||||
* during the decompression process.
|
||||
*
|
||||
* During any one pass, loopcounter increases from 0 up to (not including)
|
||||
* looplimit; the step size is not necessarily 1. Both the step size and
|
||||
* the limit may differ between passes. The expected total number of passes
|
||||
* is in cinfo->total_passes, and the number of passes already completed is
|
||||
* in cinfo->completed_passes. Thus the fraction of work completed may be
|
||||
* estimated as
|
||||
* completed_passes + (loopcounter/looplimit)
|
||||
* ------------------------------------------
|
||||
* total_passes
|
||||
* ignoring the fact that the passes may not be equal amounts of work.
|
||||
*
|
||||
* When decompressing, the total_passes figure is an estimate that may be
|
||||
* on the high side; completed_passes will jump by more than one if some
|
||||
* passes are skipped.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
progress_monitor (decompress_info_ptr cinfo, long loopcounter, long looplimit)
|
||||
{
|
||||
/* do nothing */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reload the input buffer after it's been emptied, and return the next byte.
|
||||
* See the JGETC macro for calling conditions.
|
||||
*
|
||||
* This routine can be overridden by the system-dependent user interface,
|
||||
* in case the data source is not a stdio stream or some other special
|
||||
* condition applies. Note, however, that this capability only applies for
|
||||
* JFIF or similar serial-access JPEG file formats. The input file control
|
||||
* module for a random-access format such as TIFF/JPEG would most likely
|
||||
* override the read_jpeg_data method with its own routine.
|
||||
*/
|
||||
|
||||
METHODDEF int
|
||||
read_jpeg_data (decompress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->next_input_byte = cinfo->input_buffer + MIN_UNGET;
|
||||
|
||||
cinfo->bytes_in_buffer = (int) JFREAD(cinfo->input_file,
|
||||
cinfo->next_input_byte,
|
||||
JPEG_BUF_SIZE);
|
||||
|
||||
if (cinfo->bytes_in_buffer <= 0)
|
||||
ERREXIT(cinfo->emethods, "Unexpected EOF in JPEG file");
|
||||
|
||||
return JGETC(cinfo);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Default parameter setup for decompression.
|
||||
*
|
||||
* User interfaces that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*
|
||||
* standard_buffering should be TRUE to cause an input buffer to be allocated
|
||||
* (the normal case); if FALSE, the user interface must provide a buffer.
|
||||
* This option is most useful in the case that the buffer must not be freed
|
||||
* at the end of an image. (For example, when reading a sequence of images
|
||||
* from a single file, the remaining data in the buffer represents the
|
||||
* start of the next image and mustn't be discarded.) To handle this,
|
||||
* allocate the input buffer yourself at startup, WITHOUT using alloc_small
|
||||
* (probably a direct call to malloc() instead). Then pass FALSE on each
|
||||
* call to j_d_defaults to ensure the buffer state is not modified.
|
||||
*
|
||||
* If the source of the JPEG data is not a stdio stream, override the
|
||||
* read_jpeg_data method with your own routine after calling j_d_defaults.
|
||||
* You can still use the standard buffer if it's appropriate.
|
||||
*
|
||||
* CAUTION: if you want to decompress multiple images per run, it's necessary
|
||||
* to call j_d_defaults before *each* call to jpeg_decompress, since subsidiary
|
||||
* structures like the quantization tables are automatically freed during
|
||||
* cleanup.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
j_d_defaults (decompress_info_ptr cinfo, boolean standard_buffering)
|
||||
/* NB: the external methods must already be set up. */
|
||||
{
|
||||
short i;
|
||||
|
||||
/* Initialize pointers as needed to mark stuff unallocated. */
|
||||
/* Outer application may fill in default tables for abbreviated files... */
|
||||
cinfo->comp_info = NULL;
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
cinfo->colormap = NULL;
|
||||
|
||||
/* Default to RGB output */
|
||||
/* UI can override by changing out_color_space */
|
||||
cinfo->out_color_space = CS_RGB;
|
||||
cinfo->jpeg_color_space = CS_UNKNOWN;
|
||||
/* Setting any other value in jpeg_color_space overrides heuristics in */
|
||||
/* jrdjfif.c. That might be useful when reading non-JFIF JPEG files, */
|
||||
/* but ordinarily the UI shouldn't change it. */
|
||||
|
||||
/* Default to no gamma correction of output */
|
||||
cinfo->output_gamma = 1.0;
|
||||
|
||||
/* Default to no color quantization */
|
||||
cinfo->quantize_colors = FALSE;
|
||||
/* but set reasonable default parameters for quantization, */
|
||||
/* so that turning on quantize_colors is sufficient to do something useful */
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
cinfo->use_dithering = TRUE;
|
||||
cinfo->desired_number_of_colors = 256;
|
||||
|
||||
/* Default to no smoothing */
|
||||
cinfo->do_block_smoothing = FALSE;
|
||||
cinfo->do_pixel_smoothing = FALSE;
|
||||
|
||||
/* Allocate memory for input buffer, unless outer application provides it. */
|
||||
if (standard_buffering) {
|
||||
cinfo->input_buffer = (char *) (*cinfo->emethods->alloc_small)
|
||||
((size_t) (JPEG_BUF_SIZE + MIN_UNGET));
|
||||
cinfo->bytes_in_buffer = 0; /* initialize buffer to empty */
|
||||
}
|
||||
|
||||
/* Install standard buffer-reloading method (outer code may override). */
|
||||
cinfo->methods->read_jpeg_data = read_jpeg_data;
|
||||
|
||||
/* Install default do-nothing progress monitoring method. */
|
||||
cinfo->methods->progress_monitor = progress_monitor;
|
||||
}
|
||||
748
jdhuff.c
748
jdhuff.c
@@ -1,34 +1,172 @@
|
||||
/*
|
||||
* jdhuff.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains Huffman entropy decoding routines.
|
||||
* These routines are invoked via the methods entropy_decode
|
||||
* and entropy_decoder_init/term.
|
||||
*
|
||||
* Much of the complexity here has to do with supporting input suspension.
|
||||
* If the data source module demands suspension, we want to be able to back
|
||||
* up to the start of the current MCU. To do this, we copy state variables
|
||||
* into local working storage, and update them back to the permanent JPEG
|
||||
* objects only upon successful completion of an MCU.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Static variables to avoid passing 'round extra parameters */
|
||||
/* Derived data constructed for each Huffman table */
|
||||
|
||||
static decompress_info_ptr dcinfo;
|
||||
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
|
||||
|
||||
static INT32 get_buffer; /* current bit-extraction buffer */
|
||||
static int bits_left; /* # of unused bits in it */
|
||||
typedef struct {
|
||||
/* Basic tables: (element [0] of each array is unused) */
|
||||
INT32 mincode[17]; /* smallest code of length k */
|
||||
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
|
||||
/* (maxcode[17] is a sentinel to ensure huff_DECODE terminates) */
|
||||
int valptr[17]; /* huffval[] index of 1st symbol of length k */
|
||||
|
||||
/* Back link to public Huffman table (needed only in slow_DECODE) */
|
||||
JHUFF_TBL *pub;
|
||||
|
||||
/* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
|
||||
* the input data stream. If the next Huffman code is no more
|
||||
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
|
||||
* the corresponding symbol directly from these tables.
|
||||
*/
|
||||
int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
|
||||
UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
|
||||
} D_DERIVED_TBL;
|
||||
|
||||
/* Expanded entropy decoder object for Huffman decoding.
|
||||
*
|
||||
* The savable_state subrecord contains fields that change within an MCU,
|
||||
* but must not be updated permanently until we complete the MCU.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
INT32 get_buffer; /* current bit-extraction buffer */
|
||||
int bits_left; /* # of unused bits in it */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
} savable_state;
|
||||
|
||||
/* This macro is to work around compilers with missing or broken
|
||||
* structure assignment. You'll need to fix this code if you have
|
||||
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
||||
*/
|
||||
|
||||
#ifndef NO_STRUCT_ASSIGN
|
||||
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
||||
#else
|
||||
#if MAX_COMPS_IN_SCAN == 4
|
||||
#define ASSIGN_STATE(dest,src) \
|
||||
((dest).get_buffer = (src).get_buffer, \
|
||||
(dest).bits_left = (src).bits_left, \
|
||||
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
||||
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
||||
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
||||
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
savable_state saved; /* Bit buffer & DC state at start of MCU */
|
||||
|
||||
/* These fields are NOT loaded into local working state. */
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
boolean printed_eod; /* flag to suppress extra end-of-data msgs */
|
||||
|
||||
/* Pointers to derived tables (these workspaces have image lifespan) */
|
||||
D_DERIVED_TBL * dc_derived_tbls[NUM_HUFF_TBLS];
|
||||
D_DERIVED_TBL * ac_derived_tbls[NUM_HUFF_TBLS];
|
||||
} huff_entropy_decoder;
|
||||
|
||||
typedef huff_entropy_decoder * huff_entropy_ptr;
|
||||
|
||||
/* Working state while scanning an MCU.
|
||||
* This struct contains all the fields that are needed by subroutines.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
int unread_marker; /* nonzero if we have hit a marker */
|
||||
const JOCTET * next_input_byte; /* => next byte to read from source */
|
||||
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
|
||||
savable_state cur; /* Current bit buffer & DC state */
|
||||
j_decompress_ptr cinfo; /* fill_bit_buffer needs access to this */
|
||||
} working_state;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL void fix_huff_tbl JPP((j_decompress_ptr cinfo, JHUFF_TBL * htbl,
|
||||
D_DERIVED_TBL ** pdtbl));
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_huff_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int ci, dctbl, actbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
dctbl = compptr->dc_tbl_no;
|
||||
actbl = compptr->ac_tbl_no;
|
||||
/* Make sure requested tables are present */
|
||||
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
|
||||
cinfo->dc_huff_tbl_ptrs[dctbl] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
||||
if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
|
||||
cinfo->ac_huff_tbl_ptrs[actbl] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
||||
/* Compute derived values for Huffman tables */
|
||||
/* We may do this more than once for a table, but it's not expensive */
|
||||
fix_huff_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
|
||||
& entropy->dc_derived_tbls[dctbl]);
|
||||
fix_huff_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
|
||||
& entropy->ac_derived_tbls[actbl]);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
}
|
||||
|
||||
/* Initialize private state variables */
|
||||
entropy->saved.bits_left = 0;
|
||||
entropy->printed_eod = FALSE;
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
fix_huff_tbl (HUFF_TBL * htbl)
|
||||
/* Compute derived values for a Huffman table */
|
||||
fix_huff_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, D_DERIVED_TBL ** pdtbl)
|
||||
/* Compute the derived values for a Huffman table */
|
||||
{
|
||||
D_DERIVED_TBL *dtbl;
|
||||
int p, i, l, si;
|
||||
int lookbits, ctr;
|
||||
char huffsize[257];
|
||||
UINT16 huffcode[257];
|
||||
UINT16 code;
|
||||
unsigned int huffcode[257];
|
||||
unsigned int code;
|
||||
|
||||
/* Allocate a workspace if we haven't already done so. */
|
||||
if (*pdtbl == NULL)
|
||||
*pdtbl = (D_DERIVED_TBL *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(D_DERIVED_TBL));
|
||||
dtbl = *pdtbl;
|
||||
dtbl->pub = htbl; /* fill in back link */
|
||||
|
||||
/* Figure C.1: make table of Huffman code length for each symbol */
|
||||
/* Note that this is in code-length order. */
|
||||
@@ -55,271 +193,495 @@ fix_huff_tbl (HUFF_TBL * htbl)
|
||||
si++;
|
||||
}
|
||||
|
||||
/* We don't bother to fill in the encoding tables ehufco[] and ehufsi[], */
|
||||
/* since they are not used for decoding. */
|
||||
|
||||
/* Figure F.15: generate decoding tables */
|
||||
/* Figure F.15: generate decoding tables for bit-sequential decoding */
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= 16; l++) {
|
||||
if (htbl->bits[l]) {
|
||||
htbl->valptr[l] = p; /* huffval[] index of 1st sym of code len l */
|
||||
htbl->mincode[l] = huffcode[p]; /* minimum code of length l */
|
||||
dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */
|
||||
dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
|
||||
p += htbl->bits[l];
|
||||
htbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
||||
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
||||
} else {
|
||||
htbl->maxcode[l] = -1;
|
||||
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
||||
}
|
||||
}
|
||||
dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */
|
||||
|
||||
/* Compute lookahead tables to speed up decoding.
|
||||
* First we set all the table entries to 0, indicating "too long";
|
||||
* then we iterate through the Huffman codes that are short enough and
|
||||
* fill in all the entries that correspond to bit sequences starting
|
||||
* with that code.
|
||||
*/
|
||||
|
||||
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
|
||||
|
||||
p = 0;
|
||||
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
||||
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
|
||||
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
||||
/* Generate left-justified code followed by all possible bit sequences */
|
||||
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
|
||||
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
|
||||
dtbl->look_nbits[lookbits] = l;
|
||||
dtbl->look_sym[lookbits] = htbl->huffval[p];
|
||||
lookbits++;
|
||||
}
|
||||
}
|
||||
}
|
||||
htbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */
|
||||
}
|
||||
|
||||
|
||||
/* Extract the next N bits from the input stream (N <= 15) */
|
||||
/*
|
||||
* Code for extracting the next N bits from the input stream.
|
||||
* (N never exceeds 15 for JPEG data.)
|
||||
* This needs to go as fast as possible!
|
||||
*
|
||||
* We read source bytes into get_buffer and dole out bits as needed.
|
||||
* If get_buffer already contains enough bits, they are fetched in-line
|
||||
* by the macros check_bit_buffer and get_bits. When there aren't enough
|
||||
* bits, fill_bit_buffer is called; it will attempt to fill get_buffer to
|
||||
* the "high water mark" (not just to the number of bits needed; this reduces
|
||||
* the function-call overhead cost of entering fill_bit_buffer).
|
||||
* Note that fill_bit_buffer may return FALSE to indicate suspension.
|
||||
* On TRUE return, fill_bit_buffer guarantees that get_buffer contains
|
||||
* at least the requested number of bits --- dummy zeroes are inserted if
|
||||
* necessary.
|
||||
*
|
||||
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
||||
* of get_buffer to be used. (On machines with wider words, an even larger
|
||||
* buffer could be used.) However, on some machines 32-bit shifts are
|
||||
* quite slow and take time proportional to the number of places shifted.
|
||||
* (This is true with most PC compilers, for instance.) In this case it may
|
||||
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
||||
* average shift distance at the cost of more calls to fill_bit_buffer.
|
||||
*/
|
||||
|
||||
LOCAL int
|
||||
get_bits (int nbits)
|
||||
#ifdef SLOW_SHIFT_32
|
||||
#define MIN_GET_BITS 15 /* minimum allowable value */
|
||||
#else
|
||||
#define MIN_GET_BITS 25 /* max value for 32-bit get_buffer */
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL boolean
|
||||
fill_bit_buffer (working_state * state, int nbits)
|
||||
/* Load up the bit buffer to a depth of at least nbits */
|
||||
{
|
||||
int result;
|
||||
/* Copy heavily used state fields into locals (hopefully registers) */
|
||||
register const JOCTET * next_input_byte = state->next_input_byte;
|
||||
register size_t bytes_in_buffer = state->bytes_in_buffer;
|
||||
register INT32 get_buffer = state->cur.get_buffer;
|
||||
register int bits_left = state->cur.bits_left;
|
||||
register int c;
|
||||
|
||||
while (nbits > bits_left) {
|
||||
int c = JGETC(dcinfo);
|
||||
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
||||
/* (It is assumed that no request will be for more than that many bits.) */
|
||||
|
||||
while (bits_left < MIN_GET_BITS) {
|
||||
/* Attempt to read a byte */
|
||||
if (state->unread_marker != 0)
|
||||
goto no_more_data; /* can't advance past a marker */
|
||||
|
||||
if (bytes_in_buffer == 0) {
|
||||
if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
|
||||
return FALSE;
|
||||
next_input_byte = state->cinfo->src->next_input_byte;
|
||||
bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
|
||||
}
|
||||
bytes_in_buffer--;
|
||||
c = GETJOCTET(*next_input_byte++);
|
||||
|
||||
get_buffer <<= 8;
|
||||
get_buffer |= c;
|
||||
bits_left += 8;
|
||||
/* If it's 0xFF, check and discard stuffed zero byte */
|
||||
if (c == 0xff) {
|
||||
c = JGETC(dcinfo); /* Byte stuffing */
|
||||
if (c != 0)
|
||||
ERREXIT1(dcinfo->emethods,
|
||||
"Unexpected marker 0x%02x in compressed data", c);
|
||||
if (c == 0xFF) {
|
||||
do {
|
||||
if (bytes_in_buffer == 0) {
|
||||
if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
|
||||
return FALSE;
|
||||
next_input_byte = state->cinfo->src->next_input_byte;
|
||||
bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
|
||||
}
|
||||
bytes_in_buffer--;
|
||||
c = GETJOCTET(*next_input_byte++);
|
||||
} while (c == 0xFF);
|
||||
|
||||
if (c == 0) {
|
||||
/* Found FF/00, which represents an FF data byte */
|
||||
c = 0xFF;
|
||||
} else {
|
||||
/* Oops, it's actually a marker indicating end of compressed data. */
|
||||
/* Better put it back for use later */
|
||||
state->unread_marker = c;
|
||||
|
||||
no_more_data:
|
||||
/* There should be enough bits still left in the data segment; */
|
||||
/* if so, just break out of the outer while loop. */
|
||||
if (bits_left >= nbits)
|
||||
break;
|
||||
/* Uh-oh. Report corrupted data to user and stuff zeroes into
|
||||
* the data stream, so that we can produce some kind of image.
|
||||
* Note that this will be repeated for each byte demanded for the
|
||||
* rest of the segment; this is slow but not unreasonably so.
|
||||
* The main thing is to avoid getting a zillion warnings, hence
|
||||
* we use a flag to ensure that only one warning appears.
|
||||
*/
|
||||
if (! ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod) {
|
||||
WARNMS(state->cinfo, JWRN_HIT_MARKER);
|
||||
((huff_entropy_ptr) state->cinfo->entropy)->printed_eod = TRUE;
|
||||
}
|
||||
c = 0; /* insert a zero byte into bit buffer */
|
||||
}
|
||||
}
|
||||
|
||||
/* OK, load c into get_buffer */
|
||||
get_buffer = (get_buffer << 8) | c;
|
||||
bits_left += 8;
|
||||
}
|
||||
|
||||
bits_left -= nbits;
|
||||
result = ((int) (get_buffer >> bits_left)) & ((1 << nbits) - 1);
|
||||
return result;
|
||||
/* Unload the local registers */
|
||||
state->next_input_byte = next_input_byte;
|
||||
state->bytes_in_buffer = bytes_in_buffer;
|
||||
state->cur.get_buffer = get_buffer;
|
||||
state->cur.bits_left = bits_left;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
/* Macro to make things go at some speed! */
|
||||
|
||||
#define get_bit() (bits_left ? \
|
||||
((int) (get_buffer >> (--bits_left))) & 1 : \
|
||||
get_bits(1))
|
||||
/*
|
||||
* These macros provide the in-line portion of bit fetching.
|
||||
* Use check_bit_buffer to ensure there are N bits in get_buffer
|
||||
* before using get_bits, peek_bits, or drop_bits.
|
||||
* check_bit_buffer(state,n,action);
|
||||
* Ensure there are N bits in get_buffer; if suspend, take action.
|
||||
* val = get_bits(state,n);
|
||||
* Fetch next N bits.
|
||||
* val = peek_bits(state,n);
|
||||
* Fetch next N bits without removing them from the buffer.
|
||||
* drop_bits(state,n);
|
||||
* Discard next N bits.
|
||||
* The value N should be a simple variable, not an expression, because it
|
||||
* is evaluated multiple times.
|
||||
*/
|
||||
|
||||
#define check_bit_buffer(state,nbits,action) \
|
||||
{ if ((state).cur.bits_left < (nbits)) \
|
||||
if (! fill_bit_buffer(&(state), nbits)) \
|
||||
{ action; } }
|
||||
|
||||
#define get_bits(state,nbits) \
|
||||
(((int) ((state).cur.get_buffer >> ((state).cur.bits_left -= (nbits)))) & ((1<<(nbits))-1))
|
||||
|
||||
#define peek_bits(state,nbits) \
|
||||
(((int) ((state).cur.get_buffer >> ((state).cur.bits_left - (nbits)))) & ((1<<(nbits))-1))
|
||||
|
||||
#define drop_bits(state,nbits) \
|
||||
((state).cur.bits_left -= (nbits))
|
||||
|
||||
|
||||
/* Figure F.16: extract next coded symbol from input stream */
|
||||
/*
|
||||
* Code for extracting next Huffman-coded symbol from input bit stream.
|
||||
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
|
||||
* without looping. Usually, more than 95% of the Huffman codes will be 8
|
||||
* or fewer bits long. The few overlength codes are handled with a loop.
|
||||
* The primary case is made a macro for speed reasons; the secondary
|
||||
* routine slow_DECODE is rarely entered and need not be inline code.
|
||||
*
|
||||
* Notes about the huff_DECODE macro:
|
||||
* 1. Near the end of the data segment, we may fail to get enough bits
|
||||
* for a lookahead. In that case, we do it the hard way.
|
||||
* 2. If the lookahead table contains no entry, the next code must be
|
||||
* more than HUFF_LOOKAHEAD bits long.
|
||||
* 3. slow_DECODE returns -1 if forced to suspend.
|
||||
*/
|
||||
|
||||
#define huff_DECODE(result,state,htbl,donelabel) \
|
||||
{ if (state.cur.bits_left < HUFF_LOOKAHEAD) { \
|
||||
if (! fill_bit_buffer(&state, 0)) return FALSE; \
|
||||
if (state.cur.bits_left < HUFF_LOOKAHEAD) { \
|
||||
if ((result = slow_DECODE(&state, htbl, 1)) < 0) return FALSE; \
|
||||
goto donelabel; \
|
||||
} \
|
||||
} \
|
||||
{ register int nb, look; \
|
||||
look = peek_bits(state, HUFF_LOOKAHEAD); \
|
||||
if ((nb = htbl->look_nbits[look]) != 0) { \
|
||||
drop_bits(state, nb); \
|
||||
result = htbl->look_sym[look]; \
|
||||
} else { \
|
||||
if ((result = slow_DECODE(&state, htbl, HUFF_LOOKAHEAD+1)) < 0) \
|
||||
return FALSE; \
|
||||
} \
|
||||
} \
|
||||
donelabel:; \
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
huff_DECODE (HUFF_TBL * htbl)
|
||||
slow_DECODE (working_state * state, D_DERIVED_TBL * htbl, int min_bits)
|
||||
{
|
||||
int l, p;
|
||||
INT32 code;
|
||||
register int l = min_bits;
|
||||
register INT32 code;
|
||||
|
||||
/* huff_DECODE has determined that the code is at least min_bits */
|
||||
/* bits long, so fetch that many bits in one swoop. */
|
||||
|
||||
check_bit_buffer(*state, l, return -1);
|
||||
code = get_bits(*state, l);
|
||||
|
||||
/* Collect the rest of the Huffman code one bit at a time. */
|
||||
/* This is per Figure F.16 in the JPEG spec. */
|
||||
|
||||
code = get_bit();
|
||||
l = 1;
|
||||
while (code > htbl->maxcode[l]) {
|
||||
code = (code << 1) + get_bit();
|
||||
code <<= 1;
|
||||
check_bit_buffer(*state, 1, return -1);
|
||||
code |= get_bits(*state, 1);
|
||||
l++;
|
||||
}
|
||||
|
||||
/* With garbage input we may reach the sentinel value l = 17. */
|
||||
|
||||
if (l > 16) {
|
||||
ERREXIT(dcinfo->emethods, "Corrupted data in JPEG file");
|
||||
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
||||
return 0; /* fake a zero as the safest result */
|
||||
}
|
||||
|
||||
p = (int) (htbl->valptr[l] + (code - htbl->mincode[l]));
|
||||
|
||||
return (int) htbl->huffval[p];
|
||||
return htbl->pub->huffval[ htbl->valptr[l] +
|
||||
((int) (code - htbl->mincode[l])) ];
|
||||
}
|
||||
|
||||
|
||||
/* Figure F.12: extend sign bit */
|
||||
|
||||
/* NB: on some compilers this will only work for s > 0 */
|
||||
|
||||
#define huff_EXTEND(x, s) ((x) < (1 << ((s)-1)) ? \
|
||||
(x) + (-1 << (s)) + 1 : \
|
||||
(x))
|
||||
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
/* Note that only the difference is returned for the DC coefficient */
|
||||
|
||||
LOCAL void
|
||||
decode_one_block (JBLOCK block, HUFF_TBL *dctbl, HUFF_TBL *actbl)
|
||||
{
|
||||
int s, k, r, n;
|
||||
|
||||
/* zero out the coefficient block */
|
||||
|
||||
MEMZERO((void *) block, SIZEOF(JBLOCK));
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
|
||||
s = huff_DECODE(dctbl);
|
||||
if (s) {
|
||||
r = get_bits(s);
|
||||
s = huff_EXTEND(r, s);
|
||||
}
|
||||
block[0] = s;
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
r = huff_DECODE(actbl);
|
||||
|
||||
s = r & 15;
|
||||
n = r >> 4;
|
||||
|
||||
if (s) {
|
||||
k += n;
|
||||
r = get_bits(s);
|
||||
block[k] = huff_EXTEND(r, s);
|
||||
} else {
|
||||
if (n != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a Huffman-compressed scan.
|
||||
* This is invoked after reading the SOS marker.
|
||||
/* Figure F.12: extend sign bit.
|
||||
* On some machines, a shift and add will be faster than a table lookup.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
huff_decoder_init (decompress_info_ptr cinfo)
|
||||
{
|
||||
short ci;
|
||||
jpeg_component_info * compptr;
|
||||
#ifdef AVOID_TABLES
|
||||
|
||||
/* Initialize static variables */
|
||||
dcinfo = cinfo;
|
||||
bits_left = 0;
|
||||
#define huff_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Make sure requested tables are present */
|
||||
if (cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no] == NULL ||
|
||||
cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no] == NULL)
|
||||
ERREXIT(cinfo->emethods, "Use of undefined Huffman table");
|
||||
/* Compute derived values for Huffman tables */
|
||||
/* We may do this more than once for same table, but it's not a big deal */
|
||||
fix_huff_tbl(cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]);
|
||||
fix_huff_tbl(cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
|
||||
/* Initialize DC predictions to 0 */
|
||||
cinfo->last_dc_val[ci] = 0;
|
||||
}
|
||||
#else
|
||||
|
||||
/* Initialize restart stuff */
|
||||
cinfo->restarts_to_go = cinfo->restart_interval;
|
||||
cinfo->next_restart_num = 0;
|
||||
}
|
||||
#define huff_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
||||
|
||||
static const int extend_test[16] = /* entry n is 2**(n-1) */
|
||||
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
||||
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
|
||||
|
||||
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
|
||||
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
|
||||
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
|
||||
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
|
||||
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
|
||||
|
||||
#endif /* AVOID_TABLES */
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
* Returns FALSE if must suspend.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
process_restart (decompress_info_ptr cinfo)
|
||||
LOCAL boolean
|
||||
process_restart (j_decompress_ptr cinfo)
|
||||
{
|
||||
int c, nbytes;
|
||||
short ci;
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
|
||||
/* Throw away any partial unread byte */
|
||||
bits_left = 0;
|
||||
/* Throw away any unused bits remaining in bit buffer; */
|
||||
/* include any full bytes in next_marker's count of discarded bytes */
|
||||
cinfo->marker->discarded_bytes += entropy->saved.bits_left / 8;
|
||||
entropy->saved.bits_left = 0;
|
||||
|
||||
/* Scan for next JPEG marker */
|
||||
nbytes = 0;
|
||||
do {
|
||||
do { /* skip any non-FF bytes */
|
||||
nbytes++;
|
||||
c = JGETC(cinfo);
|
||||
} while (c != 0xFF);
|
||||
do { /* skip any duplicate FFs */
|
||||
nbytes++;
|
||||
c = JGETC(cinfo);
|
||||
} while (c == 0xFF);
|
||||
} while (c == 0); /* repeat if it was a stuffed FF/00 */
|
||||
|
||||
if (c != (RST0 + cinfo->next_restart_num))
|
||||
ERREXIT2(cinfo->emethods, "Found 0x%02x marker instead of RST%d",
|
||||
c, cinfo->next_restart_num);
|
||||
|
||||
if (nbytes != 2)
|
||||
TRACEMS2(cinfo->emethods, 1, "Skipped %d bytes before RST%d",
|
||||
nbytes-2, cinfo->next_restart_num);
|
||||
else
|
||||
TRACEMS1(cinfo->emethods, 2, "RST%d", cinfo->next_restart_num);
|
||||
/* Advance past the RSTn marker */
|
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||
return FALSE;
|
||||
|
||||
/* Re-initialize DC predictions to 0 */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
||||
cinfo->last_dc_val[ci] = 0;
|
||||
entropy->saved.last_dc_val[ci] = 0;
|
||||
|
||||
/* Update restart state */
|
||||
cinfo->restarts_to_go = cinfo->restart_interval;
|
||||
cinfo->next_restart_num++;
|
||||
cinfo->next_restart_num &= 7;
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
|
||||
entropy->printed_eod = FALSE; /* next segment can get another warning */
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/* ZAG[i] is the natural-order position of the i'th element of zigzag order.
|
||||
* If the incoming data is corrupted, decode_mcu could attempt to
|
||||
* reference values beyond the end of the array. To avoid a wild store,
|
||||
* we put some extra zeroes after the real entries.
|
||||
*/
|
||||
|
||||
static const int ZAG[DCTSIZE2+16] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */
|
||||
0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Decode and return one MCU's worth of Huffman-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
|
||||
* (Wholesale zeroing is usually a little faster than retail...)
|
||||
*
|
||||
* Returns FALSE if data source requested suspension. In that case no
|
||||
* changes have been made to permanent state. (Exception: some output
|
||||
* coefficients may already have been assigned. This is harmless for
|
||||
* this module, but would not work for decoding progressive JPEG.)
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
huff_decode (decompress_info_ptr cinfo, JBLOCK *MCU_data)
|
||||
METHODDEF boolean
|
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
short blkn, ci;
|
||||
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
||||
register int s, k, r;
|
||||
int blkn, ci;
|
||||
JBLOCKROW block;
|
||||
working_state state;
|
||||
D_DERIVED_TBL * dctbl;
|
||||
D_DERIVED_TBL * actbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Account for restart interval, process restart marker if needed */
|
||||
/* Process restart marker if needed; may have to suspend */
|
||||
if (cinfo->restart_interval) {
|
||||
if (cinfo->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
cinfo->restarts_to_go--;
|
||||
if (entropy->restarts_to_go == 0)
|
||||
if (! process_restart(cinfo))
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Load up working state */
|
||||
state.unread_marker = cinfo->unread_marker;
|
||||
state.next_input_byte = cinfo->src->next_input_byte;
|
||||
state.bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
||||
ASSIGN_STATE(state.cur, entropy->saved);
|
||||
state.cinfo = cinfo;
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
decode_one_block(MCU_data[blkn],
|
||||
cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no],
|
||||
cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
|
||||
dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
||||
actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
||||
|
||||
/* Decode a single block's worth of coefficients */
|
||||
|
||||
/* Section F.2.2.1: decode the DC coefficient difference */
|
||||
huff_DECODE(s, state, dctbl, label1);
|
||||
if (s) {
|
||||
check_bit_buffer(state, s, return FALSE);
|
||||
r = get_bits(state, s);
|
||||
s = huff_EXTEND(r, s);
|
||||
}
|
||||
|
||||
/* Shortcut if component's values are not interesting */
|
||||
if (! compptr->component_needed)
|
||||
goto skip_ACs;
|
||||
|
||||
/* Convert DC difference to actual value, update last_dc_val */
|
||||
MCU_data[blkn][0] += cinfo->last_dc_val[ci];
|
||||
cinfo->last_dc_val[ci] = MCU_data[blkn][0];
|
||||
s += state.cur.last_dc_val[ci];
|
||||
state.cur.last_dc_val[ci] = s;
|
||||
/* Output the DC coefficient (assumes ZAG[0] = 0) */
|
||||
(*block)[0] = (JCOEF) s;
|
||||
|
||||
/* Do we need to decode the AC coefficients for this component? */
|
||||
if (compptr->DCT_scaled_size > 1) {
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
/* Since zeroes are skipped, output area must be cleared beforehand */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
huff_DECODE(s, state, actbl, label2);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
check_bit_buffer(state, s, return FALSE);
|
||||
r = get_bits(state, s);
|
||||
s = huff_EXTEND(r, s);
|
||||
/* Output coefficient in natural (dezigzagged) order */
|
||||
(*block)[ZAG[k]] = (JCOEF) s;
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
skip_ACs:
|
||||
|
||||
/* Section F.2.2.2: decode the AC coefficients */
|
||||
/* In this path we just discard the values */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
huff_DECODE(s, state, actbl, label3);
|
||||
|
||||
r = s >> 4;
|
||||
s &= 15;
|
||||
|
||||
if (s) {
|
||||
k += r;
|
||||
check_bit_buffer(state, s, return FALSE);
|
||||
drop_bits(state, s);
|
||||
} else {
|
||||
if (r != 15)
|
||||
break;
|
||||
k += 15;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* Completed MCU, so update state */
|
||||
cinfo->unread_marker = state.unread_marker;
|
||||
cinfo->src->next_input_byte = state.next_input_byte;
|
||||
cinfo->src->bytes_in_buffer = state.bytes_in_buffer;
|
||||
ASSIGN_STATE(entropy->saved, state.cur);
|
||||
|
||||
/* Account for restart interval (no-op if not using restarts) */
|
||||
entropy->restarts_to_go--;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of a Huffman-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
huff_decoder_term (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* No work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for Huffman entropy decoding.
|
||||
* Module initialization routine for Huffman entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jseldhuffman (decompress_info_ptr cinfo)
|
||||
jinit_huff_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (! cinfo->arith_code) {
|
||||
cinfo->methods->entropy_decoder_init = huff_decoder_init;
|
||||
cinfo->methods->entropy_decode = huff_decode;
|
||||
cinfo->methods->entropy_decoder_term = huff_decoder_term;
|
||||
huff_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (huff_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(huff_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass_huff_decoder;
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
323
jdmain.c
323
jdmain.c
@@ -1,323 +0,0 @@
|
||||
/*
|
||||
* jdmain.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a trivial test user interface for the JPEG decompressor.
|
||||
* It should work on any system with Unix- or MS-DOS-style command lines.
|
||||
*
|
||||
* Two different command line styles are permitted, depending on the
|
||||
* compile-time switch TWO_FILE_COMMANDLINE:
|
||||
* djpeg [options] inputfile outputfile
|
||||
* djpeg [options] [inputfile]
|
||||
* In the second style, output is always to standard output, which you'd
|
||||
* normally redirect to a file or pipe to some other program. Input is
|
||||
* either from a named file or from standard input (typically redirected).
|
||||
* The second style is convenient on Unix but is unhelpful on systems that
|
||||
* don't support pipes. Also, you MUST use the first style if your system
|
||||
* doesn't do binary I/O to stdin/stdout.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare exit() */
|
||||
#endif
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
#include <signal.h> /* to declare signal() */
|
||||
#endif
|
||||
|
||||
#ifdef THINK_C
|
||||
#include <console.h> /* command-line reader for Macintosh */
|
||||
#endif
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define WRITE_BINARY "w"
|
||||
#else
|
||||
#define READ_BINARY "rb"
|
||||
#define WRITE_BINARY "wb"
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
#ifndef EXIT_SUCCESS
|
||||
#ifdef VMS
|
||||
#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
|
||||
#else
|
||||
#define EXIT_SUCCESS 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#include "jversion.h" /* for version message */
|
||||
|
||||
|
||||
/*
|
||||
* PD version of getopt(3).
|
||||
*/
|
||||
|
||||
#include "egetopt.c"
|
||||
|
||||
|
||||
/*
|
||||
* This list defines the known output image formats
|
||||
* (not all of which need be supported by a given version).
|
||||
* You can change the default output format by defining DEFAULT_FMT;
|
||||
* indeed, you had better do so if you undefine PPM_SUPPORTED.
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
FMT_GIF, /* GIF format */
|
||||
FMT_PPM, /* PPM/PGM (PBMPLUS formats) */
|
||||
FMT_RLE, /* RLE format */
|
||||
FMT_TARGA, /* Targa format */
|
||||
FMT_TIFF /* TIFF format */
|
||||
} IMAGE_FORMATS;
|
||||
|
||||
#ifndef DEFAULT_FMT /* so can override from CFLAGS in Makefile */
|
||||
#define DEFAULT_FMT FMT_PPM
|
||||
#endif
|
||||
|
||||
static IMAGE_FORMATS requested_fmt;
|
||||
|
||||
|
||||
/*
|
||||
* This routine gets control after the input file header has been read.
|
||||
* It must determine what output file format is to be written,
|
||||
* and make any other decompression parameter changes that are desirable.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
d_ui_method_selection (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* if grayscale or CMYK input, force similar output; */
|
||||
/* else leave the output colorspace as set by options. */
|
||||
if (cinfo->jpeg_color_space == CS_GRAYSCALE)
|
||||
cinfo->out_color_space = CS_GRAYSCALE;
|
||||
else if (cinfo->jpeg_color_space == CS_CMYK)
|
||||
cinfo->out_color_space = CS_CMYK;
|
||||
|
||||
/* select output file format */
|
||||
/* Note: jselwxxx routine may make additional parameter changes,
|
||||
* such as forcing color quantization if it's a colormapped format.
|
||||
*/
|
||||
switch (requested_fmt) {
|
||||
#ifdef GIF_SUPPORTED
|
||||
case FMT_GIF:
|
||||
jselwgif(cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef PPM_SUPPORTED
|
||||
case FMT_PPM:
|
||||
jselwppm(cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef RLE_SUPPORTED
|
||||
case FMT_RLE:
|
||||
jselwrle(cinfo);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TARGA_SUPPORTED
|
||||
case FMT_TARGA:
|
||||
jselwtarga(cinfo);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Unsupported output file format");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Signal catcher to ensure that temporary files are removed before aborting.
|
||||
* NB: for Amiga Manx C this is actually a global routine named _abort();
|
||||
* see -Dsignal_catcher=_abort in CFLAGS. Talk about bogus...
|
||||
*/
|
||||
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
|
||||
static external_methods_ptr emethods; /* for access to free_all */
|
||||
|
||||
GLOBAL void
|
||||
signal_catcher (int signum)
|
||||
{
|
||||
emethods->trace_level = 0; /* turn off trace output */
|
||||
(*emethods->free_all) (); /* clean up memory allocation & temp files */
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL void
|
||||
usage (char * progname)
|
||||
/* complain about bad command line */
|
||||
{
|
||||
fprintf(stderr, "usage: %s ", progname);
|
||||
fprintf(stderr, "[-G] [-P] [-R] [-T] [-b] [-g] [-q colors] [-1] [-D] [-d] [-m mem]");
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
fprintf(stderr, " inputfile outputfile\n");
|
||||
#else
|
||||
fprintf(stderr, " [inputfile]\n");
|
||||
#endif
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The main program.
|
||||
*/
|
||||
|
||||
GLOBAL int
|
||||
main (int argc, char **argv)
|
||||
{
|
||||
struct decompress_info_struct cinfo;
|
||||
struct decompress_methods_struct dc_methods;
|
||||
struct external_methods_struct e_methods;
|
||||
int c;
|
||||
|
||||
/* On Mac, fetch a command line. */
|
||||
#ifdef THINK_C
|
||||
argc = ccommand(&argv);
|
||||
#endif
|
||||
|
||||
/* Initialize the system-dependent method pointers. */
|
||||
cinfo.methods = &dc_methods;
|
||||
cinfo.emethods = &e_methods;
|
||||
jselerror(&e_methods); /* error/trace message routines */
|
||||
jselmemmgr(&e_methods); /* memory allocation routines */
|
||||
dc_methods.d_ui_method_selection = d_ui_method_selection;
|
||||
|
||||
/* Now OK to enable signal catcher. */
|
||||
#ifdef NEED_SIGNAL_CATCHER
|
||||
emethods = &e_methods;
|
||||
signal(SIGINT, signal_catcher);
|
||||
#ifdef SIGTERM /* not all systems have SIGTERM */
|
||||
signal(SIGTERM, signal_catcher);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Set up default JPEG parameters. */
|
||||
j_d_defaults(&cinfo, TRUE);
|
||||
requested_fmt = DEFAULT_FMT; /* set default output file format */
|
||||
|
||||
/* Scan command line options, adjust parameters */
|
||||
|
||||
while ((c = egetopt(argc, argv, "GPRTbgq:1Dm:d")) != EOF)
|
||||
switch (c) {
|
||||
case 'G': /* GIF output format. */
|
||||
requested_fmt = FMT_GIF;
|
||||
break;
|
||||
case 'P': /* PPM output format. */
|
||||
requested_fmt = FMT_PPM;
|
||||
break;
|
||||
case 'R': /* RLE output format. */
|
||||
requested_fmt = FMT_RLE;
|
||||
break;
|
||||
case 'T': /* Targa output format. */
|
||||
requested_fmt = FMT_TARGA;
|
||||
break;
|
||||
case 'b': /* Enable cross-block smoothing. */
|
||||
cinfo.do_block_smoothing = TRUE;
|
||||
break;
|
||||
case 'g': /* Force grayscale output. */
|
||||
cinfo.out_color_space = CS_GRAYSCALE;
|
||||
break;
|
||||
case 'q': /* Do color quantization. */
|
||||
{ int val;
|
||||
if (optarg == NULL)
|
||||
usage(argv[0]);
|
||||
if (sscanf(optarg, "%d", &val) != 1)
|
||||
usage(argv[0]);
|
||||
cinfo.desired_number_of_colors = val;
|
||||
}
|
||||
cinfo.quantize_colors = TRUE;
|
||||
break;
|
||||
case '1': /* Use fast one-pass quantization. */
|
||||
cinfo.two_pass_quantize = FALSE;
|
||||
break;
|
||||
case 'D': /* Suppress dithering in color quantization. */
|
||||
cinfo.use_dithering = FALSE;
|
||||
break;
|
||||
case 'm': /* Maximum memory in Kb (or Mb with 'm'). */
|
||||
{ long lval;
|
||||
char ch = 'x';
|
||||
|
||||
if (optarg == NULL)
|
||||
usage(argv[0]);
|
||||
if (sscanf(optarg, "%ld%c", &lval, &ch) < 1)
|
||||
usage(argv[0]);
|
||||
if (ch == 'm' || ch == 'M')
|
||||
lval *= 1000L;
|
||||
e_methods.max_memory_to_use = lval * 1000L;
|
||||
}
|
||||
break;
|
||||
case 'd': /* Debugging. */
|
||||
e_methods.trace_level++;
|
||||
break;
|
||||
case '?':
|
||||
default:
|
||||
usage(argv[0]);
|
||||
break;
|
||||
}
|
||||
|
||||
/* If -d appeared, print version identification */
|
||||
if (e_methods.trace_level > 0)
|
||||
fprintf(stderr, "Independent JPEG Group's DJPEG, version %s\n%s\n",
|
||||
JVERSION, JCOPYRIGHT);
|
||||
|
||||
/* Select the input and output files */
|
||||
|
||||
#ifdef TWO_FILE_COMMANDLINE
|
||||
|
||||
if (optind != argc-2) {
|
||||
fprintf(stderr, "%s: must name one input and one output file\n", argv[0]);
|
||||
usage(argv[0]);
|
||||
}
|
||||
if ((cinfo.input_file = fopen(argv[optind], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", argv[0], argv[optind]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ((cinfo.output_file = fopen(argv[optind+1], WRITE_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", argv[0], argv[optind+1]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
#else /* not TWO_FILE_COMMANDLINE -- use Unix style */
|
||||
|
||||
cinfo.input_file = stdin; /* default input file */
|
||||
cinfo.output_file = stdout; /* always the output file */
|
||||
|
||||
if (optind < argc-1) {
|
||||
fprintf(stderr, "%s: only one input file\n", argv[0]);
|
||||
usage(argv[0]);
|
||||
}
|
||||
if (optind < argc) {
|
||||
if ((cinfo.input_file = fopen(argv[optind], READ_BINARY)) == NULL) {
|
||||
fprintf(stderr, "%s: can't open %s\n", argv[0], argv[optind]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* TWO_FILE_COMMANDLINE */
|
||||
|
||||
/* Set up to read a JFIF or baseline-JPEG file. */
|
||||
/* A smarter UI would inspect the first few bytes of the input file */
|
||||
/* to determine its type. */
|
||||
#ifdef JFIF_SUPPORTED
|
||||
jselrjfif(&cinfo);
|
||||
#else
|
||||
You shoulda defined JFIF_SUPPORTED. /* deliberate syntax error */
|
||||
#endif
|
||||
|
||||
/* Do it to it! */
|
||||
jpeg_decompress(&cinfo);
|
||||
|
||||
/* All done. */
|
||||
exit(EXIT_SUCCESS);
|
||||
return 0; /* suppress no-return-value warnings */
|
||||
}
|
||||
531
jdmainct.c
Normal file
531
jdmainct.c
Normal file
@@ -0,0 +1,531 @@
|
||||
/*
|
||||
* jdmainct.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for decompression.
|
||||
* The main buffer lies between the JPEG decompressor proper and the
|
||||
* post-processor; it holds downsampled data in the JPEG colorspace.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image
|
||||
* buffer; any full-height buffers will be found inside the coefficient or
|
||||
* postprocessing controllers. Nonetheless, the main controller is not
|
||||
* trivial. Its responsibility is to provide context rows for upsampling/
|
||||
* rescaling, and doing this in an efficient fashion is a bit tricky.
|
||||
*
|
||||
* Postprocessor input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. (We require DCT_scaled_size values to be
|
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size
|
||||
* values will likely be powers of two, so we actually have the stronger
|
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
|
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each
|
||||
* row group (times any additional scale factor that the upsampler is
|
||||
* applying).
|
||||
*
|
||||
* The coefficient controller will deliver data to us one iMCU row at a time;
|
||||
* each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
|
||||
* exactly min_DCT_scaled_size row groups. (This amount of data corresponds
|
||||
* to one row of MCUs when the image is fully interleaved.) Note that the
|
||||
* number of sample rows varies across components, but the number of row
|
||||
* groups does not. Some garbage sample rows may be included in the last iMCU
|
||||
* row at the bottom of the image.
|
||||
*
|
||||
* Depending on the vertical scaling algorithm used, the upsampler may need
|
||||
* access to the sample row(s) above and below its current input row group.
|
||||
* The upsampler is required to set need_context_rows TRUE at global selection
|
||||
* time if so. When need_context_rows is FALSE, this controller can simply
|
||||
* obtain one iMCU row at a time from the coefficient controller and dole it
|
||||
* out as row groups to the postprocessor.
|
||||
*
|
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer
|
||||
* passed to postprocessing contains at least one row group's worth of samples
|
||||
* above and below the row group(s) being processed. Note that the context
|
||||
* rows "above" the first passed row group appear at negative row offsets in
|
||||
* the passed buffer. At the top and bottom of the image, the required
|
||||
* context rows are manufactured by duplicating the first or last real sample
|
||||
* row; this avoids having special cases in the upsampling inner loops.
|
||||
*
|
||||
* The amount of context is fixed at one row group just because that's a
|
||||
* convenient number for this controller to work with. The existing
|
||||
* upsamplers really only need one sample row of context. An upsampler
|
||||
* supporting arbitrary output rescaling might wish for more than one row
|
||||
* group of context when shrinking the image; tough, we don't handle that.
|
||||
* (This is justified by the assumption that downsizing will be handled mostly
|
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
|
||||
* the upsample step needn't be much less than one.)
|
||||
*
|
||||
* To provide the desired context, we have to retain the last two row groups
|
||||
* of one iMCU row while reading in the next iMCU row. (The last row group
|
||||
* can't be processed until we have another row group for its below-context,
|
||||
* and so we have to save the next-to-last group too for its above-context.)
|
||||
* We could do this most simply by copying data around in our buffer, but
|
||||
* that'd be very slow. We can avoid copying any data by creating a rather
|
||||
* strange pointer structure. Here's how it works. We allocate a workspace
|
||||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
|
||||
* of row groups per iMCU row). We create two sets of redundant pointers to
|
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
|
||||
* pointer lists look like this:
|
||||
* M+1 M-1
|
||||
* master pointer --> 0 master pointer --> 0
|
||||
* 1 1
|
||||
* ... ...
|
||||
* M-3 M-3
|
||||
* M-2 M
|
||||
* M-1 M+1
|
||||
* M M-2
|
||||
* M+1 M-1
|
||||
* 0 0
|
||||
* We read alternate iMCU rows using each master pointer; thus the last two
|
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace.
|
||||
* The pointer lists are set up so that the required context rows appear to
|
||||
* be adjacent to the proper places when we pass the pointer lists to the
|
||||
* upsampler.
|
||||
*
|
||||
* The above pictures describe the normal state of the pointer lists.
|
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate
|
||||
* the first or last sample row as necessary (this is cheaper than copying
|
||||
* sample rows around).
|
||||
*
|
||||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
|
||||
* situation each iMCU row provides only one row group so the buffering logic
|
||||
* must be different (eg, we must read two iMCU rows before we can emit the
|
||||
* first row group). For now, we simply do not support providing context
|
||||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to
|
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably
|
||||
* want it quick and dirty, so a context-free upsampler is sufficient.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_main_controller pub; /* public fields */
|
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
|
||||
|
||||
/* Remaining fields are only used in the context case. */
|
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */
|
||||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
|
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */
|
||||
int context_state; /* process_data state machine status */
|
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
|
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
/* context_state values: */
|
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
|
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
|
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF void process_data_simple_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
METHODDEF void process_data_context_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
METHODDEF void process_data_input_only
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF void process_data_crank_post
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL void
|
||||
make_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in main->buffer),
|
||||
* we just have to make the curiously ordered lists.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY buf, xbuf0, xbuf1;
|
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles.
|
||||
*/
|
||||
main->xbuffer[0] = (JSAMPIMAGE)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
|
||||
main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles.
|
||||
*/
|
||||
xbuf0 = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
|
||||
xbuf0 += rgroup; /* want one row group at negative offsets */
|
||||
main->xbuffer[0][ci] = xbuf0;
|
||||
xbuf1 = xbuf0 + (rgroup * (M + 4));
|
||||
main->xbuffer[1][ci] = xbuf1;
|
||||
/* First copy the workspace pointers as-is */
|
||||
buf = main->buffer[ci];
|
||||
for (i = 0; i < rgroup * (M + 2); i++) {
|
||||
xbuf0[i] = xbuf1[i] = buf[i];
|
||||
}
|
||||
/* In the second list, put the last four row groups in swapped order */
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
|
||||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
|
||||
}
|
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above"
|
||||
* pointers to duplicate the first actual data line. This only needs
|
||||
* to happen in xbuffer[0].
|
||||
*/
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
set_wraparound_pointers (j_decompress_ptr cinfo)
|
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
|
||||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
|
||||
xbuf0[rgroup*(M+2) + i] = xbuf0[i];
|
||||
xbuf1[rgroup*(M+2) + i] = xbuf1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
set_bottom_pointers (j_decompress_ptr cinfo)
|
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
|
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup, iMCUheight, rows_left;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Count sample rows in one iMCU row and in one row group */
|
||||
iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
|
||||
rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
|
||||
/* Count nondummy sample rows remaining for this component */
|
||||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
|
||||
if (rows_left == 0) rows_left = iMCUheight;
|
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once.
|
||||
*/
|
||||
if (ci == 0) {
|
||||
main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
|
||||
}
|
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context.
|
||||
*/
|
||||
xbuf = main->xbuffer[main->whichptr][ci];
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf[rows_left + i] = xbuf[rows_left-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Processing chunks are output rows except in JBUF_CRANK_SOURCE mode. */
|
||||
main->pub.num_chunks = cinfo->output_height;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
/* Do nothing if raw-data mode. */
|
||||
if (cinfo->raw_data_out)
|
||||
return;
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
main->pub.process_data = process_data_context_main;
|
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
|
||||
main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
main->iMCU_row_ctr = 0;
|
||||
} else {
|
||||
/* Simple case with no context needed */
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
}
|
||||
main->buffer_full = FALSE; /* Mark buffer empty */
|
||||
main->rowgroup_ctr = 0;
|
||||
break;
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
case JBUF_CRANK_SOURCE:
|
||||
/* Reading a multi-scan file, just crank the decompressor */
|
||||
main->pub.process_data = process_data_input_only;
|
||||
/* decompressor needs to be called once for each (equivalent) iMCU row */
|
||||
main->pub.num_chunks = cinfo->total_iMCU_rows;
|
||||
break;
|
||||
#endif
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_CRANK_DEST:
|
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */
|
||||
main->pub.process_data = process_data_crank_post;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the simple case where no context is required.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
process_data_simple_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
JDIMENSION rowgroups_avail;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
}
|
||||
|
||||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */
|
||||
rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
|
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom
|
||||
* of image anyway (at row resolution), so no point in us doing it too.
|
||||
*/
|
||||
|
||||
/* Feed the postprocessor */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->buffer,
|
||||
&main->rowgroup_ctr, rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
|
||||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */
|
||||
if (main->rowgroup_ctr >= rowgroups_avail) {
|
||||
main->buffer_full = FALSE;
|
||||
main->rowgroup_ctr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the case where context rows must be provided.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
process_data_context_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo,
|
||||
main->xbuffer[main->whichptr]))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
main->iMCU_row_ctr++; /* count rows received */
|
||||
}
|
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared
|
||||
* to exit and restart. This switch lets us keep track of how far we got.
|
||||
* Note that each case falls through to the next on successful completion.
|
||||
*/
|
||||
switch (main->context_state) {
|
||||
case CTX_POSTPONED_ROW:
|
||||
/* Call postprocessor using previously set pointers for postponed row */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
if (*out_row_ctr >= out_rows_avail)
|
||||
return; /* Postprocessor exactly filled output buf */
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PREPARE_FOR_IMCU:
|
||||
/* Prepare to process first M-1 row groups of this iMCU row */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
|
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
|
||||
*/
|
||||
if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
|
||||
set_bottom_pointers(cinfo);
|
||||
main->context_state = CTX_PROCESS_IMCU;
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PROCESS_IMCU:
|
||||
/* Call postprocessor using previously set pointers */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
/* After the first iMCU, change wraparound pointers to normal state */
|
||||
if (main->iMCU_row_ctr == 1)
|
||||
set_wraparound_pointers(cinfo);
|
||||
/* Prepare to load new iMCU row using other xbuffer list */
|
||||
main->whichptr ^= 1; /* 0=>1 or 1=>0 */
|
||||
main->buffer_full = FALSE;
|
||||
/* Still need to process last row group of this iMCU row, */
|
||||
/* which is saved at index M+1 of the other xbuffer */
|
||||
main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
|
||||
main->context_state = CTX_POSTPONED_ROW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* Initial passes in a multiple-scan file: just call the decompressor,
|
||||
* which will save data in its internal buffer, but return nothing.
|
||||
*/
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
METHODDEF void
|
||||
process_data_input_only (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, (JSAMPIMAGE) NULL))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
*out_row_ctr += 1; /* OK, we did one iMCU row */
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* Final pass of two-pass quantization: just call the postprocessor.
|
||||
* Source data will be the postprocessor controller's internal buffer.
|
||||
*/
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
METHODDEF void
|
||||
process_data_crank_post (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
|
||||
(JDIMENSION *) NULL, (JDIMENSION) 0,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci, rgroup, ngroups;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_d_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
if (need_full_buffer) /* shouldn't happen */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* In raw-data mode, we don't need a workspace. This module doesn't
|
||||
* do anything useful in that mode, except pass calls through to the
|
||||
* coef controller in CRANK_SOURCE mode (ie, reading a multiscan file).
|
||||
*/
|
||||
if (cinfo->raw_data_out)
|
||||
return;
|
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need.
|
||||
*/
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
ngroups = cinfo->min_DCT_scaled_size + 2;
|
||||
} else {
|
||||
ngroups = cinfo->min_DCT_scaled_size;
|
||||
}
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size; /* height of a row group of component */
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->DCT_scaled_size,
|
||||
(JDIMENSION) (rgroup * ngroups));
|
||||
}
|
||||
}
|
||||
1052
jdmarker.c
Normal file
1052
jdmarker.c
Normal file
File diff suppressed because it is too large
Load Diff
737
jdmaster.c
737
jdmaster.c
@@ -1,173 +1,648 @@
|
||||
/*
|
||||
* jdmaster.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main control for the JPEG decompressor.
|
||||
* The system-dependent (user interface) code should call jpeg_decompress()
|
||||
* after doing appropriate setup of the decompress_info_struct parameter.
|
||||
* This file contains master control logic for the JPEG decompressor.
|
||||
* These routines are concerned with selecting the modules to be executed
|
||||
* and with determining the number of passes and the work to be done in each
|
||||
* pass.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
METHODDEF void
|
||||
d_per_scan_method_selection (decompress_info_ptr cinfo)
|
||||
/* Central point for per-scan method selection */
|
||||
/* Private state */
|
||||
|
||||
typedef enum {
|
||||
main_pass, /* read and process a single-scan file */
|
||||
preread_pass, /* read one scan of a multi-scan file */
|
||||
output_pass, /* primary processing pass for multi-scan */
|
||||
post_pass /* optional post-pass for 2-pass quant. */
|
||||
} D_PASS_TYPE;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_decomp_master pub; /* public fields */
|
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
||||
|
||||
D_PASS_TYPE pass_type; /* the type of the current pass */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
int total_passes; /* estimated total # of passes needed */
|
||||
|
||||
boolean need_post_pass; /* are we using full two-pass quantization? */
|
||||
} my_decomp_master;
|
||||
|
||||
typedef my_decomp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used.
|
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
||||
*/
|
||||
|
||||
LOCAL boolean
|
||||
use_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* MCU disassembly */
|
||||
jseldmcu(cinfo);
|
||||
/* Un-subsampling of pixels */
|
||||
jselunsubsample(cinfo);
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
/* Merging is the equivalent of plain box-filter upsampling */
|
||||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
|
||||
return FALSE;
|
||||
/* jdmerge.c only supports YCC=>RGB color conversion */
|
||||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
|
||||
cinfo->out_color_space != JCS_RGB ||
|
||||
cinfo->out_color_components != RGB_PIXELSIZE)
|
||||
return FALSE;
|
||||
/* and it only handles 2h1v or 2h2v sampling ratios */
|
||||
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
||||
cinfo->comp_info[1].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[0].v_samp_factor > 2 ||
|
||||
cinfo->comp_info[1].v_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].v_samp_factor != 1)
|
||||
return FALSE;
|
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
||||
if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
|
||||
cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
|
||||
cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
|
||||
return FALSE;
|
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
||||
/* by golly, it'll work... */
|
||||
return TRUE;
|
||||
#else
|
||||
return FALSE;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
d_initial_method_selection (decompress_info_ptr cinfo)
|
||||
/* Central point for initial method selection (after reading file header) */
|
||||
/*
|
||||
* Support routines that do various essential calculations.
|
||||
*
|
||||
* jpeg_calc_output_dimensions is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
/* JPEG file scanning method selection is already done. */
|
||||
/* So is output file format selection (both are done by user interface). */
|
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
#ifdef ARITH_CODING_SUPPORTED
|
||||
jseldarithmetic(cinfo);
|
||||
#else
|
||||
if (cinfo->arith_code) {
|
||||
ERREXIT(cinfo->emethods, "Arithmetic coding not supported");
|
||||
}
|
||||
#endif
|
||||
jseldhuffman(cinfo);
|
||||
/* Cross-block smoothing */
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
jselbsmooth(cinfo);
|
||||
#else
|
||||
cinfo->do_block_smoothing = FALSE;
|
||||
#endif
|
||||
/* Gamma and color space conversion */
|
||||
jseldcolor(cinfo);
|
||||
|
||||
/* Color quantization selection rules */
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* We have both, check for conditions in which 1-pass should be used */
|
||||
if (cinfo->num_components != 3 || cinfo->jpeg_color_space != CS_YCbCr)
|
||||
cinfo->two_pass_quantize = FALSE; /* 2-pass only handles YCbCr input */
|
||||
if (cinfo->out_color_space == CS_GRAYSCALE)
|
||||
cinfo->two_pass_quantize = FALSE; /* Should use 1-pass for grayscale out */
|
||||
#else /* not QUANT_2PASS_SUPPORTED */
|
||||
cinfo->two_pass_quantize = FALSE; /* only have 1-pass */
|
||||
#endif
|
||||
#else /* not QUANT_1PASS_SUPPORTED */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
cinfo->two_pass_quantize = TRUE; /* only have 2-pass */
|
||||
#else /* not QUANT_2PASS_SUPPORTED */
|
||||
if (cinfo->quantize_colors) {
|
||||
ERREXIT(cinfo->emethods, "Color quantization was not compiled");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
jsel1quantize(cinfo);
|
||||
#endif
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
jsel2quantize(cinfo);
|
||||
#endif
|
||||
|
||||
/* Pipeline control */
|
||||
jseldpipeline(cinfo);
|
||||
/* Overall control (that's me!) */
|
||||
cinfo->methods->d_per_scan_method_selection = d_per_scan_method_selection;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
initial_setup (decompress_info_ptr cinfo)
|
||||
/* Do computations that are needed before initial method selection */
|
||||
{
|
||||
short ci;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
compptr = &cinfo->comp_info[ci];
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo->emethods, "Bogus sampling factors");
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
|
||||
}
|
||||
|
||||
/* Compute logical subsampled dimensions of components */
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
compptr = &cinfo->comp_info[ci];
|
||||
compptr->true_comp_width = (cinfo->image_width * compptr->h_samp_factor
|
||||
+ cinfo->max_h_samp_factor - 1)
|
||||
/ cinfo->max_h_samp_factor;
|
||||
compptr->true_comp_height = (cinfo->image_height * compptr->v_samp_factor
|
||||
+ cinfo->max_v_samp_factor - 1)
|
||||
/ cinfo->max_v_samp_factor;
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
|
||||
/* Provide 1/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 8L);
|
||||
cinfo->min_DCT_scaled_size = 1;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
|
||||
/* Provide 1/4 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 4L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 4L);
|
||||
cinfo->min_DCT_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
|
||||
/* Provide 1/2 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_scaled_size = 4;
|
||||
} else {
|
||||
/* Provide 1/1 scaling */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
cinfo->min_DCT_scaled_size = DCTSIZE;
|
||||
}
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling.
|
||||
* This saves time if the upsampler gets to use 1:1 scaling.
|
||||
* Note this code assumes that the supported DCT scalings are powers of 2.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
int ssize = cinfo->min_DCT_scaled_size;
|
||||
while (ssize < DCTSIZE &&
|
||||
(compptr->h_samp_factor * ssize * 2 <=
|
||||
cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
|
||||
(compptr->v_samp_factor * ssize * 2 <=
|
||||
cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
compptr->DCT_scaled_size = ssize;
|
||||
}
|
||||
#else /* !IDCT_SCALING_SUPPORTED */
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
cinfo->min_DCT_scaled_size = DCTSIZE;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
compptr->DCT_scaled_size = DCTSIZE;
|
||||
}
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Report number of components in selected colorspace. */
|
||||
/* Probably this should be in the color conversion module... */
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
break;
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
case JCS_YCbCr:
|
||||
cinfo->out_color_components = 3;
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
cinfo->out_color_components = 4;
|
||||
break;
|
||||
default: /* else must be same colorspace as in file */
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
break;
|
||||
}
|
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
||||
cinfo->out_color_components);
|
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */
|
||||
if (use_merged_upsample(cinfo))
|
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
||||
else
|
||||
cinfo->rec_outbuf_height = 1;
|
||||
|
||||
/* Compute various sampling-related dimensions.
|
||||
* Some of these are of interest to the application if it is dealing with
|
||||
* "raw" (not upsampled) output, so we do the calculations here.
|
||||
*/
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Size in samples, after IDCT scaling */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width *
|
||||
(long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height *
|
||||
(long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Mark component needed, until color conversion says otherwise */
|
||||
compptr->component_needed = TRUE;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller).
|
||||
*/
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
per_scan_setup (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->DCT_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
compptr->last_row_height = 1;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is the main entry point to the JPEG decompressor.
|
||||
* Several decompression processes need to range-limit values to the range
|
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
||||
* due to noise introduced by quantization, roundoff error, etc. These
|
||||
* processes are inner loops and need to be as fast as possible. On most
|
||||
* machines, particularly CPUs with pipelines or instruction prefetch,
|
||||
* a (subscript-check-less) C table lookup
|
||||
* x = sample_range_limit[x];
|
||||
* is faster than explicit tests
|
||||
* if (x < 0) x = 0;
|
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
* These processes all use a common table prepared by the routine below.
|
||||
*
|
||||
* For most steps we can mathematically guarantee that the initial value
|
||||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
|
||||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
|
||||
* limiting step (just after the IDCT), a wildly out-of-range value is
|
||||
* possible if the input data is corrupt. To avoid any chance of indexing
|
||||
* off the end of memory and getting a bad-pointer trap, we perform the
|
||||
* post-IDCT limiting thus:
|
||||
* x = range_limit[x & MASK];
|
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
||||
* samples. Under normal circumstances this is more than enough range and
|
||||
* a correct output will be generated; with bogus input data the mask will
|
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
||||
* So the post-IDCT limiting table ends up looking like this:
|
||||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
|
||||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0,1,...,CENTERJSAMPLE-1
|
||||
* Negative inputs select values from the upper half of the table after
|
||||
* masking.
|
||||
*
|
||||
* We can save some space by overlapping the start of the post-IDCT table
|
||||
* with the simpler range limiting table. The post-IDCT table begins at
|
||||
* sample_range_limit + CENTERJSAMPLE.
|
||||
*
|
||||
* Note that the table is allocated in near data space on PCs; it's small
|
||||
* enough and used often enough to justify this.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
prepare_range_limit_table (j_decompress_ptr cinfo)
|
||||
/* Allocate and fill in the sample_range_limit table */
|
||||
{
|
||||
JSAMPLE * table;
|
||||
int i;
|
||||
|
||||
table = (JSAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
|
||||
cinfo->sample_range_limit = table;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJSAMPLE; i++)
|
||||
table[i] = (JSAMPLE) i;
|
||||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
|
||||
table[i] = MAXJSAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
MEMZERO(table + (2 * (MAXJSAMPLE+1)),
|
||||
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules.
|
||||
* This is done once at the start of processing an image. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
*
|
||||
* Note that this is called only after jpeg_read_header has finished.
|
||||
* We therefore know what is in the SOF and (first) SOS markers.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Initialize dimensions and other stuff */
|
||||
jpeg_calc_output_dimensions(cinfo);
|
||||
prepare_range_limit_table(cinfo);
|
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* Initialize my private state */
|
||||
master->pub.eoi_processed = FALSE;
|
||||
master->pass_number = 0;
|
||||
master->need_post_pass = FALSE;
|
||||
if (cinfo->comps_in_scan == cinfo->num_components) {
|
||||
master->pass_type = main_pass;
|
||||
master->total_passes = 1;
|
||||
} else {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
master->pass_type = preread_pass;
|
||||
/* Assume there is a separate scan for each component; */
|
||||
/* if partially interleaved, we'll increment pass_number appropriately */
|
||||
master->total_passes = cinfo->num_components + 1;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
master->using_merged_upsample = use_merged_upsample(cinfo);
|
||||
|
||||
/* There's not a lot of smarts here right now, but it'll get more
|
||||
* complicated when we have multiple implementations available...
|
||||
*/
|
||||
|
||||
/* Color quantizer selection */
|
||||
if (cinfo->quantize_colors) {
|
||||
if (cinfo->raw_data_out)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* 2-pass quantizer only works in 3-component color space.
|
||||
* We use the "2-pass" code in a single pass if a colormap is given.
|
||||
*/
|
||||
if (cinfo->out_color_components != 3)
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
else if (cinfo->colormap != NULL)
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
#else
|
||||
/* Force 1-pass quantize if we don't have 2-pass code compiled. */
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
#endif
|
||||
|
||||
if (cinfo->two_pass_quantize) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
if (cinfo->colormap == NULL) {
|
||||
master->need_post_pass = TRUE;
|
||||
master->total_passes++;
|
||||
}
|
||||
jinit_2pass_quantizer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
jinit_1pass_quantizer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Post-processing: in particular, color conversion first */
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (master->using_merged_upsample) {
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
jinit_color_deconverter(cinfo);
|
||||
jinit_upsampler(cinfo);
|
||||
}
|
||||
jinit_d_post_controller(cinfo, master->need_post_pass);
|
||||
}
|
||||
/* Inverse DCT */
|
||||
jinit_inverse_dct(cinfo);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
#ifdef D_ARITH_CODING_SUPPORTED
|
||||
jinit_arith_decoder(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
||||
#endif
|
||||
} else
|
||||
jinit_huff_decoder(cinfo);
|
||||
|
||||
jinit_d_coef_controller(cinfo, (master->pass_type == preread_pass));
|
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
/* Note that main controller is initialized even in raw-data mode. */
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each pass. We determine which modules
|
||||
* will be active during this pass and give them appropriate start_pass calls.
|
||||
* We also set is_last_pass to indicate whether any more passes will be
|
||||
* required.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
prepare_for_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* Set up to read and decompress single-scan file in one pass */
|
||||
per_scan_setup(cinfo);
|
||||
master->pub.is_last_pass = ! master->need_post_pass;
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (! master->using_merged_upsample)
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->upsample->start_pass) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->start_pass) (cinfo, master->need_post_pass);
|
||||
(*cinfo->post->start_pass) (cinfo,
|
||||
(master->need_post_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
}
|
||||
(*cinfo->idct->start_input_pass) (cinfo);
|
||||
(*cinfo->idct->start_output_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
break;
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
case preread_pass:
|
||||
/* Read (another) scan of a multi-scan file */
|
||||
per_scan_setup(cinfo);
|
||||
master->pub.is_last_pass = FALSE;
|
||||
(*cinfo->idct->start_input_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_SAVE_SOURCE);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_SOURCE);
|
||||
break;
|
||||
case output_pass:
|
||||
/* All scans read, now do the IDCT and subsequent processing */
|
||||
master->pub.is_last_pass = ! master->need_post_pass;
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (! master->using_merged_upsample)
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->upsample->start_pass) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->start_pass) (cinfo, master->need_post_pass);
|
||||
(*cinfo->post->start_pass) (cinfo,
|
||||
(master->need_post_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
}
|
||||
(*cinfo->idct->start_output_pass) (cinfo);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
break;
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case post_pass:
|
||||
/* Final pass of 2-pass quantization */
|
||||
master->pub.is_last_pass = TRUE;
|
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
break;
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
}
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->total_passes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass.
|
||||
* In multi-scan mode, we must read next scan header and set the next
|
||||
* pass_type correctly for prepare_for_pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
finish_pass_master (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
case output_pass:
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||
master->pass_number++;
|
||||
master->pass_type = post_pass; /* in case need_post_pass is true */
|
||||
break;
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
case preread_pass:
|
||||
/* Count one pass done for each component in this scan */
|
||||
master->pass_number += cinfo->comps_in_scan;
|
||||
switch ((*cinfo->marker->read_markers) (cinfo)) {
|
||||
case JPEG_HEADER_OK: /* Found SOS, do another preread pass */
|
||||
break;
|
||||
case JPEG_HEADER_TABLES_ONLY: /* Found EOI, no more preread passes */
|
||||
master->pub.eoi_processed = TRUE;
|
||||
master->pass_type = output_pass;
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
break;
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case post_pass:
|
||||
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||
/* there will be no more passes, don't bother to change state */
|
||||
break;
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control.
|
||||
* This creates my own subrecord and also performs the master selection phase,
|
||||
* which causes other modules to create their subrecords.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_decompress (decompress_info_ptr cinfo)
|
||||
jinit_master_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Init pass counts to 0 --- total_passes is adjusted in method selection */
|
||||
cinfo->total_passes = 0;
|
||||
cinfo->completed_passes = 0;
|
||||
my_master_ptr master;
|
||||
|
||||
/* Read the JPEG file header markers; everything up through the first SOS
|
||||
* marker is read now. NOTE: the user interface must have initialized the
|
||||
* read_file_header method pointer (eg, by calling jselrjfif or jselrtiff).
|
||||
* The other file reading methods (read_scan_header etc.) were probably
|
||||
* set at the same time, but could be set up by read_file_header itself.
|
||||
*/
|
||||
(*cinfo->methods->read_file_header) (cinfo);
|
||||
if (! ((*cinfo->methods->read_scan_header) (cinfo)))
|
||||
ERREXIT(cinfo->emethods, "Empty JPEG file");
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_decomp_master));
|
||||
cinfo->master = (struct jpeg_decomp_master *) master;
|
||||
master->pub.prepare_for_pass = prepare_for_pass;
|
||||
master->pub.finish_pass = finish_pass_master;
|
||||
|
||||
/* Give UI a chance to adjust decompression parameters and select */
|
||||
/* output file format based on info from file header. */
|
||||
(*cinfo->methods->d_ui_method_selection) (cinfo);
|
||||
|
||||
/* Now select methods for decompression steps. */
|
||||
initial_setup(cinfo);
|
||||
d_initial_method_selection(cinfo);
|
||||
|
||||
/* Initialize the output file & other modules as needed */
|
||||
/* (modules needing per-scan init are called by pipeline controller) */
|
||||
|
||||
(*cinfo->methods->output_init) (cinfo);
|
||||
(*cinfo->methods->colorout_init) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->methods->color_quant_init) (cinfo);
|
||||
|
||||
/* And let the pipeline controller do the rest. */
|
||||
(*cinfo->methods->d_pipeline_controller) (cinfo);
|
||||
|
||||
/* Finish output file, release working storage, etc */
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->methods->color_quant_term) (cinfo);
|
||||
(*cinfo->methods->colorout_term) (cinfo);
|
||||
(*cinfo->methods->output_term) (cinfo);
|
||||
(*cinfo->methods->read_file_trailer) (cinfo);
|
||||
|
||||
(*cinfo->emethods->free_all) ();
|
||||
|
||||
/* My, that was easy, wasn't it? */
|
||||
master_selection(cinfo);
|
||||
}
|
||||
|
||||
219
jdmcu.c
219
jdmcu.c
@@ -1,219 +0,0 @@
|
||||
/*
|
||||
* jdmcu.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains MCU disassembly routines and quantization descaling.
|
||||
* These routines are invoked via the disassemble_MCU, reverse_DCT, and
|
||||
* disassemble_init/term methods.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
|
||||
/*
|
||||
* Quantization descaling and zigzag reordering
|
||||
*/
|
||||
|
||||
|
||||
/* ZAG[i] is the natural-order position of the i'th element of zigzag order. */
|
||||
|
||||
static const short ZAG[DCTSIZE2] = {
|
||||
0, 1, 8, 16, 9, 2, 3, 10,
|
||||
17, 24, 32, 25, 18, 11, 4, 5,
|
||||
12, 19, 26, 33, 40, 48, 41, 34,
|
||||
27, 20, 13, 6, 7, 14, 21, 28,
|
||||
35, 42, 49, 56, 57, 50, 43, 36,
|
||||
29, 22, 15, 23, 30, 37, 44, 51,
|
||||
58, 59, 52, 45, 38, 31, 39, 46,
|
||||
53, 60, 61, 54, 47, 55, 62, 63
|
||||
};
|
||||
|
||||
|
||||
LOCAL void
|
||||
qdescale_zig (JBLOCK input, JBLOCKROW outputptr, QUANT_TBL_PTR quanttbl)
|
||||
{
|
||||
const short * zagptr = ZAG;
|
||||
short i;
|
||||
|
||||
for (i = DCTSIZE2-1; i >= 0; i--) {
|
||||
(*outputptr)[*zagptr++] = (*input++) * (*quanttbl++);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Fetch one MCU row from entropy_decode, build coefficient array.
|
||||
* This version is used for noninterleaved (single-component) scans.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
disassemble_noninterleaved_MCU (decompress_info_ptr cinfo,
|
||||
JBLOCKIMAGE image_data)
|
||||
{
|
||||
JBLOCK MCU_data[1];
|
||||
long mcuindex;
|
||||
jpeg_component_info * compptr;
|
||||
QUANT_TBL_PTR quant_ptr;
|
||||
|
||||
/* this is pretty easy since there is one component and one block per MCU */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
quant_ptr = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no];
|
||||
for (mcuindex = 0; mcuindex < cinfo->MCUs_per_row; mcuindex++) {
|
||||
/* Fetch the coefficient data */
|
||||
(*cinfo->methods->entropy_decode) (cinfo, MCU_data);
|
||||
/* Descale, reorder, and distribute it into the image array */
|
||||
qdescale_zig(MCU_data[0], image_data[0][0] + mcuindex, quant_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fetch one MCU row from entropy_decode, build coefficient array.
|
||||
* This version is used for interleaved (multi-component) scans.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
disassemble_interleaved_MCU (decompress_info_ptr cinfo,
|
||||
JBLOCKIMAGE image_data)
|
||||
{
|
||||
JBLOCK MCU_data[MAX_BLOCKS_IN_MCU];
|
||||
long mcuindex;
|
||||
short blkn, ci, xpos, ypos;
|
||||
jpeg_component_info * compptr;
|
||||
QUANT_TBL_PTR quant_ptr;
|
||||
JBLOCKROW image_ptr;
|
||||
|
||||
for (mcuindex = 0; mcuindex < cinfo->MCUs_per_row; mcuindex++) {
|
||||
/* Fetch the coefficient data */
|
||||
(*cinfo->methods->entropy_decode) (cinfo, MCU_data);
|
||||
/* Descale, reorder, and distribute it into the image array */
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
quant_ptr = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no];
|
||||
for (ypos = 0; ypos < compptr->MCU_height; ypos++) {
|
||||
image_ptr = image_data[ci][ypos] + (mcuindex * compptr->MCU_width);
|
||||
for (xpos = 0; xpos < compptr->MCU_width; xpos++) {
|
||||
qdescale_zig(MCU_data[blkn], image_ptr, quant_ptr);
|
||||
image_ptr++;
|
||||
blkn++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform inverse DCT on each block in an MCU row's worth of data;
|
||||
* output the results into a sample array starting at row start_row.
|
||||
* NB: start_row can only be nonzero when dealing with a single-component
|
||||
* scan; otherwise we'd have to pass different offsets for different
|
||||
* components, since the heights of interleaved MCU rows can vary.
|
||||
* But the pipeline controller logic is such that this is not necessary.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
reverse_DCT (decompress_info_ptr cinfo,
|
||||
JBLOCKIMAGE coeff_data, JSAMPIMAGE output_data, int start_row)
|
||||
{
|
||||
DCTBLOCK block;
|
||||
JBLOCKROW browptr;
|
||||
JSAMPARRAY srowptr;
|
||||
long blocksperrow, bi;
|
||||
short numrows, ri;
|
||||
short ci;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
/* calculate size of an MCU row in this component */
|
||||
blocksperrow = cinfo->cur_comp_info[ci]->subsampled_width / DCTSIZE;
|
||||
numrows = cinfo->cur_comp_info[ci]->MCU_height;
|
||||
/* iterate through all blocks in MCU row */
|
||||
for (ri = 0; ri < numrows; ri++) {
|
||||
browptr = coeff_data[ci][ri];
|
||||
srowptr = output_data[ci] + (ri * DCTSIZE + start_row);
|
||||
for (bi = 0; bi < blocksperrow; bi++) {
|
||||
/* copy the data into a local DCTBLOCK. This allows for change of
|
||||
* representation (if DCTELEM != JCOEF). On 80x86 machines it also
|
||||
* brings the data back from FAR storage to NEAR storage.
|
||||
*/
|
||||
{ register JCOEFPTR elemptr = browptr[bi];
|
||||
register DCTELEM *localblkptr = block;
|
||||
register short elem = DCTSIZE2;
|
||||
|
||||
while (--elem >= 0)
|
||||
*localblkptr++ = (DCTELEM) *elemptr++;
|
||||
}
|
||||
|
||||
j_rev_dct(block); /* perform inverse DCT */
|
||||
|
||||
/* output the data into the sample array.
|
||||
* Note change from signed to unsigned representation:
|
||||
* DCT calculation works with values +-CENTERJSAMPLE,
|
||||
* but sample arrays always hold 0..MAXJSAMPLE.
|
||||
* Have to do explicit range-limiting because of quantization errors
|
||||
* and so forth in the DCT/IDCT phase.
|
||||
*/
|
||||
{ register JSAMPROW elemptr;
|
||||
register DCTELEM *localblkptr = block;
|
||||
register short elemr, elemc;
|
||||
register DCTELEM temp;
|
||||
|
||||
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
||||
elemptr = srowptr[elemr] + (bi * DCTSIZE);
|
||||
for (elemc = 0; elemc < DCTSIZE; elemc++) {
|
||||
temp = (*localblkptr++) + CENTERJSAMPLE;
|
||||
if (temp < 0) temp = 0;
|
||||
else if (temp > MAXJSAMPLE) temp = MAXJSAMPLE;
|
||||
*elemptr++ = (JSAMPLE) temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for processing a scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
disassemble_init (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Clean up after a scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
disassemble_term (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for MCU disassembly.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jseldmcu (decompress_info_ptr cinfo)
|
||||
{
|
||||
if (cinfo->comps_in_scan == 1)
|
||||
cinfo->methods->disassemble_MCU = disassemble_noninterleaved_MCU;
|
||||
else
|
||||
cinfo->methods->disassemble_MCU = disassemble_interleaved_MCU;
|
||||
cinfo->methods->reverse_DCT = reverse_DCT;
|
||||
cinfo->methods->disassemble_init = disassemble_init;
|
||||
cinfo->methods->disassemble_term = disassemble_term;
|
||||
}
|
||||
389
jdmerge.c
Normal file
389
jdmerge.c
Normal file
@@ -0,0 +1,389 @@
|
||||
/*
|
||||
* jdmerge.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*
|
||||
* This file combines functions from jdsample.c and jdcolor.c;
|
||||
* read those files first to understand what's going on.
|
||||
*
|
||||
* When the chroma components are to be upsampled by simple replication
|
||||
* (ie, box filtering), we can save some work in color conversion by
|
||||
* calculating all the output pixels corresponding to a pair of chroma
|
||||
* samples at one time. In the conversion equations
|
||||
* R = Y + K1 * Cr
|
||||
* G = Y + K2 * Cb + K3 * Cr
|
||||
* B = Y + K4 * Cb
|
||||
* only the Y term varies among the group of pixels corresponding to a pair
|
||||
* of chroma samples, so the rest of the terms can be calculated just once.
|
||||
* At typical sampling ratios, this eliminates half or three-quarters of the
|
||||
* multiplications needed for color conversion.
|
||||
*
|
||||
* This file currently provides implementations for the following cases:
|
||||
* YCbCr => RGB color conversion only.
|
||||
* Sampling ratios of 2h1v or 2h2v.
|
||||
* No scaling needed at upsample time.
|
||||
* Corner-aligned (non-CCIR601) sampling alignment.
|
||||
* Other special cases could be added, but in most applications these are
|
||||
* the only common cases. (For uncommon cases we fall back on the more
|
||||
* general code in jdsample.c and jdcolor.c.)
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf));
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
INT32 i, x2;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Mark the spare buffer empty */
|
||||
upsample->spare_full = FALSE;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
|
||||
/* Initialize the YCC=>RGB conversion tables.
|
||||
* This is taken directly from jdcolor.c; see that file for more info.
|
||||
*/
|
||||
upsample->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
upsample->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - MAXJSAMPLE/2 */
|
||||
x2 = 2*i - MAXJSAMPLE; /* twice x */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
upsample->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200/2) * x2 + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
upsample->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200/2) * x2 + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
upsample->Cr_g_tab[i] = (- FIX(0.71414/2)) * x2;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
upsample->Cb_g_tab[i] = (- FIX(0.34414/2)) * x2 + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* The control routine just handles the row buffering considerations.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
merged_2v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 2:1 vertical sampling case: may need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPROW work_ptrs[2];
|
||||
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||
|
||||
if (upsample->spare_full) {
|
||||
/* If we have a spare row saved from a previous cycle, just return it. */
|
||||
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
|
||||
1, upsample->out_row_width);
|
||||
num_rows = 1;
|
||||
upsample->spare_full = FALSE;
|
||||
} else {
|
||||
/* Figure number of rows to return to caller. */
|
||||
num_rows = 2;
|
||||
/* Not more than the distance to the end of the image. */
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
/* Create output pointer array for upsampler. */
|
||||
work_ptrs[0] = output_buf[*out_row_ctr];
|
||||
if (num_rows > 1) {
|
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1];
|
||||
} else {
|
||||
work_ptrs[1] = upsample->spare_row;
|
||||
upsample->spare_full = TRUE;
|
||||
}
|
||||
/* Now do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
|
||||
}
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (! upsample->spare_full)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
merged_1v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Just do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||
output_buf + *out_row_ctr);
|
||||
/* Adjust counts */
|
||||
(*out_row_ctr)++;
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do
|
||||
* the actual upsampling/conversion. One row group is processed per call.
|
||||
*
|
||||
* Note: since we may be writing directly into application-supplied buffers,
|
||||
* we have to be honest about the output width; we can't assume the buffer
|
||||
* has been rounded up to an even width.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2v1_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2v2_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr00);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
y = GETJSAMPLE(*inptr01);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion.
|
||||
*
|
||||
* NB: this is called under the conditions determined by use_merged_upsample()
|
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities
|
||||
* of this module; no safety checks are made here.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_merged_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||
upsample->pub.need_context_rows = FALSE;
|
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
|
||||
|
||||
if (cinfo->max_v_samp_factor == 2) {
|
||||
upsample->pub.upsample = merged_2v_upsample;
|
||||
upsample->upmethod = h2v2_merged_upsample;
|
||||
/* Allocate a spare row buffer */
|
||||
upsample->spare_row = (JSAMPROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
|
||||
} else {
|
||||
upsample->pub.upsample = merged_1v_upsample;
|
||||
upsample->upmethod = h2v1_merged_upsample;
|
||||
/* No spare row needed */
|
||||
upsample->spare_row = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
||||
275
jdpostct.c
Normal file
275
jdpostct.c
Normal file
@@ -0,0 +1,275 @@
|
||||
/*
|
||||
* jdpostct.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the decompression postprocessing controller.
|
||||
* This controller manages the upsampling, color conversion, and color
|
||||
* quantization/reduction steps; specifically, it controls the buffering
|
||||
* between upsample/color conversion and color quantization/reduction.
|
||||
*
|
||||
* If no color quantization/reduction is required, then this module has no
|
||||
* work to do, and it just hands off to the upsample/color conversion code.
|
||||
* An integrated upsample/convert/quantize process would replace this module
|
||||
* entirely.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_post_controller pub; /* public fields */
|
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer.
|
||||
* For two-pass color quantization, we need a full-image buffer;
|
||||
* for one-pass operation, a strip buffer is sufficient.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
|
||||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
|
||||
JDIMENSION strip_height; /* buffer size in rows */
|
||||
/* for two-pass mode only: */
|
||||
JDIMENSION starting_row; /* row # of first row in current strip */
|
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */
|
||||
} my_post_controller;
|
||||
|
||||
typedef my_post_controller * my_post_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF void post_process_1pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF void post_process_prepass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
METHODDEF void post_process_2pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->quantize_colors) {
|
||||
/* Single-pass processing with color quantization. */
|
||||
post->pub.post_process_data = post_process_1pass;
|
||||
} else {
|
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly.
|
||||
*/
|
||||
post->pub.post_process_data = cinfo->upsample->upsample;
|
||||
}
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
/* First pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_prepass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
/* Second pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_2pass;
|
||||
break;
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
post->starting_row = post->next_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case.
|
||||
* This is used for color precision reduction as well as one-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
post_process_1pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */
|
||||
/* Note we rely on the upsampler to detect bottom of image. */
|
||||
max_rows = out_rows_avail - *out_row_ctr;
|
||||
if (max_rows > post->strip_height)
|
||||
max_rows = post->strip_height;
|
||||
num_rows = 0;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &num_rows, max_rows);
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
post_process_prepass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION old_next_row, num_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image, post->starting_row, TRUE);
|
||||
}
|
||||
|
||||
/* Upsample some data (up to a strip height's worth). */
|
||||
old_next_row = post->next_row;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &post->next_row, post->strip_height);
|
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */
|
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */
|
||||
if (post->next_row > old_next_row) {
|
||||
num_rows = post->next_row - old_next_row;
|
||||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
|
||||
(JSAMPARRAY) NULL, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
post_process_2pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image, post->starting_row, FALSE);
|
||||
}
|
||||
|
||||
/* Determine number of rows to emit. */
|
||||
num_rows = post->strip_height - post->next_row; /* available in strip */
|
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
/* We have to check bottom of image here, can't depend on upsampler. */
|
||||
max_rows = cinfo->output_height - post->starting_row;
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer + post->next_row, output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
post->next_row += num_rows;
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_post_ptr post;
|
||||
|
||||
post = (my_post_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_post_controller));
|
||||
cinfo->post = (struct jpeg_d_post_controller *) post;
|
||||
post->pub.start_pass = start_pass_dpost;
|
||||
post->whole_image = NULL; /* flag for no virtual arrays */
|
||||
|
||||
/* Create the quantization buffer, if needed */
|
||||
if (cinfo->quantize_colors) {
|
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return.
|
||||
* (In the presence of output rescaling, we might want to be smarter?)
|
||||
*/
|
||||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
|
||||
if (need_full_buffer) {
|
||||
/* Two-pass color quantization: need full-image storage. */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
post->whole_image = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
cinfo->output_height, post->strip_height);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
/* One-pass color quantization: just make a strip buffer. */
|
||||
post->buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
post->strip_height);
|
||||
}
|
||||
}
|
||||
}
|
||||
556
jdsample.c
556
jdsample.c
@@ -1,220 +1,478 @@
|
||||
/*
|
||||
* jdsample.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains un-subsampling routines.
|
||||
* These routines are invoked via the unsubsample and
|
||||
* unsubsample_init/term methods.
|
||||
* This file contains upsampling routines.
|
||||
*
|
||||
* Upsampling input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. Upsampling will normally produce
|
||||
* max_v_samp_factor pixel rows from each row group (but this could vary
|
||||
* if the upsampler is applying a scale factor of its own).
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */
|
||||
typedef JMETHOD(void, upsample1_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it
|
||||
* has been color converted and output.
|
||||
* Note: we do not allocate any storage for component(s) which are full-size,
|
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
||||
* simply set to point to the input data array, thereby avoiding copying.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
/* Per-component upsampling method pointers */
|
||||
upsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
|
||||
/* Height of an input row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for un-subsampling a scan.
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
unsubsample_init (decompress_info_ptr cinfo)
|
||||
start_pass_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the conversion buffer empty */
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* In this version we upsample each component independently.
|
||||
* We upsample one row group into the conversion buffer, then apply
|
||||
* color conversion a row at a time.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
sep_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JDIMENSION num_rows;
|
||||
|
||||
/* Fill the conversion buffer, if it's empty */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it.
|
||||
*/
|
||||
(*upsample->methods[ci]) (cinfo, compptr,
|
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
||||
upsample->color_buf + ci);
|
||||
}
|
||||
upsample->next_row_out = 0;
|
||||
}
|
||||
|
||||
/* Color-convert and emit rows */
|
||||
|
||||
/* How many we have in the buffer: */
|
||||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
|
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor:
|
||||
*/
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
|
||||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
||||
(JDIMENSION) upsample->next_row_out,
|
||||
output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
upsample->next_row_out += num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values
|
||||
* of a single component. One row group is processed per call.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the
|
||||
* input buffer, and thus avoid copying any data. Note that this is
|
||||
* safe only because sep_upsample doesn't declare the input row group
|
||||
* "consumed" until we are done color converting and emitting it.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = input_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is a no-op version used for "uninteresting" components.
|
||||
* These components will not be referenced by color conversion.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = NULL; /* safety check */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Un-subsample pixel values of a single component.
|
||||
* This version handles any integral sampling ratios.
|
||||
* This is not used for typical JPEG files, so it need not be fast.
|
||||
* Nor, for that matter, is it particularly accurate: the algorithm is
|
||||
* simple replication of the input pixel onto the corresponding output
|
||||
* pixels. The hi-falutin sampling literature refers to this as a
|
||||
* "box filter". A box filter tends to introduce visible artifacts,
|
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
||||
* you would be well advised to improve this code.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
int_unsubsample (decompress_info_ptr cinfo, int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below,
|
||||
JSAMPARRAY output_data)
|
||||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
jpeg_component_info * compptr = cinfo->cur_comp_info[which_component];
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
register short h_expand, h;
|
||||
short v_expand, v;
|
||||
register int h;
|
||||
JSAMPROW outend;
|
||||
int h_expand, v_expand;
|
||||
int inrow, outrow;
|
||||
register long incol;
|
||||
|
||||
#ifdef DEBUG /* for debugging pipeline controller */
|
||||
if (input_rows != compptr->v_samp_factor ||
|
||||
output_rows != cinfo->max_v_samp_factor ||
|
||||
(input_cols % compptr->h_samp_factor) != 0 ||
|
||||
(output_cols % cinfo->max_h_samp_factor) != 0 ||
|
||||
output_cols*compptr->h_samp_factor != input_cols*cinfo->max_h_samp_factor)
|
||||
ERREXIT(cinfo->emethods, "Bogus unsubsample parameters");
|
||||
#endif
|
||||
h_expand = upsample->h_expand[compptr->component_index];
|
||||
v_expand = upsample->v_expand[compptr->component_index];
|
||||
|
||||
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
|
||||
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
||||
|
||||
outrow = 0;
|
||||
for (inrow = 0; inrow < input_rows; inrow++) {
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow++];
|
||||
for (incol = 0; incol < input_cols; incol++) {
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
for (h = 0; h < h_expand; h++) {
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
/* Generate one output row with proper horizontal expansion */
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
for (h = h_expand; h > 0; h--) {
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
/* Generate any additional output rows by duplicating the first one */
|
||||
if (v_expand > 1) {
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
v_expand-1, cinfo->output_width);
|
||||
}
|
||||
inrow++;
|
||||
outrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int inrow;
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[inrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Un-subsample pixel values of a single component.
|
||||
* This version handles the extremely common case of
|
||||
* horizontal expansion by 2 and any integral vertical expansion.
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2_unsubsample (decompress_info_ptr cinfo, int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below,
|
||||
JSAMPARRAY output_data)
|
||||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
jpeg_component_info * compptr = cinfo->cur_comp_info[which_component];
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
short v_expand, v;
|
||||
JSAMPROW outend;
|
||||
int inrow, outrow;
|
||||
register long incol;
|
||||
|
||||
#ifdef DEBUG /* for debugging pipeline controller */
|
||||
if (input_rows != compptr->v_samp_factor ||
|
||||
output_rows != cinfo->max_v_samp_factor ||
|
||||
(input_cols % compptr->h_samp_factor) != 0 ||
|
||||
(output_cols % cinfo->max_h_samp_factor) != 0 ||
|
||||
output_cols*compptr->h_samp_factor != input_cols*cinfo->max_h_samp_factor)
|
||||
ERREXIT(cinfo->emethods, "Bogus unsubsample parameters");
|
||||
#endif
|
||||
|
||||
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
||||
|
||||
/* The subsampled image width will always be a multiple of DCTSIZE,
|
||||
* so we can unroll the inner loop.
|
||||
*/
|
||||
|
||||
outrow = 0;
|
||||
for (inrow = 0; inrow < input_rows; inrow++) {
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow++];
|
||||
#if DCTSIZE == 8
|
||||
for (incol = 0; incol < input_cols; incol += DCTSIZE) {
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
#else /* nonstandard DCTSIZE */
|
||||
for (incol = 0; incol < input_cols; incol++) {
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
#endif
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
1, cinfo->output_width);
|
||||
inrow++;
|
||||
outrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Un-subsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component.
|
||||
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
*
|
||||
* The upsampling algorithm is linear interpolation between pixel centers,
|
||||
* also known as a "triangle filter". This is a good compromise between
|
||||
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
|
||||
* of the way between input pixel centers.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
fullsize_unsubsample (decompress_info_ptr cinfo, int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above, JSAMPARRAY input_data, JSAMPARRAY below,
|
||||
JSAMPARRAY output_data)
|
||||
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
#ifdef DEBUG /* for debugging pipeline controller */
|
||||
if (input_cols != output_cols || input_rows != output_rows)
|
||||
ERREXIT(cinfo->emethods, "Pipeline controller messed up");
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register int invalue;
|
||||
register JDIMENSION colctr;
|
||||
int inrow;
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[inrow];
|
||||
/* Special case for first column */
|
||||
invalue = GETJSAMPLE(*inptr++);
|
||||
*outptr++ = (JSAMPLE) invalue;
|
||||
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
|
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
|
||||
invalue = GETJSAMPLE(*inptr++) * 3;
|
||||
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
|
||||
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
invalue = GETJSAMPLE(*inptr);
|
||||
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
|
||||
*outptr++ = (JSAMPLE) invalue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* Again a triangle filter; see comments for h2v1 case, above.
|
||||
*
|
||||
* It is OK for us to reference the adjacent input rows because we demanded
|
||||
* context from the main buffer controller (see initialization code).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr0, inptr1, outptr;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
register int thiscolsum, lastcolsum, nextcolsum;
|
||||
#else
|
||||
register INT32 thiscolsum, lastcolsum, nextcolsum;
|
||||
#endif
|
||||
register JDIMENSION colctr;
|
||||
int inrow, outrow, v;
|
||||
|
||||
jcopy_sample_rows(input_data, 0, output_data, 0, output_rows, output_cols);
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
for (v = 0; v < 2; v++) {
|
||||
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
||||
inptr0 = input_data[inrow];
|
||||
if (v == 0) /* next nearest is row above */
|
||||
inptr1 = input_data[inrow-1];
|
||||
else /* next nearest is row below */
|
||||
inptr1 = input_data[inrow+1];
|
||||
outptr = output_data[outrow++];
|
||||
|
||||
/* Special case for first column */
|
||||
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
||||
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
||||
|
||||
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
||||
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
|
||||
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
|
||||
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
||||
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
||||
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
|
||||
}
|
||||
inrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Clean up after a scan.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
unsubsample_term (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for unsubsampling.
|
||||
* Note that we must select a routine for each component.
|
||||
* Module initialization routine for upsampling.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselunsubsample (decompress_info_ptr cinfo)
|
||||
jinit_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
short ci;
|
||||
my_upsample_ptr upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean need_buffer, do_fancy;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
if (cinfo->CCIR601_sampling)
|
||||
ERREXIT(cinfo->emethods, "CCIR601 subsampling not implemented yet");
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_upsample;
|
||||
upsample->pub.upsample = sep_upsample;
|
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
|
||||
compptr->v_samp_factor == cinfo->max_v_samp_factor)
|
||||
cinfo->methods->unsubsample[ci] = fullsize_unsubsample;
|
||||
else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0)
|
||||
cinfo->methods->unsubsample[ci] = h2_unsubsample;
|
||||
else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
||||
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0)
|
||||
cinfo->methods->unsubsample[ci] = int_unsubsample;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Fractional subsampling not implemented yet");
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
|
||||
* so don't ask for it.
|
||||
*/
|
||||
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
|
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size;
|
||||
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
|
||||
cinfo->min_DCT_scaled_size;
|
||||
h_out_group = cinfo->max_h_samp_factor;
|
||||
v_out_group = cinfo->max_v_samp_factor;
|
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
||||
need_buffer = TRUE;
|
||||
if (! compptr->component_needed) {
|
||||
/* Don't bother to upsample an uninteresting component. */
|
||||
upsample->methods[ci] = noop_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
/* Fullsize components can be processed without any work. */
|
||||
upsample->methods[ci] = fullsize_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group == v_out_group) {
|
||||
/* Special cases for 2h1v upsampling */
|
||||
if (do_fancy && compptr->downsampled_width > 2)
|
||||
upsample->methods[ci] = h2v1_fancy_upsample;
|
||||
else
|
||||
upsample->methods[ci] = h2v1_upsample;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group * 2 == v_out_group) {
|
||||
/* Special cases for 2h2v upsampling */
|
||||
if (do_fancy && compptr->downsampled_width > 2) {
|
||||
upsample->methods[ci] = h2v2_fancy_upsample;
|
||||
upsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
upsample->methods[ci] = h2v2_upsample;
|
||||
} else if ((h_out_group % h_in_group) == 0 &&
|
||||
(v_out_group % v_in_group) == 0) {
|
||||
/* Generic integral-factors upsampling method */
|
||||
upsample->methods[ci] = int_upsample;
|
||||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
|
||||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
if (need_buffer) {
|
||||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_width,
|
||||
(long) cinfo->max_h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
|
||||
cinfo->methods->unsubsample_init = unsubsample_init;
|
||||
cinfo->methods->unsubsample_term = unsubsample_term;
|
||||
}
|
||||
|
||||
213
jerror.c
213
jerror.c
@@ -1,72 +1,211 @@
|
||||
/*
|
||||
* jerror.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains simple error-reporting and trace-message routines.
|
||||
* These are suitable for Unix-like systems and others where writing to
|
||||
* stderr is the right thing to do. If the JPEG software is integrated
|
||||
* into a larger application, you may well need to replace these.
|
||||
*
|
||||
* The error_exit() routine should not return to its caller. Within a
|
||||
* larger application, you might want to have it do a longjmp() to return
|
||||
* control to the outer user interface routine. This should work since
|
||||
* the portable JPEG code doesn't use setjmp/longjmp. You should make sure
|
||||
* that free_all is called either within error_exit or after the return to
|
||||
* the outer-level routine.
|
||||
* stderr is the right thing to do. Many applications will want to replace
|
||||
* some or all of these routines.
|
||||
*
|
||||
* These routines are used by both the compression and decompression code.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare exit() */
|
||||
#endif
|
||||
#include "jpeglib.h"
|
||||
#include "jversion.h"
|
||||
|
||||
#include "jerror.h" /* get error codes */
|
||||
#define JMAKE_MSG_TABLE
|
||||
#include "jerror.h" /* create message string table */
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
|
||||
|
||||
static external_methods_ptr methods; /* saved for access to message_parm, free_all */
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller.
|
||||
*
|
||||
* Applications may override this if they want to get control back after
|
||||
* an error. Typically one would longjmp somewhere instead of exiting.
|
||||
* The setjmp buffer can be made a private field within an expanded error
|
||||
* handler object. Note that the info needed to generate an error message
|
||||
* is stored in the error object, so you can generate the message now or
|
||||
* later, at your convenience.
|
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
|
||||
* or jpeg_destroy) at some point.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
trace_message (const char *msgtext)
|
||||
error_exit (j_common_ptr cinfo)
|
||||
{
|
||||
fprintf(stderr, msgtext,
|
||||
methods->message_parm[0], methods->message_parm[1],
|
||||
methods->message_parm[2], methods->message_parm[3],
|
||||
methods->message_parm[4], methods->message_parm[5],
|
||||
methods->message_parm[6], methods->message_parm[7]);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
/* Always display the message */
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
|
||||
/* Let the memory manager delete any temp files before we die */
|
||||
jpeg_destroy(cinfo);
|
||||
|
||||
METHODDEF void
|
||||
error_exit (const char *msgtext)
|
||||
{
|
||||
trace_message(msgtext);
|
||||
(*methods->free_all) (); /* clean up memory allocation */
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for simple error handling.
|
||||
* The system-dependent setup routine should call this routine
|
||||
* to install the necessary method pointers in the supplied struct.
|
||||
* Actual output of an error or trace message.
|
||||
* Applications may override this method to send JPEG messages somewhere
|
||||
* other than stderr.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselerror (external_methods_ptr emethods)
|
||||
METHODDEF void
|
||||
output_message (j_common_ptr cinfo)
|
||||
{
|
||||
methods = emethods; /* save struct addr for later access */
|
||||
char buffer[JMSG_LENGTH_MAX];
|
||||
|
||||
emethods->error_exit = error_exit;
|
||||
emethods->trace_message = trace_message;
|
||||
/* Create the message */
|
||||
(*cinfo->err->format_message) (cinfo, buffer);
|
||||
|
||||
emethods->trace_level = 0; /* default = no tracing */
|
||||
/* Send it to stderr, adding a newline */
|
||||
fprintf(stderr, "%s\n", buffer);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message.
|
||||
* msg_level is one of:
|
||||
* -1: recoverable corrupt-data warning, may want to abort.
|
||||
* 0: important advisory messages (always display to user).
|
||||
* 1: first level of tracing detail.
|
||||
* 2,3,...: successively more detailed tracing messages.
|
||||
* An application might override this method if it wanted to abort on warnings
|
||||
* or change the policy about which messages to display.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
emit_message (j_common_ptr cinfo, int msg_level)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
|
||||
if (msg_level < 0) {
|
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning,
|
||||
* unless trace_level >= 3.
|
||||
*/
|
||||
if (err->num_warnings == 0 || err->trace_level >= 3)
|
||||
(*err->output_message) (cinfo);
|
||||
/* Always count warnings in num_warnings. */
|
||||
err->num_warnings++;
|
||||
} else {
|
||||
/* It's a trace message. Show it if trace_level >= msg_level. */
|
||||
if (err->trace_level >= msg_level)
|
||||
(*err->output_message) (cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message.
|
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
|
||||
* characters. Note that no '\n' character is added to the string.
|
||||
* Few applications should need to override this method.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
format_message (j_common_ptr cinfo, char * buffer)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
int msg_code = err->msg_code;
|
||||
const char * msgtext = NULL;
|
||||
const char * msgptr;
|
||||
char ch;
|
||||
boolean isstring;
|
||||
|
||||
/* Look up message string in proper table */
|
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
|
||||
msgtext = err->jpeg_message_table[msg_code];
|
||||
} else if (err->addon_message_table != NULL &&
|
||||
msg_code >= err->first_addon_message &&
|
||||
msg_code <= err->last_addon_message) {
|
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
|
||||
}
|
||||
|
||||
/* Defend against bogus message number */
|
||||
if (msgtext == NULL) {
|
||||
err->msg_parm.i[0] = msg_code;
|
||||
msgtext = err->jpeg_message_table[0];
|
||||
}
|
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */
|
||||
isstring = FALSE;
|
||||
msgptr = msgtext;
|
||||
while ((ch = *msgptr++) != '\0') {
|
||||
if (ch == '%') {
|
||||
if (*msgptr == 's') isstring = TRUE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Format the message into the passed buffer */
|
||||
if (isstring)
|
||||
sprintf(buffer, msgtext, err->msg_parm.s);
|
||||
else
|
||||
sprintf(buffer, msgtext,
|
||||
err->msg_parm.i[0], err->msg_parm.i[1],
|
||||
err->msg_parm.i[2], err->msg_parm.i[3],
|
||||
err->msg_parm.i[4], err->msg_parm.i[5],
|
||||
err->msg_parm.i[6], err->msg_parm.i[7]);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image.
|
||||
* This is called during compression startup to reset trace/error
|
||||
* processing to default state, without losing any application-specific
|
||||
* method pointers. An application might possibly want to override
|
||||
* this method if it has additional error processing state.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
reset_error_mgr (j_common_ptr cinfo)
|
||||
{
|
||||
cinfo->err->num_warnings = 0;
|
||||
/* trace_level is not reset since it is an application-supplied parameter */
|
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
|
||||
* Typical call is:
|
||||
* struct jpeg_compress_struct cinfo;
|
||||
* struct jpeg_error_mgr err;
|
||||
*
|
||||
* cinfo.err = jpeg_std_error(&err);
|
||||
* after which the application may override some of the methods.
|
||||
*/
|
||||
|
||||
GLOBAL struct jpeg_error_mgr *
|
||||
jpeg_std_error (struct jpeg_error_mgr * err)
|
||||
{
|
||||
err->error_exit = error_exit;
|
||||
err->emit_message = emit_message;
|
||||
err->output_message = output_message;
|
||||
err->format_message = format_message;
|
||||
err->reset_error_mgr = reset_error_mgr;
|
||||
|
||||
err->trace_level = 0; /* default = no tracing */
|
||||
err->num_warnings = 0; /* no warnings emitted yet */
|
||||
err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
|
||||
/* Initialize message table pointers */
|
||||
err->jpeg_message_table = jpeg_message_table;
|
||||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
|
||||
|
||||
err->addon_message_table = NULL;
|
||||
err->first_addon_message = 0; /* for safety */
|
||||
err->last_addon_message = 0;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
264
jerror.h
Normal file
264
jerror.h
Normal file
@@ -0,0 +1,264 @@
|
||||
/*
|
||||
* jerror.h
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines the error and message codes for the JPEG library.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
* A set of error-reporting macros are defined too. Some applications using
|
||||
* the JPEG library may wish to include this file to get the error codes
|
||||
* and/or the macros.
|
||||
*/
|
||||
|
||||
|
||||
/* To define the enum list of message codes, include this file without
|
||||
* defining JMAKE_MSG_TABLE. To create the message string table, include it
|
||||
* again with JMAKE_MSG_TABLE defined (this should be done in just one module).
|
||||
*/
|
||||
|
||||
#ifdef JMAKE_MSG_TABLE
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_message_table jMsgTable
|
||||
#endif
|
||||
|
||||
const char * const jpeg_message_table[] = {
|
||||
|
||||
#define JMESSAGE(code,string) string ,
|
||||
|
||||
#else /* not JMAKE_MSG_TABLE */
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code,string) code ,
|
||||
|
||||
#endif /* JMAKE_MSG_TABLE */
|
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
|
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */
|
||||
JMESSAGE(JERR_ARITH_NOTIMPL,
|
||||
"Sorry, there are legal restrictions on arithmetic coding")
|
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
|
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
|
||||
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
|
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
|
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
|
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
|
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
|
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
|
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
|
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
|
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
|
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
|
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
|
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
|
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
|
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
|
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
|
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
|
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
|
||||
JMESSAGE(JERR_DHT_COUNTS, "Bogus DHT counts")
|
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
|
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
|
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
|
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
|
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
|
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
|
||||
JMESSAGE(JERR_FILE_READ, "Input file read error")
|
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
|
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
|
||||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
|
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
|
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
|
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
|
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
|
||||
JMESSAGE(JERR_JFIF_MAJOR, "Unsupported JFIF revision number %d.%02d")
|
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
|
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
|
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
|
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
|
||||
JMESSAGE(JERR_QUANT_COMPONENTS,
|
||||
"Cannot quantize more than %d color components")
|
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
|
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
|
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
|
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
|
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
|
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
|
||||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
|
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
|
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_WRITE,
|
||||
"Write failed on temporary file --- out of disk space?")
|
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
|
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
|
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
|
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
|
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
|
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
|
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
|
||||
JMESSAGE(JMSG_VERSION, JVERSION)
|
||||
JMESSAGE(JTRC_16BIT_TABLES,
|
||||
"Caution: quantization tables are too coarse for baseline JPEG")
|
||||
JMESSAGE(JTRC_ADOBE,
|
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
|
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
|
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
|
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
|
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
|
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
|
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
|
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
|
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
|
||||
JMESSAGE(JTRC_EOI, "End Of Image")
|
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
|
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker, density %dx%d %d")
|
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
|
||||
"Warning: thumbnail image size does not match data length %u")
|
||||
JMESSAGE(JTRC_JFIF_MINOR, "Warning: unknown JFIF revision number %d.%02d")
|
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
|
||||
JMESSAGE(JTRC_MISC_MARKER, "Skipping marker 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
|
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
|
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
|
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
|
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
|
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
|
||||
JMESSAGE(JTRC_RST, "RST%d")
|
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
|
||||
"Smoothing not supported with nonstandard sampling ratios")
|
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
|
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
|
||||
JMESSAGE(JTRC_SOI, "Start of Image")
|
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
|
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
|
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
|
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
|
||||
JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr")
|
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
|
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
|
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
|
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
|
||||
JMESSAGE(JWRN_MUST_RESYNC,
|
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
|
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
|
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
|
||||
|
||||
#ifdef JMAKE_MSG_TABLE
|
||||
|
||||
NULL
|
||||
};
|
||||
|
||||
#else /* not JMAKE_MSG_TABLE */
|
||||
|
||||
JMSG_LASTMSGCODE
|
||||
} J_MESSAGE_CODE;
|
||||
|
||||
#endif /* JMAKE_MSG_TABLE */
|
||||
|
||||
#undef JMESSAGE
|
||||
|
||||
|
||||
#ifndef JMAKE_MSG_TABLE
|
||||
|
||||
/* Macros to simplify using the error and trace message stuff */
|
||||
/* The first parameter is either type of cinfo pointer */
|
||||
|
||||
/* Fatal errors (print message and exit) */
|
||||
#define ERREXIT(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT3(cinfo,code,p1,p2,p3) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXITS(cinfo,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
|
||||
#define WARNMS(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
|
||||
/* Informational/debugging messages */
|
||||
#define TRACEMS(cinfo,lvl,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS1(cinfo,lvl,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMSS(cinfo,lvl,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
|
||||
#endif /* JMAKE_MSG_TABLE */
|
||||
168
jfdctflt.c
Normal file
168
jfdctflt.c
Normal file
@@ -0,0 +1,168 @@
|
||||
/*
|
||||
* jfdctflt.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* DCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_fdct_float (FAST_FLOAT * data)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
||||
FAST_FLOAT *dataptr;
|
||||
int ctr;
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
224
jfdctfst.c
Normal file
224
jfdctfst.c
Normal file
@@ -0,0 +1,224 @@
|
||||
/*
|
||||
* jfdctfst.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* Again to save a few shifts, the intermediate results between pass 1 and
|
||||
* pass 2 are not upscaled, but are represented only to integral precision.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#define CONST_BITS 8
|
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
||||
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
||||
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
||||
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
||||
#else
|
||||
#define FIX_0_382683433 FIX(0.382683433)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_707106781 FIX(0.707106781)
|
||||
#define FIX_1_306562965 FIX(1.306562965)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_fdct_ifast (DCTELEM * data)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
||||
DCTELEM *dataptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
||||
283
jfdctint.c
Normal file
283
jfdctint.c
Normal file
@@ -0,0 +1,283 @@
|
||||
/*
|
||||
* jfdctint.c
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a slow-but-accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on an algorithm described in
|
||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
||||
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
||||
* We use their alternate method with 12 multiplies and 32 adds.
|
||||
* The advantage of this method is that no data path contains more than one
|
||||
* multiplication; this allows a very simple and accurate implementation in
|
||||
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
|
||||
* larger than the true DCT outputs. The final outputs are therefore
|
||||
* a factor of N larger than desired; since N=8 this can be cured by
|
||||
* a simple right shift at the end of the algorithm. The advantage of
|
||||
* this arrangement is that we save two multiplications per 1-D DCT,
|
||||
* because the y0 and y4 outputs need not be divided by sqrt(N).
|
||||
* In the IJG code, this factor of 8 is removed by the quantization step
|
||||
* (in jcdctmgr.c), NOT in this module.
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by CONST_SCALE and convert them to integer constants (thus retaining
|
||||
* CONST_BITS bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by CONST_SCALE, with proper
|
||||
* rounding, to produce the correct output. This division can be done
|
||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
||||
* as long as possible so that partial sums can be added together with
|
||||
* full fractional precision.
|
||||
*
|
||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
||||
* they are represented to better-than-integral precision. These outputs
|
||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
||||
* with the recommended scaling. (For 12-bit sample data, the intermediate
|
||||
* array is INT32 anyway.)
|
||||
*
|
||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
||||
* shows that the values given below are the most effective.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
||||
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
||||
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
||||
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
||||
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
||||
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
||||
#else
|
||||
#define FIX_0_298631336 FIX(0.298631336)
|
||||
#define FIX_0_390180644 FIX(0.390180644)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_175875602 FIX(1.175875602)
|
||||
#define FIX_1_501321110 FIX(1.501321110)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_1_961570560 FIX(1.961570560)
|
||||
#define FIX_2_053119869 FIX(2.053119869)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_072711026 FIX(3.072711026)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
||||
#else
|
||||
#define MULTIPLY(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_fdct_islow (DCTELEM * data)
|
||||
{
|
||||
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
INT32 tmp10, tmp11, tmp12, tmp13;
|
||||
INT32 z1, z2, z3, z4, z5;
|
||||
DCTELEM *dataptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
|
||||
/* furthermore, we scale the results by 2**PASS1_BITS. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[0] + dataptr[7];
|
||||
tmp7 = dataptr[0] - dataptr[7];
|
||||
tmp1 = dataptr[1] + dataptr[6];
|
||||
tmp6 = dataptr[1] - dataptr[6];
|
||||
tmp2 = dataptr[2] + dataptr[5];
|
||||
tmp5 = dataptr[2] - dataptr[5];
|
||||
tmp3 = dataptr[3] + dataptr[4];
|
||||
tmp4 = dataptr[3] - dataptr[4];
|
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
||||
*/
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
|
||||
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
||||
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
||||
CONST_BITS-PASS1_BITS);
|
||||
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
||||
CONST_BITS-PASS1_BITS);
|
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16).
|
||||
* i0..i3 in the paper are tmp4..tmp7 here.
|
||||
*/
|
||||
|
||||
z1 = tmp4 + tmp7;
|
||||
z2 = tmp5 + tmp6;
|
||||
z3 = tmp4 + tmp6;
|
||||
z4 = tmp5 + tmp7;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
|
||||
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
|
||||
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
|
||||
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns.
|
||||
* We remove the PASS1_BITS scaling, but leave the results scaled up
|
||||
* by an overall factor of 8.
|
||||
*/
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part per LL&M figure 1 --- note that published figure is faulty;
|
||||
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
||||
*/
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
|
||||
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
||||
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
||||
CONST_BITS+PASS1_BITS);
|
||||
|
||||
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
||||
* cK represents cos(K*pi/16).
|
||||
* i0..i3 in the paper are tmp4..tmp7 here.
|
||||
*/
|
||||
|
||||
z1 = tmp4 + tmp7;
|
||||
z2 = tmp5 + tmp6;
|
||||
z3 = tmp4 + tmp6;
|
||||
z4 = tmp5 + tmp7;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
|
||||
CONST_BITS+PASS1_BITS);
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_ISLOW_SUPPORTED */
|
||||
208
jfwddct.c
208
jfwddct.c
@@ -1,208 +0,0 @@
|
||||
/*
|
||||
* jfwddct.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the basic DCT (Discrete Cosine Transform)
|
||||
* transformation subroutine.
|
||||
*
|
||||
* This implementation is based on Appendix A.2 of the book
|
||||
* "Discrete Cosine Transform---Algorithms, Advantages, Applications"
|
||||
* by K.R. Rao and P. Yip (Academic Press, Inc, London, 1990).
|
||||
* It uses scaled fixed-point arithmetic instead of floating point.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
/*
|
||||
* This routine is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by DCT_SCALE and convert them to integer constants (thus retaining
|
||||
* LG2_DCT_SCALE bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by DCT_SCALE, with proper
|
||||
* rounding, to produce the correct output. The division can be implemented
|
||||
* cheaply as a right shift of LG2_DCT_SCALE bits. The DCT equations also
|
||||
* specify an additional division by 2 on the final outputs; this can be
|
||||
* folded into the right-shift by shifting one more bit (see UNFIXH).
|
||||
*
|
||||
* If you are planning to recode this in assembler, you might want to set
|
||||
* LG2_DCT_SCALE to 15. This loses a bit of precision, but then all the
|
||||
* multiplications are between 16-bit quantities (given 8-bit JSAMPLEs!)
|
||||
* so you could use a signed 16x16=>32 bit multiply instruction instead of
|
||||
* full 32x32 multiply. Unfortunately there's no way to describe such a
|
||||
* multiply portably in C, so we've gone for the extra bit of accuracy here.
|
||||
*/
|
||||
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
#define LG2_DCT_SCALE 16
|
||||
#else
|
||||
#define LG2_DCT_SCALE 15 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
#define ONE ((INT32) 1)
|
||||
|
||||
#define DCT_SCALE (ONE << LG2_DCT_SCALE)
|
||||
|
||||
/* In some places we shift the inputs left by a couple more bits, */
|
||||
/* so that they can be added to fractional results without too much */
|
||||
/* loss of precision. */
|
||||
#define LG2_OVERSCALE 2
|
||||
#define OVERSCALE (ONE << LG2_OVERSCALE)
|
||||
#define OVERSHIFT(x) ((x) <<= LG2_OVERSCALE)
|
||||
|
||||
/* Scale a fractional constant by DCT_SCALE */
|
||||
#define FIX(x) ((INT32) ((x) * DCT_SCALE + 0.5))
|
||||
|
||||
/* Scale a fractional constant by DCT_SCALE/OVERSCALE */
|
||||
/* Such a constant can be multiplied with an overscaled input */
|
||||
/* to produce something that's scaled by DCT_SCALE */
|
||||
#define FIXO(x) ((INT32) ((x) * DCT_SCALE / OVERSCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round a value that's scaled by DCT_SCALE */
|
||||
#define UNFIX(x) RIGHT_SHIFT((x) + (ONE << (LG2_DCT_SCALE-1)), LG2_DCT_SCALE)
|
||||
|
||||
/* Same with an additional division by 2, ie, correctly rounded UNFIX(x/2) */
|
||||
#define UNFIXH(x) RIGHT_SHIFT((x) + (ONE << LG2_DCT_SCALE), LG2_DCT_SCALE+1)
|
||||
|
||||
/* Take a value scaled by DCT_SCALE and round to integer scaled by OVERSCALE */
|
||||
#define UNFIXO(x) RIGHT_SHIFT((x) + (ONE << (LG2_DCT_SCALE-1-LG2_OVERSCALE)),\
|
||||
LG2_DCT_SCALE-LG2_OVERSCALE)
|
||||
|
||||
/* Here are the constants we need */
|
||||
/* SIN_i_j is sine of i*pi/j, scaled by DCT_SCALE */
|
||||
/* COS_i_j is cosine of i*pi/j, scaled by DCT_SCALE */
|
||||
|
||||
#define SIN_1_4 FIX(0.707106781)
|
||||
#define COS_1_4 SIN_1_4
|
||||
|
||||
#define SIN_1_8 FIX(0.382683432)
|
||||
#define COS_1_8 FIX(0.923879533)
|
||||
#define SIN_3_8 COS_1_8
|
||||
#define COS_3_8 SIN_1_8
|
||||
|
||||
#define SIN_1_16 FIX(0.195090322)
|
||||
#define COS_1_16 FIX(0.980785280)
|
||||
#define SIN_7_16 COS_1_16
|
||||
#define COS_7_16 SIN_1_16
|
||||
|
||||
#define SIN_3_16 FIX(0.555570233)
|
||||
#define COS_3_16 FIX(0.831469612)
|
||||
#define SIN_5_16 COS_3_16
|
||||
#define COS_5_16 SIN_3_16
|
||||
|
||||
/* OSIN_i_j is sine of i*pi/j, scaled by DCT_SCALE/OVERSCALE */
|
||||
/* OCOS_i_j is cosine of i*pi/j, scaled by DCT_SCALE/OVERSCALE */
|
||||
|
||||
#define OSIN_1_4 FIXO(0.707106781)
|
||||
#define OCOS_1_4 OSIN_1_4
|
||||
|
||||
#define OSIN_1_8 FIXO(0.382683432)
|
||||
#define OCOS_1_8 FIXO(0.923879533)
|
||||
#define OSIN_3_8 OCOS_1_8
|
||||
#define OCOS_3_8 OSIN_1_8
|
||||
|
||||
#define OSIN_1_16 FIXO(0.195090322)
|
||||
#define OCOS_1_16 FIXO(0.980785280)
|
||||
#define OSIN_7_16 OCOS_1_16
|
||||
#define OCOS_7_16 OSIN_1_16
|
||||
|
||||
#define OSIN_3_16 FIXO(0.555570233)
|
||||
#define OCOS_3_16 FIXO(0.831469612)
|
||||
#define OSIN_5_16 OCOS_3_16
|
||||
#define OCOS_5_16 OSIN_3_16
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row
|
||||
* followed by 1-D DCT on each column.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
j_fwd_dct (DCTBLOCK data)
|
||||
{
|
||||
int pass, rowctr;
|
||||
register DCTELEM *inptr, *outptr;
|
||||
DCTBLOCK workspace;
|
||||
|
||||
/* Each iteration of the inner loop performs one 8-point 1-D DCT.
|
||||
* It reads from a *row* of the input matrix and stores into a *column*
|
||||
* of the output matrix. In the first pass, we read from the data[] array
|
||||
* and store into the local workspace[]. In the second pass, we read from
|
||||
* the workspace[] array and store into data[], thus performing the
|
||||
* equivalent of a columnar DCT pass with no variable array indexing.
|
||||
*/
|
||||
|
||||
inptr = data; /* initialize pointers for first pass */
|
||||
outptr = workspace;
|
||||
for (pass = 1; pass >= 0; pass--) {
|
||||
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
||||
/* many tmps have nonoverlapping lifetime -- flashy register colourers
|
||||
* should be able to do this lot very well
|
||||
*/
|
||||
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
INT32 tmp10, tmp11, tmp12, tmp13;
|
||||
INT32 tmp14, tmp15, tmp16, tmp17;
|
||||
INT32 tmp25, tmp26;
|
||||
SHIFT_TEMPS
|
||||
|
||||
tmp0 = inptr[7] + inptr[0];
|
||||
tmp1 = inptr[6] + inptr[1];
|
||||
tmp2 = inptr[5] + inptr[2];
|
||||
tmp3 = inptr[4] + inptr[3];
|
||||
tmp4 = inptr[3] - inptr[4];
|
||||
tmp5 = inptr[2] - inptr[5];
|
||||
tmp6 = inptr[1] - inptr[6];
|
||||
tmp7 = inptr[0] - inptr[7];
|
||||
|
||||
tmp10 = tmp3 + tmp0;
|
||||
tmp11 = tmp2 + tmp1;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
|
||||
outptr[ 0] = (DCTELEM) UNFIXH((tmp10 + tmp11) * SIN_1_4);
|
||||
outptr[DCTSIZE*4] = (DCTELEM) UNFIXH((tmp10 - tmp11) * COS_1_4);
|
||||
|
||||
outptr[DCTSIZE*2] = (DCTELEM) UNFIXH(tmp13*COS_1_8 + tmp12*SIN_1_8);
|
||||
outptr[DCTSIZE*6] = (DCTELEM) UNFIXH(tmp13*SIN_1_8 - tmp12*COS_1_8);
|
||||
|
||||
tmp16 = UNFIXO((tmp6 + tmp5) * SIN_1_4);
|
||||
tmp15 = UNFIXO((tmp6 - tmp5) * COS_1_4);
|
||||
|
||||
OVERSHIFT(tmp4);
|
||||
OVERSHIFT(tmp7);
|
||||
|
||||
/* tmp4, tmp7, tmp15, tmp16 are overscaled by OVERSCALE */
|
||||
|
||||
tmp14 = tmp4 + tmp15;
|
||||
tmp25 = tmp4 - tmp15;
|
||||
tmp26 = tmp7 - tmp16;
|
||||
tmp17 = tmp7 + tmp16;
|
||||
|
||||
outptr[DCTSIZE ] = (DCTELEM) UNFIXH(tmp17*OCOS_1_16 + tmp14*OSIN_1_16);
|
||||
outptr[DCTSIZE*7] = (DCTELEM) UNFIXH(tmp17*OCOS_7_16 - tmp14*OSIN_7_16);
|
||||
outptr[DCTSIZE*5] = (DCTELEM) UNFIXH(tmp26*OCOS_5_16 + tmp25*OSIN_5_16);
|
||||
outptr[DCTSIZE*3] = (DCTELEM) UNFIXH(tmp26*OCOS_3_16 - tmp25*OSIN_3_16);
|
||||
|
||||
inptr += DCTSIZE; /* advance inptr to next row */
|
||||
outptr++; /* advance outptr to next column */
|
||||
}
|
||||
/* end of pass; in case it was pass 1, set up for pass 2 */
|
||||
inptr = workspace;
|
||||
outptr = data;
|
||||
}
|
||||
}
|
||||
241
jidctflt.c
Normal file
241
jidctflt.c
Normal file
@@ -0,0 +1,241 @@
|
||||
/*
|
||||
* jidctflt.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* IDCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
FLOAT_MULT_TYPE * quantptr;
|
||||
FAST_FLOAT * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
|
||||
inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
|
||||
inptr[DCTSIZE*7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||
wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* And testing floats for zero is relatively expensive, so we don't bother.
|
||||
*/
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = wsptr[0] + wsptr[4];
|
||||
tmp11 = wsptr[0] - wsptr[4];
|
||||
|
||||
tmp13 = wsptr[2] + wsptr[6];
|
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = wsptr[5] + wsptr[3];
|
||||
z10 = wsptr[5] - wsptr[3];
|
||||
z11 = wsptr[1] + wsptr[7];
|
||||
z12 = wsptr[1] - wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13;
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7;
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
362
jidctfst.c
Normal file
362
jidctfst.c
Normal file
@@ -0,0 +1,362 @@
|
||||
/*
|
||||
* jidctfst.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* The dequantized coefficients are not integers because the AA&N scaling
|
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||||
* so that the first and second IDCT rounds have the same input scaling.
|
||||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||||
* avoid a descaling shift; this compromises accuracy rather drastically
|
||||
* for small quantization table entries, but it saves a lot of shifts.
|
||||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
||||
* so we use a much larger scaling factor to preserve accuracy.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
||||
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
||||
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
||||
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
||||
#else
|
||||
#define FIX_1_082392200 FIX(1.082392200)
|
||||
#define FIX_1_414213562 FIX(1.414213562)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_613125930 FIX(2.613125930)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||||
* multiplication will do. For 12-bit data, the multiplier table is
|
||||
* declared INT32, so a 32-bit multiply will be used.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
||||
#else
|
||||
#define DEQUANTIZE(coef,quantval) \
|
||||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
||||
#endif
|
||||
|
||||
|
||||
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (32-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
#ifdef USE_ACCURATE_ROUNDING
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
||||
#else
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
IFAST_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS /* for DESCALE */
|
||||
ISHIFT_TEMPS /* for IDESCALE */
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
|
||||
inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
|
||||
inptr[DCTSIZE*7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
|
||||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
|
||||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
|
||||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
|
||||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
|
||||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
|
||||
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
|
||||
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
|
||||
wsptr[7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
|
||||
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
|
||||
|
||||
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
|
||||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
|
||||
- tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
|
||||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
|
||||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
|
||||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
||||
388
jidctint.c
Normal file
388
jidctint.c
Normal file
@@ -0,0 +1,388 @@
|
||||
/*
|
||||
* jidctint.c
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a slow-but-accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on an algorithm described in
|
||||
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
||||
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
||||
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
||||
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
||||
* We use their alternate method with 12 multiplies and 32 adds.
|
||||
* The advantage of this method is that no data path contains more than one
|
||||
* multiplication; this allows a very simple and accurate implementation in
|
||||
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
||||
* larger than the true IDCT outputs. The final outputs are therefore
|
||||
* a factor of N larger than desired; since N=8 this can be cured by
|
||||
* a simple right shift at the end of the algorithm. The advantage of
|
||||
* this arrangement is that we save two multiplications per 1-D IDCT,
|
||||
* because the y0 and y4 inputs need not be divided by sqrt(N).
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by CONST_SCALE and convert them to integer constants (thus retaining
|
||||
* CONST_BITS bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by CONST_SCALE, with proper
|
||||
* rounding, to produce the correct output. This division can be done
|
||||
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
||||
* as long as possible so that partial sums can be added together with
|
||||
* full fractional precision.
|
||||
*
|
||||
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
||||
* they are represented to better-than-integral precision. These outputs
|
||||
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
||||
* with the recommended scaling. (To scale up 12-bit sample data further, an
|
||||
* intermediate INT32 array would be needed.)
|
||||
*
|
||||
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
||||
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
||||
* shows that the values given below are the most effective.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
||||
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
||||
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
||||
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
||||
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
||||
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
||||
#else
|
||||
#define FIX_0_298631336 FIX(0.298631336)
|
||||
#define FIX_0_390180644 FIX(0.390180644)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_175875602 FIX(1.175875602)
|
||||
#define FIX_1_501321110 FIX(1.501321110)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_1_961570560 FIX(1.961570560)
|
||||
#define FIX_2_053119869 FIX(2.053119869)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_072711026 FIX(3.072711026)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
||||
#else
|
||||
#define MULTIPLY(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce an int result. In this module, both inputs and result
|
||||
* are 16 bits or less, so either int or short multiply will work.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
INT32 tmp0, tmp1, tmp2, tmp3;
|
||||
INT32 tmp10, tmp11, tmp12, tmp13;
|
||||
INT32 z1, z2, z3, z4, z5;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
||||
/* furthermore, we scale the results by 2**PASS1_BITS. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
|
||||
inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
|
||||
inptr[DCTSIZE*7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part: reverse the even part of the forward DCT. */
|
||||
/* The rotator is sqrt(2)*c(-6). */
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
||||
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
||||
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
|
||||
tmp0 = (z2 + z3) << CONST_BITS;
|
||||
tmp1 = (z2 - z3) << CONST_BITS;
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Odd part per figure 8; the matrix is unitary and hence its
|
||||
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
||||
*/
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
|
||||
z1 = tmp0 + tmp3;
|
||||
z2 = tmp1 + tmp2;
|
||||
z3 = tmp0 + tmp2;
|
||||
z4 = tmp1 + tmp3;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
tmp0 += z1 + z3;
|
||||
tmp1 += z2 + z4;
|
||||
tmp2 += z2 + z3;
|
||||
tmp3 += z1 + z4;
|
||||
|
||||
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
||||
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
|
||||
wsptr[7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part: reverse the even part of the forward DCT. */
|
||||
/* The rotator is sqrt(2)*c(-6). */
|
||||
|
||||
z2 = (INT32) wsptr[2];
|
||||
z3 = (INT32) wsptr[6];
|
||||
|
||||
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
||||
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
||||
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
||||
|
||||
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
|
||||
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
|
||||
|
||||
tmp10 = tmp0 + tmp3;
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Odd part per figure 8; the matrix is unitary and hence its
|
||||
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
||||
*/
|
||||
|
||||
tmp0 = (INT32) wsptr[7];
|
||||
tmp1 = (INT32) wsptr[5];
|
||||
tmp2 = (INT32) wsptr[3];
|
||||
tmp3 = (INT32) wsptr[1];
|
||||
|
||||
z1 = tmp0 + tmp3;
|
||||
z2 = tmp1 + tmp2;
|
||||
z3 = tmp0 + tmp2;
|
||||
z4 = tmp1 + tmp3;
|
||||
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
||||
|
||||
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
||||
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
||||
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
||||
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
||||
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
||||
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
||||
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
||||
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
||||
|
||||
z3 += z5;
|
||||
z4 += z5;
|
||||
|
||||
tmp0 += z1 + z3;
|
||||
tmp1 += z2 + z4;
|
||||
tmp2 += z2 + z3;
|
||||
tmp3 += z1 + z4;
|
||||
|
||||
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
|
||||
CONST_BITS+PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_ISLOW_SUPPORTED */
|
||||
397
jidctred.c
Normal file
397
jidctred.c
Normal file
@@ -0,0 +1,397 @@
|
||||
/*
|
||||
* jidctred.c
|
||||
*
|
||||
* Copyright (C) 1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains inverse-DCT routines that produce reduced-size output:
|
||||
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
|
||||
*
|
||||
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
|
||||
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
|
||||
* with an 8-to-4 step that produces the four averages of two adjacent outputs
|
||||
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
|
||||
* These steps were derived by computing the corresponding values at the end
|
||||
* of the normal LL&M code, then simplifying as much as possible.
|
||||
*
|
||||
* 1x1 is trivial: just take the DC coefficient divided by 8.
|
||||
*
|
||||
* See jidctint.c for additional comments.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling is the same as in jidctint.c. */
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 13
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 13
|
||||
#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
|
||||
#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
|
||||
#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
|
||||
#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
|
||||
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
||||
#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
|
||||
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
||||
#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
|
||||
#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
|
||||
#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
|
||||
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
||||
#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
|
||||
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
||||
#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
|
||||
#else
|
||||
#define FIX_0_211164243 FIX(0.211164243)
|
||||
#define FIX_0_509795579 FIX(0.509795579)
|
||||
#define FIX_0_601344887 FIX(0.601344887)
|
||||
#define FIX_0_720959822 FIX(0.720959822)
|
||||
#define FIX_0_765366865 FIX(0.765366865)
|
||||
#define FIX_0_850430095 FIX(0.850430095)
|
||||
#define FIX_0_899976223 FIX(0.899976223)
|
||||
#define FIX_1_061594337 FIX(1.061594337)
|
||||
#define FIX_1_272758580 FIX(1.272758580)
|
||||
#define FIX_1_451774981 FIX(1.451774981)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_172734803 FIX(2.172734803)
|
||||
#define FIX_2_562915447 FIX(2.562915447)
|
||||
#define FIX_3_624509785 FIX(3.624509785)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* For 8-bit samples with the recommended scaling, all the variable
|
||||
* and constant values involved are no more than 16 bits wide, so a
|
||||
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
||||
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
||||
#else
|
||||
#define MULTIPLY(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce an int result. In this module, both inputs and result
|
||||
* are 16 bits or less, so either int or short multiply will work.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 4x4 output block.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
INT32 tmp0, tmp2, tmp10, tmp12;
|
||||
INT32 z1, z2, z3, z4;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE*4]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
||||
/* Don't bother to process column 4, because second pass won't use it */
|
||||
if (ctr == DCTSIZE-4)
|
||||
continue;
|
||||
if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
|
||||
inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) {
|
||||
/* AC terms all zero; we need not examine term 4 for 4x4 output */
|
||||
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp0 <<= (CONST_BITS+1);
|
||||
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
|
||||
|
||||
tmp10 = tmp0 + tmp2;
|
||||
tmp12 = tmp0 - tmp2;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
||||
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
||||
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
||||
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
||||
|
||||
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
||||
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
||||
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
||||
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
|
||||
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
|
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
|
||||
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
|
||||
}
|
||||
|
||||
/* Pass 2: process 4 rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < 4; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* It's not clear whether a zero row test is worthwhile here ... */
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[5] | wsptr[6] |
|
||||
wsptr[7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
|
||||
|
||||
tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
|
||||
+ MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
|
||||
|
||||
tmp10 = tmp0 + tmp2;
|
||||
tmp12 = tmp0 - tmp2;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = (INT32) wsptr[7];
|
||||
z2 = (INT32) wsptr[5];
|
||||
z3 = (INT32) wsptr[3];
|
||||
z4 = (INT32) wsptr[1];
|
||||
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
||||
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
||||
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
||||
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
||||
|
||||
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
||||
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
||||
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
||||
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+1)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 2x2 output block.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
INT32 tmp0, tmp10, z1;
|
||||
JCOEFPTR inptr;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE*2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
||||
/* Don't bother to process columns 2,4,6 */
|
||||
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
|
||||
continue;
|
||||
if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*3] |
|
||||
inptr[DCTSIZE*5] | inptr[DCTSIZE*7]) == 0) {
|
||||
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
|
||||
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp10 = z1 << (CONST_BITS+2);
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
|
||||
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
|
||||
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
|
||||
}
|
||||
|
||||
/* Pass 2: process 2 rows from work array, store into output array. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < 2; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* It's not clear whether a zero row test is worthwhile here ... */
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if ((wsptr[1] | wsptr[3] | wsptr[5] | wsptr[7]) == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
|
||||
+ MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
|
||||
+ MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
|
||||
+ MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
||||
|
||||
/* Final output stage */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+2)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
|
||||
CONST_BITS+PASS1_BITS+3+2)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients,
|
||||
* producing a reduced-size 1x1 output block.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
int dcval;
|
||||
ISLOW_MULT_TYPE * quantptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* We hardly need an inverse DCT routine for this: just take the
|
||||
* average pixel value, which is one-eighth of the DC coefficient.
|
||||
*/
|
||||
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
||||
dcval = (int) DESCALE((INT32) dcval, 3);
|
||||
|
||||
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
|
||||
}
|
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
113
jinclude.h
113
jinclude.h
@@ -1,53 +1,72 @@
|
||||
/*
|
||||
* jinclude.h
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This is the central file that's #include'd by all the JPEG .c files.
|
||||
* Its purpose is to provide a single place to fix any problems with
|
||||
* including the wrong system include files.
|
||||
* You can edit these declarations if you use a system with nonstandard
|
||||
* system include files.
|
||||
* This file exists to provide a single place to fix any problems with
|
||||
* including the wrong system include files. (Common problems are taken
|
||||
* care of by the standard jconfig symbols, but on really weird systems
|
||||
* you may have to edit this file.)
|
||||
*
|
||||
* NOTE: this file is NOT intended to be included by applications using the
|
||||
* JPEG library. Most applications need only include jpeglib.h.
|
||||
*/
|
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */
|
||||
|
||||
#include "jconfig.h" /* auto configuration options */
|
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||
|
||||
/*
|
||||
* Normally the __STDC__ macro can be taken as indicating that the system
|
||||
* include files conform to the ANSI C standard. However, if you are running
|
||||
* GCC on a machine with non-ANSI system include files, that is not the case.
|
||||
* In that case change the following, or add -DNONANSI_INCLUDES to your CFLAGS.
|
||||
* We need the NULL macro and size_t typedef.
|
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
|
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
|
||||
* pull in <sys/types.h> as well.
|
||||
* Note that the core JPEG library does not require <stdio.h>;
|
||||
* only the default error handler and data source/destination modules do.
|
||||
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||
* You can remove those references if you want to compile without <stdio.h>.
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
#ifndef NONANSI_INCLUDES
|
||||
#define INCLUDES_ARE_ANSI /* this is what's tested before including */
|
||||
#endif
|
||||
#ifdef HAVE_STDDEF_H
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
/*
|
||||
* <stdio.h> is included to get the FILE typedef and NULL macro.
|
||||
* Note that the core portable-JPEG files do not actually do any I/O
|
||||
* using the stdio library; only the user interface, error handler,
|
||||
* and file reading/writing modules invoke any stdio functions.
|
||||
* (Well, we did cheat a bit in jmemmgr.c, but only if MEM_STATS is defined.)
|
||||
*/
|
||||
#ifdef HAVE_STDLIB_H
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* We need the size_t typedef, which defines the parameter type of malloc().
|
||||
* In an ANSI-conforming implementation this is provided by <stdio.h>,
|
||||
* but on non-ANSI systems it's more likely to be in <sys/types.h>.
|
||||
* On some not-quite-ANSI systems you may find it in <stddef.h>.
|
||||
* We need memory copying and zeroing functions, plus strncpy().
|
||||
* ANSI and System V implementations declare these in <string.h>.
|
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||
* Some systems may declare memset and memcpy in <memory.h>.
|
||||
*
|
||||
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||
* Change the casts in these macros if not!
|
||||
*/
|
||||
|
||||
#ifndef INCLUDES_ARE_ANSI /* shouldn't need this if ANSI C */
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
#ifdef __SASC /* Amiga SAS C provides it in stddef.h. */
|
||||
#include <stddef.h>
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
|
||||
#include <strings.h>
|
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
|
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */
|
||||
|
||||
#include <string.h>
|
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
@@ -58,12 +77,11 @@
|
||||
* we always use this SIZEOF() macro in place of using sizeof() directly.
|
||||
*/
|
||||
|
||||
#undef SIZEOF /* in case you included X11/xmd.h */
|
||||
#define SIZEOF(object) ((size_t) sizeof(object))
|
||||
|
||||
/*
|
||||
* fread() and fwrite() are always invoked through these macros.
|
||||
* On some systems you may need to twiddle the argument casts.
|
||||
* The modules that use fread() and fwrite() always invoke them through
|
||||
* these macros. On some systems you may need to twiddle the argument casts.
|
||||
* CAUTION: argument order is different from underlying functions!
|
||||
*/
|
||||
|
||||
@@ -71,32 +89,3 @@
|
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
#define JFWRITE(file,buf,sizeofbuf) \
|
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
|
||||
/*
|
||||
* We need the memcpy() and strcmp() functions, plus memory zeroing.
|
||||
* ANSI and System V implementations declare these in <string.h>.
|
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||
* Insert casts in these macros if not!
|
||||
*/
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <string.h>
|
||||
#define MEMZERO(voidptr,size) memset((voidptr), 0, (size))
|
||||
#else /* not ANSI */
|
||||
#ifdef BSD
|
||||
#include <strings.h>
|
||||
#define MEMZERO(voidptr,size) bzero((voidptr), (size))
|
||||
#define memcpy(dest,src,size) bcopy((src), (dest), (size))
|
||||
#else /* not BSD, assume Sys V or compatible */
|
||||
#include <string.h>
|
||||
#define MEMZERO(voidptr,size) memset((voidptr), 0, (size))
|
||||
#endif /* BSD */
|
||||
#endif /* ANSI */
|
||||
|
||||
|
||||
/* Now include the portable JPEG definition files. */
|
||||
|
||||
#include "jconfig.h"
|
||||
|
||||
#include "jpegdata.h"
|
||||
|
||||
88
jmemansi.c
88
jmemansi.c
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
* jmemansi.c (jmemsys.c)
|
||||
* jmemansi.c
|
||||
*
|
||||
* Copyright (C) 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1992-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
@@ -12,14 +12,14 @@
|
||||
* is shoved onto the user.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jmemsys.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare malloc(), free() */
|
||||
#else
|
||||
extern void * malloc PP((size_t size));
|
||||
extern void free PP((void *ptr));
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
|
||||
@@ -27,34 +27,43 @@ extern void free PP((void *ptr));
|
||||
#endif
|
||||
|
||||
|
||||
static external_methods_ptr methods; /* saved for access to error_exit */
|
||||
|
||||
static long total_used; /* total memory requested so far */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL void *
|
||||
jget_small (size_t sizeofobject)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
total_used += sizeofobject;
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jfree_small (void * object)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* We assume NEED_FAR_POINTERS is not defined and so the separate entry points
|
||||
* jget_large, jfree_large are not needed.
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL void FAR *
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
@@ -69,46 +78,49 @@ jfree_small (void * object)
|
||||
#endif
|
||||
|
||||
GLOBAL long
|
||||
jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return methods->max_memory_to_use - total_used;
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jmem_available is less than the total space needed. You can dispense
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
read_backing_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(methods, "fseek failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFREAD(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(methods, "fread failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
write_backing_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(methods, "fseek failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(methods, "fwrite failed on temporary file --- out of disk space?");
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
close_backing_store (backing_store_ptr info)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
fclose(info->temp_file);
|
||||
/* Since this implementation uses tmpfile() to create the file,
|
||||
@@ -121,15 +133,16 @@ close_backing_store (backing_store_ptr info)
|
||||
* Initial opening of a backing-store object.
|
||||
*
|
||||
* This version uses tmpfile(), which constructs a suitable file name
|
||||
* behind the scenes. We don't have to use temp_name[] at all;
|
||||
* behind the scenes. We don't have to use info->temp_name[] at all;
|
||||
* indeed, we can't even find out the actual name of the temp file.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jopen_backing_store (backing_store_ptr info, long total_bytes_needed)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
if ((info->temp_file = tmpfile()) == NULL)
|
||||
ERREXIT(methods, "Failed to create temporary file");
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "");
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
@@ -138,20 +151,17 @@ jopen_backing_store (backing_store_ptr info, long total_bytes_needed)
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Keep in mind that jmem_term may be called more than
|
||||
* once.
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jmem_init (external_methods_ptr emethods)
|
||||
GLOBAL long
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
methods = emethods; /* save struct addr for error exit access */
|
||||
emethods->max_memory_to_use = DEFAULT_MAX_MEM;
|
||||
total_used = 0;
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jmem_term (void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
|
||||
264
jmemdos.c
264
jmemdos.c
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
* jmemdos.c (jmemsys.c)
|
||||
* jmemdos.c
|
||||
*
|
||||
* Copyright (C) 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1992-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
@@ -13,6 +13,8 @@
|
||||
* if you compile in a small-data memory model; it should NOT be defined if
|
||||
* you use a large-data memory model. This file is not recommended if you
|
||||
* are using a flat-memory-space 386 environment such as DJGCC or Watcom C.
|
||||
* Also, this code will NOT work if struct fields are aligned on greater than
|
||||
* 2-byte boundaries.
|
||||
*
|
||||
* Based on code contributed by Ge' Weijers.
|
||||
*/
|
||||
@@ -37,14 +39,15 @@
|
||||
#endif
|
||||
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jmemsys.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare malloc(), free() */
|
||||
#else
|
||||
extern void * malloc PP((size_t size));
|
||||
extern void free PP((void *ptr));
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare these */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
extern char * getenv JPP((const char * name));
|
||||
#endif
|
||||
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
@@ -61,7 +64,12 @@ extern void free PP((void *ptr));
|
||||
#define far_free(x) _ffree(x)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#else /* not NEED_FAR_POINTERS */
|
||||
|
||||
#define far_malloc(x) malloc(x)
|
||||
#define far_free(x) free(x)
|
||||
|
||||
#endif /* NEED_FAR_POINTERS */
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
@@ -69,6 +77,10 @@ extern void free PP((void *ptr));
|
||||
#define READ_BINARY "rb"
|
||||
#endif
|
||||
|
||||
#if MAX_ALLOC_CHUNK >= 65535L /* make sure jconfig.h got this right */
|
||||
MAX_ALLOC_CHUNK should be less than 64K. /* deliberate syntax error */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Declarations for assembly-language support routines (see jmemdosa.asm).
|
||||
@@ -88,22 +100,17 @@ typedef struct { /* registers for calling EMS driver */
|
||||
void far * ds_si;
|
||||
} EMScontext;
|
||||
|
||||
EXTERN short far jdos_open PP((short far * handle, char far * filename));
|
||||
EXTERN short far jdos_close PP((short handle));
|
||||
EXTERN short far jdos_seek PP((short handle, long offset));
|
||||
EXTERN short far jdos_read PP((short handle, void far * buffer,
|
||||
unsigned short count));
|
||||
EXTERN short far jdos_write PP((short handle, void far * buffer,
|
||||
EXTERN short far jdos_open JPP((short far * handle, char far * filename));
|
||||
EXTERN short far jdos_close JPP((short handle));
|
||||
EXTERN short far jdos_seek JPP((short handle, long offset));
|
||||
EXTERN short far jdos_read JPP((short handle, void far * buffer,
|
||||
unsigned short count));
|
||||
EXTERN void far jxms_getdriver PP((XMSDRIVER far *));
|
||||
EXTERN void far jxms_calldriver PP((XMSDRIVER, XMScontext far *));
|
||||
EXTERN short far jems_available PP((void));
|
||||
EXTERN void far jems_calldriver PP((EMScontext far *));
|
||||
|
||||
|
||||
static external_methods_ptr methods; /* saved for access to error_exit */
|
||||
|
||||
static long total_used; /* total FAR memory requested so far */
|
||||
EXTERN short far jdos_write JPP((short handle, void far * buffer,
|
||||
unsigned short count));
|
||||
EXTERN void far jxms_getdriver JPP((XMSDRIVER far *));
|
||||
EXTERN void far jxms_calldriver JPP((XMSDRIVER, XMScontext far *));
|
||||
EXTERN short far jems_available JPP((void));
|
||||
EXTERN void far jems_calldriver JPP((EMScontext far *));
|
||||
|
||||
|
||||
/*
|
||||
@@ -152,43 +159,34 @@ select_file_name (char * fname)
|
||||
*/
|
||||
|
||||
GLOBAL void *
|
||||
jget_small (size_t sizeofobject)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
/* near data space is NOT counted in total_used */
|
||||
#ifndef NEED_FAR_POINTERS
|
||||
total_used += sizeofobject;
|
||||
#endif
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jfree_small (void * object)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Far-memory allocation and freeing
|
||||
* "Large" objects are allocated in far memory, if possible
|
||||
*/
|
||||
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
|
||||
GLOBAL void FAR *
|
||||
jget_large (size_t sizeofobject)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
total_used += sizeofobject;
|
||||
return (void FAR *) far_malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jfree_large (void FAR * object)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
far_free(object);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
@@ -203,16 +201,17 @@ jfree_large (void FAR * object)
|
||||
#endif
|
||||
|
||||
GLOBAL long
|
||||
jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return methods->max_memory_to_use - total_used;
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jmem_available is less than the total space needed. You can dispense
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
@@ -225,8 +224,9 @@ jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
* 2. Extended memory, accessed per the XMS V2.0 specification.
|
||||
* 3. Expanded memory, accessed per the LIM/EMS 4.0 specification.
|
||||
* You'll need copies of those specs to make sense of the related code.
|
||||
* The specs are available by Internet FTP from SIMTEL20 and its various
|
||||
* mirror sites; see microsoft/xms20.arc and info/limems41.zip.
|
||||
* The specs are available by Internet FTP from the SIMTEL archives
|
||||
* (oak.oakland.edu and its various mirror sites). See files
|
||||
* pub/msdos/microsoft/xms20.arc and pub/msdos/info/limems41.zip.
|
||||
*/
|
||||
|
||||
|
||||
@@ -236,37 +236,39 @@ jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
|
||||
|
||||
METHODDEF void
|
||||
read_file_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
read_file_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (jdos_seek(info->handle.file_handle, file_offset))
|
||||
ERREXIT(methods, "seek failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
/* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
|
||||
if (byte_count > 65535L) /* safety check */
|
||||
ERREXIT(methods, "MAX_ALLOC_CHUNK should be less than 64K");
|
||||
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
|
||||
if (jdos_read(info->handle.file_handle, buffer_address,
|
||||
(unsigned short) byte_count))
|
||||
ERREXIT(methods, "read failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
write_file_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
write_file_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (jdos_seek(info->handle.file_handle, file_offset))
|
||||
ERREXIT(methods, "seek failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
/* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
|
||||
if (byte_count > 65535L) /* safety check */
|
||||
ERREXIT(methods, "MAX_ALLOC_CHUNK should be less than 64K");
|
||||
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
|
||||
if (jdos_write(info->handle.file_handle, buffer_address,
|
||||
(unsigned short) byte_count))
|
||||
ERREXIT(methods, "write failed on temporary file --- out of disk space?");
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
close_file_store (backing_store_ptr info)
|
||||
close_file_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
jdos_close(info->handle.file_handle); /* close the file */
|
||||
remove(info->temp_name); /* delete the file */
|
||||
@@ -274,26 +276,27 @@ close_file_store (backing_store_ptr info)
|
||||
* remove() is the ANSI-standard name for this function, but
|
||||
* unlink() was more common in pre-ANSI systems.
|
||||
*/
|
||||
TRACEMS1(methods, 1, "Closed DOS file %d", info->handle.file_handle);
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
LOCAL boolean
|
||||
open_file_store (backing_store_ptr info, long total_bytes_needed)
|
||||
open_file_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
short handle;
|
||||
char tracemsg[TEMP_NAME_LENGTH+40];
|
||||
|
||||
select_file_name(info->temp_name);
|
||||
if (jdos_open((short far *) & handle, (char far *) info->temp_name))
|
||||
if (jdos_open((short far *) & handle, (char far *) info->temp_name)) {
|
||||
/* might as well exit since jpeg_open_backing_store will fail anyway */
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
return FALSE;
|
||||
}
|
||||
info->handle.file_handle = handle;
|
||||
info->read_backing_store = read_file_store;
|
||||
info->write_backing_store = write_file_store;
|
||||
info->close_backing_store = close_file_store;
|
||||
/* hack to get around TRACEMS' inability to handle string parameters */
|
||||
sprintf(tracemsg, "Opened DOS file %d %s", handle, info->temp_name);
|
||||
TRACEMS(methods, 1, tracemsg);
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
|
||||
return TRUE; /* succeeded */
|
||||
}
|
||||
|
||||
@@ -323,7 +326,8 @@ typedef struct { /* XMS move specification structure */
|
||||
|
||||
|
||||
METHODDEF void
|
||||
read_xms_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
read_xms_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
XMScontext ctx;
|
||||
@@ -344,10 +348,10 @@ read_xms_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
ctx.ax = 0x0b00; /* EMB move */
|
||||
jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
|
||||
if (ctx.ax != 1)
|
||||
ERREXIT(methods, "read from extended memory failed");
|
||||
ERREXIT(cinfo, JERR_XMS_READ);
|
||||
|
||||
if (ODD(byte_count)) {
|
||||
read_xms_store(info, (void FAR *) endbuffer,
|
||||
read_xms_store(cinfo, info, (void FAR *) endbuffer,
|
||||
file_offset + byte_count - 1L, 2L);
|
||||
((char FAR *) buffer_address)[byte_count - 1L] = endbuffer[0];
|
||||
}
|
||||
@@ -355,7 +359,8 @@ read_xms_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
|
||||
|
||||
METHODDEF void
|
||||
write_xms_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
write_xms_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
XMScontext ctx;
|
||||
@@ -376,33 +381,34 @@ write_xms_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
ctx.ax = 0x0b00; /* EMB move */
|
||||
jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
|
||||
if (ctx.ax != 1)
|
||||
ERREXIT(methods, "write to extended memory failed");
|
||||
ERREXIT(cinfo, JERR_XMS_WRITE);
|
||||
|
||||
if (ODD(byte_count)) {
|
||||
read_xms_store(info, (void FAR *) endbuffer,
|
||||
read_xms_store(cinfo, info, (void FAR *) endbuffer,
|
||||
file_offset + byte_count - 1L, 2L);
|
||||
endbuffer[0] = ((char FAR *) buffer_address)[byte_count - 1L];
|
||||
write_xms_store(info, (void FAR *) endbuffer,
|
||||
write_xms_store(cinfo, info, (void FAR *) endbuffer,
|
||||
file_offset + byte_count - 1L, 2L);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
close_xms_store (backing_store_ptr info)
|
||||
close_xms_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
XMScontext ctx;
|
||||
|
||||
ctx.dx = info->handle.xms_handle;
|
||||
ctx.ax = 0x0a00;
|
||||
jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
|
||||
TRACEMS1(methods, 1, "Freed XMS handle %u", info->handle.xms_handle);
|
||||
TRACEMS1(cinfo, 1, JTRC_XMS_CLOSE, info->handle.xms_handle);
|
||||
/* we ignore any error return from the driver */
|
||||
}
|
||||
|
||||
|
||||
LOCAL boolean
|
||||
open_xms_store (backing_store_ptr info, long total_bytes_needed)
|
||||
open_xms_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
XMScontext ctx;
|
||||
|
||||
@@ -429,7 +435,7 @@ open_xms_store (backing_store_ptr info, long total_bytes_needed)
|
||||
info->read_backing_store = read_xms_store;
|
||||
info->write_backing_store = write_xms_store;
|
||||
info->close_backing_store = close_xms_store;
|
||||
TRACEMS1(methods, 1, "Obtained XMS handle %u", ctx.dx);
|
||||
TRACEMS1(cinfo, 1, JTRC_XMS_OPEN, ctx.dx);
|
||||
return TRUE; /* succeeded */
|
||||
}
|
||||
|
||||
@@ -442,21 +448,35 @@ open_xms_store (backing_store_ptr info, long total_bytes_needed)
|
||||
|
||||
#if EMS_SUPPORTED
|
||||
|
||||
typedef union { /* either offset/page or real-mode pointer */
|
||||
struct { unsigned short offset, page; } ems;
|
||||
void far * ptr;
|
||||
} EMSPTR;
|
||||
/* The EMS move specification structure requires word and long fields aligned
|
||||
* at odd byte boundaries. Some compilers will align struct fields at even
|
||||
* byte boundaries. While it's usually possible to force byte alignment,
|
||||
* that causes an overall performance penalty and may pose problems in merging
|
||||
* JPEG into a larger application. Instead we accept some rather dirty code
|
||||
* here. Note this code would fail if the hardware did not allow odd-byte
|
||||
* word & long accesses, but all 80x86 CPUs do.
|
||||
*/
|
||||
|
||||
typedef struct { /* EMS move specification structure */
|
||||
long length;
|
||||
char src_type; /* 1 = EMS, 0 = conventional memory */
|
||||
EMSH src_handle; /* use 0 if conventional memory */
|
||||
EMSPTR src;
|
||||
char dst_type;
|
||||
EMSH dst_handle;
|
||||
EMSPTR dst;
|
||||
typedef void far * EMSPTR;
|
||||
|
||||
typedef union { /* EMS move specification structure */
|
||||
long length; /* It's easy to access first 4 bytes */
|
||||
char bytes[18]; /* Misaligned fields in here! */
|
||||
} EMSspec;
|
||||
|
||||
/* Macros for accessing misaligned fields */
|
||||
#define FIELD_AT(spec,offset,type) (*((type *) &(spec.bytes[offset])))
|
||||
#define SRC_TYPE(spec) FIELD_AT(spec,4,char)
|
||||
#define SRC_HANDLE(spec) FIELD_AT(spec,5,EMSH)
|
||||
#define SRC_OFFSET(spec) FIELD_AT(spec,7,unsigned short)
|
||||
#define SRC_PAGE(spec) FIELD_AT(spec,9,unsigned short)
|
||||
#define SRC_PTR(spec) FIELD_AT(spec,7,EMSPTR)
|
||||
#define DST_TYPE(spec) FIELD_AT(spec,11,char)
|
||||
#define DST_HANDLE(spec) FIELD_AT(spec,12,EMSH)
|
||||
#define DST_OFFSET(spec) FIELD_AT(spec,14,unsigned short)
|
||||
#define DST_PAGE(spec) FIELD_AT(spec,16,unsigned short)
|
||||
#define DST_PTR(spec) FIELD_AT(spec,14,EMSPTR)
|
||||
|
||||
#define EMSPAGESIZE 16384L /* gospel, see the EMS specs */
|
||||
|
||||
#define HIBYTE(W) (((W) >> 8) & 0xFF)
|
||||
@@ -464,68 +484,71 @@ typedef struct { /* EMS move specification structure */
|
||||
|
||||
|
||||
METHODDEF void
|
||||
read_ems_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
read_ems_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
EMScontext ctx;
|
||||
EMSspec spec;
|
||||
|
||||
spec.length = byte_count;
|
||||
spec.src_type = 1;
|
||||
spec.src_handle = info->handle.ems_handle;
|
||||
spec.src.ems.page = (unsigned short) (file_offset / EMSPAGESIZE);
|
||||
spec.src.ems.offset = (unsigned short) (file_offset % EMSPAGESIZE);
|
||||
spec.dst_type = 0;
|
||||
spec.dst_handle = 0;
|
||||
spec.dst.ptr = buffer_address;
|
||||
SRC_TYPE(spec) = 1;
|
||||
SRC_HANDLE(spec) = info->handle.ems_handle;
|
||||
SRC_PAGE(spec) = (unsigned short) (file_offset / EMSPAGESIZE);
|
||||
SRC_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
|
||||
DST_TYPE(spec) = 0;
|
||||
DST_HANDLE(spec) = 0;
|
||||
DST_PTR(spec) = buffer_address;
|
||||
|
||||
ctx.ds_si = (void far *) & spec;
|
||||
ctx.ax = 0x5700; /* move memory region */
|
||||
jems_calldriver((EMScontext far *) & ctx);
|
||||
if (HIBYTE(ctx.ax) != 0)
|
||||
ERREXIT(methods, "read from expanded memory failed");
|
||||
ERREXIT(cinfo, JERR_EMS_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
write_ems_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
write_ems_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
EMScontext ctx;
|
||||
EMSspec spec;
|
||||
|
||||
spec.length = byte_count;
|
||||
spec.src_type = 0;
|
||||
spec.src_handle = 0;
|
||||
spec.src.ptr = buffer_address;
|
||||
spec.dst_type = 1;
|
||||
spec.dst_handle = info->handle.ems_handle;
|
||||
spec.dst.ems.page = (unsigned short) (file_offset / EMSPAGESIZE);
|
||||
spec.dst.ems.offset = (unsigned short) (file_offset % EMSPAGESIZE);
|
||||
SRC_TYPE(spec) = 0;
|
||||
SRC_HANDLE(spec) = 0;
|
||||
SRC_PTR(spec) = buffer_address;
|
||||
DST_TYPE(spec) = 1;
|
||||
DST_HANDLE(spec) = info->handle.ems_handle;
|
||||
DST_PAGE(spec) = (unsigned short) (file_offset / EMSPAGESIZE);
|
||||
DST_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
|
||||
|
||||
ctx.ds_si = (void far *) & spec;
|
||||
ctx.ax = 0x5700; /* move memory region */
|
||||
jems_calldriver((EMScontext far *) & ctx);
|
||||
if (HIBYTE(ctx.ax) != 0)
|
||||
ERREXIT(methods, "write to expanded memory failed");
|
||||
ERREXIT(cinfo, JERR_EMS_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
close_ems_store (backing_store_ptr info)
|
||||
close_ems_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
EMScontext ctx;
|
||||
|
||||
ctx.ax = 0x4500;
|
||||
ctx.dx = info->handle.ems_handle;
|
||||
jems_calldriver((EMScontext far *) & ctx);
|
||||
TRACEMS1(methods, 1, "Freed EMS handle %u", info->handle.ems_handle);
|
||||
TRACEMS1(cinfo, 1, JTRC_EMS_CLOSE, info->handle.ems_handle);
|
||||
/* we ignore any error return from the driver */
|
||||
}
|
||||
|
||||
|
||||
LOCAL boolean
|
||||
open_ems_store (backing_store_ptr info, long total_bytes_needed)
|
||||
open_ems_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
EMScontext ctx;
|
||||
|
||||
@@ -557,7 +580,7 @@ open_ems_store (backing_store_ptr info, long total_bytes_needed)
|
||||
info->read_backing_store = read_ems_store;
|
||||
info->write_backing_store = write_ems_store;
|
||||
info->close_backing_store = close_ems_store;
|
||||
TRACEMS1(methods, 1, "Obtained EMS handle %u", ctx.dx);
|
||||
TRACEMS1(cinfo, 1, JTRC_EMS_OPEN, ctx.dx);
|
||||
return TRUE; /* succeeded */
|
||||
}
|
||||
|
||||
@@ -569,40 +592,43 @@ open_ems_store (backing_store_ptr info, long total_bytes_needed)
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jopen_backing_store (backing_store_ptr info, long total_bytes_needed)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
/* Try extended memory, then expanded memory, then regular file. */
|
||||
#if XMS_SUPPORTED
|
||||
if (open_xms_store(info, total_bytes_needed))
|
||||
if (open_xms_store(cinfo, info, total_bytes_needed))
|
||||
return;
|
||||
#endif
|
||||
#if EMS_SUPPORTED
|
||||
if (open_ems_store(info, total_bytes_needed))
|
||||
if (open_ems_store(cinfo, info, total_bytes_needed))
|
||||
return;
|
||||
#endif
|
||||
if (open_file_store(info, total_bytes_needed))
|
||||
if (open_file_store(cinfo, info, total_bytes_needed))
|
||||
return;
|
||||
ERREXIT(methods, "Failed to create temporary file");
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Keep in mind that jmem_term may be called more than
|
||||
* once.
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jmem_init (external_methods_ptr emethods)
|
||||
GLOBAL long
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
methods = emethods; /* save struct addr for error exit access */
|
||||
emethods->max_memory_to_use = DEFAULT_MAX_MEM;
|
||||
total_used = 0;
|
||||
next_file_num = 0;
|
||||
next_file_num = 0; /* initialize temp file name generator */
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jmem_term (void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
/* Microsoft C, at least in v6.00A, will not successfully reclaim freed
|
||||
* blocks of size > 32Kbytes unless we give it a kick in the rear, like so:
|
||||
*/
|
||||
#ifdef NEED_FHEAPMIN
|
||||
_fheapmin();
|
||||
#endif
|
||||
}
|
||||
|
||||
135
jmemdos.h
135
jmemdos.h
@@ -1,135 +0,0 @@
|
||||
/*
|
||||
* jmemdos.h (jmemsys.h)
|
||||
*
|
||||
* Copyright (C) 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file defines the interface between the system-independent
|
||||
* and system-dependent portions of the JPEG memory manager. (The system-
|
||||
* independent portion is jmemmgr.c; there are several different versions
|
||||
* of the system-dependent portion, and of this file for that matter.)
|
||||
*
|
||||
* This version is suitable for MS-DOS (80x86) implementations.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of
|
||||
* memory (typically the total amount requested through jget_small is
|
||||
* no more than 20Kb or so). Behavior should be the same as for the
|
||||
* standard library functions malloc and free; in particular, jget_small
|
||||
* returns NULL on failure. On most systems, these ARE malloc and free.
|
||||
* On an 80x86 machine using small-data memory model, these manage near heap.
|
||||
*/
|
||||
|
||||
EXTERN void * jget_small PP((size_t sizeofobject));
|
||||
EXTERN void jfree_small PP((void * object));
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of
|
||||
* memory (up to the total free space designated by jmem_available).
|
||||
* The interface is the same as above, except that on an 80x86 machine,
|
||||
* far pointers are used. On other systems these ARE the same as above.
|
||||
*/
|
||||
|
||||
#ifdef NEED_FAR_POINTERS /* typically not needed except on 80x86 */
|
||||
EXTERN void FAR * jget_large PP((size_t sizeofobject));
|
||||
EXTERN void jfree_large PP((void FAR * object));
|
||||
#else
|
||||
#define jget_large(sizeofobject) jget_small(sizeofobject)
|
||||
#define jfree_large(object) jfree_small(object)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||
* be requested in a single call on jget_large (and jget_small for that
|
||||
* matter, but that case should never come into play). This macro is needed
|
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||
* On machines with flat address spaces, any large constant may be used here.
|
||||
*/
|
||||
|
||||
#define MAX_ALLOC_CHUNK 65400L
|
||||
|
||||
/*
|
||||
* This routine computes the total space available for allocation by
|
||||
* jget_large. If more space than this is needed, backing store will be used.
|
||||
* NOTE: any memory already allocated must not be counted.
|
||||
*
|
||||
* There is a minimum space requirement, corresponding to the minimum
|
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||
* jmem_available returns zero. The maximum space needed, enough to hold
|
||||
* all working storage in memory, is also passed in case it is useful.
|
||||
*
|
||||
* It is OK for jmem_available to underestimate the space available (that'll
|
||||
* just lead to more backing-store access than is really necessary).
|
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||
* a slop factor from the true available space, especially if jget_small space
|
||||
* comes from the same pool. 5% should be enough.
|
||||
*
|
||||
* On machines with lots of virtual memory, any large constant may be returned.
|
||||
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||
*/
|
||||
|
||||
EXTERN long jmem_available PP((long min_bytes_needed, long max_bytes_needed));
|
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single
|
||||
* backing-store object. The read/write/close method pointers are called
|
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields
|
||||
* are private to the system-dependent backing store routines.
|
||||
*/
|
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */
|
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */
|
||||
|
||||
typedef union {
|
||||
short file_handle; /* DOS file handle if it's a temp file */
|
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */
|
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */
|
||||
} handle_union;
|
||||
|
||||
typedef struct backing_store_struct * backing_store_ptr;
|
||||
|
||||
typedef struct backing_store_struct {
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
METHOD(void, read_backing_store, (backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
METHOD(void, write_backing_store, (backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
METHOD(void, close_backing_store, (backing_store_ptr info));
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
/* For the MS-DOS environment, we need: */
|
||||
handle_union handle; /* reference to backing-store storage object */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
} backing_store_info;
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the
|
||||
* read/write/close pointers in the object. The read/write routines
|
||||
* may take an error exit if the specified maximum file size is exceeded.
|
||||
* (If jmem_available always returns a large value, this routine can just
|
||||
* take an error exit.)
|
||||
*/
|
||||
|
||||
EXTERN void jopen_backing_store PP((backing_store_ptr info,
|
||||
long total_bytes_needed));
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. The system methods struct address should be saved
|
||||
* by jmem_init in case an error exit must be taken. jmem_term may assume
|
||||
* that all requested memory has been freed and that all opened backing-
|
||||
* store objects have been closed.
|
||||
* NB: jmem_term may be called more than once, and must behave reasonably
|
||||
* if that happens.
|
||||
*/
|
||||
|
||||
EXTERN void jmem_init PP((external_methods_ptr emethods));
|
||||
EXTERN void jmem_term PP((void));
|
||||
122
jmemname.c
122
jmemname.c
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
* jmemname.c (jmemsys.c)
|
||||
* jmemname.c
|
||||
*
|
||||
* Copyright (C) 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1992-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
@@ -12,14 +12,14 @@
|
||||
* is shoved onto the user.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jmemsys.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare malloc(), free() */
|
||||
#else
|
||||
extern void * malloc PP((size_t size));
|
||||
extern void free PP((void *ptr));
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
|
||||
@@ -35,11 +35,6 @@ extern void free PP((void *ptr));
|
||||
#endif
|
||||
|
||||
|
||||
static external_methods_ptr methods; /* saved for access to error_exit */
|
||||
|
||||
static long total_used; /* total memory requested so far */
|
||||
|
||||
|
||||
/*
|
||||
* Selection of a file name for a temporary file.
|
||||
* This is system-dependent!
|
||||
@@ -50,14 +45,7 @@ static long total_used; /* total memory requested so far */
|
||||
* The default value is /usr/tmp, which is the conventional place for
|
||||
* creating large temp files on Unix. On other systems you'll probably
|
||||
* want to change the file location. You can do this by editing the
|
||||
* #define, or by defining TEMP_DIRECTORY in CFLAGS in the Makefile.
|
||||
* For example, you might say
|
||||
* CFLAGS= ... '-DTEMP_DIRECTORY="/tmp/"'
|
||||
* Note that double quotes are needed in the text of the macro.
|
||||
* With most make systems you have to put single quotes around the
|
||||
* -D construct to preserve the double quotes.
|
||||
* (Amiga SAS C has trouble with ":" and such in command-line options,
|
||||
* so we've put in a special case for the preferred Amiga temp directory.)
|
||||
* #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h.
|
||||
*
|
||||
* 2. If you need to change the file name as well as its location,
|
||||
* you can override the TEMP_FILE_NAME macro. (Note that this is
|
||||
@@ -68,23 +56,19 @@ static long total_used; /* total memory requested so far */
|
||||
* simultaneously won't select the same file names. If your system
|
||||
* doesn't have mktemp(), define NO_MKTEMP to do it the hard way.
|
||||
*
|
||||
* 4. You probably want to define NEED_SIGNAL_CATCHER so that jcmain/jdmain
|
||||
* 4. You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c
|
||||
* will cause the temp files to be removed if you stop the program early.
|
||||
*/
|
||||
|
||||
#ifndef TEMP_DIRECTORY /* so can override from Makefile */
|
||||
#ifdef AMIGA
|
||||
#define TEMP_DIRECTORY "JPEGTMP:" /* recommended setting for Amiga */
|
||||
#else
|
||||
#ifndef TEMP_DIRECTORY /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_DIRECTORY "/usr/tmp/" /* recommended setting for Unix */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static int next_file_num; /* to distinguish among several temp files */
|
||||
|
||||
#ifdef NO_MKTEMP
|
||||
|
||||
#ifndef TEMP_FILE_NAME /* so can override from Makefile */
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "%sJPG%03d.TMP"
|
||||
#endif
|
||||
|
||||
@@ -106,7 +90,7 @@ select_file_name (char * fname)
|
||||
#else /* ! NO_MKTEMP */
|
||||
|
||||
/* Note that mktemp() requires the initial filename to end in six X's */
|
||||
#ifndef TEMP_FILE_NAME /* so can override from Makefile */
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "%sJPG%dXXXXXX"
|
||||
#endif
|
||||
|
||||
@@ -128,23 +112,37 @@ select_file_name (char * fname)
|
||||
*/
|
||||
|
||||
GLOBAL void *
|
||||
jget_small (size_t sizeofobject)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
total_used += sizeofobject;
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jfree_small (void * object)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* We assume NEED_FAR_POINTERS is not defined and so the separate entry points
|
||||
* jget_large, jfree_large are not needed.
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL void FAR *
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
@@ -159,46 +157,49 @@ jfree_small (void * object)
|
||||
#endif
|
||||
|
||||
GLOBAL long
|
||||
jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return methods->max_memory_to_use - total_used;
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jmem_available is less than the total space needed. You can dispense
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
read_backing_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(methods, "fseek failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFREAD(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(methods, "fread failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
write_backing_store (backing_store_ptr info, void FAR * buffer_address,
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(methods, "fseek failed on temporary file");
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(methods, "fwrite failed on temporary file --- out of disk space?");
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
close_backing_store (backing_store_ptr info)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
fclose(info->temp_file); /* close the file */
|
||||
unlink(info->temp_name); /* delete the file */
|
||||
@@ -206,43 +207,42 @@ close_backing_store (backing_store_ptr info)
|
||||
* remove() is the ANSI-standard name for this function, but if
|
||||
* your system was ANSI you'd be using jmemansi.c, right?
|
||||
*/
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL void
|
||||
jopen_backing_store (backing_store_ptr info, long total_bytes_needed)
|
||||
{
|
||||
char tracemsg[TEMP_NAME_LENGTH+40];
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
select_file_name(info->temp_name);
|
||||
if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL)
|
||||
ERREXIT(methods, "Failed to create temporary file");
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
/* hack to get around TRACEMS' inability to handle string parameters */
|
||||
sprintf(tracemsg, "Using temp file %s", info->temp_name);
|
||||
TRACEMS(methods, 1, tracemsg);
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Keep in mind that jmem_term may be called more than
|
||||
* once.
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jmem_init (external_methods_ptr emethods)
|
||||
GLOBAL long
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
methods = emethods; /* save struct addr for error exit access */
|
||||
emethods->max_memory_to_use = DEFAULT_MAX_MEM;
|
||||
total_used = 0;
|
||||
next_file_num = 0;
|
||||
next_file_num = 0; /* initialize temp file name generator */
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jmem_term (void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
|
||||
65
jmemnobs.c
65
jmemnobs.c
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
* jmemnobs.c (jmemsys.c)
|
||||
* jmemnobs.c
|
||||
*
|
||||
* Copyright (C) 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1992-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
@@ -15,42 +15,54 @@
|
||||
* Note that the max_memory_to_use option is ignored by this implementation.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jmemsys.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifdef INCLUDES_ARE_ANSI
|
||||
#include <stdlib.h> /* to declare malloc(), free() */
|
||||
#else
|
||||
extern void * malloc PP((size_t size));
|
||||
extern void free PP((void *ptr));
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
|
||||
static external_methods_ptr methods; /* saved for access to error_exit */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL void *
|
||||
jget_small (size_t sizeofobject)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jfree_small (void * object)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* We assume NEED_FAR_POINTERS is not defined and so the separate entry points
|
||||
* jget_large, jfree_large are not needed.
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL void FAR *
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
@@ -58,7 +70,8 @@ jfree_small (void * object)
|
||||
*/
|
||||
|
||||
GLOBAL long
|
||||
jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return max_bytes_needed;
|
||||
}
|
||||
@@ -66,31 +79,31 @@ jmem_available (long min_bytes_needed, long max_bytes_needed)
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* This should never be called and we just error out.
|
||||
* Since jpeg_mem_available always promised the moon,
|
||||
* this should never be called and we can just error out.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jopen_backing_store (backing_store_ptr info, long total_bytes_needed)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
ERREXIT(methods, "Backing store not supported");
|
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Keep in mind that jmem_term may be called more than
|
||||
* once.
|
||||
* cleanup required. Here, there isn't any.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jmem_init (external_methods_ptr emethods)
|
||||
GLOBAL long
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
methods = emethods; /* save struct addr for error exit access */
|
||||
emethods->max_memory_to_use = 0;
|
||||
return 0; /* just set max_memory_to_use to 0 */
|
||||
}
|
||||
|
||||
GLOBAL void
|
||||
jmem_term (void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
|
||||
171
jmemsys.h
171
jmemsys.h
@@ -1,78 +1,107 @@
|
||||
/*
|
||||
* jmemsys.h
|
||||
*
|
||||
* Copyright (C) 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1992-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file defines the interface between the system-independent
|
||||
* and system-dependent portions of the JPEG memory manager. (The system-
|
||||
* independent portion is jmemmgr.c; there are several different versions
|
||||
* of the system-dependent portion, and of this file for that matter.)
|
||||
* and system-dependent portions of the JPEG memory manager. No other
|
||||
* modules need include it. (The system-independent portion is jmemmgr.c;
|
||||
* there are several different versions of the system-dependent portion.)
|
||||
*
|
||||
* This is a "generic" skeleton that may need to be modified for particular
|
||||
* systems. It should be usable as-is on the majority of non-MSDOS machines.
|
||||
* This file works as-is for the system-dependent memory managers supplied
|
||||
* in the IJG distribution. You may need to modify it if you write a
|
||||
* custom memory manager. If system-dependent changes are needed in
|
||||
* this file, the best method is to #ifdef them based on a configuration
|
||||
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR.
|
||||
*/
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_get_small jGetSmall
|
||||
#define jpeg_free_small jFreeSmall
|
||||
#define jpeg_get_large jGetLarge
|
||||
#define jpeg_free_large jFreeLarge
|
||||
#define jpeg_mem_available jMemAvail
|
||||
#define jpeg_open_backing_store jOpenBackStore
|
||||
#define jpeg_mem_init jMemInit
|
||||
#define jpeg_mem_term jMemTerm
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of
|
||||
* memory (typically the total amount requested through jget_small is
|
||||
* no more than 20Kb or so). Behavior should be the same as for the
|
||||
* standard library functions malloc and free; in particular, jget_small
|
||||
* returns NULL on failure. On most systems, these ARE malloc and free.
|
||||
* memory. (Typically the total amount requested through jpeg_get_small is
|
||||
* no more than 20K or so; this will be requested in chunks of a few K each.)
|
||||
* Behavior should be the same as for the standard library functions malloc
|
||||
* and free; in particular, jpeg_get_small must return NULL on failure.
|
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
|
||||
* size of the object being freed, just in case it's needed.
|
||||
* On an 80x86 machine using small-data memory model, these manage near heap.
|
||||
*/
|
||||
|
||||
EXTERN void * jget_small PP((size_t sizeofobject));
|
||||
EXTERN void jfree_small PP((void * object));
|
||||
EXTERN void * jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
|
||||
EXTERN void jpeg_free_small JPP((j_common_ptr cinfo, void * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of
|
||||
* memory (up to the total free space designated by jmem_available).
|
||||
* memory (up to the total free space designated by jpeg_mem_available).
|
||||
* The interface is the same as above, except that on an 80x86 machine,
|
||||
* far pointers are used. On other systems these ARE the same as above.
|
||||
* far pointers are used. On most other machines these are identical to
|
||||
* the jpeg_get/free_small routines; but we keep them separate anyway,
|
||||
* in case a different allocation strategy is desirable for large chunks.
|
||||
*/
|
||||
|
||||
#ifdef NEED_FAR_POINTERS /* typically not needed except on 80x86 */
|
||||
EXTERN void FAR * jget_large PP((size_t sizeofobject));
|
||||
EXTERN void jfree_large PP((void FAR * object));
|
||||
#else
|
||||
#define jget_large(sizeofobject) jget_small(sizeofobject)
|
||||
#define jfree_large(object) jfree_small(object)
|
||||
#endif
|
||||
EXTERN void FAR * jpeg_get_large JPP((j_common_ptr cinfo,size_t sizeofobject));
|
||||
EXTERN void jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||
* be requested in a single call on jget_large (and jget_small for that
|
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
|
||||
* matter, but that case should never come into play). This macro is needed
|
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||
* On machines with flat address spaces, any large constant may be used here.
|
||||
* On those machines, we expect that jconfig.h will provide a proper value.
|
||||
* On machines with 32-bit flat address spaces, any large constant may be used.
|
||||
*
|
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
|
||||
* size_t and will be a multiple of sizeof(align_type).
|
||||
*/
|
||||
|
||||
#define MAX_ALLOC_CHUNK 1000000000L
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
|
||||
#define MAX_ALLOC_CHUNK 1000000000L
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This routine computes the total space available for allocation by
|
||||
* jget_large. If more space than this is needed, backing store will be used.
|
||||
* NOTE: any memory already allocated must not be counted.
|
||||
* This routine computes the total space still available for allocation by
|
||||
* jpeg_get_large. If more space than this is needed, backing store will be
|
||||
* used. NOTE: any memory already allocated must not be counted.
|
||||
*
|
||||
* There is a minimum space requirement, corresponding to the minimum
|
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||
* jmem_available returns zero. The maximum space needed, enough to hold
|
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
|
||||
* all working storage in memory, is also passed in case it is useful.
|
||||
* Finally, the total space already allocated is passed. If no better
|
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated
|
||||
* is often a suitable calculation.
|
||||
*
|
||||
* It is OK for jmem_available to underestimate the space available (that'll
|
||||
* just lead to more backing-store access than is really necessary).
|
||||
* It is OK for jpeg_mem_available to underestimate the space available
|
||||
* (that'll just lead to more backing-store access than is really necessary).
|
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||
* a slop factor from the true available space, especially if jget_small space
|
||||
* comes from the same pool. 5% should be enough.
|
||||
* a slop factor from the true available space. 5% should be enough.
|
||||
*
|
||||
* On machines with lots of virtual memory, any large constant may be returned.
|
||||
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||
*/
|
||||
|
||||
EXTERN long jmem_available PP((long min_bytes_needed, long max_bytes_needed));
|
||||
EXTERN long jpeg_mem_available JPP((j_common_ptr cinfo,
|
||||
long min_bytes_needed,
|
||||
long max_bytes_needed,
|
||||
long already_allocated));
|
||||
|
||||
|
||||
/*
|
||||
@@ -84,44 +113,70 @@ EXTERN long jmem_available PP((long min_bytes_needed, long max_bytes_needed));
|
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||
|
||||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
|
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */
|
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */
|
||||
|
||||
typedef union {
|
||||
short file_handle; /* DOS file handle if it's a temp file */
|
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */
|
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */
|
||||
} handle_union;
|
||||
|
||||
#endif /* USE_MSDOS_MEMMGR */
|
||||
|
||||
typedef struct backing_store_struct * backing_store_ptr;
|
||||
|
||||
typedef struct backing_store_struct {
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
METHOD(void, read_backing_store, (backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
METHOD(void, write_backing_store, (backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
METHOD(void, close_backing_store, (backing_store_ptr info));
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
/* For a typical implementation with temp files, we might need: */
|
||||
FILE * temp_file; /* stdio reference to temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||
} backing_store_info;
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info));
|
||||
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
#ifdef USE_MSDOS_MEMMGR
|
||||
/* For the MS-DOS manager (jmemdos.c), we need: */
|
||||
handle_union handle; /* reference to backing-store storage object */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
/* For a typical implementation with temp files, we need: */
|
||||
FILE * temp_file; /* stdio reference to temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||
#endif
|
||||
} backing_store_info;
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the
|
||||
* read/write/close pointers in the object. The read/write routines
|
||||
* may take an error exit if the specified maximum file size is exceeded.
|
||||
* (If jmem_available always returns a large value, this routine can just
|
||||
* take an error exit.)
|
||||
* (If jpeg_mem_available always returns a large value, this routine can
|
||||
* just take an error exit.)
|
||||
*/
|
||||
|
||||
EXTERN void jopen_backing_store PP((backing_store_ptr info,
|
||||
long total_bytes_needed));
|
||||
EXTERN void jpeg_open_backing_store JPP((j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
long total_bytes_needed));
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. The system methods struct address should be saved
|
||||
* by jmem_init in case an error exit must be taken. jmem_term may assume
|
||||
* that all requested memory has been freed and that all opened backing-
|
||||
* store objects have been closed.
|
||||
* NB: jmem_term may be called more than once, and must behave reasonably
|
||||
* if that happens.
|
||||
* cleanup required. jpeg_mem_init will be called before anything is
|
||||
* allocated (and, therefore, nothing in cinfo is of use except the error
|
||||
* manager pointer). It should return a suitable default value for
|
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding
|
||||
* application. (Note that max_memory_to_use is only important if
|
||||
* jpeg_mem_available chooses to consult it ... no one else will.)
|
||||
* jpeg_mem_term may assume that all requested memory has been freed and that
|
||||
* all opened backing-store objects have been closed.
|
||||
*/
|
||||
|
||||
EXTERN void jmem_init PP((external_methods_ptr emethods));
|
||||
EXTERN void jmem_term PP((void));
|
||||
EXTERN long jpeg_mem_init JPP((j_common_ptr cinfo));
|
||||
EXTERN void jpeg_mem_term JPP((j_common_ptr cinfo));
|
||||
|
||||
339
jmorecfg.h
Normal file
339
jmorecfg.h
Normal file
@@ -0,0 +1,339 @@
|
||||
/*
|
||||
* jmorecfg.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains additional configuration options that customize the
|
||||
* JPEG software for special applications or support machine-dependent
|
||||
* optimizations. Most users will not need to touch this file.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Define BITS_IN_JSAMPLE as either
|
||||
* 8 for 8-bit sample values (the usual setting)
|
||||
* 12 for 12-bit sample values
|
||||
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
|
||||
* JPEG standard, and the IJG code does not support anything else!
|
||||
* We do not support run-time selection of data precision, sorry.
|
||||
*/
|
||||
|
||||
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
|
||||
|
||||
|
||||
/*
|
||||
* Maximum number of components (color channels) allowed in JPEG image.
|
||||
* To meet the letter of the JPEG spec, set this to 255. However, darn
|
||||
* few applications need more than 4 channels (maybe 5 for CMYK + alpha
|
||||
* mask). We recommend 10 as a reasonable compromise; use 4 if you are
|
||||
* really short on memory. (Each allowed component costs a hundred or so
|
||||
* bytes of storage, whether actually used in an image or not.)
|
||||
*/
|
||||
|
||||
#define MAX_COMPONENTS 10 /* maximum number of image components */
|
||||
|
||||
|
||||
/*
|
||||
* Basic data types.
|
||||
* You may need to change these if you have a machine with unusual data
|
||||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
|
||||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
|
||||
* but it had better be at least 16.
|
||||
*/
|
||||
|
||||
/* Representation of a single sample (pixel element value).
|
||||
* We frequently allocate large arrays of these, so it's important to keep
|
||||
* them small. But if you have memory to burn and access to char or short
|
||||
* arrays is very slow on your hardware, you might want to change these.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..255.
|
||||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
|
||||
typedef char JSAMPLE;
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
#else
|
||||
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
#define MAXJSAMPLE 255
|
||||
#define CENTERJSAMPLE 128
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 8 */
|
||||
|
||||
|
||||
#if BITS_IN_JSAMPLE == 12
|
||||
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
|
||||
* On nearly all machines "short" will do nicely.
|
||||
*/
|
||||
|
||||
typedef short JSAMPLE;
|
||||
#define GETJSAMPLE(value) ((int) (value))
|
||||
|
||||
#define MAXJSAMPLE 4095
|
||||
#define CENTERJSAMPLE 2048
|
||||
|
||||
#endif /* BITS_IN_JSAMPLE == 12 */
|
||||
|
||||
|
||||
/* Representation of a DCT frequency coefficient.
|
||||
* This should be a signed value of at least 16 bits; "short" is usually OK.
|
||||
* Again, we allocate large arrays of these, but you can change to int
|
||||
* if you have memory to burn and "short" is really slow.
|
||||
*/
|
||||
|
||||
typedef short JCOEF;
|
||||
|
||||
|
||||
/* Compressed datastreams are represented as arrays of JOCTET.
|
||||
* These must be EXACTLY 8 bits wide, at least once they are written to
|
||||
* external storage. Note that when using the stdio data source/destination
|
||||
* managers, this is also the data type passed to fread/fwrite.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
|
||||
typedef unsigned char JOCTET;
|
||||
#define GETJOCTET(value) (value)
|
||||
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
|
||||
typedef char JOCTET;
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define GETJOCTET(value) (value)
|
||||
#else
|
||||
#define GETJOCTET(value) ((value) & 0xFF)
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
|
||||
/* These typedefs are used for various table entries and so forth.
|
||||
* They must be at least as wide as specified; but making them too big
|
||||
* won't cost a huge amount of memory, so we don't provide special
|
||||
* extraction code like we did for JSAMPLE. (In other words, these
|
||||
* typedefs live at a different point on the speed/space tradeoff curve.)
|
||||
*/
|
||||
|
||||
/* UINT8 must hold at least the values 0..255. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
typedef unsigned char UINT8;
|
||||
#else /* not HAVE_UNSIGNED_CHAR */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
typedef char UINT8;
|
||||
#else /* not CHAR_IS_UNSIGNED */
|
||||
typedef short UINT8;
|
||||
#endif /* CHAR_IS_UNSIGNED */
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
/* UINT16 must hold at least the values 0..65535. */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_SHORT
|
||||
typedef unsigned short UINT16;
|
||||
#else /* not HAVE_UNSIGNED_SHORT */
|
||||
typedef unsigned int UINT16;
|
||||
#endif /* HAVE_UNSIGNED_SHORT */
|
||||
|
||||
/* INT16 must hold at least the values -32768..32767. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
|
||||
typedef short INT16;
|
||||
#endif
|
||||
|
||||
/* INT32 must hold at least signed 32-bit values. */
|
||||
|
||||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
|
||||
typedef long INT32;
|
||||
#endif
|
||||
|
||||
/* Datatype used for image dimensions. The JPEG standard only supports
|
||||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
|
||||
* "unsigned int" is sufficient on all machines. However, if you need to
|
||||
* handle larger images and you don't mind deviating from the spec, you
|
||||
* can change this datatype.
|
||||
*/
|
||||
|
||||
typedef unsigned int JDIMENSION;
|
||||
|
||||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
||||
|
||||
|
||||
/* These defines are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions.
|
||||
* Another application is to make all functions global for use with debuggers
|
||||
* or code profilers that require it.
|
||||
*/
|
||||
|
||||
#define METHODDEF static /* a function called through method pointers */
|
||||
#define LOCAL static /* a function used only in its module */
|
||||
#define GLOBAL /* a function referenced thru EXTERNs */
|
||||
#define EXTERN extern /* a reference to a GLOBAL function */
|
||||
|
||||
|
||||
/* Here is the pseudo-keyword for declaring pointers that must be "far"
|
||||
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
|
||||
* by just saying "FAR *" where such a pointer is needed. In a few places
|
||||
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
|
||||
*/
|
||||
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
#define FAR far
|
||||
#else
|
||||
#define FAR
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
|
||||
* in standard header files. Or you may have conflicts with application-
|
||||
* specific header files that you want to include together with these files.
|
||||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
|
||||
*/
|
||||
|
||||
#ifndef HAVE_BOOLEAN
|
||||
typedef int boolean;
|
||||
#endif
|
||||
#ifndef FALSE /* in case these macros already exist */
|
||||
#define FALSE 0 /* values of boolean */
|
||||
#endif
|
||||
#ifndef TRUE
|
||||
#define TRUE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* The remaining options affect code selection within the JPEG library,
|
||||
* but they don't need to be visible to most applications using the library.
|
||||
* To minimize application namespace pollution, the symbols won't be
|
||||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
#define JPEG_INTERNAL_OPTIONS
|
||||
#endif
|
||||
|
||||
#ifdef JPEG_INTERNAL_OPTIONS
|
||||
|
||||
|
||||
/*
|
||||
* These defines indicate whether to include various optional functions.
|
||||
* Undefining some of these symbols will produce a smaller but less capable
|
||||
* library. Note that you can leave certain source files out of the
|
||||
* compilation/linking process if you've #undef'd the corresponding symbols.
|
||||
* (You may HAVE to do that if your compiler doesn't like null source files.)
|
||||
*/
|
||||
|
||||
/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
|
||||
|
||||
/* Capability options common to encoder and decoder: */
|
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
|
||||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
|
||||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
|
||||
|
||||
/* Encoder capability options: */
|
||||
|
||||
#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#undef C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? (NYI) */
|
||||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
|
||||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
|
||||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
|
||||
* precision, so jchuff.c normally uses entropy optimization to compute
|
||||
* usable tables for higher precision. If you don't want to do optimization,
|
||||
* you'll have to supply different default Huffman tables.
|
||||
*/
|
||||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
|
||||
|
||||
/* Decoder capability options: */
|
||||
|
||||
#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
|
||||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
|
||||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
|
||||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
|
||||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
|
||||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
|
||||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
|
||||
|
||||
/* more capability options later, no doubt */
|
||||
|
||||
|
||||
/*
|
||||
* Ordering of RGB data in scanlines passed to or from the application.
|
||||
* If your application wants to deal with data in the order B,G,R, just
|
||||
* change these macros. You can also deal with formats such as R,G,B,X
|
||||
* (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
|
||||
* the offsets will also change the order in which colormap data is organized.
|
||||
* RESTRICTIONS:
|
||||
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
|
||||
* 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
|
||||
* useful if you are using JPEG color spaces other than YCbCr or grayscale.
|
||||
* 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
|
||||
* is not 3 (they don't understand about dummy color components!). So you
|
||||
* can't use color quantization if you change that value.
|
||||
*/
|
||||
|
||||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
|
||||
#define RGB_GREEN 1 /* Offset of Green */
|
||||
#define RGB_BLUE 2 /* Offset of Blue */
|
||||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
|
||||
|
||||
|
||||
/* Definitions for speed-related optimizations. */
|
||||
|
||||
|
||||
/* If your compiler supports inline functions, define INLINE
|
||||
* as the inline keyword; otherwise define it as empty.
|
||||
*/
|
||||
|
||||
#ifndef INLINE
|
||||
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
|
||||
#define INLINE __inline__
|
||||
#endif
|
||||
#ifndef INLINE
|
||||
#define INLINE /* default is to define it as empty */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
|
||||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
|
||||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
|
||||
*/
|
||||
|
||||
#ifndef MULTIPLIER
|
||||
#define MULTIPLIER int /* type for fastest integer multiply */
|
||||
#endif
|
||||
|
||||
|
||||
/* FAST_FLOAT should be either float or double, whichever is done faster
|
||||
* by your compiler. (Note that this type is only used in the floating point
|
||||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
|
||||
* Typically, float is faster in ANSI C compilers, while double is faster in
|
||||
* pre-ANSI compilers (because they insist on converting to double anyway).
|
||||
* The code below therefore chooses float if we have ANSI-style prototypes.
|
||||
*/
|
||||
|
||||
#ifndef FAST_FLOAT
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define FAST_FLOAT float
|
||||
#else
|
||||
#define FAST_FLOAT double
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif /* JPEG_INTERNAL_OPTIONS */
|
||||
885
jpegdata.h
885
jpegdata.h
@@ -1,885 +0,0 @@
|
||||
/*
|
||||
* jpegdata.h
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines shared data structures for the various JPEG modules.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* You might need to change some of the following declarations if you are
|
||||
* using the JPEG software within a surrounding application program
|
||||
* or porting it to an unusual system.
|
||||
*/
|
||||
|
||||
|
||||
/* If the source or destination of image data is not to be stdio streams,
|
||||
* these types may need work. You can replace them with some kind of
|
||||
* pointer or indicator that is useful to you, or just ignore 'em.
|
||||
* Note that the user interface and the various jrdxxx/jwrxxx modules
|
||||
* will also need work for non-stdio input/output.
|
||||
*/
|
||||
|
||||
typedef FILE * JFILEREF; /* source or dest of JPEG-compressed data */
|
||||
|
||||
typedef FILE * IFILEREF; /* source or dest of non-JPEG image data */
|
||||
|
||||
|
||||
/* These defines are used in all function definitions and extern declarations.
|
||||
* You could modify them if you need to change function linkage conventions,
|
||||
* as is shown below for use with C++. Another application would be to make
|
||||
* all functions global for use with code profilers that require it.
|
||||
* NOTE: the C++ test does the right thing if you are reading this include
|
||||
* file in a C++ application to link to JPEG code that's been compiled with a
|
||||
* regular C compiler. I'm not sure it works if you try to compile the JPEG
|
||||
* code with C++.
|
||||
*/
|
||||
|
||||
#define METHODDEF static /* a function called through method pointers */
|
||||
#define LOCAL static /* a function used only in its module */
|
||||
#define GLOBAL /* a function referenced thru EXTERNs */
|
||||
#ifdef __cplusplus
|
||||
#define EXTERN extern "C" /* a reference to a GLOBAL function */
|
||||
#else
|
||||
#define EXTERN extern /* a reference to a GLOBAL function */
|
||||
#endif
|
||||
|
||||
|
||||
/* Here is the pseudo-keyword for declaring pointers that must be "far"
|
||||
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
|
||||
* by just saying "FAR *" where such a pointer is needed. In a few places
|
||||
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
|
||||
*/
|
||||
|
||||
#ifdef NEED_FAR_POINTERS
|
||||
#define FAR far
|
||||
#else
|
||||
#define FAR
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/* The remaining declarations are not system-dependent, we hope. */
|
||||
|
||||
|
||||
/*
|
||||
* NOTE: if you have an ancient, strict-K&R C compiler, it may choke on the
|
||||
* similarly-named fields in compress_info_struct and decompress_info_struct.
|
||||
* If this happens, you can get around it by rearranging the two structs so
|
||||
* that the similarly-named fields appear first and in the same order in
|
||||
* each struct. Since such compilers are now pretty rare, we haven't done
|
||||
* this in the portable code, preferring to maintain a logical ordering.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/* This macro is used to declare a "method", that is, a function pointer. */
|
||||
/* We want to supply prototype parameters if the compiler can cope. */
|
||||
/* Note that the arglist parameter must be parenthesized! */
|
||||
|
||||
#ifdef PROTO
|
||||
#define METHOD(type,methodname,arglist) type (*methodname) arglist
|
||||
#else
|
||||
#define METHOD(type,methodname,arglist) type (*methodname) ()
|
||||
#endif
|
||||
|
||||
/* Forward references to lists of method pointers */
|
||||
typedef struct external_methods_struct * external_methods_ptr;
|
||||
typedef struct compress_methods_struct * compress_methods_ptr;
|
||||
typedef struct decompress_methods_struct * decompress_methods_ptr;
|
||||
|
||||
|
||||
/* Data structures for images containing either samples or coefficients. */
|
||||
/* Note that the topmost (leftmost) index is always color component. */
|
||||
/* On 80x86 machines, the image arrays are too big for near pointers, */
|
||||
/* but the pointer arrays can fit in near memory. */
|
||||
|
||||
typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
|
||||
typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
|
||||
typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
|
||||
|
||||
|
||||
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
|
||||
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
|
||||
|
||||
typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
|
||||
typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
|
||||
typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
|
||||
typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
|
||||
|
||||
typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
|
||||
|
||||
|
||||
/* The input and output data of the DCT transform subroutines are of
|
||||
* the following type, which need not be the same as JCOEF.
|
||||
* For example, on a machine with fast floating point, it might make sense
|
||||
* to recode the DCT routines to use floating point; then DCTELEM would be
|
||||
* 'float' or 'double'.
|
||||
*/
|
||||
|
||||
typedef JCOEF DCTELEM;
|
||||
typedef DCTELEM DCTBLOCK[DCTSIZE2];
|
||||
|
||||
|
||||
/* Types for JPEG compression parameters and working tables. */
|
||||
|
||||
|
||||
typedef enum { /* defines known color spaces */
|
||||
CS_UNKNOWN, /* error/unspecified */
|
||||
CS_GRAYSCALE, /* monochrome (only 1 component) */
|
||||
CS_RGB, /* red/green/blue */
|
||||
CS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
|
||||
CS_YIQ, /* Y/I/Q */
|
||||
CS_CMYK /* C/M/Y/K */
|
||||
} COLOR_SPACE;
|
||||
|
||||
|
||||
typedef struct { /* Basic info about one component */
|
||||
/* These values are fixed over the whole image */
|
||||
/* For compression, they must be supplied by the user interface; */
|
||||
/* for decompression, they are read from the SOF marker. */
|
||||
short component_id; /* identifier for this component (0..255) */
|
||||
short component_index; /* its index in SOF or cinfo->comp_info[] */
|
||||
short h_samp_factor; /* horizontal sampling factor (1..4) */
|
||||
short v_samp_factor; /* vertical sampling factor (1..4) */
|
||||
short quant_tbl_no; /* quantization table selector (0..3) */
|
||||
/* These values may vary between scans */
|
||||
/* For compression, they must be supplied by the user interface; */
|
||||
/* for decompression, they are read from the SOS marker. */
|
||||
short dc_tbl_no; /* DC entropy table selector (0..3) */
|
||||
short ac_tbl_no; /* AC entropy table selector (0..3) */
|
||||
/* These values are computed during compression or decompression startup */
|
||||
long true_comp_width; /* component's image width in samples */
|
||||
long true_comp_height; /* component's image height in samples */
|
||||
/* the above are the logical dimensions of the subsampled image */
|
||||
/* These values are computed before starting a scan of the component */
|
||||
short MCU_width; /* number of blocks per MCU, horizontally */
|
||||
short MCU_height; /* number of blocks per MCU, vertically */
|
||||
short MCU_blocks; /* MCU_width * MCU_height */
|
||||
long subsampled_width; /* image width in samples, after expansion */
|
||||
long subsampled_height; /* image height in samples, after expansion */
|
||||
/* the above are the true_comp_xxx values rounded up to multiples of */
|
||||
/* the MCU dimensions; these are the working dimensions of the array */
|
||||
/* as it is passed through the DCT or IDCT step. NOTE: these values */
|
||||
/* differ depending on whether the component is interleaved or not!! */
|
||||
} jpeg_component_info;
|
||||
|
||||
|
||||
/* DCT coefficient quantization tables.
|
||||
* For 8-bit precision, 'INT16' should be good enough for quantization values;
|
||||
* for more precision, we go for the full 16 bits. 'INT16' provides a useful
|
||||
* speedup on many machines (multiplication & division of JCOEFs by
|
||||
* quantization values is a significant chunk of the runtime).
|
||||
* Note: the values in a QUANT_TBL are always given in zigzag order.
|
||||
*/
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
typedef INT16 QUANT_VAL; /* element of a quantization table */
|
||||
#else
|
||||
typedef UINT16 QUANT_VAL; /* element of a quantization table */
|
||||
#endif
|
||||
typedef QUANT_VAL QUANT_TBL[DCTSIZE2]; /* A quantization table */
|
||||
typedef QUANT_VAL * QUANT_TBL_PTR; /* pointer to same */
|
||||
|
||||
|
||||
typedef struct { /* A Huffman coding table */
|
||||
/* These two fields directly represent the contents of a JPEG DHT marker */
|
||||
UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
|
||||
/* length k bits; bits[0] is unused */
|
||||
UINT8 huffval[256]; /* The symbols, in order of incr code length */
|
||||
/* This field is used only during compression. It's initialized FALSE when
|
||||
* the table is created, and set TRUE when it's been output to the file.
|
||||
*/
|
||||
boolean sent_table; /* TRUE when table has been output */
|
||||
/* The remaining fields are computed from the above to allow more efficient
|
||||
* coding and decoding. These fields should be considered private to the
|
||||
* Huffman compression & decompression modules.
|
||||
*/
|
||||
/* encoding tables: */
|
||||
UINT16 ehufco[256]; /* code for each symbol */
|
||||
char ehufsi[256]; /* length of code for each symbol */
|
||||
/* decoding tables: (element [0] of each array is unused) */
|
||||
UINT16 mincode[17]; /* smallest code of length k */
|
||||
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
|
||||
/* (maxcode[17] is a sentinel to ensure huff_DECODE terminates) */
|
||||
short valptr[17]; /* huffval[] index of 1st symbol of length k */
|
||||
} HUFF_TBL;
|
||||
|
||||
|
||||
#define NUM_QUANT_TBLS 4 /* quantization tables are numbered 0..3 */
|
||||
#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
|
||||
#define NUM_ARITH_TBLS 16 /* arith-coding tables are numbered 0..15 */
|
||||
#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
|
||||
#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
|
||||
#define MAX_BLOCKS_IN_MCU 10 /* JPEG limit on # of blocks in an MCU */
|
||||
|
||||
|
||||
/* Working data for compression */
|
||||
|
||||
struct compress_info_struct {
|
||||
/*
|
||||
* All of these fields shall be established by the user interface before
|
||||
* calling jpeg_compress, or by the input_init or c_ui_method_selection
|
||||
* methods.
|
||||
* Most parameters can be set to reasonable defaults by j_c_defaults.
|
||||
* Note that the UI must supply the storage for the main methods struct,
|
||||
* though it sets only a few of the methods there.
|
||||
*/
|
||||
compress_methods_ptr methods; /* Points to list of methods to use */
|
||||
|
||||
external_methods_ptr emethods; /* Points to list of methods to use */
|
||||
|
||||
IFILEREF input_file; /* tells input routines where to read image */
|
||||
JFILEREF output_file; /* tells output routines where to write JPEG */
|
||||
|
||||
long image_width; /* input image width */
|
||||
long image_height; /* input image height */
|
||||
short input_components; /* # of color components in input image */
|
||||
|
||||
short data_precision; /* bits of precision in image data */
|
||||
|
||||
COLOR_SPACE in_color_space; /* colorspace of input file */
|
||||
COLOR_SPACE jpeg_color_space; /* colorspace of JPEG file */
|
||||
|
||||
double input_gamma; /* image gamma of input file */
|
||||
|
||||
boolean write_JFIF_header; /* should a JFIF marker be written? */
|
||||
/* These three values are not used by the JPEG code, only copied */
|
||||
/* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
|
||||
/* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
|
||||
/* ratio is defined by X_density/Y_density even when density_unit=0. */
|
||||
UINT8 density_unit; /* JFIF code for pixel size units */
|
||||
UINT16 X_density; /* Horizontal pixel density */
|
||||
UINT16 Y_density; /* Vertical pixel density */
|
||||
|
||||
short num_components; /* # of color components in JPEG image */
|
||||
jpeg_component_info * comp_info;
|
||||
/* comp_info[i] describes component that appears i'th in SOF */
|
||||
|
||||
QUANT_TBL_PTR quant_tbl_ptrs[NUM_QUANT_TBLS];
|
||||
/* ptrs to coefficient quantization tables, or NULL if not defined */
|
||||
|
||||
HUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
HUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
/* ptrs to Huffman coding tables, or NULL if not defined */
|
||||
|
||||
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arithmetic-coding tables */
|
||||
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arithmetic-coding tables */
|
||||
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arithmetic-coding tables */
|
||||
|
||||
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
|
||||
boolean interleave; /* TRUE=interleaved output, FALSE=not */
|
||||
boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
|
||||
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
|
||||
|
||||
UINT16 restart_interval;/* MDUs per restart interval, or 0 for no restart */
|
||||
|
||||
/*
|
||||
* These fields are computed during jpeg_compress startup
|
||||
*/
|
||||
short max_h_samp_factor; /* largest h_samp_factor */
|
||||
short max_v_samp_factor; /* largest v_samp_factor */
|
||||
|
||||
/*
|
||||
* These fields may be useful for progress monitoring
|
||||
*/
|
||||
|
||||
int total_passes; /* number of passes expected */
|
||||
int completed_passes; /* number of passes completed so far */
|
||||
|
||||
/*
|
||||
* These fields are valid during any one scan
|
||||
*/
|
||||
short comps_in_scan; /* # of JPEG components output this time */
|
||||
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
|
||||
/* *cur_comp_info[i] describes component that appears i'th in SOS */
|
||||
|
||||
long MCUs_per_row; /* # of MCUs across the image */
|
||||
long MCU_rows_in_scan; /* # of MCU rows in the image */
|
||||
|
||||
short blocks_in_MCU; /* # of DCT blocks per MCU */
|
||||
short MCU_membership[MAX_BLOCKS_IN_MCU];
|
||||
/* MCU_membership[i] is index in cur_comp_info of component owning */
|
||||
/* i'th block in an MCU */
|
||||
|
||||
/* these fields are private data for the entropy encoder */
|
||||
JCOEF last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each comp */
|
||||
JCOEF last_dc_diff[MAX_COMPS_IN_SCAN]; /* last DC diff for each comp */
|
||||
UINT16 restarts_to_go; /* MDUs left in this restart interval */
|
||||
short next_restart_num; /* # of next RSTn marker (0..7) */
|
||||
};
|
||||
|
||||
typedef struct compress_info_struct * compress_info_ptr;
|
||||
|
||||
|
||||
/* Working data for decompression */
|
||||
|
||||
struct decompress_info_struct {
|
||||
/*
|
||||
* These fields shall be established by the user interface before
|
||||
* calling jpeg_decompress.
|
||||
* Most parameters can be set to reasonable defaults by j_d_defaults.
|
||||
* Note that the UI must supply the storage for the main methods struct,
|
||||
* though it sets only a few of the methods there.
|
||||
*/
|
||||
decompress_methods_ptr methods; /* Points to list of methods to use */
|
||||
|
||||
external_methods_ptr emethods; /* Points to list of methods to use */
|
||||
|
||||
JFILEREF input_file; /* tells input routines where to read JPEG */
|
||||
IFILEREF output_file; /* tells output routines where to write image */
|
||||
|
||||
/* these can be set at d_ui_method_selection time: */
|
||||
|
||||
COLOR_SPACE out_color_space; /* colorspace of output */
|
||||
|
||||
double output_gamma; /* image gamma wanted in output */
|
||||
|
||||
boolean quantize_colors; /* T if output is a colormapped format */
|
||||
/* the following are ignored if not quantize_colors: */
|
||||
boolean two_pass_quantize; /* use two-pass color quantization? */
|
||||
boolean use_dithering; /* want color dithering? */
|
||||
int desired_number_of_colors; /* max number of colors to use */
|
||||
|
||||
boolean do_block_smoothing; /* T = apply cross-block smoothing */
|
||||
boolean do_pixel_smoothing; /* T = apply post-subsampling smoothing */
|
||||
|
||||
/*
|
||||
* These fields are used for efficient buffering of data between read_jpeg_data
|
||||
* and the entropy decoding object. By using a shared buffer, we avoid copying
|
||||
* data and eliminate the need for an "unget" operation at the end of a scan.
|
||||
* The actual source of the data is known only to read_jpeg_data; see the
|
||||
* JGETC macro, below.
|
||||
* Note: the user interface is expected to allocate the input_buffer and
|
||||
* initialize bytes_in_buffer to 0. Also, for JFIF/raw-JPEG input, the UI
|
||||
* actually supplies the read_jpeg_data method. This is all handled by
|
||||
* j_d_defaults in a typical implementation.
|
||||
*/
|
||||
char * input_buffer; /* start of buffer (private to input code) */
|
||||
char * next_input_byte; /* => next byte to read from buffer */
|
||||
int bytes_in_buffer; /* # of bytes remaining in buffer */
|
||||
|
||||
/*
|
||||
* These fields are set by read_file_header or read_scan_header
|
||||
*/
|
||||
long image_width; /* overall image width */
|
||||
long image_height; /* overall image height */
|
||||
|
||||
short data_precision; /* bits of precision in image data */
|
||||
|
||||
COLOR_SPACE jpeg_color_space; /* colorspace of JPEG file */
|
||||
|
||||
/* These three values are not used by the JPEG code, merely copied */
|
||||
/* from the JFIF APP0 marker (if any). */
|
||||
UINT8 density_unit; /* JFIF code for pixel size units */
|
||||
UINT16 X_density; /* Horizontal pixel density */
|
||||
UINT16 Y_density; /* Vertical pixel density */
|
||||
|
||||
short num_components; /* # of color components in JPEG image */
|
||||
jpeg_component_info * comp_info;
|
||||
/* comp_info[i] describes component that appears i'th in SOF */
|
||||
|
||||
QUANT_TBL_PTR quant_tbl_ptrs[NUM_QUANT_TBLS];
|
||||
/* ptrs to coefficient quantization tables, or NULL if not defined */
|
||||
|
||||
HUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
HUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
/* ptrs to Huffman coding tables, or NULL if not defined */
|
||||
|
||||
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
|
||||
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
|
||||
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
|
||||
|
||||
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
|
||||
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
|
||||
|
||||
UINT16 restart_interval;/* MDUs per restart interval, or 0 for no restart */
|
||||
|
||||
/*
|
||||
* These fields are computed during jpeg_decompress startup
|
||||
*/
|
||||
short max_h_samp_factor; /* largest h_samp_factor */
|
||||
short max_v_samp_factor; /* largest v_samp_factor */
|
||||
|
||||
short color_out_comps; /* # of color components output by color_convert */
|
||||
/* (need not match num_components) */
|
||||
short final_out_comps; /* # of color components sent to put_pixel_rows */
|
||||
/* (1 when quantizing colors, else same as color_out_comps) */
|
||||
|
||||
/*
|
||||
* When quantizing colors, the color quantizer leaves a pointer to the output
|
||||
* colormap in these fields. The colormap is valid from the time put_color_map
|
||||
* is called (must be before any put_pixel_rows calls) until shutdown (more
|
||||
* specifically, until free_all is called to release memory).
|
||||
*/
|
||||
int actual_number_of_colors; /* actual number of entries */
|
||||
JSAMPARRAY colormap; /* NULL if not valid */
|
||||
/* map has color_out_comps rows * actual_number_of_colors columns */
|
||||
|
||||
/*
|
||||
* These fields may be useful for progress monitoring
|
||||
*/
|
||||
|
||||
int total_passes; /* number of passes expected */
|
||||
int completed_passes; /* number of passes completed so far */
|
||||
|
||||
/*
|
||||
* These fields are valid during any one scan
|
||||
*/
|
||||
short comps_in_scan; /* # of JPEG components input this time */
|
||||
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
|
||||
/* *cur_comp_info[i] describes component that appears i'th in SOS */
|
||||
|
||||
long MCUs_per_row; /* # of MCUs across the image */
|
||||
long MCU_rows_in_scan; /* # of MCU rows in the image */
|
||||
|
||||
short blocks_in_MCU; /* # of DCT blocks per MCU */
|
||||
short MCU_membership[MAX_BLOCKS_IN_MCU];
|
||||
/* MCU_membership[i] is index in cur_comp_info of component owning */
|
||||
/* i'th block in an MCU */
|
||||
|
||||
/* these fields are private data for the entropy encoder */
|
||||
JCOEF last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each comp */
|
||||
JCOEF last_dc_diff[MAX_COMPS_IN_SCAN]; /* last DC diff for each comp */
|
||||
UINT16 restarts_to_go; /* MDUs left in this restart interval */
|
||||
short next_restart_num; /* # of next RSTn marker (0..7) */
|
||||
};
|
||||
|
||||
typedef struct decompress_info_struct * decompress_info_ptr;
|
||||
|
||||
|
||||
/* Macros for reading data from the decompression input buffer */
|
||||
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
#define JGETC(cinfo) ( --(cinfo)->bytes_in_buffer < 0 ? \
|
||||
(*(cinfo)->methods->read_jpeg_data) (cinfo) : \
|
||||
(int) (*(cinfo)->next_input_byte++) )
|
||||
#else
|
||||
#define JGETC(cinfo) ( --(cinfo)->bytes_in_buffer < 0 ? \
|
||||
(*(cinfo)->methods->read_jpeg_data) (cinfo) : \
|
||||
(int) (*(cinfo)->next_input_byte++) & 0xFF )
|
||||
#endif
|
||||
|
||||
#define JUNGETC(ch,cinfo) ((cinfo)->bytes_in_buffer++, \
|
||||
*(--((cinfo)->next_input_byte)) = (ch))
|
||||
|
||||
#define MIN_UNGET 4 /* may always do at least 4 JUNGETCs */
|
||||
|
||||
|
||||
/* A virtual image has a control block whose contents are private to the
|
||||
* memory manager module (and may differ between managers). The rest of the
|
||||
* code only refers to virtual images by these pointer types, and never
|
||||
* dereferences the pointer.
|
||||
*/
|
||||
|
||||
typedef struct big_sarray_control * big_sarray_ptr;
|
||||
typedef struct big_barray_control * big_barray_ptr;
|
||||
|
||||
/* Although a real ANSI C compiler can deal perfectly well with pointers to
|
||||
* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
|
||||
* and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
|
||||
* add -DINCOMPLETE_TYPES_BROKEN to CFLAGS in your Makefile. Then we will
|
||||
* pseudo-define the structs as containing a single "dummy" field.
|
||||
* The memory managers #define AM_MEMORY_MANAGER before including this file,
|
||||
* so that they can make their own definitions of the structs.
|
||||
*/
|
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||
#ifndef AM_MEMORY_MANAGER
|
||||
struct big_sarray_control { long dummy; };
|
||||
struct big_barray_control { long dummy; };
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* Method types that need typedefs */
|
||||
|
||||
typedef METHOD(void, MCU_output_method_ptr, (compress_info_ptr cinfo,
|
||||
JBLOCK *MCU_data));
|
||||
typedef METHOD(void, MCU_output_caller_ptr, (compress_info_ptr cinfo,
|
||||
MCU_output_method_ptr output_method));
|
||||
typedef METHOD(void, subsample_ptr, (compress_info_ptr cinfo,
|
||||
int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY below,
|
||||
JSAMPARRAY output_data));
|
||||
typedef METHOD(void, unsubsample_ptr, (decompress_info_ptr cinfo,
|
||||
int which_component,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPARRAY above,
|
||||
JSAMPARRAY input_data,
|
||||
JSAMPARRAY below,
|
||||
JSAMPARRAY output_data));
|
||||
typedef METHOD(void, quantize_method_ptr, (decompress_info_ptr cinfo,
|
||||
int num_rows,
|
||||
JSAMPIMAGE input_data,
|
||||
JSAMPARRAY output_workspace));
|
||||
typedef METHOD(void, quantize_caller_ptr, (decompress_info_ptr cinfo,
|
||||
quantize_method_ptr quantize_method));
|
||||
|
||||
|
||||
/* These structs contain function pointers for the various JPEG methods. */
|
||||
|
||||
/* Routines to be provided by the surrounding application, rather than the
|
||||
* portable JPEG code proper. These are the same for compression and
|
||||
* decompression.
|
||||
*/
|
||||
|
||||
struct external_methods_struct {
|
||||
/* User interface: error exit and trace message routines */
|
||||
/* NOTE: the string msgtext parameters will eventually be replaced */
|
||||
/* by an enumerated-type code so that non-English error messages */
|
||||
/* can be substituted easily. This will not be done until all the */
|
||||
/* code is in place, so that we know what messages are needed. */
|
||||
METHOD(void, error_exit, (const char *msgtext));
|
||||
METHOD(void, trace_message, (const char *msgtext));
|
||||
|
||||
/* Working data for error/trace facility */
|
||||
/* See macros below for the usage of these variables */
|
||||
int trace_level; /* level of detail of tracing messages */
|
||||
/* Use level 0 for unsuppressable messages (nonfatal errors) */
|
||||
/* Use levels 1, 2, 3 for successively more detailed trace options */
|
||||
|
||||
int message_parm[8]; /* store numeric parms for messages here */
|
||||
|
||||
/* Memory management */
|
||||
/* NB: alloc routines never return NULL. They exit to */
|
||||
/* error_exit if not successful. */
|
||||
METHOD(void *, alloc_small, (size_t sizeofobject));
|
||||
METHOD(void, free_small, (void *ptr));
|
||||
METHOD(void FAR *, alloc_medium, (size_t sizeofobject));
|
||||
METHOD(void, free_medium, (void FAR *ptr));
|
||||
METHOD(JSAMPARRAY, alloc_small_sarray, (long samplesperrow,
|
||||
long numrows));
|
||||
METHOD(void, free_small_sarray, (JSAMPARRAY ptr));
|
||||
METHOD(JBLOCKARRAY, alloc_small_barray, (long blocksperrow,
|
||||
long numrows));
|
||||
METHOD(void, free_small_barray, (JBLOCKARRAY ptr));
|
||||
METHOD(big_sarray_ptr, request_big_sarray, (long samplesperrow,
|
||||
long numrows,
|
||||
long unitheight));
|
||||
METHOD(big_barray_ptr, request_big_barray, (long blocksperrow,
|
||||
long numrows,
|
||||
long unitheight));
|
||||
METHOD(void, alloc_big_arrays, (long extra_small_samples,
|
||||
long extra_small_blocks,
|
||||
long extra_medium_space));
|
||||
METHOD(JSAMPARRAY, access_big_sarray, (big_sarray_ptr ptr,
|
||||
long start_row,
|
||||
boolean writable));
|
||||
METHOD(JBLOCKARRAY, access_big_barray, (big_barray_ptr ptr,
|
||||
long start_row,
|
||||
boolean writable));
|
||||
METHOD(void, free_big_sarray, (big_sarray_ptr ptr));
|
||||
METHOD(void, free_big_barray, (big_barray_ptr ptr));
|
||||
METHOD(void, free_all, (void));
|
||||
|
||||
long max_memory_to_use; /* maximum amount of memory to use */
|
||||
};
|
||||
|
||||
/* Macros to simplify using the error and trace message stuff */
|
||||
/* The first parameter is generally cinfo->emethods */
|
||||
|
||||
#define ERREXIT(emeth,msg) ((*(emeth)->error_exit) (msg))
|
||||
#define ERREXIT1(emeth,msg,p1) ((emeth)->message_parm[0] = (p1), \
|
||||
(*(emeth)->error_exit) (msg))
|
||||
#define ERREXIT2(emeth,msg,p1,p2) ((emeth)->message_parm[0] = (p1), \
|
||||
(emeth)->message_parm[1] = (p2), \
|
||||
(*(emeth)->error_exit) (msg))
|
||||
#define ERREXIT3(emeth,msg,p1,p2,p3) ((emeth)->message_parm[0] = (p1), \
|
||||
(emeth)->message_parm[1] = (p2), \
|
||||
(emeth)->message_parm[2] = (p3), \
|
||||
(*(emeth)->error_exit) (msg))
|
||||
#define ERREXIT4(emeth,msg,p1,p2,p3,p4) ((emeth)->message_parm[0] = (p1), \
|
||||
(emeth)->message_parm[1] = (p2), \
|
||||
(emeth)->message_parm[2] = (p3), \
|
||||
(emeth)->message_parm[3] = (p4), \
|
||||
(*(emeth)->error_exit) (msg))
|
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||
|
||||
#define TRACEMS(emeth,lvl,msg) \
|
||||
MAKESTMT( if ((emeth)->trace_level >= (lvl)) { \
|
||||
(*(emeth)->trace_message) (msg); } )
|
||||
#define TRACEMS1(emeth,lvl,msg,p1) \
|
||||
MAKESTMT( if ((emeth)->trace_level >= (lvl)) { \
|
||||
(emeth)->message_parm[0] = (p1); \
|
||||
(*(emeth)->trace_message) (msg); } )
|
||||
#define TRACEMS2(emeth,lvl,msg,p1,p2) \
|
||||
MAKESTMT( if ((emeth)->trace_level >= (lvl)) { \
|
||||
(emeth)->message_parm[0] = (p1); \
|
||||
(emeth)->message_parm[1] = (p2); \
|
||||
(*(emeth)->trace_message) (msg); } )
|
||||
#define TRACEMS3(emeth,lvl,msg,p1,p2,p3) \
|
||||
MAKESTMT( if ((emeth)->trace_level >= (lvl)) { \
|
||||
int * _mp = (emeth)->message_parm; \
|
||||
*_mp++ = (p1); *_mp++ = (p2); *_mp = (p3); \
|
||||
(*(emeth)->trace_message) (msg); } )
|
||||
#define TRACEMS4(emeth,lvl,msg,p1,p2,p3,p4) \
|
||||
MAKESTMT( if ((emeth)->trace_level >= (lvl)) { \
|
||||
int * _mp = (emeth)->message_parm; \
|
||||
*_mp++ = (p1); *_mp++ = (p2); *_mp++ = (p3); *_mp = (p4); \
|
||||
(*(emeth)->trace_message) (msg); } )
|
||||
#define TRACEMS8(emeth,lvl,msg,p1,p2,p3,p4,p5,p6,p7,p8) \
|
||||
MAKESTMT( if ((emeth)->trace_level >= (lvl)) { \
|
||||
int * _mp = (emeth)->message_parm; \
|
||||
*_mp++ = (p1); *_mp++ = (p2); *_mp++ = (p3); *_mp++ = (p4); \
|
||||
*_mp++ = (p5); *_mp++ = (p6); *_mp++ = (p7); *_mp = (p8); \
|
||||
(*(emeth)->trace_message) (msg); } )
|
||||
|
||||
|
||||
/* Methods used during JPEG compression. */
|
||||
|
||||
struct compress_methods_struct {
|
||||
/* Hook for user interface to get control after input_init */
|
||||
METHOD(void, c_ui_method_selection, (compress_info_ptr cinfo));
|
||||
/* Hook for user interface to do progress monitoring */
|
||||
METHOD(void, progress_monitor, (compress_info_ptr cinfo,
|
||||
long loopcounter, long looplimit));
|
||||
/* Input image reading & conversion to standard form */
|
||||
METHOD(void, input_init, (compress_info_ptr cinfo));
|
||||
METHOD(void, get_input_row, (compress_info_ptr cinfo,
|
||||
JSAMPARRAY pixel_row));
|
||||
METHOD(void, input_term, (compress_info_ptr cinfo));
|
||||
/* Color space and gamma conversion */
|
||||
METHOD(void, colorin_init, (compress_info_ptr cinfo));
|
||||
METHOD(void, get_sample_rows, (compress_info_ptr cinfo,
|
||||
int rows_to_read,
|
||||
JSAMPIMAGE image_data));
|
||||
METHOD(void, colorin_term, (compress_info_ptr cinfo));
|
||||
/* Expand picture data at edges */
|
||||
METHOD(void, edge_expand, (compress_info_ptr cinfo,
|
||||
long input_cols, int input_rows,
|
||||
long output_cols, int output_rows,
|
||||
JSAMPIMAGE image_data));
|
||||
/* Subsample pixel values of a single component */
|
||||
/* There can be a different subsample method for each component */
|
||||
METHOD(void, subsample_init, (compress_info_ptr cinfo));
|
||||
subsample_ptr subsample[MAX_COMPS_IN_SCAN];
|
||||
METHOD(void, subsample_term, (compress_info_ptr cinfo));
|
||||
/* Extract samples in MCU order, process & hand off to output_method */
|
||||
/* The input is always exactly N MCU rows worth of data */
|
||||
METHOD(void, extract_init, (compress_info_ptr cinfo));
|
||||
METHOD(void, extract_MCUs, (compress_info_ptr cinfo,
|
||||
JSAMPIMAGE image_data,
|
||||
int num_mcu_rows,
|
||||
MCU_output_method_ptr output_method));
|
||||
METHOD(void, extract_term, (compress_info_ptr cinfo));
|
||||
/* Entropy encoding parameter optimization */
|
||||
METHOD(void, entropy_optimize, (compress_info_ptr cinfo,
|
||||
MCU_output_caller_ptr source_method));
|
||||
/* Entropy encoding */
|
||||
METHOD(void, entropy_encoder_init, (compress_info_ptr cinfo));
|
||||
METHOD(void, entropy_encode, (compress_info_ptr cinfo,
|
||||
JBLOCK *MCU_data));
|
||||
METHOD(void, entropy_encoder_term, (compress_info_ptr cinfo));
|
||||
/* JPEG file header construction */
|
||||
METHOD(void, write_file_header, (compress_info_ptr cinfo));
|
||||
METHOD(void, write_scan_header, (compress_info_ptr cinfo));
|
||||
METHOD(void, write_jpeg_data, (compress_info_ptr cinfo,
|
||||
char *dataptr,
|
||||
int datacount));
|
||||
METHOD(void, write_scan_trailer, (compress_info_ptr cinfo));
|
||||
METHOD(void, write_file_trailer, (compress_info_ptr cinfo));
|
||||
/* Pipeline control */
|
||||
METHOD(void, c_pipeline_controller, (compress_info_ptr cinfo));
|
||||
METHOD(void, entropy_output, (compress_info_ptr cinfo,
|
||||
char *dataptr,
|
||||
int datacount));
|
||||
/* Overall control */
|
||||
METHOD(void, c_per_scan_method_selection, (compress_info_ptr cinfo));
|
||||
};
|
||||
|
||||
/* Methods used during JPEG decompression. */
|
||||
|
||||
struct decompress_methods_struct {
|
||||
/* Hook for user interface to get control after reading file header */
|
||||
METHOD(void, d_ui_method_selection, (decompress_info_ptr cinfo));
|
||||
/* Hook for user interface to do progress monitoring */
|
||||
METHOD(void, progress_monitor, (decompress_info_ptr cinfo,
|
||||
long loopcounter, long looplimit));
|
||||
/* JPEG file scanning */
|
||||
METHOD(void, read_file_header, (decompress_info_ptr cinfo));
|
||||
METHOD(boolean, read_scan_header, (decompress_info_ptr cinfo));
|
||||
METHOD(int, read_jpeg_data, (decompress_info_ptr cinfo));
|
||||
METHOD(void, read_scan_trailer, (decompress_info_ptr cinfo));
|
||||
METHOD(void, read_file_trailer, (decompress_info_ptr cinfo));
|
||||
/* Entropy decoding */
|
||||
METHOD(void, entropy_decoder_init, (decompress_info_ptr cinfo));
|
||||
METHOD(void, entropy_decode, (decompress_info_ptr cinfo,
|
||||
JBLOCK *MCU_data));
|
||||
METHOD(void, entropy_decoder_term, (decompress_info_ptr cinfo));
|
||||
/* MCU disassembly: fetch MCUs from entropy_decode, build coef array */
|
||||
/* The reverse_DCT step is in the same module for symmetry reasons */
|
||||
METHOD(void, disassemble_init, (decompress_info_ptr cinfo));
|
||||
METHOD(void, disassemble_MCU, (decompress_info_ptr cinfo,
|
||||
JBLOCKIMAGE image_data));
|
||||
METHOD(void, reverse_DCT, (decompress_info_ptr cinfo,
|
||||
JBLOCKIMAGE coeff_data,
|
||||
JSAMPIMAGE output_data, int start_row));
|
||||
METHOD(void, disassemble_term, (decompress_info_ptr cinfo));
|
||||
/* Cross-block smoothing */
|
||||
METHOD(void, smooth_coefficients, (decompress_info_ptr cinfo,
|
||||
jpeg_component_info *compptr,
|
||||
JBLOCKROW above,
|
||||
JBLOCKROW currow,
|
||||
JBLOCKROW below,
|
||||
JBLOCKROW output));
|
||||
/* Un-subsample pixel values of a single component */
|
||||
/* There can be a different unsubsample method for each component */
|
||||
METHOD(void, unsubsample_init, (decompress_info_ptr cinfo));
|
||||
unsubsample_ptr unsubsample[MAX_COMPS_IN_SCAN];
|
||||
METHOD(void, unsubsample_term, (decompress_info_ptr cinfo));
|
||||
/* Color space and gamma conversion */
|
||||
METHOD(void, colorout_init, (decompress_info_ptr cinfo));
|
||||
METHOD(void, color_convert, (decompress_info_ptr cinfo,
|
||||
int num_rows, long num_cols,
|
||||
JSAMPIMAGE input_data,
|
||||
JSAMPIMAGE output_data));
|
||||
METHOD(void, colorout_term, (decompress_info_ptr cinfo));
|
||||
/* Color quantization */
|
||||
METHOD(void, color_quant_init, (decompress_info_ptr cinfo));
|
||||
METHOD(void, color_quantize, (decompress_info_ptr cinfo,
|
||||
int num_rows,
|
||||
JSAMPIMAGE input_data,
|
||||
JSAMPARRAY output_data));
|
||||
METHOD(void, color_quant_prescan, (decompress_info_ptr cinfo,
|
||||
int num_rows,
|
||||
JSAMPIMAGE image_data,
|
||||
JSAMPARRAY workspace));
|
||||
METHOD(void, color_quant_doit, (decompress_info_ptr cinfo,
|
||||
quantize_caller_ptr source_method));
|
||||
METHOD(void, color_quant_term, (decompress_info_ptr cinfo));
|
||||
/* Output image writing */
|
||||
METHOD(void, output_init, (decompress_info_ptr cinfo));
|
||||
METHOD(void, put_color_map, (decompress_info_ptr cinfo,
|
||||
int num_colors, JSAMPARRAY colormap));
|
||||
METHOD(void, put_pixel_rows, (decompress_info_ptr cinfo,
|
||||
int num_rows,
|
||||
JSAMPIMAGE pixel_data));
|
||||
METHOD(void, output_term, (decompress_info_ptr cinfo));
|
||||
/* Pipeline control */
|
||||
METHOD(void, d_pipeline_controller, (decompress_info_ptr cinfo));
|
||||
/* Overall control */
|
||||
METHOD(void, d_per_scan_method_selection, (decompress_info_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* External declarations for routines that aren't called via method ptrs. */
|
||||
/* Note: use "j" as first char of names to minimize namespace pollution. */
|
||||
/* The PP macro hides prototype parameters from compilers that can't cope. */
|
||||
|
||||
#ifdef PROTO
|
||||
#define PP(arglist) arglist
|
||||
#else
|
||||
#define PP(arglist) ()
|
||||
#endif
|
||||
|
||||
|
||||
/* main entry for compression */
|
||||
EXTERN void jpeg_compress PP((compress_info_ptr cinfo));
|
||||
|
||||
/* default parameter setup for compression */
|
||||
EXTERN void j_c_defaults PP((compress_info_ptr cinfo, int quality,
|
||||
boolean force_baseline));
|
||||
EXTERN void j_monochrome_default PP((compress_info_ptr cinfo));
|
||||
EXTERN void j_set_quality PP((compress_info_ptr cinfo, int quality,
|
||||
boolean force_baseline));
|
||||
|
||||
/* main entry for decompression */
|
||||
EXTERN void jpeg_decompress PP((decompress_info_ptr cinfo));
|
||||
|
||||
/* default parameter setup for decompression */
|
||||
EXTERN void j_d_defaults PP((decompress_info_ptr cinfo,
|
||||
boolean standard_buffering));
|
||||
|
||||
/* forward DCT */
|
||||
EXTERN void j_fwd_dct PP((DCTBLOCK data));
|
||||
/* inverse DCT */
|
||||
EXTERN void j_rev_dct PP((DCTBLOCK data));
|
||||
|
||||
/* utility routines in jutils.c */
|
||||
EXTERN long jround_up PP((long a, long b));
|
||||
EXTERN void jcopy_sample_rows PP((JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, long num_cols));
|
||||
EXTERN void jcopy_block_row PP((JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
long num_blocks));
|
||||
EXTERN void jzero_far PP((void FAR * target, size_t bytestozero));
|
||||
|
||||
/* method selection routines for compression modules */
|
||||
EXTERN void jselcpipeline PP((compress_info_ptr cinfo)); /* jcpipe.c */
|
||||
EXTERN void jselchuffman PP((compress_info_ptr cinfo)); /* jchuff.c */
|
||||
EXTERN void jselcarithmetic PP((compress_info_ptr cinfo)); /* jcarith.c */
|
||||
EXTERN void jselexpand PP((compress_info_ptr cinfo)); /* jcexpand.c */
|
||||
EXTERN void jselsubsample PP((compress_info_ptr cinfo)); /* jcsample.c */
|
||||
EXTERN void jselcmcu PP((compress_info_ptr cinfo)); /* jcmcu.c */
|
||||
EXTERN void jselccolor PP((compress_info_ptr cinfo)); /* jccolor.c */
|
||||
/* The user interface should call one of these to select input format: */
|
||||
EXTERN void jselrgif PP((compress_info_ptr cinfo)); /* jrdgif.c */
|
||||
EXTERN void jselrppm PP((compress_info_ptr cinfo)); /* jrdppm.c */
|
||||
EXTERN void jselrrle PP((compress_info_ptr cinfo)); /* jrdrle.c */
|
||||
EXTERN void jselrtarga PP((compress_info_ptr cinfo)); /* jrdtarga.c */
|
||||
/* and one of these to select output header format: */
|
||||
EXTERN void jselwjfif PP((compress_info_ptr cinfo)); /* jwrjfif.c */
|
||||
|
||||
/* method selection routines for decompression modules */
|
||||
EXTERN void jseldpipeline PP((decompress_info_ptr cinfo)); /* jdpipe.c */
|
||||
EXTERN void jseldhuffman PP((decompress_info_ptr cinfo)); /* jdhuff.c */
|
||||
EXTERN void jseldarithmetic PP((decompress_info_ptr cinfo)); /* jdarith.c */
|
||||
EXTERN void jseldmcu PP((decompress_info_ptr cinfo)); /* jdmcu.c */
|
||||
EXTERN void jselbsmooth PP((decompress_info_ptr cinfo)); /* jbsmooth.c */
|
||||
EXTERN void jselunsubsample PP((decompress_info_ptr cinfo)); /* jdsample.c */
|
||||
EXTERN void jseldcolor PP((decompress_info_ptr cinfo)); /* jdcolor.c */
|
||||
EXTERN void jsel1quantize PP((decompress_info_ptr cinfo)); /* jquant1.c */
|
||||
EXTERN void jsel2quantize PP((decompress_info_ptr cinfo)); /* jquant2.c */
|
||||
/* The user interface should call one of these to select input format: */
|
||||
EXTERN void jselrjfif PP((decompress_info_ptr cinfo)); /* jrdjfif.c */
|
||||
/* and one of these to select output image format: */
|
||||
EXTERN void jselwgif PP((decompress_info_ptr cinfo)); /* jwrgif.c */
|
||||
EXTERN void jselwppm PP((decompress_info_ptr cinfo)); /* jwrppm.c */
|
||||
EXTERN void jselwrle PP((decompress_info_ptr cinfo)); /* jwrrle.c */
|
||||
EXTERN void jselwtarga PP((decompress_info_ptr cinfo)); /* jwrtarga.c */
|
||||
|
||||
/* method selection routines for system-dependent modules */
|
||||
EXTERN void jselerror PP((external_methods_ptr emethods)); /* jerror.c */
|
||||
EXTERN void jselmemmgr PP((external_methods_ptr emethods)); /* jmemmgr.c */
|
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic
|
||||
* shift" instructions that shift in copies of the sign bit. But some
|
||||
* C compilers implement >> with an unsigned shift. For these machines you
|
||||
* must define RIGHT_SHIFT_IS_UNSIGNED.
|
||||
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
|
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be
|
||||
* included in the variables of any routine using RIGHT_SHIFT.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define SHIFT_TEMPS INT32 shift_temp;
|
||||
#define RIGHT_SHIFT(x,shft) \
|
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
|
||||
(shift_temp >> (shft)))
|
||||
#else
|
||||
#define SHIFT_TEMPS
|
||||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
/* Miscellaneous useful macros */
|
||||
|
||||
#undef MAX
|
||||
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
||||
#undef MIN
|
||||
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
||||
#define RST0 0xD0 /* RST0 marker code */
|
||||
361
jpegint.h
Normal file
361
jpegint.h
Normal file
@@ -0,0 +1,361 @@
|
||||
/*
|
||||
* jpegint.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides common declarations for the various JPEG modules.
|
||||
* These declarations are considered internal to the JPEG library; most
|
||||
* applications using the library shouldn't need to include this file.
|
||||
*/
|
||||
|
||||
|
||||
/* Declarations for both compression & decompression */
|
||||
|
||||
typedef enum { /* Operating modes for buffer controllers */
|
||||
JBUF_PASS_THRU, /* Plain stripwise operation */
|
||||
JBUF_CRANK_SOURCE, /* Run source subobject, no output expected */
|
||||
/* Remaining modes require a full-image buffer to have been created */
|
||||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
|
||||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
|
||||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
|
||||
} J_BUF_MODE;
|
||||
|
||||
/* Values of global_state field */
|
||||
#define CSTATE_START 100 /* after create_compress */
|
||||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
|
||||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
|
||||
#define DSTATE_START 200 /* after create_decompress */
|
||||
#define DSTATE_INHEADER 201 /* read_header initialized but not done */
|
||||
#define DSTATE_READY 202 /* read_header done, found image */
|
||||
#define DSTATE_SCANNING 203 /* start_decompress done, read_scanlines OK */
|
||||
#define DSTATE_RAW_OK 204 /* start_decompress done, read_raw_data OK */
|
||||
#define DSTATE_STOPPING 205 /* done reading data, looking for EOI */
|
||||
|
||||
|
||||
/* Declarations for compression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_comp_master {
|
||||
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean call_pass_startup; /* True if pass_startup must be called */
|
||||
boolean is_last_pass; /* True during last pass */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_c_main_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, process_data, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail));
|
||||
};
|
||||
|
||||
/* Compression preprocessing (downsampling input buffer control) */
|
||||
struct jpeg_c_prep_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail));
|
||||
};
|
||||
|
||||
/* Coefficient buffer control */
|
||||
struct jpeg_c_coef_controller {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, compress_data, (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_mcu_ctr));
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_converter {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, color_convert, (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows));
|
||||
};
|
||||
|
||||
/* Downsampling */
|
||||
struct jpeg_downsampler {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, downsample, (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf,
|
||||
JDIMENSION out_row_group_index));
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Forward DCT (also controls coefficient quantization) */
|
||||
struct jpeg_forward_dct {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
|
||||
/* perhaps this should be an array??? */
|
||||
JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
|
||||
jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks));
|
||||
};
|
||||
|
||||
/* Entropy encoding */
|
||||
struct jpeg_entropy_encoder {
|
||||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
|
||||
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
|
||||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
|
||||
};
|
||||
|
||||
/* Marker writing */
|
||||
struct jpeg_marker_writer {
|
||||
/* write_any_marker is exported for use by applications */
|
||||
/* Probably only COM and APPn markers should be written */
|
||||
JMETHOD(void, write_any_marker, (j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen));
|
||||
JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* Declarations for decompression modules */
|
||||
|
||||
/* Master control module */
|
||||
struct jpeg_decomp_master {
|
||||
JMETHOD(void, prepare_for_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
|
||||
|
||||
/* State variables made visible to other modules */
|
||||
boolean is_last_pass; /* True during last pass */
|
||||
boolean eoi_processed; /* True if EOI marker already read */
|
||||
};
|
||||
|
||||
/* Main buffer control (downsampled-data buffer) */
|
||||
struct jpeg_d_main_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, process_data, (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
/* During input-only passes, output_buf and out_rows_avail are ignored.
|
||||
* out_row_ctr is incremented towards the limit num_chunks.
|
||||
*/
|
||||
JDIMENSION num_chunks; /* number of chunks to be processed in pass */
|
||||
};
|
||||
|
||||
/* Coefficient buffer control */
|
||||
struct jpeg_d_coef_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(boolean, decompress_data, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE output_buf));
|
||||
};
|
||||
|
||||
/* Decompression postprocessing (color quantization buffer control) */
|
||||
struct jpeg_d_post_controller {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
|
||||
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
};
|
||||
|
||||
/* Marker reading & parsing */
|
||||
struct jpeg_marker_reader {
|
||||
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
|
||||
/* Read markers until SOS or EOI.
|
||||
* Returns same codes as are defined for jpeg_read_header,
|
||||
* but HEADER_OK and HEADER_TABLES_ONLY merely indicate which marker type
|
||||
* stopped the scan --- further validation is needed to declare file OK.
|
||||
*/
|
||||
JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
|
||||
/* Read a restart marker --- exported for use by entropy decoder only */
|
||||
jpeg_marker_parser_method read_restart_marker;
|
||||
/* Application-overridable marker processing methods */
|
||||
jpeg_marker_parser_method process_COM;
|
||||
jpeg_marker_parser_method process_APPn[16];
|
||||
|
||||
/* State of marker reader --- nominally internal, but applications
|
||||
* supplying COM or APPn handlers might like to know the state.
|
||||
*/
|
||||
boolean saw_SOI; /* found SOI? */
|
||||
boolean saw_SOF; /* found SOF? */
|
||||
int next_restart_num; /* next restart number expected (0-7) */
|
||||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
|
||||
};
|
||||
|
||||
/* Entropy decoding */
|
||||
struct jpeg_entropy_decoder {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
|
||||
JBLOCKROW *MCU_data));
|
||||
};
|
||||
|
||||
/* Inverse DCT (also performs dequantization) */
|
||||
typedef JMETHOD(void, inverse_DCT_method_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
struct jpeg_inverse_dct {
|
||||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
|
||||
/* It is useful to allow each component to have a separate IDCT method. */
|
||||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
|
||||
};
|
||||
|
||||
/* Upsampling (note that upsampler must also call color converter) */
|
||||
struct jpeg_upsampler {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, upsample, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf,
|
||||
JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
|
||||
boolean need_context_rows; /* TRUE if need rows above & below */
|
||||
};
|
||||
|
||||
/* Colorspace conversion */
|
||||
struct jpeg_color_deconverter {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows));
|
||||
};
|
||||
|
||||
/* Color quantization or color precision reduction */
|
||||
struct jpeg_color_quantizer {
|
||||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
|
||||
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPARRAY output_buf,
|
||||
int num_rows));
|
||||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* Miscellaneous useful macros */
|
||||
|
||||
#undef MAX
|
||||
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
||||
#undef MIN
|
||||
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
||||
/* We assume that right shift corresponds to signed division by 2 with
|
||||
* rounding towards minus infinity. This is correct for typical "arithmetic
|
||||
* shift" instructions that shift in copies of the sign bit. But some
|
||||
* C compilers implement >> with an unsigned shift. For these machines you
|
||||
* must define RIGHT_SHIFT_IS_UNSIGNED.
|
||||
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
|
||||
* It is only applied with constant shift counts. SHIFT_TEMPS must be
|
||||
* included in the variables of any routine using RIGHT_SHIFT.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define SHIFT_TEMPS INT32 shift_temp;
|
||||
#define RIGHT_SHIFT(x,shft) \
|
||||
((shift_temp = (x)) < 0 ? \
|
||||
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
|
||||
(shift_temp >> (shft)))
|
||||
#else
|
||||
#define SHIFT_TEMPS
|
||||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jinit_master_compress jICMaster
|
||||
#define jinit_c_main_controller jICMainC
|
||||
#define jinit_c_prep_controller jICPrepC
|
||||
#define jinit_c_coef_controller jICCoefC
|
||||
#define jinit_color_converter jICColor
|
||||
#define jinit_downsampler jIDownsampler
|
||||
#define jinit_forward_dct jIFDCT
|
||||
#define jinit_huff_encoder jIHEncoder
|
||||
#define jinit_marker_writer jIMWriter
|
||||
#define jinit_master_decompress jIDMaster
|
||||
#define jinit_d_main_controller jIDMainC
|
||||
#define jinit_d_coef_controller jIDCoefC
|
||||
#define jinit_d_post_controller jIDPostC
|
||||
#define jinit_marker_reader jIMReader
|
||||
#define jinit_huff_decoder jIHDecoder
|
||||
#define jinit_inverse_dct jIIDCT
|
||||
#define jinit_upsampler jIUpsampler
|
||||
#define jinit_color_deconverter jIDColor
|
||||
#define jinit_1pass_quantizer jI1Quant
|
||||
#define jinit_2pass_quantizer jI2Quant
|
||||
#define jinit_merged_upsampler jIMUpsampler
|
||||
#define jinit_memory_mgr jIMemMgr
|
||||
#define jdiv_round_up jDivRound
|
||||
#define jround_up jRound
|
||||
#define jcopy_sample_rows jCopySamples
|
||||
#define jcopy_block_row jCopyBlocks
|
||||
#define jzero_far jZeroFar
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/* Compression module initialization routines */
|
||||
EXTERN void jinit_master_compress JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jinit_c_main_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN void jinit_c_prep_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN void jinit_c_coef_controller JPP((j_compress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN void jinit_color_converter JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jinit_downsampler JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jinit_forward_dct JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jinit_huff_encoder JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jinit_marker_writer JPP((j_compress_ptr cinfo));
|
||||
/* Decompression module initialization routines */
|
||||
EXTERN void jinit_master_decompress JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_d_main_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN void jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN void jinit_d_post_controller JPP((j_decompress_ptr cinfo,
|
||||
boolean need_full_buffer));
|
||||
EXTERN void jinit_marker_reader JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_huff_decoder JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_inverse_dct JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_upsampler JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_color_deconverter JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
|
||||
/* Memory manager initialization */
|
||||
EXTERN void jinit_memory_mgr JPP((j_common_ptr cinfo));
|
||||
|
||||
/* Utility routines in jutils.c */
|
||||
EXTERN long jdiv_round_up JPP((long a, long b));
|
||||
EXTERN long jround_up JPP((long a, long b));
|
||||
EXTERN void jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
|
||||
JSAMPARRAY output_array, int dest_row,
|
||||
int num_rows, JDIMENSION num_cols));
|
||||
EXTERN void jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
|
||||
JDIMENSION num_blocks));
|
||||
EXTERN void jzero_far JPP((void FAR * target, size_t bytestozero));
|
||||
|
||||
|
||||
/* Suppress undefined-structure complaints if necessary. */
|
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
|
||||
struct jvirt_sarray_control { long dummy; };
|
||||
struct jvirt_barray_control { long dummy; };
|
||||
#endif
|
||||
#endif /* INCOMPLETE_TYPES_BROKEN */
|
||||
930
jpeglib.h
Normal file
930
jpeglib.h
Normal file
@@ -0,0 +1,930 @@
|
||||
/*
|
||||
* jpeglib.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines the application interface for the JPEG library.
|
||||
* Most applications using the library need only include this file,
|
||||
* and perhaps jerror.h if they want to know the exact error codes.
|
||||
*/
|
||||
|
||||
/*
|
||||
* First we include the configuration files that record how this
|
||||
* installation of the JPEG library is set up. jconfig.h can be
|
||||
* generated automatically for many systems. jmorecfg.h contains
|
||||
* manual configuration options that most people need not worry about.
|
||||
*/
|
||||
|
||||
#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
|
||||
#include "jconfig.h" /* widely used configuration options */
|
||||
#endif
|
||||
#include "jmorecfg.h" /* seldom changed options */
|
||||
|
||||
|
||||
/* Version ID for the JPEG library.
|
||||
* Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
|
||||
*/
|
||||
|
||||
#define JPEG_LIB_VERSION 50 /* Version 5.0 */
|
||||
|
||||
|
||||
/* Various constants determining the sizes of things.
|
||||
* All of these are specified by the JPEG standard, so don't change them
|
||||
* if you want to be compatible.
|
||||
*/
|
||||
|
||||
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
|
||||
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
|
||||
#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
|
||||
#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
|
||||
#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
|
||||
#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
|
||||
#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
|
||||
#define MAX_BLOCKS_IN_MCU 10 /* JPEG limit on # of blocks in an MCU */
|
||||
|
||||
|
||||
/* This macro is used to declare a "method", that is, a function pointer.
|
||||
* We want to supply prototype parameters if the compiler can cope.
|
||||
* Note that the arglist parameter must be parenthesized!
|
||||
*/
|
||||
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
|
||||
#else
|
||||
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
|
||||
#endif
|
||||
|
||||
|
||||
/* Data structures for images (arrays of samples and of DCT coefficients).
|
||||
* On 80x86 machines, the image arrays are too big for near pointers,
|
||||
* but the pointer arrays can fit in near memory.
|
||||
*/
|
||||
|
||||
typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
|
||||
typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
|
||||
typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
|
||||
|
||||
typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
|
||||
typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
|
||||
typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
|
||||
typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
|
||||
|
||||
typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
|
||||
|
||||
|
||||
/* Types for JPEG compression parameters and working tables. */
|
||||
|
||||
|
||||
/* DCT coefficient quantization tables. */
|
||||
|
||||
typedef struct {
|
||||
/* This field directly represents the contents of a JPEG DQT marker.
|
||||
* Note: the values are always given in zigzag order.
|
||||
*/
|
||||
UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
|
||||
/* This field is used only during compression. It's initialized FALSE when
|
||||
* the table is created, and set TRUE when it's been output to the file.
|
||||
* You could suppress output of a table by setting this to TRUE.
|
||||
* (See jpeg_suppress_tables for an example.)
|
||||
*/
|
||||
boolean sent_table; /* TRUE when table has been output */
|
||||
} JQUANT_TBL;
|
||||
|
||||
|
||||
/* Huffman coding tables. */
|
||||
|
||||
typedef struct {
|
||||
/* These two fields directly represent the contents of a JPEG DHT marker */
|
||||
UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
|
||||
/* length k bits; bits[0] is unused */
|
||||
UINT8 huffval[256]; /* The symbols, in order of incr code length */
|
||||
/* This field is used only during compression. It's initialized FALSE when
|
||||
* the table is created, and set TRUE when it's been output to the file.
|
||||
* You could suppress output of a table by setting this to TRUE.
|
||||
* (See jpeg_suppress_tables for an example.)
|
||||
*/
|
||||
boolean sent_table; /* TRUE when table has been output */
|
||||
} JHUFF_TBL;
|
||||
|
||||
|
||||
/* Basic info about one component (color channel). */
|
||||
|
||||
typedef struct {
|
||||
/* These values are fixed over the whole image. */
|
||||
/* For compression, they must be supplied by parameter setup; */
|
||||
/* for decompression, they are read from the SOF marker. */
|
||||
int component_id; /* identifier for this component (0..255) */
|
||||
int component_index; /* its index in SOF or cinfo->comp_info[] */
|
||||
int h_samp_factor; /* horizontal sampling factor (1..4) */
|
||||
int v_samp_factor; /* vertical sampling factor (1..4) */
|
||||
int quant_tbl_no; /* quantization table selector (0..3) */
|
||||
/* These values may vary between scans. */
|
||||
/* For compression, they must be supplied by parameter setup; */
|
||||
/* for decompression, they are read from the SOS marker. */
|
||||
int dc_tbl_no; /* DC entropy table selector (0..3) */
|
||||
int ac_tbl_no; /* AC entropy table selector (0..3) */
|
||||
|
||||
/* Remaining fields should be treated as private by applications. */
|
||||
|
||||
/* These values are computed during compression or decompression startup: */
|
||||
/* Component's size in DCT blocks.
|
||||
* Any dummy blocks added to complete an MCU are not counted; therefore
|
||||
* these values do not depend on whether a scan is interleaved or not.
|
||||
*/
|
||||
JDIMENSION width_in_blocks;
|
||||
JDIMENSION height_in_blocks;
|
||||
/* Size of a DCT block in samples. Always DCTSIZE for compression.
|
||||
* For decompression this is the size of the output from one DCT block,
|
||||
* reflecting any scaling we choose to apply during the IDCT step.
|
||||
* Values of 1,2,4,8 are likely to be supported. Note that different
|
||||
* components may receive different IDCT scalings.
|
||||
*/
|
||||
int DCT_scaled_size;
|
||||
/* The downsampled dimensions are the component's actual, unpadded number
|
||||
* of samples at the main buffer (preprocessing/compression interface), thus
|
||||
* downsampled_width = ceil(image_width * Hi/Hmax)
|
||||
* and similarly for height. For decompression, IDCT scaling is included, so
|
||||
* downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE)
|
||||
*/
|
||||
JDIMENSION downsampled_width; /* actual width in samples */
|
||||
JDIMENSION downsampled_height; /* actual height in samples */
|
||||
/* This flag is used only for decompression. In cases where some of the
|
||||
* components will be ignored (eg grayscale output from YCbCr image),
|
||||
* we can skip most computations for the unused components.
|
||||
*/
|
||||
boolean component_needed; /* do we need the value of this component? */
|
||||
|
||||
/* These values are computed before starting a scan of the component: */
|
||||
int MCU_width; /* number of blocks per MCU, horizontally */
|
||||
int MCU_height; /* number of blocks per MCU, vertically */
|
||||
int MCU_blocks; /* MCU_width * MCU_height */
|
||||
int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_scaled_size */
|
||||
int last_col_width; /* # of non-dummy blocks across in last MCU */
|
||||
int last_row_height; /* # of non-dummy blocks down in last MCU */
|
||||
|
||||
/* Private per-component storage for DCT or IDCT subsystem. */
|
||||
void * dct_table;
|
||||
} jpeg_component_info;
|
||||
|
||||
|
||||
/* Known color spaces. */
|
||||
|
||||
typedef enum {
|
||||
JCS_UNKNOWN, /* error/unspecified */
|
||||
JCS_GRAYSCALE, /* monochrome */
|
||||
JCS_RGB, /* red/green/blue */
|
||||
JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
|
||||
JCS_CMYK, /* C/M/Y/K */
|
||||
JCS_YCCK /* Y/Cb/Cr/K */
|
||||
} J_COLOR_SPACE;
|
||||
|
||||
/* DCT/IDCT algorithm options. */
|
||||
|
||||
typedef enum {
|
||||
JDCT_ISLOW, /* slow but accurate integer algorithm */
|
||||
JDCT_IFAST, /* faster, less accurate integer method */
|
||||
JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
|
||||
} J_DCT_METHOD;
|
||||
|
||||
#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
|
||||
#define JDCT_DEFAULT JDCT_ISLOW
|
||||
#endif
|
||||
#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
|
||||
#define JDCT_FASTEST JDCT_IFAST
|
||||
#endif
|
||||
|
||||
/* Dithering options for decompression. */
|
||||
|
||||
typedef enum {
|
||||
JDITHER_NONE, /* no dithering */
|
||||
JDITHER_ORDERED, /* simple ordered dither */
|
||||
JDITHER_FS /* Floyd-Steinberg error diffusion dither */
|
||||
} J_DITHER_MODE;
|
||||
|
||||
|
||||
/* Common fields between JPEG compression and decompression master structs. */
|
||||
|
||||
#define jpeg_common_fields \
|
||||
struct jpeg_error_mgr * err; /* Error handler module */\
|
||||
struct jpeg_memory_mgr * mem; /* Memory manager module */\
|
||||
struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
|
||||
boolean is_decompressor; /* so common code can tell which is which */\
|
||||
int global_state /* for checking call sequence validity */
|
||||
|
||||
/* Routines that are to be used by both halves of the library are declared
|
||||
* to receive a pointer to this structure. There are no actual instances of
|
||||
* jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
|
||||
*/
|
||||
struct jpeg_common_struct {
|
||||
jpeg_common_fields; /* Fields common to both master struct types */
|
||||
/* Additional fields follow in an actual jpeg_compress_struct or
|
||||
* jpeg_decompress_struct. All three structs must agree on these
|
||||
* initial fields! (This would be a lot cleaner in C++.)
|
||||
*/
|
||||
};
|
||||
|
||||
typedef struct jpeg_common_struct * j_common_ptr;
|
||||
typedef struct jpeg_compress_struct * j_compress_ptr;
|
||||
typedef struct jpeg_decompress_struct * j_decompress_ptr;
|
||||
|
||||
|
||||
/* Master record for a compression instance */
|
||||
|
||||
struct jpeg_compress_struct {
|
||||
jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
|
||||
|
||||
/* Destination for compressed data */
|
||||
struct jpeg_destination_mgr * dest;
|
||||
|
||||
/* Description of source image --- these fields must be filled in by
|
||||
* outer application before starting compression. in_color_space must
|
||||
* be correct before you can even call jpeg_set_defaults().
|
||||
*/
|
||||
|
||||
JDIMENSION image_width; /* input image width */
|
||||
JDIMENSION image_height; /* input image height */
|
||||
int input_components; /* # of color components in input image */
|
||||
J_COLOR_SPACE in_color_space; /* colorspace of input image */
|
||||
|
||||
double input_gamma; /* image gamma of input image */
|
||||
|
||||
/* Compression parameters --- these fields must be set before calling
|
||||
* jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
|
||||
* initialize everything to reasonable defaults, then changing anything
|
||||
* the application specifically wants to change. That way you won't get
|
||||
* burnt when new parameters are added. Also note that there are several
|
||||
* helper routines to simplify changing parameters.
|
||||
*/
|
||||
|
||||
int data_precision; /* bits of precision in image data */
|
||||
|
||||
int num_components; /* # of color components in JPEG image */
|
||||
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
|
||||
|
||||
jpeg_component_info * comp_info;
|
||||
/* comp_info[i] describes component that appears i'th in SOF */
|
||||
|
||||
JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
|
||||
/* ptrs to coefficient quantization tables, or NULL if not defined */
|
||||
|
||||
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
/* ptrs to Huffman coding tables, or NULL if not defined */
|
||||
|
||||
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
|
||||
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
|
||||
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
|
||||
|
||||
boolean raw_data_in; /* TRUE=caller supplies downsampled data */
|
||||
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
|
||||
boolean interleave; /* TRUE=interleaved output, FALSE=not */
|
||||
boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
|
||||
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
|
||||
int smoothing_factor; /* 1..100, or 0 for no input smoothing */
|
||||
J_DCT_METHOD dct_method; /* DCT algorithm selector */
|
||||
|
||||
/* The restart interval can be specified in absolute MCUs by setting
|
||||
* restart_interval, or in MCU rows by setting restart_in_rows
|
||||
* (in which case the correct restart_interval will be figured
|
||||
* for each scan).
|
||||
*/
|
||||
unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
|
||||
int restart_in_rows; /* if > 0, MCU rows per restart interval */
|
||||
|
||||
/* Parameters controlling emission of special markers. */
|
||||
|
||||
boolean write_JFIF_header; /* should a JFIF marker be written? */
|
||||
/* These three values are not used by the JPEG code, merely copied */
|
||||
/* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
|
||||
/* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
|
||||
/* ratio is defined by X_density/Y_density even when density_unit=0. */
|
||||
UINT8 density_unit; /* JFIF code for pixel size units */
|
||||
UINT16 X_density; /* Horizontal pixel density */
|
||||
UINT16 Y_density; /* Vertical pixel density */
|
||||
boolean write_Adobe_marker; /* should an Adobe marker be written? */
|
||||
|
||||
/* State variable: index of next scanline to be written to
|
||||
* jpeg_write_scanlines(). Application may use this to control its
|
||||
* processing loop, e.g., "while (next_scanline < image_height)".
|
||||
*/
|
||||
|
||||
JDIMENSION next_scanline; /* 0 .. image_height-1 */
|
||||
|
||||
/* Remaining fields are known throughout compressor, but generally
|
||||
* should not be touched by a surrounding application.
|
||||
*/
|
||||
|
||||
/*
|
||||
* These fields are computed during compression startup
|
||||
*/
|
||||
int max_h_samp_factor; /* largest h_samp_factor */
|
||||
int max_v_samp_factor; /* largest v_samp_factor */
|
||||
|
||||
JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
|
||||
/* The coefficient controller receives data in units of MCU rows as defined
|
||||
* for fully interleaved scans (whether the JPEG file is interleaved or not).
|
||||
* There are v_samp_factor * DCTSIZE sample rows of each component in an
|
||||
* "iMCU" (interleaved MCU) row.
|
||||
*/
|
||||
|
||||
/*
|
||||
* These fields are valid during any one scan.
|
||||
* They describe the components and MCUs actually appearing in the scan.
|
||||
*/
|
||||
int comps_in_scan; /* # of JPEG components in this scan */
|
||||
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
|
||||
/* *cur_comp_info[i] describes component that appears i'th in SOS */
|
||||
|
||||
JDIMENSION MCUs_per_row; /* # of MCUs across the image */
|
||||
JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
|
||||
|
||||
int blocks_in_MCU; /* # of DCT blocks per MCU */
|
||||
int MCU_membership[MAX_BLOCKS_IN_MCU];
|
||||
/* MCU_membership[i] is index in cur_comp_info of component owning */
|
||||
/* i'th block in an MCU */
|
||||
|
||||
/*
|
||||
* Links to compression subobjects (methods and private variables of modules)
|
||||
*/
|
||||
struct jpeg_comp_master * master;
|
||||
struct jpeg_c_main_controller * main;
|
||||
struct jpeg_c_prep_controller * prep;
|
||||
struct jpeg_c_coef_controller * coef;
|
||||
struct jpeg_marker_writer * marker;
|
||||
struct jpeg_color_converter * cconvert;
|
||||
struct jpeg_downsampler * downsample;
|
||||
struct jpeg_forward_dct * fdct;
|
||||
struct jpeg_entropy_encoder * entropy;
|
||||
};
|
||||
|
||||
|
||||
/* Master record for a decompression instance */
|
||||
|
||||
struct jpeg_decompress_struct {
|
||||
jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
|
||||
|
||||
/* Source of compressed data */
|
||||
struct jpeg_source_mgr * src;
|
||||
|
||||
/* Basic description of image --- filled in by jpeg_read_header(). */
|
||||
/* Application may inspect these values to decide how to process image. */
|
||||
|
||||
JDIMENSION image_width; /* nominal image width (from SOF marker) */
|
||||
JDIMENSION image_height; /* nominal image height */
|
||||
int num_components; /* # of color components in JPEG image */
|
||||
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
|
||||
|
||||
/* Decompression processing parameters --- these fields must be set before
|
||||
* calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
|
||||
* them to default values.
|
||||
*/
|
||||
|
||||
J_COLOR_SPACE out_color_space; /* colorspace for output */
|
||||
|
||||
unsigned int scale_num, scale_denom; /* fraction by which to scale image */
|
||||
|
||||
double output_gamma; /* image gamma wanted in output */
|
||||
|
||||
boolean raw_data_out; /* TRUE=downsampled data wanted */
|
||||
|
||||
boolean quantize_colors; /* TRUE=colormapped output wanted */
|
||||
/* the following are ignored if not quantize_colors: */
|
||||
boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
|
||||
J_DITHER_MODE dither_mode; /* type of color dithering to use */
|
||||
int desired_number_of_colors; /* max number of colors to use */
|
||||
|
||||
J_DCT_METHOD dct_method; /* DCT algorithm selector */
|
||||
boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
|
||||
|
||||
/* Description of actual output image that will be returned to application.
|
||||
* These fields are computed by jpeg_start_decompress().
|
||||
* You can also use jpeg_calc_output_dimensions() to determine these values
|
||||
* in advance of calling jpeg_start_decompress().
|
||||
*/
|
||||
|
||||
JDIMENSION output_width; /* scaled image width */
|
||||
JDIMENSION output_height; /* scaled image height */
|
||||
int out_color_components; /* # of color components in out_color_space */
|
||||
int output_components; /* # of color components returned */
|
||||
/* output_components is 1 (a colormap index) when quantizing colors;
|
||||
* otherwise it equals out_color_components.
|
||||
*/
|
||||
int rec_outbuf_height; /* min recommended height of scanline buffer */
|
||||
/* If the buffer passed to jpeg_read_scanlines() is less than this many rows
|
||||
* high, space and time will be wasted due to unnecessary data copying.
|
||||
* Usually rec_outbuf_height will be 1 or 2, at most 4.
|
||||
*/
|
||||
|
||||
/* When quantizing colors, the output colormap is described by these fields.
|
||||
* The application can supply a colormap by setting colormap non-NULL before
|
||||
* calling jpeg_start_decompress; otherwise a colormap is created during
|
||||
* jpeg_start_decompress.
|
||||
* The map has out_color_components rows and actual_number_of_colors columns.
|
||||
*/
|
||||
int actual_number_of_colors; /* number of entries in use */
|
||||
JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
|
||||
|
||||
/* State variable: index of next scaled scanline to be read from
|
||||
* jpeg_read_scanlines(). Application may use this to control its
|
||||
* processing loop, e.g., "while (output_scanline < output_height)".
|
||||
*/
|
||||
|
||||
JDIMENSION output_scanline; /* 0 .. output_height-1 */
|
||||
|
||||
/* Internal JPEG parameters --- the application usually need not look at
|
||||
* these fields.
|
||||
*/
|
||||
|
||||
/* Quantization and Huffman tables are carried forward across input
|
||||
* datastreams when processing abbreviated JPEG datastreams.
|
||||
*/
|
||||
|
||||
JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
|
||||
/* ptrs to coefficient quantization tables, or NULL if not defined */
|
||||
|
||||
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
|
||||
/* ptrs to Huffman coding tables, or NULL if not defined */
|
||||
|
||||
/* These parameters are never carried across datastreams, since they
|
||||
* are given in SOF/SOS markers or defined to be reset by SOI.
|
||||
*/
|
||||
|
||||
int data_precision; /* bits of precision in image data */
|
||||
|
||||
jpeg_component_info * comp_info;
|
||||
/* comp_info[i] describes component that appears i'th in SOF */
|
||||
|
||||
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
|
||||
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
|
||||
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
|
||||
|
||||
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
|
||||
|
||||
unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
|
||||
|
||||
/* These fields record data obtained from optional markers recognized by
|
||||
* the JPEG library.
|
||||
*/
|
||||
boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
|
||||
/* Data copied from JFIF marker: */
|
||||
UINT8 density_unit; /* JFIF code for pixel size units */
|
||||
UINT16 X_density; /* Horizontal pixel density */
|
||||
UINT16 Y_density; /* Vertical pixel density */
|
||||
boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
|
||||
UINT8 Adobe_transform; /* Color transform code from Adobe marker */
|
||||
|
||||
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
|
||||
|
||||
/* Remaining fields are known throughout decompressor, but generally
|
||||
* should not be touched by a surrounding application.
|
||||
*/
|
||||
|
||||
/*
|
||||
* These fields are computed during decompression startup
|
||||
*/
|
||||
int max_h_samp_factor; /* largest h_samp_factor */
|
||||
int max_v_samp_factor; /* largest v_samp_factor */
|
||||
|
||||
int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */
|
||||
|
||||
JDIMENSION total_iMCU_rows; /* # of iMCU rows to be output by coef ctlr */
|
||||
/* The coefficient controller outputs data in units of MCU rows as defined
|
||||
* for fully interleaved scans (whether the JPEG file is interleaved or not).
|
||||
* There are v_samp_factor * DCT_scaled_size sample rows of each component
|
||||
* in an "iMCU" (interleaved MCU) row.
|
||||
*/
|
||||
|
||||
JSAMPLE * sample_range_limit; /* table for fast range-limiting */
|
||||
|
||||
/*
|
||||
* These fields are valid during any one scan.
|
||||
* They describe the components and MCUs actually appearing in the scan.
|
||||
*/
|
||||
int comps_in_scan; /* # of JPEG components in this scan */
|
||||
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
|
||||
/* *cur_comp_info[i] describes component that appears i'th in SOS */
|
||||
|
||||
JDIMENSION MCUs_per_row; /* # of MCUs across the image */
|
||||
JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
|
||||
|
||||
int blocks_in_MCU; /* # of DCT blocks per MCU */
|
||||
int MCU_membership[MAX_BLOCKS_IN_MCU];
|
||||
/* MCU_membership[i] is index in cur_comp_info of component owning */
|
||||
/* i'th block in an MCU */
|
||||
|
||||
/* This field is shared between entropy decoder and marker parser.
|
||||
* It is either zero or the code of a JPEG marker that has been
|
||||
* read from the data source, but has not yet been processed.
|
||||
*/
|
||||
int unread_marker;
|
||||
|
||||
/*
|
||||
* Links to decompression subobjects (methods, private variables of modules)
|
||||
*/
|
||||
struct jpeg_decomp_master * master;
|
||||
struct jpeg_d_main_controller * main;
|
||||
struct jpeg_d_coef_controller * coef;
|
||||
struct jpeg_d_post_controller * post;
|
||||
struct jpeg_marker_reader * marker;
|
||||
struct jpeg_entropy_decoder * entropy;
|
||||
struct jpeg_inverse_dct * idct;
|
||||
struct jpeg_upsampler * upsample;
|
||||
struct jpeg_color_deconverter * cconvert;
|
||||
struct jpeg_color_quantizer * cquantize;
|
||||
};
|
||||
|
||||
|
||||
/* "Object" declarations for JPEG modules that may be supplied or called
|
||||
* directly by the surrounding application.
|
||||
* As with all objects in the JPEG library, these structs only define the
|
||||
* publicly visible methods and state variables of a module. Additional
|
||||
* private fields may exist after the public ones.
|
||||
*/
|
||||
|
||||
|
||||
/* Error handler object */
|
||||
|
||||
struct jpeg_error_mgr {
|
||||
/* Error exit handler: does not return to caller */
|
||||
JMETHOD(void, error_exit, (j_common_ptr cinfo));
|
||||
/* Conditionally emit a trace or warning message */
|
||||
JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
|
||||
/* Routine that actually outputs a trace or error message */
|
||||
JMETHOD(void, output_message, (j_common_ptr cinfo));
|
||||
/* Format a message string for the most recent JPEG error or message */
|
||||
JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
|
||||
#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
|
||||
/* Reset error state variables at start of a new image */
|
||||
JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
|
||||
|
||||
/* The message ID code and any parameters are saved here.
|
||||
* A message can have one string parameter or up to 8 int parameters.
|
||||
*/
|
||||
int msg_code;
|
||||
#define JMSG_STR_PARM_MAX 80
|
||||
union {
|
||||
int i[8];
|
||||
char s[JMSG_STR_PARM_MAX];
|
||||
} msg_parm;
|
||||
|
||||
/* Standard state variables for error facility */
|
||||
|
||||
int trace_level; /* max msg_level that will be displayed */
|
||||
|
||||
/* For recoverable corrupt-data errors, we emit a warning message,
|
||||
* but keep going unless emit_message chooses to abort. emit_message
|
||||
* should count warnings in num_warnings. The surrounding application
|
||||
* can check for bad data by seeing if num_warnings is nonzero at the
|
||||
* end of processing.
|
||||
*/
|
||||
long num_warnings; /* number of corrupt-data warnings */
|
||||
|
||||
/* These fields point to the table(s) of error message strings.
|
||||
* An application can change the table pointer to switch to a different
|
||||
* message list (typically, to change the language in which errors are
|
||||
* reported). Some applications may wish to add additional error codes
|
||||
* that will be handled by the JPEG library error mechanism; the second
|
||||
* table pointer is used for this purpose.
|
||||
*
|
||||
* First table includes all errors generated by JPEG library itself.
|
||||
* Error code 0 is reserved for a "no such error string" message.
|
||||
*/
|
||||
const char * const * jpeg_message_table; /* Library errors */
|
||||
int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
|
||||
/* Second table can be added by application (see cjpeg/djpeg for example).
|
||||
* It contains strings numbered first_addon_message..last_addon_message.
|
||||
*/
|
||||
const char * const * addon_message_table; /* Non-library errors */
|
||||
int first_addon_message; /* code for first string in addon table */
|
||||
int last_addon_message; /* code for last string in addon table */
|
||||
};
|
||||
|
||||
|
||||
/* Progress monitor object */
|
||||
|
||||
struct jpeg_progress_mgr {
|
||||
JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
|
||||
|
||||
long pass_counter; /* work units completed in this pass */
|
||||
long pass_limit; /* total number of work units in this pass */
|
||||
int completed_passes; /* passes completed so far */
|
||||
int total_passes; /* total number of passes expected */
|
||||
};
|
||||
|
||||
|
||||
/* Data destination object for compression */
|
||||
|
||||
struct jpeg_destination_mgr {
|
||||
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
||||
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
||||
|
||||
JMETHOD(void, init_destination, (j_compress_ptr cinfo));
|
||||
JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
|
||||
JMETHOD(void, term_destination, (j_compress_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* Data source object for decompression */
|
||||
|
||||
struct jpeg_source_mgr {
|
||||
const JOCTET * next_input_byte; /* => next byte to read from buffer */
|
||||
size_t bytes_in_buffer; /* # of bytes remaining in buffer */
|
||||
|
||||
JMETHOD(void, init_source, (j_decompress_ptr cinfo));
|
||||
JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
|
||||
JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo));
|
||||
JMETHOD(void, term_source, (j_decompress_ptr cinfo));
|
||||
};
|
||||
|
||||
|
||||
/* Memory manager object.
|
||||
* Allocates "small" objects (a few K total), "large" objects (tens of K),
|
||||
* and "really big" objects (virtual arrays with backing store if needed).
|
||||
* The memory manager does not allow individual objects to be freed; rather,
|
||||
* each created object is assigned to a pool, and whole pools can be freed
|
||||
* at once. This is faster and more convenient than remembering exactly what
|
||||
* to free, especially where malloc()/free() are not too speedy.
|
||||
* NB: alloc routines never return NULL. They exit to error_exit if not
|
||||
* successful.
|
||||
*/
|
||||
|
||||
#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
|
||||
#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
|
||||
#define JPOOL_NUMPOOLS 2
|
||||
|
||||
typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
|
||||
typedef struct jvirt_barray_control * jvirt_barray_ptr;
|
||||
|
||||
|
||||
struct jpeg_memory_mgr {
|
||||
/* Method pointers */
|
||||
JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
|
||||
size_t sizeofobject));
|
||||
JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
|
||||
size_t sizeofobject));
|
||||
JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
|
||||
JDIMENSION samplesperrow,
|
||||
JDIMENSION numrows));
|
||||
JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
|
||||
JDIMENSION blocksperrow,
|
||||
JDIMENSION numrows));
|
||||
JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
|
||||
int pool_id,
|
||||
JDIMENSION samplesperrow,
|
||||
JDIMENSION numrows,
|
||||
JDIMENSION unitheight));
|
||||
JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
|
||||
int pool_id,
|
||||
JDIMENSION blocksperrow,
|
||||
JDIMENSION numrows,
|
||||
JDIMENSION unitheight));
|
||||
JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
|
||||
JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
|
||||
jvirt_sarray_ptr ptr,
|
||||
JDIMENSION start_row,
|
||||
boolean writable));
|
||||
JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
|
||||
jvirt_barray_ptr ptr,
|
||||
JDIMENSION start_row,
|
||||
boolean writable));
|
||||
JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
|
||||
JMETHOD(void, self_destruct, (j_common_ptr cinfo));
|
||||
|
||||
/* Limit on memory allocation for this JPEG object. (Note that this is
|
||||
* merely advisory, not a guaranteed maximum; it only affects the space
|
||||
* used for virtual-array buffers.) May be changed by outer application
|
||||
* after creating the JPEG object.
|
||||
*/
|
||||
long max_memory_to_use;
|
||||
};
|
||||
|
||||
|
||||
/* Routine signature for application-supplied marker processing methods.
|
||||
* Need not pass marker code since it is stored in cinfo->unread_marker.
|
||||
*/
|
||||
typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/* Declarations for routines called by application.
|
||||
* The JPP macro hides prototype parameters from compilers that can't cope.
|
||||
* Note JPP requires double parentheses.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_PROTOTYPES
|
||||
#define JPP(arglist) arglist
|
||||
#else
|
||||
#define JPP(arglist) ()
|
||||
#endif
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers.
|
||||
* We shorten external names to be unique in the first six letters, which
|
||||
* is good enough for all known systems.
|
||||
* (If your compiler itself needs names to be unique in less than 15
|
||||
* characters, you are out of luck. Get a better compiler.)
|
||||
*/
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_std_error jStdError
|
||||
#define jpeg_create_compress jCreaCompress
|
||||
#define jpeg_create_decompress jCreaDecompress
|
||||
#define jpeg_destroy_compress jDestCompress
|
||||
#define jpeg_destroy_decompress jDestDecompress
|
||||
#define jpeg_stdio_dest jStdDest
|
||||
#define jpeg_stdio_src jStdSrc
|
||||
#define jpeg_set_defaults jSetDefaults
|
||||
#define jpeg_set_colorspace jSetColorspace
|
||||
#define jpeg_default_colorspace jDefColorspace
|
||||
#define jpeg_set_quality jSetQuality
|
||||
#define jpeg_set_linear_quality jSetLQuality
|
||||
#define jpeg_add_quant_table jAddQuantTable
|
||||
#define jpeg_quality_scaling jQualityScaling
|
||||
#define jpeg_suppress_tables jSuppressTables
|
||||
#define jpeg_alloc_quant_table jAlcQTable
|
||||
#define jpeg_alloc_huff_table jAlcHTable
|
||||
#define jpeg_start_compress jStrtCompress
|
||||
#define jpeg_write_scanlines jWrtScanlines
|
||||
#define jpeg_finish_compress jFinCompress
|
||||
#define jpeg_write_raw_data jWrtRawData
|
||||
#define jpeg_write_marker jWrtMarker
|
||||
#define jpeg_write_tables jWrtTables
|
||||
#define jpeg_read_header jReadHeader
|
||||
#define jpeg_start_decompress jStrtDecompress
|
||||
#define jpeg_read_scanlines jReadScanlines
|
||||
#define jpeg_finish_decompress jFinDecompress
|
||||
#define jpeg_read_raw_data jReadRawData
|
||||
#define jpeg_calc_output_dimensions jCalcDimensions
|
||||
#define jpeg_set_marker_processor jSetMarker
|
||||
#define jpeg_abort_compress jAbrtCompress
|
||||
#define jpeg_abort_decompress jAbrtDecompress
|
||||
#define jpeg_abort jAbort
|
||||
#define jpeg_destroy jDestroy
|
||||
#define jpeg_resync_to_restart jResyncRestart
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/* Default error-management setup */
|
||||
EXTERN struct jpeg_error_mgr *jpeg_std_error JPP((struct jpeg_error_mgr *err));
|
||||
|
||||
/* Initialization and destruction of JPEG compression objects */
|
||||
/* NB: you must set up the error-manager BEFORE calling jpeg_create_xxx */
|
||||
EXTERN void jpeg_create_compress JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jpeg_create_decompress JPP((j_decompress_ptr cinfo));
|
||||
EXTERN void jpeg_destroy_compress JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
|
||||
|
||||
/* Standard data source and destination managers: stdio streams. */
|
||||
/* Caller is responsible for opening the file before and closing after. */
|
||||
EXTERN void jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
|
||||
EXTERN void jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
|
||||
|
||||
/* Default parameter setup for compression */
|
||||
EXTERN void jpeg_set_defaults JPP((j_compress_ptr cinfo));
|
||||
/* Compression parameter setup aids */
|
||||
EXTERN void jpeg_set_colorspace JPP((j_compress_ptr cinfo,
|
||||
J_COLOR_SPACE colorspace));
|
||||
EXTERN void jpeg_default_colorspace JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
|
||||
boolean force_baseline));
|
||||
EXTERN void jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
|
||||
int scale_factor,
|
||||
boolean force_baseline));
|
||||
EXTERN void jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
|
||||
const unsigned int *basic_table,
|
||||
int scale_factor,
|
||||
boolean force_baseline));
|
||||
EXTERN int jpeg_quality_scaling JPP((int quality));
|
||||
EXTERN void jpeg_suppress_tables JPP((j_compress_ptr cinfo,
|
||||
boolean suppress));
|
||||
EXTERN JQUANT_TBL * jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
|
||||
EXTERN JHUFF_TBL * jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
|
||||
|
||||
/* Main entry points for compression */
|
||||
EXTERN void jpeg_start_compress JPP((j_compress_ptr cinfo,
|
||||
boolean write_all_tables));
|
||||
EXTERN JDIMENSION jpeg_write_scanlines JPP((j_compress_ptr cinfo,
|
||||
JSAMPARRAY scanlines,
|
||||
JDIMENSION num_lines));
|
||||
EXTERN void jpeg_finish_compress JPP((j_compress_ptr cinfo));
|
||||
|
||||
/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
|
||||
EXTERN JDIMENSION jpeg_write_raw_data JPP((j_compress_ptr cinfo,
|
||||
JSAMPIMAGE data,
|
||||
JDIMENSION num_lines));
|
||||
|
||||
/* Write a special marker. See libjpeg.doc concerning safe usage. */
|
||||
EXTERN void jpeg_write_marker JPP((j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen));
|
||||
|
||||
/* Alternate compression function: just write an abbreviated table file */
|
||||
EXTERN void jpeg_write_tables JPP((j_compress_ptr cinfo));
|
||||
|
||||
/* Decompression startup: read start of JPEG datastream to see what's there */
|
||||
EXTERN int jpeg_read_header JPP((j_decompress_ptr cinfo,
|
||||
boolean require_image));
|
||||
/* Return value is one of: */
|
||||
#define JPEG_HEADER_OK 0 /* Found valid image datastream */
|
||||
#define JPEG_HEADER_TABLES_ONLY 1 /* Found valid table-specs-only datastream */
|
||||
#define JPEG_SUSPENDED 2 /* Had to suspend before end of headers */
|
||||
/* If you pass require_image = TRUE (normal case), you need not check for
|
||||
* a TABLES_ONLY return code; an abbreviated file will cause an error exit.
|
||||
* JPEG_SUSPENDED is only possible if you use a data source module that can
|
||||
* give a suspension return (the stdio source module doesn't).
|
||||
*/
|
||||
|
||||
/* Main entry points for decompression */
|
||||
EXTERN void jpeg_start_decompress JPP((j_decompress_ptr cinfo));
|
||||
EXTERN JDIMENSION jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
|
||||
JSAMPARRAY scanlines,
|
||||
JDIMENSION max_lines));
|
||||
EXTERN boolean jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
|
||||
|
||||
/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
|
||||
EXTERN JDIMENSION jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE data,
|
||||
JDIMENSION max_lines));
|
||||
|
||||
/* Precalculate output dimensions for current decompression parameters. */
|
||||
EXTERN void jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
|
||||
|
||||
/* Install a special processing method for COM or APPn markers. */
|
||||
EXTERN void jpeg_set_marker_processor JPP((j_decompress_ptr cinfo,
|
||||
int marker_code,
|
||||
jpeg_marker_parser_method routine));
|
||||
|
||||
/* If you choose to abort compression or decompression before completing
|
||||
* jpeg_finish_(de)compress, then you need to clean up to release memory,
|
||||
* temporary files, etc. You can just call jpeg_destroy_(de)compress
|
||||
* if you're done with the JPEG object, but if you want to clean it up and
|
||||
* reuse it, call this:
|
||||
*/
|
||||
EXTERN void jpeg_abort_compress JPP((j_compress_ptr cinfo));
|
||||
EXTERN void jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
|
||||
|
||||
/* Generic versions of jpeg_abort and jpeg_destroy that work on either
|
||||
* flavor of JPEG object. These may be more convenient in some places.
|
||||
*/
|
||||
EXTERN void jpeg_abort JPP((j_common_ptr cinfo));
|
||||
EXTERN void jpeg_destroy JPP((j_common_ptr cinfo));
|
||||
|
||||
/* Default restart-marker-resync procedure for use by data source modules */
|
||||
EXTERN boolean jpeg_resync_to_restart JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/* These marker codes are exported since applications and data source modules
|
||||
* are likely to want to use them.
|
||||
*/
|
||||
|
||||
#define JPEG_RST0 0xD0 /* RST0 marker code */
|
||||
#define JPEG_EOI 0xD9 /* EOI marker code */
|
||||
#define JPEG_APP0 0xE0 /* APP0 marker code */
|
||||
#define JPEG_COM 0xFE /* COM marker code */
|
||||
|
||||
|
||||
/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
|
||||
* for structure definitions that are never filled in, keep it quiet by
|
||||
* supplying dummy definitions for the various substructures.
|
||||
*/
|
||||
|
||||
#ifdef INCOMPLETE_TYPES_BROKEN
|
||||
#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
|
||||
struct jvirt_sarray_control { long dummy; };
|
||||
struct jvirt_barray_control { long dummy; };
|
||||
struct jpeg_comp_master { long dummy; };
|
||||
struct jpeg_c_main_controller { long dummy; };
|
||||
struct jpeg_c_prep_controller { long dummy; };
|
||||
struct jpeg_c_coef_controller { long dummy; };
|
||||
struct jpeg_marker_writer { long dummy; };
|
||||
struct jpeg_color_converter { long dummy; };
|
||||
struct jpeg_downsampler { long dummy; };
|
||||
struct jpeg_forward_dct { long dummy; };
|
||||
struct jpeg_entropy_encoder { long dummy; };
|
||||
struct jpeg_decomp_master { long dummy; };
|
||||
struct jpeg_d_main_controller { long dummy; };
|
||||
struct jpeg_d_coef_controller { long dummy; };
|
||||
struct jpeg_d_post_controller { long dummy; };
|
||||
struct jpeg_marker_reader { long dummy; };
|
||||
struct jpeg_entropy_decoder { long dummy; };
|
||||
struct jpeg_inverse_dct { long dummy; };
|
||||
struct jpeg_upsampler { long dummy; };
|
||||
struct jpeg_color_deconverter { long dummy; };
|
||||
struct jpeg_color_quantizer { long dummy; };
|
||||
#endif /* JPEG_INTERNALS */
|
||||
#endif /* INCOMPLETE_TYPES_BROKEN */
|
||||
|
||||
|
||||
/*
|
||||
* The JPEG library modules define JPEG_INTERNALS before including this file.
|
||||
* The internal structure declarations are read only when that is true.
|
||||
* Applications using the library should not include jpegint.h, but may wish
|
||||
* to include jerror.h.
|
||||
*/
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
#include "jpegint.h" /* fetch private declarations */
|
||||
#include "jerror.h" /* fetch error codes too */
|
||||
#endif
|
||||
752
jquant1.c
752
jquant1.c
@@ -1,16 +1,18 @@
|
||||
/*
|
||||
* jquant1.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains 1-pass color quantization (color mapping) routines.
|
||||
* These routines are invoked via the methods color_quantize
|
||||
* and color_quant_init/term.
|
||||
* These routines provide mapping to a fixed color map using equally spaced
|
||||
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
|
||||
@@ -22,24 +24,6 @@
|
||||
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
||||
* quantizer, though you can turn it off if you really want to.
|
||||
*
|
||||
* This implementation quantizes in the output colorspace. This has a couple
|
||||
* of disadvantages: each pixel must be individually color-converted, and if
|
||||
* the color conversion includes gamma correction then quantization is done in
|
||||
* a nonlinear space, which is less desirable. The major advantage is that
|
||||
* with the usual output color spaces (RGB, grayscale) an orthogonal grid of
|
||||
* representative colors can be used, thus permitting the very simple and fast
|
||||
* color lookup scheme used here. The standard JPEG colorspace (YCbCr) cannot
|
||||
* be effectively handled this way, because only about a quarter of an
|
||||
* orthogonal grid would fall within the gamut of realizable colors. Another
|
||||
* advantage is that when the user wants quantized grayscale output from a
|
||||
* color JPEG file, this quantizer can provide a high-quality result with no
|
||||
* special hacking.
|
||||
*
|
||||
* The gamma-correction problem could be eliminated by adjusting the grid
|
||||
* spacing to counteract the gamma correction applied by color_convert.
|
||||
* At this writing, gamma correction is not implemented by jdcolor, so
|
||||
* nothing is done here.
|
||||
*
|
||||
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
||||
* image. We use a map consisting of all combinations of Ncolors[i] color
|
||||
* values for the i'th component. The Ncolors[] values are chosen so that
|
||||
@@ -58,65 +42,101 @@
|
||||
* sum( colorindex[component-number][pixel-component-value] )
|
||||
* Aside from being fast, this scheme allows for variable spacing between
|
||||
* representative values with no additional lookup cost.
|
||||
*
|
||||
* If gamma correction has been applied in color conversion, it might be wise
|
||||
* to adjust the color grid spacing so that the representative colors are
|
||||
* equidistant in linear space. At this writing, gamma correction is not
|
||||
* implemented by jdcolor, so nothing is done here.
|
||||
*/
|
||||
|
||||
|
||||
#define MAX_COMPONENTS 4 /* max components I can handle */
|
||||
|
||||
static JSAMPARRAY colormap; /* The actual color map */
|
||||
/* colormap[i][j] = value of i'th color component for output pixel value j */
|
||||
|
||||
static JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into
|
||||
* JSAMPLEs, the entries of this array will too.
|
||||
/* Declarations for ordered dithering.
|
||||
*
|
||||
* We use a standard 4x4 ordered dither array. The basic concept of ordered
|
||||
* dithering is described in many references, for instance Dale Schumacher's
|
||||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
||||
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
||||
* "dither" value to the input pixel and then round the result to the nearest
|
||||
* output value. The dither value is equivalent to (0.5 - threshold) times
|
||||
* the distance between output values. For ordered dithering, we assume that
|
||||
* the output colors are equally spaced; if not, results will probably be
|
||||
* worse, since the dither may be too much or too little at a given point.
|
||||
*
|
||||
* The normal calculation would be to form pixel value + dither, range-limit
|
||||
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
||||
* We can skip the separate range-limiting step by extending the colorindex
|
||||
* table in both directions.
|
||||
*/
|
||||
|
||||
static JSAMPARRAY input_buffer; /* color conversion workspace */
|
||||
/* Since our input data is presented in the JPEG colorspace, we have to call
|
||||
* color_convert to get it into the output colorspace. input_buffer is a
|
||||
* one-row-high workspace for the result of color_convert.
|
||||
*/
|
||||
#define ODITHER_SIZE 4 /* dimension of dither matrix */
|
||||
#define ODITHER_CELLS (4*4) /* number of cells in dither matrix */
|
||||
#define ODITHER_MASK 3 /* mask for wrapping around dither counters */
|
||||
|
||||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
||||
|
||||
|
||||
/* Declarations for Floyd-Steinberg dithering.
|
||||
*
|
||||
* Errors are accumulated into the arrays evenrowerrs[] and oddrowerrs[].
|
||||
* These have resolutions of 1/16th of a pixel count. The error at a given
|
||||
* pixel is propagated to its unprocessed neighbors using the standard F-S
|
||||
* fractions,
|
||||
* Errors are accumulated into the array fserrors[], at a resolution of
|
||||
* 1/16th of a pixel count. The error at a given pixel is propagated
|
||||
* to its not-yet-processed neighbors using the standard F-S fractions,
|
||||
* ... (here) 7/16
|
||||
* 3/16 5/16 1/16
|
||||
* We work left-to-right on even rows, right-to-left on odd rows.
|
||||
*
|
||||
* In each of the xxxrowerrs[] arrays, indexing is [component#][position].
|
||||
* We can get away with a single array (holding one row's worth of errors)
|
||||
* by using it to store the current row's errors at pixel columns not yet
|
||||
* processed, but the next row's errors at columns already processed. We
|
||||
* need only a few extra variables to hold the errors immediately around the
|
||||
* current column. (If we are lucky, those variables are in registers, but
|
||||
* even if not, they're probably cheaper to access than array elements are.)
|
||||
*
|
||||
* The fserrors[] array is indexed [component#][position].
|
||||
* We provide (#columns + 2) entries per component; the extra entry at each
|
||||
* end saves us from special-casing the first and last pixels.
|
||||
* In evenrowerrs[], the entries for a component are stored left-to-right, but
|
||||
* in oddrowerrs[] they are stored right-to-left. This means we always
|
||||
* process the current row's error entries in increasing order and the next
|
||||
* row's error entries in decreasing order, regardless of whether we are
|
||||
* working L-to-R or R-to-L in the pixel data!
|
||||
*
|
||||
* Note: on a wide image, we might not have enough room in a PC's near data
|
||||
* segment to hold the error arrays; so they are allocated with alloc_medium.
|
||||
* segment to hold the error array; so it is allocated with alloc_large.
|
||||
*/
|
||||
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef INT16 FSERROR; /* 16 bits should be enough */
|
||||
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
||||
#else
|
||||
typedef INT32 FSERROR; /* may need more than 16 bits? */
|
||||
typedef INT32 FSERROR; /* may need more than 16 bits */
|
||||
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
||||
#endif
|
||||
|
||||
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
||||
|
||||
static FSERRPTR evenrowerrs[MAX_COMPONENTS]; /* errors for even rows */
|
||||
static FSERRPTR oddrowerrs[MAX_COMPONENTS]; /* errors for odd rows */
|
||||
static boolean on_odd_row; /* flag to remember which row we are on */
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
#define MAX_Q_COMPS 4 /* max components I can handle */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_quantizer pub; /* public fields */
|
||||
|
||||
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||||
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||||
* premultiplied as described above. Since colormap indexes must fit into
|
||||
* JSAMPLEs, the entries of this array will too.
|
||||
*/
|
||||
|
||||
/* Variables for ordered dithering */
|
||||
int row_index; /* cur row's vertical index in dither matrix */
|
||||
ODITHER_MATRIX *odither; /* one dither array per component */
|
||||
|
||||
/* Variables for Floyd-Steinberg dithering */
|
||||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
||||
boolean on_odd_row; /* flag to remember which row we are on */
|
||||
} my_cquantizer;
|
||||
|
||||
typedef my_cquantizer * my_cquantize_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Policy-making subroutines for color_quant_init: these routines determine
|
||||
* Policy-making subroutines for create_colormap: these routines determine
|
||||
* the colormap to be used. The rest of the module only assumes that the
|
||||
* colormap is orthogonal.
|
||||
*
|
||||
@@ -131,16 +151,16 @@ static boolean on_odd_row; /* flag to remember which row we are on */
|
||||
|
||||
|
||||
LOCAL int
|
||||
select_ncolors (decompress_info_ptr cinfo, int Ncolors[])
|
||||
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
||||
/* Determine allocation of desired colors to components, */
|
||||
/* and fill in Ncolors[] array to indicate choice. */
|
||||
/* Return value is total number of colors (product of Ncolors[] values). */
|
||||
{
|
||||
int nc = cinfo->color_out_comps; /* number of color components */
|
||||
int nc = cinfo->out_color_components; /* number of color components */
|
||||
int max_colors = cinfo->desired_number_of_colors;
|
||||
int total_colors, iroot, i;
|
||||
int total_colors, iroot, i, j;
|
||||
long temp;
|
||||
boolean changed;
|
||||
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
||||
|
||||
/* We can allocate at least the nc'th root of max_colors per component. */
|
||||
/* Compute floor(nc'th root of max_colors). */
|
||||
@@ -155,82 +175,27 @@ select_ncolors (decompress_info_ptr cinfo, int Ncolors[])
|
||||
|
||||
/* Must have at least 2 color values per component */
|
||||
if (iroot < 2)
|
||||
ERREXIT1(cinfo->emethods, "Cannot quantize to fewer than %d colors",
|
||||
(int) temp);
|
||||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
||||
|
||||
if (cinfo->out_color_space == CS_RGB && nc == 3) {
|
||||
/* We provide a special policy for quantizing in RGB space.
|
||||
* If 256 colors are requested, we allocate 8 red, 8 green, 4 blue levels;
|
||||
* this corresponds to the common 3/3/2-bit scheme. For other totals,
|
||||
* the counts are set so that the number of colors allocated to each
|
||||
* component are roughly in the proportion R 3, G 4, B 2.
|
||||
* For low color counts, it's easier to hardwire the optimal choices
|
||||
* than try to tweak the algorithm to generate them.
|
||||
*/
|
||||
if (max_colors == 256) {
|
||||
Ncolors[0] = 8; Ncolors[1] = 8; Ncolors[2] = 4;
|
||||
return 256;
|
||||
}
|
||||
if (max_colors < 12) {
|
||||
/* Fixed mapping for 8 colors */
|
||||
Ncolors[0] = Ncolors[1] = Ncolors[2] = 2;
|
||||
} else if (max_colors < 18) {
|
||||
/* Fixed mapping for 12 colors */
|
||||
Ncolors[0] = 2; Ncolors[1] = 3; Ncolors[2] = 2;
|
||||
} else if (max_colors < 24) {
|
||||
/* Fixed mapping for 18 colors */
|
||||
Ncolors[0] = 3; Ncolors[1] = 3; Ncolors[2] = 2;
|
||||
} else if (max_colors < 27) {
|
||||
/* Fixed mapping for 24 colors */
|
||||
Ncolors[0] = 3; Ncolors[1] = 4; Ncolors[2] = 2;
|
||||
} else if (max_colors < 36) {
|
||||
/* Fixed mapping for 27 colors */
|
||||
Ncolors[0] = 3; Ncolors[1] = 3; Ncolors[2] = 3;
|
||||
} else {
|
||||
/* these weights are readily derived with a little algebra */
|
||||
Ncolors[0] = (iroot * 266) >> 8; /* R weight is 1.0400 */
|
||||
Ncolors[1] = (iroot * 355) >> 8; /* G weight is 1.3867 */
|
||||
Ncolors[2] = (iroot * 177) >> 8; /* B weight is 0.6934 */
|
||||
}
|
||||
total_colors = Ncolors[0] * Ncolors[1] * Ncolors[2];
|
||||
/* The above computation produces "floor" values, so we may be able to
|
||||
* increment the count for one or more components without exceeding
|
||||
* max_colors. We try in the order B, G, R.
|
||||
*/
|
||||
do {
|
||||
changed = FALSE;
|
||||
for (i = 2; i >= 0; i--) {
|
||||
/* calculate new total_colors if Ncolors[i] is incremented */
|
||||
temp = total_colors / Ncolors[i];
|
||||
temp *= Ncolors[i]+1; /* done in long arith to avoid oflo */
|
||||
if (temp <= (long) max_colors) {
|
||||
Ncolors[i]++; /* OK, apply the increment */
|
||||
total_colors = (int) temp;
|
||||
changed = TRUE;
|
||||
}
|
||||
}
|
||||
} while (changed); /* loop until no increment is possible */
|
||||
} else {
|
||||
/* For any colorspace besides RGB, treat all the components equally. */
|
||||
|
||||
/* Initialize to iroot color values for each component */
|
||||
total_colors = 1;
|
||||
for (i = 0; i < nc; i++) {
|
||||
Ncolors[i] = iroot;
|
||||
total_colors *= iroot;
|
||||
}
|
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented.
|
||||
*/
|
||||
for (i = 0; i < nc; i++) {
|
||||
/* calculate new total_colors if Ncolors[i] is incremented */
|
||||
temp = total_colors / Ncolors[i];
|
||||
temp *= Ncolors[i]+1; /* done in long arith to avoid oflo */
|
||||
if (temp > (long) max_colors)
|
||||
break; /* won't fit, done */
|
||||
Ncolors[i]++; /* OK, apply the increment */
|
||||
total_colors = (int) temp;
|
||||
}
|
||||
/* Initialize to iroot color values for each component */
|
||||
total_colors = 1;
|
||||
for (i = 0; i < nc; i++) {
|
||||
Ncolors[i] = iroot;
|
||||
total_colors *= iroot;
|
||||
}
|
||||
/* We may be able to increment the count for one or more components without
|
||||
* exceeding max_colors, though we know not all can be incremented.
|
||||
* In RGB colorspace, try to increment G first, then R, then B.
|
||||
*/
|
||||
for (i = 0; i < nc; i++) {
|
||||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
||||
/* calculate new total_colors if Ncolors[j] is incremented */
|
||||
temp = total_colors / Ncolors[j];
|
||||
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
||||
if (temp > (long) max_colors)
|
||||
break; /* won't fit, done */
|
||||
Ncolors[j]++; /* OK, apply the increment */
|
||||
total_colors = (int) temp;
|
||||
}
|
||||
|
||||
return total_colors;
|
||||
@@ -238,7 +203,7 @@ select_ncolors (decompress_info_ptr cinfo, int Ncolors[])
|
||||
|
||||
|
||||
LOCAL int
|
||||
output_value (decompress_info_ptr cinfo, int ci, int j, int maxj)
|
||||
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return j'th output value, where j will range from 0 to maxj */
|
||||
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
||||
{
|
||||
@@ -247,65 +212,69 @@ output_value (decompress_info_ptr cinfo, int ci, int j, int maxj)
|
||||
* (Forcing the upper and lower values to the limits ensures that
|
||||
* dithering can't produce a color outside the selected gamut.)
|
||||
*/
|
||||
return (j * MAXJSAMPLE + maxj/2) / maxj;
|
||||
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
largest_input_value (decompress_info_ptr cinfo, int ci, int j, int maxj)
|
||||
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||||
/* Return largest input value that should map to j'th output value */
|
||||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
||||
{
|
||||
/* Breakpoints are halfway between values returned by output_value */
|
||||
return ((2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj);
|
||||
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for one-pass color quantization.
|
||||
* Create the colormap and color index table.
|
||||
* Also creates the ordered-dither tables, if required.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
color_quant_init (decompress_info_ptr cinfo)
|
||||
LOCAL void
|
||||
create_colormap (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPARRAY colormap; /* Created colormap */
|
||||
JSAMPROW indexptr;
|
||||
int total_colors; /* Number of distinct output colors */
|
||||
int Ncolors[MAX_COMPONENTS]; /* # of values alloced to each component */
|
||||
int i,j,k, nci, blksize, blkdist, ptr, val;
|
||||
|
||||
/* Make sure my internal arrays won't overflow */
|
||||
if (cinfo->num_components > MAX_COMPONENTS ||
|
||||
cinfo->color_out_comps > MAX_COMPONENTS)
|
||||
ERREXIT1(cinfo->emethods, "Cannot quantize more than %d color components",
|
||||
MAX_COMPONENTS);
|
||||
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
||||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
||||
ERREXIT1(cinfo->emethods, "Cannot request more than %d quantized colors",
|
||||
MAXJSAMPLE+1);
|
||||
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
||||
ODITHER_MATRIX *odither;
|
||||
int i,j,k, nci, blksize, blkdist, ptr, val, pad;
|
||||
|
||||
/* Select number of colors for each component */
|
||||
total_colors = select_ncolors(cinfo, Ncolors);
|
||||
|
||||
/* Report selected color counts */
|
||||
if (cinfo->color_out_comps == 3)
|
||||
TRACEMS4(cinfo->emethods, 1, "Quantizing to %d = %d*%d*%d colors",
|
||||
if (cinfo->out_color_components == 3)
|
||||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
||||
total_colors, Ncolors[0], Ncolors[1], Ncolors[2]);
|
||||
else
|
||||
TRACEMS1(cinfo->emethods, 1, "Quantizing to %d colors", total_colors);
|
||||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
||||
|
||||
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||||
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
||||
* This is not necessary in the other dithering modes.
|
||||
*/
|
||||
pad = (cinfo->dither_mode == JDITHER_ORDERED) ? MAXJSAMPLE*2 : 0;
|
||||
|
||||
/* Allocate and fill in the colormap and color index. */
|
||||
/* The colors are ordered in the map in standard row-major order, */
|
||||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
||||
|
||||
colormap = (*cinfo->emethods->alloc_small_sarray)
|
||||
((long) total_colors, (long) cinfo->color_out_comps);
|
||||
colorindex = (*cinfo->emethods->alloc_small_sarray)
|
||||
((long) (MAXJSAMPLE+1), (long) cinfo->color_out_comps);
|
||||
colormap = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
||||
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (MAXJSAMPLE+1 + pad),
|
||||
(JDIMENSION) cinfo->out_color_components);
|
||||
|
||||
/* blksize is number of adjacent repeated entries for a component */
|
||||
/* blkdist is distance between groups of identical entries for a component */
|
||||
blkdist = total_colors;
|
||||
|
||||
for (i = 0; i < cinfo->color_out_comps; i++) {
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
/* fill in colormap entries for i'th color component */
|
||||
nci = Ncolors[i]; /* # of distinct values for this color */
|
||||
blksize = blkdist / nci;
|
||||
@@ -321,95 +290,100 @@ color_quant_init (decompress_info_ptr cinfo)
|
||||
}
|
||||
blkdist = blksize; /* blksize of this color is blkdist of next */
|
||||
|
||||
/* adjust colorindex pointers to provide padding at negative indexes. */
|
||||
if (pad)
|
||||
cquantize->colorindex[i] += MAXJSAMPLE;
|
||||
|
||||
/* fill in colorindex entries for i'th color component */
|
||||
/* in loop, val = index of current output value, */
|
||||
/* and k = largest j that maps to current val */
|
||||
indexptr = cquantize->colorindex[i];
|
||||
val = 0;
|
||||
k = largest_input_value(cinfo, i, 0, nci-1);
|
||||
for (j = 0; j <= MAXJSAMPLE; j++) {
|
||||
while (j > k) /* advance val if past boundary */
|
||||
k = largest_input_value(cinfo, i, ++val, nci-1);
|
||||
/* premultiply so that no multiplication needed in main processing */
|
||||
colorindex[i][j] = (JSAMPLE) (val * blksize);
|
||||
indexptr[j] = (JSAMPLE) (val * blksize);
|
||||
}
|
||||
/* Pad at both ends if necessary */
|
||||
if (pad)
|
||||
for (j = 1; j <= MAXJSAMPLE; j++) {
|
||||
indexptr[-j] = indexptr[0];
|
||||
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
||||
}
|
||||
}
|
||||
|
||||
/* Pass the colormap to the output module. */
|
||||
/* NB: the output module may continue to use the colormap until shutdown. */
|
||||
/* Make the colormap available to the application. */
|
||||
cinfo->colormap = colormap;
|
||||
cinfo->actual_number_of_colors = total_colors;
|
||||
(*cinfo->methods->put_color_map) (cinfo, total_colors, colormap);
|
||||
|
||||
/* Allocate workspace to hold one row of color-converted data */
|
||||
input_buffer = (*cinfo->emethods->alloc_small_sarray)
|
||||
(cinfo->image_width, (long) cinfo->color_out_comps);
|
||||
|
||||
/* Allocate Floyd-Steinberg workspace if necessary */
|
||||
if (cinfo->use_dithering) {
|
||||
size_t arraysize = (size_t) ((cinfo->image_width + 2L) * SIZEOF(FSERROR));
|
||||
|
||||
for (i = 0; i < cinfo->color_out_comps; i++) {
|
||||
evenrowerrs[i] = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
|
||||
oddrowerrs[i] = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
|
||||
/* we only need to zero the forward contribution for current row. */
|
||||
jzero_far((void FAR *) evenrowerrs[i], arraysize);
|
||||
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
||||
/* Allocate and fill in the ordered-dither tables. */
|
||||
odither = (ODITHER_MATRIX *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->out_color_components * SIZEOF(ODITHER_MATRIX));
|
||||
cquantize->odither = odither;
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
nci = Ncolors[i]; /* # of distinct values for this color */
|
||||
/* The inter-value distance for this color is MAXJSAMPLE/(nci-1).
|
||||
* Hence the dither value for the matrix cell with fill order j
|
||||
* (j=1..N) should be (N+1-2*j)/(2*(N+1)) * MAXJSAMPLE/(nci-1).
|
||||
*/
|
||||
val = 2 * (ODITHER_CELLS + 1) * (nci - 1); /* denominator */
|
||||
/* Macro is coded to ensure round towards zero despite C's
|
||||
* lack of consistency in integer division...
|
||||
*/
|
||||
#define ODITHER_DIV(num,den) ((num)<0 ? -((-(num))/(den)) : (num)/(den))
|
||||
#define ODITHER_VAL(j) ODITHER_DIV((ODITHER_CELLS+1-2*j)*MAXJSAMPLE, val)
|
||||
/* Traditional fill order for 4x4 dither; see Schumacher's figure 4. */
|
||||
odither[0][0][0] = ODITHER_VAL(1);
|
||||
odither[0][0][1] = ODITHER_VAL(9);
|
||||
odither[0][0][2] = ODITHER_VAL(3);
|
||||
odither[0][0][3] = ODITHER_VAL(11);
|
||||
odither[0][1][0] = ODITHER_VAL(13);
|
||||
odither[0][1][1] = ODITHER_VAL(5);
|
||||
odither[0][1][2] = ODITHER_VAL(15);
|
||||
odither[0][1][3] = ODITHER_VAL(7);
|
||||
odither[0][2][0] = ODITHER_VAL(4);
|
||||
odither[0][2][1] = ODITHER_VAL(12);
|
||||
odither[0][2][2] = ODITHER_VAL(2);
|
||||
odither[0][2][3] = ODITHER_VAL(10);
|
||||
odither[0][3][0] = ODITHER_VAL(16);
|
||||
odither[0][3][1] = ODITHER_VAL(8);
|
||||
odither[0][3][2] = ODITHER_VAL(14);
|
||||
odither[0][3][3] = ODITHER_VAL(6);
|
||||
odither++; /* advance to next matrix */
|
||||
}
|
||||
on_odd_row = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Subroutines for color conversion methods.
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
do_color_conversion (decompress_info_ptr cinfo, JSAMPIMAGE input_data, int row)
|
||||
/* Convert the indicated row of the input data into output colorspace */
|
||||
/* in input_buffer. This requires a little trickery since color_convert */
|
||||
/* expects to deal with 3-D arrays; fortunately we can fake it out */
|
||||
/* at fairly low cost. */
|
||||
{
|
||||
short ci;
|
||||
JSAMPARRAY input_hack[MAX_COMPONENTS];
|
||||
JSAMPARRAY output_hack[MAX_COMPONENTS];
|
||||
|
||||
/* create JSAMPIMAGE pointing at specified row of input_data */
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
input_hack[ci] = input_data[ci] + row;
|
||||
/* Create JSAMPIMAGE pointing at input_buffer */
|
||||
for (ci = 0; ci < cinfo->color_out_comps; ci++)
|
||||
output_hack[ci] = &(input_buffer[ci]);
|
||||
|
||||
(*cinfo->methods->color_convert) (cinfo, 1, cinfo->image_width,
|
||||
input_hack, output_hack);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Map some rows of pixels to the output colormapped representation.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
color_quantize (decompress_info_ptr cinfo, int num_rows,
|
||||
JSAMPIMAGE input_data, JSAMPARRAY output_data)
|
||||
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
JSAMPARRAY colorindex = cquantize->colorindex;
|
||||
register int pixcode, ci;
|
||||
register JSAMPROW ptrout;
|
||||
register long col;
|
||||
register JSAMPROW ptrin, ptrout;
|
||||
int row;
|
||||
long width = cinfo->image_width;
|
||||
register int nc = cinfo->color_out_comps;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
register int nc = cinfo->out_color_components;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
do_color_conversion(cinfo, input_data, row);
|
||||
ptrout = output_data[row];
|
||||
for (col = 0; col < width; col++) {
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = 0;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
pixcode += GETJSAMPLE(colorindex[ci]
|
||||
[GETJSAMPLE(input_buffer[ci][col])]);
|
||||
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
||||
}
|
||||
*ptrout++ = (JSAMPLE) pixcode;
|
||||
}
|
||||
@@ -418,26 +392,27 @@ color_quantize (decompress_info_ptr cinfo, int num_rows,
|
||||
|
||||
|
||||
METHODDEF void
|
||||
color_quantize3 (decompress_info_ptr cinfo, int num_rows,
|
||||
JSAMPIMAGE input_data, JSAMPARRAY output_data)
|
||||
/* Fast path for color_out_comps==3, no dithering */
|
||||
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, no dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register JSAMPROW ptr0, ptr1, ptr2, ptrout;
|
||||
register long col;
|
||||
register JSAMPROW ptrin, ptrout;
|
||||
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int row;
|
||||
long width = cinfo->image_width;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
do_color_conversion(cinfo, input_data, row);
|
||||
ptr0 = input_buffer[0];
|
||||
ptr1 = input_buffer[1];
|
||||
ptr2 = input_buffer[2];
|
||||
ptrout = output_data[row];
|
||||
ptrin = input_buf[row];
|
||||
ptrout = output_buf[row];
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = GETJSAMPLE(colorindex[0][GETJSAMPLE(*ptr0++)]);
|
||||
pixcode += GETJSAMPLE(colorindex[1][GETJSAMPLE(*ptr1++)]);
|
||||
pixcode += GETJSAMPLE(colorindex[2][GETJSAMPLE(*ptr2++)]);
|
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
||||
*ptrout++ = (JSAMPLE) pixcode;
|
||||
}
|
||||
}
|
||||
@@ -445,146 +420,291 @@ color_quantize3 (decompress_info_ptr cinfo, int num_rows,
|
||||
|
||||
|
||||
METHODDEF void
|
||||
color_quantize_dither (decompress_info_ptr cinfo, int num_rows,
|
||||
JSAMPIMAGE input_data, JSAMPARRAY output_data)
|
||||
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex_ci;
|
||||
int * dither; /* points to active row of dither matrix */
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int nc = cinfo->out_color_components;
|
||||
int ci;
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void FAR *) output_buf[row],
|
||||
(size_t) (width * SIZEOF(JSAMPLE)));
|
||||
row_index = cquantize->row_index;
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
dither = cquantize->odither[ci][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||||
* select output value, accumulate into output code for this pixel.
|
||||
* Range-limiting need not be done explicitly, as we have extended
|
||||
* the colorindex table to produce the right answers for out-of-range
|
||||
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
||||
* required amount of padding.
|
||||
*/
|
||||
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
||||
input_ptr += nc;
|
||||
output_ptr++;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
}
|
||||
/* Advance row index for next row */
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* Fast path for out_color_components==3, with ordered dithering */
|
||||
{
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register int pixcode;
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||||
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||||
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||||
int * dither0; /* points to active row of dither matrix */
|
||||
int * dither1;
|
||||
int * dither2;
|
||||
int row_index, col_index; /* current indexes into dither matrix */
|
||||
int row;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
row_index = cquantize->row_index;
|
||||
input_ptr = input_buf[row];
|
||||
output_ptr = output_buf[row];
|
||||
dither0 = cquantize->odither[0][row_index];
|
||||
dither1 = cquantize->odither[1][row_index];
|
||||
dither2 = cquantize->odither[2][row_index];
|
||||
col_index = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
||||
dither0[col_index]]);
|
||||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
||||
dither1[col_index]]);
|
||||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
||||
dither2[col_index]]);
|
||||
*output_ptr++ = (JSAMPLE) pixcode;
|
||||
col_index = (col_index + 1) & ODITHER_MASK;
|
||||
}
|
||||
row_index = (row_index + 1) & ODITHER_MASK;
|
||||
cquantize->row_index = row_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
/* General case, with Floyd-Steinberg dithering */
|
||||
{
|
||||
register FSERROR val;
|
||||
FSERROR two_val;
|
||||
register FSERRPTR thisrowerr, nextrowerr;
|
||||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||||
register LOCFSERROR cur; /* current error or pixel value */
|
||||
LOCFSERROR belowerr; /* error for pixel below cur */
|
||||
LOCFSERROR bpreverr; /* error for below/prev col */
|
||||
LOCFSERROR bnexterr; /* error for below/next col */
|
||||
LOCFSERROR delta;
|
||||
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
||||
register JSAMPROW input_ptr;
|
||||
register JSAMPROW output_ptr;
|
||||
JSAMPROW colorindex_ci;
|
||||
JSAMPROW colormap_ci;
|
||||
register int pixcode;
|
||||
int pixcode;
|
||||
int nc = cinfo->out_color_components;
|
||||
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
||||
int dirnc; /* dir * nc */
|
||||
int ci;
|
||||
int nc = cinfo->color_out_comps;
|
||||
int row;
|
||||
long col_counter;
|
||||
long width = cinfo->image_width;
|
||||
JDIMENSION col;
|
||||
JDIMENSION width = cinfo->output_width;
|
||||
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
do_color_conversion(cinfo, input_data, row);
|
||||
/* Initialize output values to 0 so can process components separately */
|
||||
jzero_far((void FAR *) output_data[row],
|
||||
jzero_far((void FAR *) output_buf[row],
|
||||
(size_t) (width * SIZEOF(JSAMPLE)));
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
if (on_odd_row) {
|
||||
input_ptr = input_buf[row] + ci;
|
||||
output_ptr = output_buf[row];
|
||||
if (cquantize->on_odd_row) {
|
||||
/* work right to left in this row */
|
||||
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
||||
output_ptr += width-1;
|
||||
dir = -1;
|
||||
input_ptr = input_buffer[ci] + (width-1);
|
||||
output_ptr = output_data[row] + (width-1);
|
||||
thisrowerr = oddrowerrs[ci] + 1;
|
||||
nextrowerr = evenrowerrs[ci] + width;
|
||||
dirnc = -nc;
|
||||
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
||||
} else {
|
||||
/* work left to right in this row */
|
||||
dir = 1;
|
||||
input_ptr = input_buffer[ci];
|
||||
output_ptr = output_data[row];
|
||||
thisrowerr = evenrowerrs[ci] + 1;
|
||||
nextrowerr = oddrowerrs[ci] + width;
|
||||
dirnc = nc;
|
||||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
||||
}
|
||||
colorindex_ci = colorindex[ci];
|
||||
colormap_ci = colormap[ci];
|
||||
*nextrowerr = 0; /* need only initialize this one entry */
|
||||
for (col_counter = width; col_counter > 0; col_counter--) {
|
||||
/* Compute pixel value + accumulated error for this component */
|
||||
val = (((FSERROR) GETJSAMPLE(*input_ptr)) << 4) + *thisrowerr;
|
||||
if (val < 0) val = 0; /* must watch for range overflow! */
|
||||
else {
|
||||
val += 8; /* divide by 16 with proper rounding */
|
||||
val >>= 4;
|
||||
if (val > MAXJSAMPLE) val = MAXJSAMPLE;
|
||||
}
|
||||
colorindex_ci = cquantize->colorindex[ci];
|
||||
colormap_ci = cinfo->colormap[ci];
|
||||
/* Preset error values: no error propagated to first pixel from left */
|
||||
cur = 0;
|
||||
/* and no error propagated to row below yet */
|
||||
belowerr = bpreverr = 0;
|
||||
|
||||
for (col = width; col > 0; col--) {
|
||||
/* cur holds the error propagated from the previous pixel on the
|
||||
* current line. Add the error propagated from the previous line
|
||||
* to form the complete error correction term for this pixel, and
|
||||
* round the error term (which is expressed * 16) to an integer.
|
||||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
||||
* for either sign of the error value.
|
||||
* Note: errorptr points to *previous* column's array entry.
|
||||
*/
|
||||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
||||
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||||
* The maximum error is +- MAXJSAMPLE; this sets the required size
|
||||
* of the range_limit array.
|
||||
*/
|
||||
cur += GETJSAMPLE(*input_ptr);
|
||||
cur = GETJSAMPLE(range_limit[cur]);
|
||||
/* Select output value, accumulate into output code for this pixel */
|
||||
pixcode = GETJSAMPLE(*output_ptr);
|
||||
pixcode += GETJSAMPLE(colorindex_ci[val]);
|
||||
*output_ptr = (JSAMPLE) pixcode;
|
||||
pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
||||
*output_ptr += (JSAMPLE) pixcode;
|
||||
/* Compute actual representation error at this pixel */
|
||||
/* Note: we can do this even though we don't yet have the final */
|
||||
/* value of pixcode, because the colormap is orthogonal. */
|
||||
val -= (FSERROR) GETJSAMPLE(colormap_ci[pixcode]);
|
||||
/* Propagate error to (same component of) adjacent pixels */
|
||||
/* Remember that nextrowerr entries are in reverse order! */
|
||||
two_val = val * 2;
|
||||
nextrowerr[-1] = val; /* not +=, since not initialized yet */
|
||||
val += two_val; /* form error * 3 */
|
||||
nextrowerr[ 1] += val;
|
||||
val += two_val; /* form error * 5 */
|
||||
nextrowerr[ 0] += val;
|
||||
val += two_val; /* form error * 7 */
|
||||
thisrowerr[ 1] += val;
|
||||
input_ptr += dir; /* advance input ptr to next column */
|
||||
/* Note: we can do this even though we don't have the final */
|
||||
/* pixel code, because the colormap is orthogonal. */
|
||||
cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
||||
/* Compute error fractions to be propagated to adjacent pixels.
|
||||
* Add these into the running sums, and simultaneously shift the
|
||||
* next-line error sums left by 1 column.
|
||||
*/
|
||||
bnexterr = cur;
|
||||
delta = cur * 2;
|
||||
cur += delta; /* form error * 3 */
|
||||
errorptr[0] = (FSERROR) (bpreverr + cur);
|
||||
cur += delta; /* form error * 5 */
|
||||
bpreverr = belowerr + cur;
|
||||
belowerr = bnexterr;
|
||||
cur += delta; /* form error * 7 */
|
||||
/* At this point cur contains the 7/16 error value to be propagated
|
||||
* to the next pixel on the current line, and all the errors for the
|
||||
* next line have been shifted over. We are therefore ready to move on.
|
||||
*/
|
||||
input_ptr += dirnc; /* advance input ptr to next column */
|
||||
output_ptr += dir; /* advance output ptr to next column */
|
||||
thisrowerr++; /* cur-row error ptr advances to right */
|
||||
nextrowerr--; /* next-row error ptr advances to left */
|
||||
errorptr += dir; /* advance errorptr to current column */
|
||||
}
|
||||
/* Post-loop cleanup: we must unload the final error value into the
|
||||
* final fserrors[] entry. Note we need not unload belowerr because
|
||||
* it is for the dummy column before or after the actual array.
|
||||
*/
|
||||
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
||||
}
|
||||
on_odd_row = (on_odd_row ? FALSE : TRUE);
|
||||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
* Initialize for one-pass color quantization.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
color_quant_term (decompress_info_ptr cinfo)
|
||||
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
/* Note that we *mustn't* free the colormap before free_all, */
|
||||
/* since output module may use it! */
|
||||
/* no work in 1-pass case */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prescan some rows of pixels.
|
||||
* Not used in one-pass case.
|
||||
* Finish up at the end of the pass.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
color_quant_prescan (decompress_info_ptr cinfo, int num_rows,
|
||||
JSAMPIMAGE image_data, JSAMPARRAY workspace)
|
||||
finish_pass_1_quant (j_decompress_ptr cinfo)
|
||||
{
|
||||
ERREXIT(cinfo->emethods, "Should not get here!");
|
||||
/* no work in 1-pass case */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Do two-pass quantization.
|
||||
* Not used in one-pass case.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
color_quant_doit (decompress_info_ptr cinfo, quantize_caller_ptr source_method)
|
||||
{
|
||||
ERREXIT(cinfo->emethods, "Should not get here!");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for 1-pass color quantization.
|
||||
* Module initialization routine for 1-pass color quantization.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jsel1quantize (decompress_info_ptr cinfo)
|
||||
jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (! cinfo->two_pass_quantize) {
|
||||
cinfo->methods->color_quant_init = color_quant_init;
|
||||
if (cinfo->use_dithering) {
|
||||
cinfo->methods->color_quantize = color_quantize_dither;
|
||||
} else {
|
||||
if (cinfo->color_out_comps == 3)
|
||||
cinfo->methods->color_quantize = color_quantize3;
|
||||
else
|
||||
cinfo->methods->color_quantize = color_quantize;
|
||||
my_cquantize_ptr cquantize;
|
||||
size_t arraysize;
|
||||
int i;
|
||||
|
||||
cquantize = (my_cquantize_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_cquantizer));
|
||||
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
||||
cquantize->pub.start_pass = start_pass_1_quant;
|
||||
cquantize->pub.finish_pass = finish_pass_1_quant;
|
||||
|
||||
/* Make sure my internal arrays won't overflow */
|
||||
if (cinfo->out_color_components > MAX_Q_COMPS)
|
||||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
||||
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
||||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
||||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
||||
|
||||
/* Initialize for desired dithering mode. */
|
||||
switch (cinfo->dither_mode) {
|
||||
case JDITHER_NONE:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub.color_quantize = color_quantize3;
|
||||
else
|
||||
cquantize->pub.color_quantize = color_quantize;
|
||||
break;
|
||||
case JDITHER_ORDERED:
|
||||
if (cinfo->out_color_components == 3)
|
||||
cquantize->pub.color_quantize = quantize3_ord_dither;
|
||||
else
|
||||
cquantize->pub.color_quantize = quantize_ord_dither;
|
||||
cquantize->row_index = 0; /* initialize state for ordered dither */
|
||||
break;
|
||||
case JDITHER_FS:
|
||||
cquantize->pub.color_quantize = quantize_fs_dither;
|
||||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
||||
/* Allocate Floyd-Steinberg workspace if necessary. */
|
||||
/* We do this now since it is FAR storage and may affect the memory */
|
||||
/* manager's space calculations. */
|
||||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||||
for (i = 0; i < cinfo->out_color_components; i++) {
|
||||
cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
||||
/* Initialize the propagated errors to zero. */
|
||||
jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
|
||||
}
|
||||
cinfo->methods->color_quant_prescan = color_quant_prescan;
|
||||
cinfo->methods->color_quant_doit = color_quant_doit;
|
||||
cinfo->methods->color_quant_term = color_quant_term;
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Create the colormap. */
|
||||
create_colormap(cinfo);
|
||||
}
|
||||
|
||||
#endif /* QUANT_1PASS_SUPPORTED */
|
||||
|
||||
616
jrdgif.c
616
jrdgif.c
@@ -1,616 +0,0 @@
|
||||
/*
|
||||
* jrdgif.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to read input images in GIF format.
|
||||
*
|
||||
* These routines may need modification for non-Unix environments or
|
||||
* specialized applications. As they stand, they assume input from
|
||||
* an ordinary stdio stream. They further assume that reading begins
|
||||
* at the start of the file; input_init may need work if the
|
||||
* user interface has already read some data (e.g., to determine that
|
||||
* the file is indeed GIF format).
|
||||
*
|
||||
* These routines are invoked via the methods get_input_row
|
||||
* and input_init/term.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This code is loosely based on giftoppm from the PBMPLUS distribution
|
||||
* of Feb. 1991. That file contains the following copyright notice:
|
||||
* +-------------------------------------------------------------------+
|
||||
* | Copyright 1990, David Koblas. |
|
||||
* | Permission to use, copy, modify, and distribute this software |
|
||||
* | and its documentation for any purpose and without fee is hereby |
|
||||
* | granted, provided that the above copyright notice appear in all |
|
||||
* | copies and that both that copyright notice and this permission |
|
||||
* | notice appear in supporting documentation. This software is |
|
||||
* | provided "as is" without express or implied warranty. |
|
||||
* +-------------------------------------------------------------------+
|
||||
*
|
||||
* We are also required to state that
|
||||
* "The Graphics Interchange Format(c) is the Copyright property of
|
||||
* CompuServe Incorporated. GIF(sm) is a Service Mark property of
|
||||
* CompuServe Incorporated."
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef GIF_SUPPORTED
|
||||
|
||||
|
||||
#define MAXCOLORMAPSIZE 256 /* max # of colors in a GIF colormap */
|
||||
#define NUMCOLORS 3 /* # of colors */
|
||||
#define CM_RED 0 /* color component numbers */
|
||||
#define CM_GREEN 1
|
||||
#define CM_BLUE 2
|
||||
|
||||
static JSAMPARRAY colormap; /* the colormap to use */
|
||||
/* colormap[i][j] = value of i'th color component for pixel value j */
|
||||
|
||||
#define MAX_LZW_BITS 12 /* maximum LZW code size */
|
||||
#define LZW_TABLE_SIZE (1<<MAX_LZW_BITS) /* # of possible LZW symbols */
|
||||
|
||||
/* Macros for extracting header data --- note we assume chars may be signed */
|
||||
|
||||
#define LM_to_uint(a,b) ((((b)&0xFF) << 8) | ((a)&0xFF))
|
||||
|
||||
#define BitSet(byte, bit) ((byte) & (bit))
|
||||
#define INTERLACE 0x40 /* mask for bit signifying interlaced image */
|
||||
#define COLORMAPFLAG 0x80 /* mask for bit signifying colormap presence */
|
||||
|
||||
#define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len)))
|
||||
|
||||
/* Static vars for GetCode and LZWReadByte */
|
||||
|
||||
static char code_buf[256+4]; /* current input data block */
|
||||
static int last_byte; /* # of bytes in code_buf */
|
||||
static int last_bit; /* # of bits in code_buf */
|
||||
static int cur_bit; /* next bit index to read */
|
||||
static boolean out_of_blocks; /* TRUE if hit terminator data block */
|
||||
|
||||
static int input_code_size; /* codesize given in GIF file */
|
||||
static int clear_code,end_code; /* values for Clear and End codes */
|
||||
|
||||
static int code_size; /* current actual code size */
|
||||
static int limit_code; /* 2^code_size */
|
||||
static int max_code; /* first unused code value */
|
||||
static boolean first_time; /* flags first call to LZWReadByte */
|
||||
|
||||
/* LZW decompression tables:
|
||||
* symbol_head[K] = prefix symbol of any LZW symbol K (0..LZW_TABLE_SIZE-1)
|
||||
* symbol_tail[K] = suffix byte of any LZW symbol K (0..LZW_TABLE_SIZE-1)
|
||||
* Note that entries 0..end_code of the above tables are not used,
|
||||
* since those symbols represent raw bytes or special codes.
|
||||
*
|
||||
* The stack represents the not-yet-used expansion of the last LZW symbol.
|
||||
* In the worst case, a symbol could expand to as many bytes as there are
|
||||
* LZW symbols, so we allocate LZW_TABLE_SIZE bytes for the stack.
|
||||
* (This is conservative since that number includes the raw-byte symbols.)
|
||||
*
|
||||
* The tables are allocated from FAR heap space since they would use up
|
||||
* rather a lot of the near data space in a PC.
|
||||
*/
|
||||
|
||||
static UINT16 FAR *symbol_head; /* => table of prefix symbols */
|
||||
static UINT8 FAR *symbol_tail; /* => table of suffix bytes */
|
||||
static UINT8 FAR *symbol_stack; /* stack for symbol expansions */
|
||||
static UINT8 FAR *sp; /* stack pointer */
|
||||
|
||||
/* Static state for interlaced image processing */
|
||||
|
||||
static boolean is_interlaced; /* TRUE if have interlaced image */
|
||||
static big_sarray_ptr interlaced_image; /* full image in interlaced order */
|
||||
static long cur_row_number; /* need to know actual row number */
|
||||
static long pass2_offset; /* # of pixel rows in pass 1 */
|
||||
static long pass3_offset; /* # of pixel rows in passes 1&2 */
|
||||
static long pass4_offset; /* # of pixel rows in passes 1,2,3 */
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF void load_interlaced_image PP((compress_info_ptr cinfo, JSAMPARRAY pixel_row));
|
||||
METHODDEF void get_interlaced_row PP((compress_info_ptr cinfo, JSAMPARRAY pixel_row));
|
||||
|
||||
|
||||
|
||||
LOCAL int
|
||||
ReadByte (compress_info_ptr cinfo)
|
||||
/* Read next byte from GIF file */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
int c;
|
||||
|
||||
if ((c = getc(infile)) == EOF)
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in GIF file");
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
GetDataBlock (compress_info_ptr cinfo, char *buf)
|
||||
/* Read a GIF data block, which has a leading count byte */
|
||||
/* A zero-length block marks the end of a data block sequence */
|
||||
{
|
||||
int count;
|
||||
|
||||
count = ReadByte(cinfo);
|
||||
if (count > 0) {
|
||||
if (! ReadOK(cinfo->input_file, buf, count))
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in GIF file");
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
SkipDataBlocks (compress_info_ptr cinfo)
|
||||
/* Skip a series of data blocks, until a block terminator is found */
|
||||
{
|
||||
char buf[256];
|
||||
|
||||
while (GetDataBlock(cinfo, buf) > 0)
|
||||
/* skip */;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
ReInitLZW (void)
|
||||
/* (Re)initialize LZW state; shared code for startup and Clear processing */
|
||||
{
|
||||
code_size = input_code_size+1;
|
||||
limit_code = clear_code << 1; /* 2^code_size */
|
||||
max_code = clear_code + 2; /* first unused code value */
|
||||
sp = symbol_stack; /* init stack to empty */
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
InitLZWCode (void)
|
||||
/* Initialize for a series of LZWReadByte (and hence GetCode) calls */
|
||||
{
|
||||
/* GetCode initialization */
|
||||
last_byte = 2; /* make safe to "recopy last two bytes" */
|
||||
last_bit = 0; /* nothing in the buffer */
|
||||
cur_bit = 0; /* force buffer load on first call */
|
||||
out_of_blocks = FALSE;
|
||||
|
||||
/* LZWReadByte initialization */
|
||||
clear_code = 1 << input_code_size; /* compute special code values */
|
||||
end_code = clear_code + 1; /* note that these do not change */
|
||||
first_time = TRUE;
|
||||
ReInitLZW();
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
GetCode (compress_info_ptr cinfo)
|
||||
/* Fetch the next code_size bits from the GIF data */
|
||||
/* We assume code_size is less than 16 */
|
||||
{
|
||||
register INT32 accum;
|
||||
int offs, ret, count;
|
||||
|
||||
if ( (cur_bit+code_size) > last_bit) {
|
||||
/* Time to reload the buffer */
|
||||
if (out_of_blocks) {
|
||||
TRACEMS(cinfo->emethods, 1, "Ran out of GIF bits");
|
||||
return end_code; /* fake something useful */
|
||||
}
|
||||
/* preserve last two bytes of what we have -- assume code_size <= 16 */
|
||||
code_buf[0] = code_buf[last_byte-2];
|
||||
code_buf[1] = code_buf[last_byte-1];
|
||||
/* Load more bytes; set flag if we reach the terminator block */
|
||||
if ((count = GetDataBlock(cinfo, &code_buf[2])) == 0) {
|
||||
out_of_blocks = TRUE;
|
||||
TRACEMS(cinfo->emethods, 1, "Ran out of GIF bits");
|
||||
return end_code; /* fake something useful */
|
||||
}
|
||||
/* Reset counters */
|
||||
cur_bit = (cur_bit - last_bit) + 16;
|
||||
last_byte = 2 + count;
|
||||
last_bit = last_byte * 8;
|
||||
}
|
||||
|
||||
/* Form up next 24 bits in accum */
|
||||
offs = cur_bit >> 3; /* byte containing cur_bit */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
accum = code_buf[offs+2];
|
||||
accum <<= 8;
|
||||
accum |= code_buf[offs+1];
|
||||
accum <<= 8;
|
||||
accum |= code_buf[offs];
|
||||
#else
|
||||
accum = code_buf[offs+2] & 0xFF;
|
||||
accum <<= 8;
|
||||
accum |= code_buf[offs+1] & 0xFF;
|
||||
accum <<= 8;
|
||||
accum |= code_buf[offs] & 0xFF;
|
||||
#endif
|
||||
|
||||
/* Right-align cur_bit in accum, then mask off desired number of bits */
|
||||
accum >>= (cur_bit & 7);
|
||||
ret = ((int) accum) & ((1 << code_size) - 1);
|
||||
|
||||
cur_bit += code_size;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
LZWReadByte (compress_info_ptr cinfo)
|
||||
/* Read an LZW-compressed byte */
|
||||
{
|
||||
static int oldcode; /* previous LZW symbol */
|
||||
static int firstcode; /* first byte of oldcode's expansion */
|
||||
register int code; /* current working code */
|
||||
int incode; /* saves actual input code */
|
||||
|
||||
/* First time, just eat the expected Clear code(s) and return next code, */
|
||||
/* which is assumed to be a raw byte. */
|
||||
if (first_time) {
|
||||
first_time = FALSE;
|
||||
do {
|
||||
code = GetCode(cinfo);
|
||||
} while (code == clear_code);
|
||||
firstcode = oldcode = code; /* make firstcode, oldcode valid! */
|
||||
return code;
|
||||
}
|
||||
|
||||
/* If any codes are stacked from a previously read symbol, return them */
|
||||
if (sp > symbol_stack)
|
||||
return (int) *(--sp);
|
||||
|
||||
code = GetCode(cinfo);
|
||||
|
||||
if (code == clear_code) {
|
||||
/* Reinit static state, swallow any extra Clear codes, and return */
|
||||
ReInitLZW();
|
||||
do {
|
||||
code = GetCode(cinfo);
|
||||
} while (code == clear_code);
|
||||
firstcode = oldcode = code; /* gotta reinit these too */
|
||||
return code;
|
||||
}
|
||||
|
||||
if (code == end_code) {
|
||||
/* Skip the rest of the image, unless GetCode already read terminator */
|
||||
if (! out_of_blocks)
|
||||
SkipDataBlocks(cinfo);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Normal raw byte or LZW symbol */
|
||||
incode = code; /* save for a moment */
|
||||
|
||||
if (code >= max_code) { /* special case for not-yet-defined symbol */
|
||||
*sp++ = (UINT8) firstcode; /* it will be defined as oldcode/firstcode */
|
||||
code = oldcode;
|
||||
}
|
||||
|
||||
/* If it's a symbol, expand it into the stack */
|
||||
while (code >= clear_code) {
|
||||
*sp++ = symbol_tail[code]; /* tail of symbol: a simple byte value */
|
||||
code = symbol_head[code]; /* head of symbol: another LZW symbol */
|
||||
}
|
||||
/* At this point code just represents a raw byte */
|
||||
firstcode = code; /* save for possible future use */
|
||||
|
||||
/* If there's room in table, */
|
||||
if ((code = max_code) < LZW_TABLE_SIZE) {
|
||||
/* Define a new symbol = prev sym + head of this sym's expansion */
|
||||
symbol_head[code] = oldcode;
|
||||
symbol_tail[code] = (UINT8) firstcode;
|
||||
max_code++;
|
||||
/* Is it time to increase code_size? */
|
||||
if ((max_code >= limit_code) && (code_size < MAX_LZW_BITS)) {
|
||||
code_size++;
|
||||
limit_code <<= 1; /* keep equal to 2^code_size */
|
||||
}
|
||||
}
|
||||
|
||||
oldcode = incode; /* save last input symbol for future use */
|
||||
return firstcode; /* return first byte of symbol's expansion */
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
ReadColorMap (compress_info_ptr cinfo, int cmaplen, JSAMPARRAY cmap)
|
||||
/* Read a GIF colormap */
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < cmaplen; i++) {
|
||||
cmap[CM_RED][i] = (JSAMPLE) ReadByte(cinfo);
|
||||
cmap[CM_GREEN][i] = (JSAMPLE) ReadByte(cinfo);
|
||||
cmap[CM_BLUE][i] = (JSAMPLE) ReadByte(cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
DoExtension (compress_info_ptr cinfo)
|
||||
/* Process an extension block */
|
||||
/* Currently we ignore 'em all */
|
||||
{
|
||||
int extlabel;
|
||||
|
||||
/* Read extension label byte */
|
||||
extlabel = ReadByte(cinfo);
|
||||
TRACEMS1(cinfo->emethods, 1, "Ignoring GIF extension block of type 0x%02x",
|
||||
extlabel);
|
||||
/* Skip the data block(s) associated with the extension */
|
||||
SkipDataBlocks(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read the file header; return image size and component count.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_init (compress_info_ptr cinfo)
|
||||
{
|
||||
char hdrbuf[10]; /* workspace for reading control blocks */
|
||||
UINT16 width, height; /* image dimensions */
|
||||
int colormaplen, aspectRatio;
|
||||
int c;
|
||||
|
||||
/* Allocate space to store the colormap */
|
||||
colormap = (*cinfo->emethods->alloc_small_sarray)
|
||||
((long) MAXCOLORMAPSIZE, (long) NUMCOLORS);
|
||||
|
||||
/* Read and verify GIF Header */
|
||||
if (! ReadOK(cinfo->input_file, hdrbuf, 6))
|
||||
ERREXIT(cinfo->emethods, "Not a GIF file");
|
||||
if (strncmp(hdrbuf, "GIF", 3) != 0)
|
||||
ERREXIT(cinfo->emethods, "Not a GIF file");
|
||||
/* Check for expected version numbers.
|
||||
* If unknown version, give warning and try to process anyway;
|
||||
* this is per recommendation in GIF89a standard.
|
||||
*/
|
||||
if ((strncmp(hdrbuf+3, "87a", 3) != 0) &&
|
||||
(strncmp(hdrbuf+3, "89a", 3) != 0))
|
||||
TRACEMS3(cinfo->emethods, 1,
|
||||
"Warning: unexpected GIF version number '%c%c%c'",
|
||||
hdrbuf[3], hdrbuf[4], hdrbuf[5]);
|
||||
|
||||
/* Read and decipher Logical Screen Descriptor */
|
||||
if (! ReadOK(cinfo->input_file, hdrbuf, 7))
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in GIF file");
|
||||
width = LM_to_uint(hdrbuf[0],hdrbuf[1]);
|
||||
height = LM_to_uint(hdrbuf[2],hdrbuf[3]);
|
||||
colormaplen = 2 << (hdrbuf[4] & 0x07);
|
||||
/* we ignore the color resolution, sort flag, and background color index */
|
||||
aspectRatio = hdrbuf[6] & 0xFF;
|
||||
if (aspectRatio != 0 && aspectRatio != 49)
|
||||
TRACEMS(cinfo->emethods, 1, "Warning: nonsquare pixels in input");
|
||||
|
||||
/* Read global colormap if header indicates it is present */
|
||||
if (BitSet(hdrbuf[4], COLORMAPFLAG))
|
||||
ReadColorMap(cinfo, colormaplen, colormap);
|
||||
|
||||
/* Scan until we reach start of desired image.
|
||||
* We don't currently support skipping images, but could add it easily.
|
||||
*/
|
||||
for (;;) {
|
||||
c = ReadByte(cinfo);
|
||||
|
||||
if (c == ';') /* GIF terminator?? */
|
||||
ERREXIT(cinfo->emethods, "Too few images in GIF file");
|
||||
|
||||
if (c == '!') { /* Extension */
|
||||
DoExtension(cinfo);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (c != ',') { /* Not an image separator? */
|
||||
TRACEMS1(cinfo->emethods, 1, "Bogus input char 0x%02x, ignoring", c);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Read and decipher Local Image Descriptor */
|
||||
if (! ReadOK(cinfo->input_file, hdrbuf, 9))
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in GIF file");
|
||||
/* we ignore top/left position info, also sort flag */
|
||||
width = LM_to_uint(hdrbuf[4],hdrbuf[5]);
|
||||
height = LM_to_uint(hdrbuf[6],hdrbuf[7]);
|
||||
is_interlaced = BitSet(hdrbuf[8], INTERLACE);
|
||||
colormaplen = 2 << (hdrbuf[8] & 0x07);
|
||||
|
||||
/* Read local colormap if header indicates it is present */
|
||||
/* Note: if we wanted to support skipping images, */
|
||||
/* we'd need to skip rather than read colormap for ignored images */
|
||||
if (BitSet(hdrbuf[8], COLORMAPFLAG))
|
||||
ReadColorMap(cinfo, colormaplen, colormap);
|
||||
|
||||
input_code_size = ReadByte(cinfo); /* get minimum-code-size byte */
|
||||
if (input_code_size < 2 || input_code_size >= MAX_LZW_BITS)
|
||||
ERREXIT1(cinfo->emethods, "Bogus codesize %d", input_code_size);
|
||||
|
||||
/* Reached desired image, so break out of loop */
|
||||
/* If we wanted to skip this image, */
|
||||
/* we'd call SkipDataBlocks and then continue the loop */
|
||||
break;
|
||||
}
|
||||
|
||||
/* Prepare to read selected image: first initialize LZW decompressor */
|
||||
symbol_head = (UINT16 FAR *) (*cinfo->emethods->alloc_medium)
|
||||
(LZW_TABLE_SIZE * SIZEOF(UINT16));
|
||||
symbol_tail = (UINT8 FAR *) (*cinfo->emethods->alloc_medium)
|
||||
(LZW_TABLE_SIZE * SIZEOF(UINT8));
|
||||
symbol_stack = (UINT8 FAR *) (*cinfo->emethods->alloc_medium)
|
||||
(LZW_TABLE_SIZE * SIZEOF(UINT8));
|
||||
InitLZWCode();
|
||||
|
||||
/*
|
||||
* If image is interlaced, we read it into a full-size sample array,
|
||||
* decompressing as we go; then get_input_row selects rows from the
|
||||
* sample array in the proper order.
|
||||
*/
|
||||
if (is_interlaced) {
|
||||
/* We request the big array now, but can't access it until the pipeline
|
||||
* controller causes all the big arrays to be allocated. Hence, the
|
||||
* actual work of reading the image is postponed until the first call
|
||||
* of get_input_row.
|
||||
*/
|
||||
interlaced_image = (*cinfo->emethods->request_big_sarray)
|
||||
((long) width, (long) height, 1L);
|
||||
cinfo->methods->get_input_row = load_interlaced_image;
|
||||
cinfo->total_passes++; /* count file reading as separate pass */
|
||||
}
|
||||
|
||||
/* Return info about the image. */
|
||||
cinfo->input_components = NUMCOLORS;
|
||||
cinfo->in_color_space = CS_RGB;
|
||||
cinfo->image_width = width;
|
||||
cinfo->image_height = height;
|
||||
cinfo->data_precision = 8; /* always, even if 12-bit JSAMPLEs */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read one row of pixels.
|
||||
* This version is used for noninterlaced GIF images:
|
||||
* we read directly from the GIF file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
get_input_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
{
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
register int c;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
if ((c = LZWReadByte(cinfo)) < 0)
|
||||
ERREXIT(cinfo->emethods, "Premature end of GIF image");
|
||||
*ptr0++ = colormap[CM_RED][c];
|
||||
*ptr1++ = colormap[CM_GREEN][c];
|
||||
*ptr2++ = colormap[CM_BLUE][c];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read one row of pixels.
|
||||
* This version is used for the first call on get_input_row when
|
||||
* reading an interlaced GIF file: we read the whole image into memory.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
load_interlaced_image (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
{
|
||||
JSAMPARRAY image_ptr;
|
||||
register JSAMPROW sptr;
|
||||
register long col;
|
||||
register int c;
|
||||
long row;
|
||||
|
||||
/* Read the interlaced image into the big array we've created. */
|
||||
for (row = 0; row < cinfo->image_height; row++) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, row, cinfo->image_height);
|
||||
image_ptr = (*cinfo->emethods->access_big_sarray)
|
||||
(interlaced_image, row, TRUE);
|
||||
sptr = image_ptr[0];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
if ((c = LZWReadByte(cinfo)) < 0)
|
||||
ERREXIT(cinfo->emethods, "Premature end of GIF image");
|
||||
*sptr++ = (JSAMPLE) c;
|
||||
}
|
||||
}
|
||||
cinfo->completed_passes++;
|
||||
|
||||
/* Replace method pointer so subsequent calls don't come here. */
|
||||
cinfo->methods->get_input_row = get_interlaced_row;
|
||||
/* Initialize for get_interlaced_row, and perform first call on it. */
|
||||
cur_row_number = 0;
|
||||
pass2_offset = (cinfo->image_height + 7L) / 8L;
|
||||
pass3_offset = pass2_offset + (cinfo->image_height + 3L) / 8L;
|
||||
pass4_offset = pass3_offset + (cinfo->image_height + 1L) / 4L;
|
||||
|
||||
get_interlaced_row(cinfo, pixel_row);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read one row of pixels.
|
||||
* This version is used for interlaced GIF images:
|
||||
* we read from the big in-memory image.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
get_interlaced_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
{
|
||||
JSAMPARRAY image_ptr;
|
||||
register JSAMPROW sptr, ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
register int c;
|
||||
long irow;
|
||||
|
||||
/* Figure out which row of interlaced image is needed, and access it. */
|
||||
switch ((int) (cur_row_number & 7L)) {
|
||||
case 0: /* first-pass row */
|
||||
irow = cur_row_number >> 3;
|
||||
break;
|
||||
case 4: /* second-pass row */
|
||||
irow = (cur_row_number >> 3) + pass2_offset;
|
||||
break;
|
||||
case 2: /* third-pass row */
|
||||
case 6:
|
||||
irow = (cur_row_number >> 2) + pass3_offset;
|
||||
break;
|
||||
default: /* fourth-pass row */
|
||||
irow = (cur_row_number >> 1) + pass4_offset;
|
||||
break;
|
||||
}
|
||||
image_ptr = (*cinfo->emethods->access_big_sarray)
|
||||
(interlaced_image, irow, FALSE);
|
||||
/* Scan the row, expand colormap, and output */
|
||||
sptr = image_ptr[0];
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
c = GETJSAMPLE(*sptr++);
|
||||
*ptr0++ = colormap[CM_RED][c];
|
||||
*ptr1++ = colormap[CM_GREEN][c];
|
||||
*ptr2++ = colormap[CM_BLUE][c];
|
||||
}
|
||||
cur_row_number++; /* for next time */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_term (compress_info_ptr cinfo)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for GIF format input.
|
||||
* Note that this must be called by the user interface before calling
|
||||
* jpeg_compress. If multiple input formats are supported, the
|
||||
* user interface is responsible for discovering the file format and
|
||||
* calling the appropriate method selection routine.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselrgif (compress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->methods->input_init = input_init;
|
||||
cinfo->methods->get_input_row = get_input_row; /* assume uninterlaced */
|
||||
cinfo->methods->input_term = input_term;
|
||||
}
|
||||
|
||||
#endif /* GIF_SUPPORTED */
|
||||
740
jrdjfif.c
740
jrdjfif.c
@@ -1,740 +0,0 @@
|
||||
/*
|
||||
* jrdjfif.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to decode standard JPEG file headers/markers.
|
||||
* This code will handle "raw JPEG" and JFIF-convention JPEG files.
|
||||
*
|
||||
* You can also use this module to decode a raw-JPEG or JFIF-standard data
|
||||
* stream that is embedded within a larger file. To do that, you must
|
||||
* position the file to the JPEG SOI marker (0xFF/0xD8) that begins the
|
||||
* data sequence to be decoded. If nothing better is possible, you can scan
|
||||
* the file until you see the SOI marker, then use JUNGETC to push it back.
|
||||
*
|
||||
* This module relies on the JGETC macro and the read_jpeg_data method (which
|
||||
* is provided by the user interface) to read from the JPEG data stream.
|
||||
* Therefore, this module is not dependent on any particular assumption about
|
||||
* the data source; it need not be a stdio stream at all. (This fact does
|
||||
* NOT carry over to more complex JPEG file formats such as JPEG-in-TIFF;
|
||||
* those format control modules may well need to assume stdio input.)
|
||||
*
|
||||
* These routines are invoked via the methods read_file_header,
|
||||
* read_scan_header, read_jpeg_data, read_scan_trailer, and read_file_trailer.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef JFIF_SUPPORTED
|
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */
|
||||
M_SOF0 = 0xc0,
|
||||
M_SOF1 = 0xc1,
|
||||
M_SOF2 = 0xc2,
|
||||
M_SOF3 = 0xc3,
|
||||
|
||||
M_SOF5 = 0xc5,
|
||||
M_SOF6 = 0xc6,
|
||||
M_SOF7 = 0xc7,
|
||||
|
||||
M_JPG = 0xc8,
|
||||
M_SOF9 = 0xc9,
|
||||
M_SOF10 = 0xca,
|
||||
M_SOF11 = 0xcb,
|
||||
|
||||
M_SOF13 = 0xcd,
|
||||
M_SOF14 = 0xce,
|
||||
M_SOF15 = 0xcf,
|
||||
|
||||
M_DHT = 0xc4,
|
||||
|
||||
M_DAC = 0xcc,
|
||||
|
||||
M_RST0 = 0xd0,
|
||||
M_RST1 = 0xd1,
|
||||
M_RST2 = 0xd2,
|
||||
M_RST3 = 0xd3,
|
||||
M_RST4 = 0xd4,
|
||||
M_RST5 = 0xd5,
|
||||
M_RST6 = 0xd6,
|
||||
M_RST7 = 0xd7,
|
||||
|
||||
M_SOI = 0xd8,
|
||||
M_EOI = 0xd9,
|
||||
M_SOS = 0xda,
|
||||
M_DQT = 0xdb,
|
||||
M_DNL = 0xdc,
|
||||
M_DRI = 0xdd,
|
||||
M_DHP = 0xde,
|
||||
M_EXP = 0xdf,
|
||||
|
||||
M_APP0 = 0xe0,
|
||||
M_APP15 = 0xef,
|
||||
|
||||
M_JPG0 = 0xf0,
|
||||
M_JPG13 = 0xfd,
|
||||
M_COM = 0xfe,
|
||||
|
||||
M_TEM = 0x01,
|
||||
|
||||
M_ERROR = 0x100
|
||||
} JPEG_MARKER;
|
||||
|
||||
|
||||
/*
|
||||
* Reload the input buffer after it's been emptied, and return the next byte.
|
||||
* This is exported for direct use by the entropy decoder.
|
||||
* See the JGETC macro for calling conditions.
|
||||
*
|
||||
* For this header control module, read_jpeg_data is supplied by the
|
||||
* user interface. However, header formats that require random access
|
||||
* to the input file would need to supply their own code. This code is
|
||||
* left here to indicate what is required.
|
||||
*/
|
||||
|
||||
#if 0 /* not needed in this module */
|
||||
|
||||
METHODDEF int
|
||||
read_jpeg_data (decompress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->next_input_byte = cinfo->input_buffer + MIN_UNGET;
|
||||
|
||||
cinfo->bytes_in_buffer = (int) JFREAD(cinfo->input_file,
|
||||
cinfo->next_input_byte,
|
||||
JPEG_BUF_SIZE);
|
||||
|
||||
if (cinfo->bytes_in_buffer <= 0)
|
||||
ERREXIT(cinfo->emethods, "Unexpected EOF in JPEG file");
|
||||
|
||||
return JGETC(cinfo);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Routines to parse JPEG markers & save away the useful info.
|
||||
*/
|
||||
|
||||
|
||||
LOCAL INT32
|
||||
get_2bytes (decompress_info_ptr cinfo)
|
||||
/* Get a 2-byte unsigned integer (e.g., a marker parameter length field) */
|
||||
{
|
||||
INT32 a;
|
||||
|
||||
a = JGETC(cinfo);
|
||||
return (a << 8) + JGETC(cinfo);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
skip_variable (decompress_info_ptr cinfo, int code)
|
||||
/* Skip over an unknown or uninteresting variable-length marker */
|
||||
{
|
||||
INT32 length;
|
||||
|
||||
length = get_2bytes(cinfo);
|
||||
|
||||
TRACEMS2(cinfo->emethods, 1,
|
||||
"Skipping marker 0x%02x, length %u", code, (int) length);
|
||||
|
||||
for (length -= 2; length > 0; length--)
|
||||
(void) JGETC(cinfo);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_dht (decompress_info_ptr cinfo)
|
||||
/* Process a DHT marker */
|
||||
{
|
||||
INT32 length;
|
||||
UINT8 bits[17];
|
||||
UINT8 huffval[256];
|
||||
int i, index, count;
|
||||
HUFF_TBL **htblptr;
|
||||
|
||||
length = get_2bytes(cinfo)-2;
|
||||
|
||||
while (length > 0) {
|
||||
index = JGETC(cinfo);
|
||||
|
||||
TRACEMS1(cinfo->emethods, 1, "Define Huffman Table 0x%02x", index);
|
||||
|
||||
bits[0] = 0;
|
||||
count = 0;
|
||||
for (i = 1; i <= 16; i++) {
|
||||
bits[i] = (UINT8) JGETC(cinfo);
|
||||
count += bits[i];
|
||||
}
|
||||
|
||||
TRACEMS8(cinfo->emethods, 2, " %3d %3d %3d %3d %3d %3d %3d %3d",
|
||||
bits[1], bits[2], bits[3], bits[4],
|
||||
bits[5], bits[6], bits[7], bits[8]);
|
||||
TRACEMS8(cinfo->emethods, 2, " %3d %3d %3d %3d %3d %3d %3d %3d",
|
||||
bits[9], bits[10], bits[11], bits[12],
|
||||
bits[13], bits[14], bits[15], bits[16]);
|
||||
|
||||
if (count > 256)
|
||||
ERREXIT(cinfo->emethods, "Bogus DHT counts");
|
||||
|
||||
for (i = 0; i < count; i++)
|
||||
huffval[i] = (UINT8) JGETC(cinfo);
|
||||
|
||||
length -= 1 + 16 + count;
|
||||
|
||||
if (index & 0x10) { /* AC table definition */
|
||||
index -= 0x10;
|
||||
htblptr = &cinfo->ac_huff_tbl_ptrs[index];
|
||||
} else { /* DC table definition */
|
||||
htblptr = &cinfo->dc_huff_tbl_ptrs[index];
|
||||
}
|
||||
|
||||
if (index < 0 || index >= NUM_HUFF_TBLS)
|
||||
ERREXIT1(cinfo->emethods, "Bogus DHT index %d", index);
|
||||
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = (HUFF_TBL *) (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
|
||||
|
||||
memcpy((void *) (*htblptr)->bits, (void *) bits,
|
||||
SIZEOF((*htblptr)->bits));
|
||||
memcpy((void *) (*htblptr)->huffval, (void *) huffval,
|
||||
SIZEOF((*htblptr)->huffval));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_dac (decompress_info_ptr cinfo)
|
||||
/* Process a DAC marker */
|
||||
{
|
||||
INT32 length;
|
||||
int index, val;
|
||||
|
||||
length = get_2bytes(cinfo)-2;
|
||||
|
||||
while (length > 0) {
|
||||
index = JGETC(cinfo);
|
||||
val = JGETC(cinfo);
|
||||
|
||||
TRACEMS2(cinfo->emethods, 1,
|
||||
"Define Arithmetic Table 0x%02x: 0x%02x", index, val);
|
||||
|
||||
if (index < 0 || index >= (2*NUM_ARITH_TBLS))
|
||||
ERREXIT1(cinfo->emethods, "Bogus DAC index %d", index);
|
||||
|
||||
if (index >= NUM_ARITH_TBLS) { /* define AC table */
|
||||
cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
|
||||
} else { /* define DC table */
|
||||
cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
|
||||
cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
|
||||
if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
|
||||
ERREXIT1(cinfo->emethods, "Bogus DAC value 0x%x", val);
|
||||
}
|
||||
|
||||
length -= 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_dqt (decompress_info_ptr cinfo)
|
||||
/* Process a DQT marker */
|
||||
{
|
||||
INT32 length;
|
||||
int n, i, prec;
|
||||
UINT16 tmp;
|
||||
QUANT_TBL_PTR quant_ptr;
|
||||
|
||||
length = get_2bytes(cinfo) - 2;
|
||||
|
||||
while (length > 0) {
|
||||
n = JGETC(cinfo);
|
||||
prec = n >> 4;
|
||||
n &= 0x0F;
|
||||
|
||||
TRACEMS2(cinfo->emethods, 1,
|
||||
"Define Quantization Table %d precision %d", n, prec);
|
||||
|
||||
if (n >= NUM_QUANT_TBLS)
|
||||
ERREXIT1(cinfo->emethods, "Bogus table number %d", n);
|
||||
|
||||
if (cinfo->quant_tbl_ptrs[n] == NULL)
|
||||
cinfo->quant_tbl_ptrs[n] = (QUANT_TBL_PTR)
|
||||
(*cinfo->emethods->alloc_small) (SIZEOF(QUANT_TBL));
|
||||
quant_ptr = cinfo->quant_tbl_ptrs[n];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
tmp = JGETC(cinfo);
|
||||
if (prec)
|
||||
tmp = (tmp<<8) + JGETC(cinfo);
|
||||
quant_ptr[i] = tmp;
|
||||
}
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i += 8) {
|
||||
TRACEMS8(cinfo->emethods, 2, " %4d %4d %4d %4d %4d %4d %4d %4d",
|
||||
quant_ptr[i ], quant_ptr[i+1], quant_ptr[i+2], quant_ptr[i+3],
|
||||
quant_ptr[i+4], quant_ptr[i+5], quant_ptr[i+6], quant_ptr[i+7]);
|
||||
}
|
||||
|
||||
length -= DCTSIZE2+1;
|
||||
if (prec) length -= DCTSIZE2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_dri (decompress_info_ptr cinfo)
|
||||
/* Process a DRI marker */
|
||||
{
|
||||
if (get_2bytes(cinfo) != 4)
|
||||
ERREXIT(cinfo->emethods, "Bogus length in DRI");
|
||||
|
||||
cinfo->restart_interval = (UINT16) get_2bytes(cinfo);
|
||||
|
||||
TRACEMS1(cinfo->emethods, 1,
|
||||
"Define Restart Interval %d", cinfo->restart_interval);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_app0 (decompress_info_ptr cinfo)
|
||||
/* Process an APP0 marker */
|
||||
{
|
||||
#define JFIF_LEN 14
|
||||
INT32 length;
|
||||
UINT8 b[JFIF_LEN];
|
||||
int buffp;
|
||||
|
||||
length = get_2bytes(cinfo) - 2;
|
||||
|
||||
/* See if a JFIF APP0 marker is present */
|
||||
|
||||
if (length >= JFIF_LEN) {
|
||||
for (buffp = 0; buffp < JFIF_LEN; buffp++)
|
||||
b[buffp] = (UINT8) JGETC(cinfo);
|
||||
length -= JFIF_LEN;
|
||||
|
||||
if (b[0]=='J' && b[1]=='F' && b[2]=='I' && b[3]=='F' && b[4]==0) {
|
||||
/* Found JFIF APP0 marker: check version */
|
||||
/* Major version must be 1 */
|
||||
if (b[5] != 1)
|
||||
ERREXIT2(cinfo->emethods, "Unsupported JFIF revision number %d.%02d",
|
||||
b[5], b[6]);
|
||||
/* Minor version should be 0 or 1, but try to process anyway if newer */
|
||||
if (b[6] != 0 && b[6] != 1)
|
||||
TRACEMS2(cinfo->emethods, 0, "Warning: unknown JFIF revision number %d.%02d",
|
||||
b[5], b[6]);
|
||||
/* Save info */
|
||||
cinfo->density_unit = b[7];
|
||||
cinfo->X_density = (b[8] << 8) + b[9];
|
||||
cinfo->Y_density = (b[10] << 8) + b[11];
|
||||
/* Assume colorspace is YCbCr, unless UI has overridden me */
|
||||
if (cinfo->jpeg_color_space == CS_UNKNOWN)
|
||||
cinfo->jpeg_color_space = CS_YCbCr;
|
||||
TRACEMS3(cinfo->emethods, 1, "JFIF APP0 marker, density %dx%d %d",
|
||||
cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
|
||||
} else {
|
||||
TRACEMS(cinfo->emethods, 1, "Unknown APP0 marker (not JFIF)");
|
||||
}
|
||||
} else {
|
||||
TRACEMS1(cinfo->emethods, 1,
|
||||
"Short APP0 marker, length %d", (int) length);
|
||||
}
|
||||
|
||||
while (length-- > 0) /* skip any remaining data */
|
||||
(void) JGETC(cinfo);
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_sof (decompress_info_ptr cinfo, int code)
|
||||
/* Process a SOFn marker */
|
||||
{
|
||||
INT32 length;
|
||||
short ci;
|
||||
int c;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
length = get_2bytes(cinfo);
|
||||
|
||||
cinfo->data_precision = JGETC(cinfo);
|
||||
cinfo->image_height = get_2bytes(cinfo);
|
||||
cinfo->image_width = get_2bytes(cinfo);
|
||||
cinfo->num_components = JGETC(cinfo);
|
||||
|
||||
TRACEMS4(cinfo->emethods, 1,
|
||||
"Start Of Frame 0x%02x: width=%u, height=%u, components=%d",
|
||||
code, (int) cinfo->image_width, (int) cinfo->image_height,
|
||||
cinfo->num_components);
|
||||
|
||||
/* We don't support files in which the image height is initially specified */
|
||||
/* as 0 and is later redefined by DNL. As long as we have to check that, */
|
||||
/* might as well have a general sanity check. */
|
||||
if (cinfo->image_height <= 0 || cinfo->image_width <= 0
|
||||
|| cinfo->num_components <= 0)
|
||||
ERREXIT(cinfo->emethods, "Empty JPEG image (DNL not supported)");
|
||||
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
if (cinfo->data_precision != 8)
|
||||
ERREXIT(cinfo->emethods, "Unsupported JPEG data precision");
|
||||
#endif
|
||||
#ifdef TWELVE_BIT_SAMPLES
|
||||
if (cinfo->data_precision != 12) /* this needs more thought?? */
|
||||
ERREXIT(cinfo->emethods, "Unsupported JPEG data precision");
|
||||
#endif
|
||||
#ifdef SIXTEEN_BIT_SAMPLES
|
||||
if (cinfo->data_precision != 16) /* this needs more thought?? */
|
||||
ERREXIT(cinfo->emethods, "Unsupported JPEG data precision");
|
||||
#endif
|
||||
|
||||
if (length != (cinfo->num_components * 3 + 8))
|
||||
ERREXIT(cinfo->emethods, "Bogus SOF length");
|
||||
|
||||
cinfo->comp_info = (jpeg_component_info *) (*cinfo->emethods->alloc_small)
|
||||
(cinfo->num_components * SIZEOF(jpeg_component_info));
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
compptr = &cinfo->comp_info[ci];
|
||||
compptr->component_index = ci;
|
||||
compptr->component_id = JGETC(cinfo);
|
||||
c = JGETC(cinfo);
|
||||
compptr->h_samp_factor = (c >> 4) & 15;
|
||||
compptr->v_samp_factor = (c ) & 15;
|
||||
compptr->quant_tbl_no = JGETC(cinfo);
|
||||
|
||||
TRACEMS4(cinfo->emethods, 1, " Component %d: %dhx%dv q=%d",
|
||||
compptr->component_id, compptr->h_samp_factor,
|
||||
compptr->v_samp_factor, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_sos (decompress_info_ptr cinfo)
|
||||
/* Process a SOS marker */
|
||||
{
|
||||
INT32 length;
|
||||
int i, ci, n, c, cc;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
length = get_2bytes(cinfo);
|
||||
|
||||
n = JGETC(cinfo); /* Number of components */
|
||||
cinfo->comps_in_scan = n;
|
||||
length -= 3;
|
||||
|
||||
if (length != (n * 2 + 3) || n < 1 || n > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT(cinfo->emethods, "Bogus SOS length");
|
||||
|
||||
TRACEMS1(cinfo->emethods, 1, "Start Of Scan: %d components", n);
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
cc = JGETC(cinfo);
|
||||
c = JGETC(cinfo);
|
||||
length -= 2;
|
||||
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
if (cc == cinfo->comp_info[ci].component_id)
|
||||
break;
|
||||
|
||||
if (ci >= cinfo->num_components)
|
||||
ERREXIT(cinfo->emethods, "Invalid component number in SOS");
|
||||
|
||||
compptr = &cinfo->comp_info[ci];
|
||||
cinfo->cur_comp_info[i] = compptr;
|
||||
compptr->dc_tbl_no = (c >> 4) & 15;
|
||||
compptr->ac_tbl_no = (c ) & 15;
|
||||
|
||||
TRACEMS3(cinfo->emethods, 1, " c%d: [dc=%d ac=%d]", cc,
|
||||
compptr->dc_tbl_no, compptr->ac_tbl_no);
|
||||
}
|
||||
|
||||
while (length > 0) {
|
||||
(void) JGETC(cinfo);
|
||||
length--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
get_soi (decompress_info_ptr cinfo)
|
||||
/* Process an SOI marker */
|
||||
{
|
||||
int i;
|
||||
|
||||
TRACEMS(cinfo->emethods, 1, "Start of Image");
|
||||
|
||||
/* Reset all parameters that are defined to be reset by SOI */
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
cinfo->restart_interval = 0;
|
||||
|
||||
cinfo->density_unit = 0; /* set default JFIF APP0 values */
|
||||
cinfo->X_density = 1;
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling */
|
||||
}
|
||||
|
||||
|
||||
LOCAL int
|
||||
next_marker (decompress_info_ptr cinfo)
|
||||
/* Find the next JPEG marker */
|
||||
/* Note that the output might not be a valid marker code, */
|
||||
/* but it will never be 0 or FF */
|
||||
{
|
||||
int c, nbytes;
|
||||
|
||||
nbytes = 0;
|
||||
do {
|
||||
do { /* skip any non-FF bytes */
|
||||
nbytes++;
|
||||
c = JGETC(cinfo);
|
||||
} while (c != 0xFF);
|
||||
do { /* skip any duplicate FFs */
|
||||
nbytes++;
|
||||
c = JGETC(cinfo);
|
||||
} while (c == 0xFF);
|
||||
} while (c == 0); /* repeat if it was a stuffed FF/00 */
|
||||
|
||||
if (nbytes != 2)
|
||||
TRACEMS2(cinfo->emethods, 1, "Skipped %d bytes before marker 0x%02x",
|
||||
nbytes-2, c);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
LOCAL JPEG_MARKER
|
||||
process_tables (decompress_info_ptr cinfo)
|
||||
/* Scan and process JPEG markers that can appear in any order */
|
||||
/* Return when an SOI, EOI, SOFn, or SOS is found */
|
||||
{
|
||||
int c;
|
||||
|
||||
while (TRUE) {
|
||||
c = next_marker(cinfo);
|
||||
|
||||
switch (c) {
|
||||
case M_SOF0:
|
||||
case M_SOF1:
|
||||
case M_SOF2:
|
||||
case M_SOF3:
|
||||
case M_SOF5:
|
||||
case M_SOF6:
|
||||
case M_SOF7:
|
||||
case M_JPG:
|
||||
case M_SOF9:
|
||||
case M_SOF10:
|
||||
case M_SOF11:
|
||||
case M_SOF13:
|
||||
case M_SOF14:
|
||||
case M_SOF15:
|
||||
case M_SOI:
|
||||
case M_EOI:
|
||||
case M_SOS:
|
||||
return ((JPEG_MARKER) c);
|
||||
|
||||
case M_DHT:
|
||||
get_dht(cinfo);
|
||||
break;
|
||||
|
||||
case M_DAC:
|
||||
get_dac(cinfo);
|
||||
break;
|
||||
|
||||
case M_DQT:
|
||||
get_dqt(cinfo);
|
||||
break;
|
||||
|
||||
case M_DRI:
|
||||
get_dri(cinfo);
|
||||
break;
|
||||
|
||||
case M_APP0:
|
||||
get_app0(cinfo);
|
||||
break;
|
||||
|
||||
case M_RST0: /* these are all parameterless */
|
||||
case M_RST1:
|
||||
case M_RST2:
|
||||
case M_RST3:
|
||||
case M_RST4:
|
||||
case M_RST5:
|
||||
case M_RST6:
|
||||
case M_RST7:
|
||||
case M_TEM:
|
||||
TRACEMS1(cinfo->emethods, 1, "Unexpected marker 0x%02x", c);
|
||||
break;
|
||||
|
||||
default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn */
|
||||
skip_variable(cinfo, c);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Initialize and read the file header (everything through the SOF marker).
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
read_file_header (decompress_info_ptr cinfo)
|
||||
{
|
||||
int c;
|
||||
|
||||
/* Demand an SOI marker at the start of the file --- otherwise it's
|
||||
* probably not a JPEG file at all. If the user interface wants to support
|
||||
* nonstandard headers in front of the SOI, it must skip over them itself
|
||||
* before calling jpeg_decompress().
|
||||
*/
|
||||
if (JGETC(cinfo) != 0xFF || JGETC(cinfo) != M_SOI)
|
||||
ERREXIT(cinfo->emethods, "Not a JPEG file");
|
||||
|
||||
get_soi(cinfo); /* OK, process SOI */
|
||||
|
||||
/* Process markers until SOF */
|
||||
c = process_tables(cinfo);
|
||||
|
||||
switch (c) {
|
||||
case M_SOF0:
|
||||
case M_SOF1:
|
||||
get_sof(cinfo, c);
|
||||
cinfo->arith_code = FALSE;
|
||||
break;
|
||||
|
||||
case M_SOF9:
|
||||
get_sof(cinfo, c);
|
||||
cinfo->arith_code = TRUE;
|
||||
break;
|
||||
|
||||
default:
|
||||
ERREXIT1(cinfo->emethods, "Unsupported SOF marker type 0x%02x", c);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Figure out what colorspace we have */
|
||||
/* (too bad the JPEG committee didn't provide a real way to specify this) */
|
||||
|
||||
switch (cinfo->num_components) {
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = CS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
/* if we saw a JFIF marker, leave it set to YCbCr; */
|
||||
/* also leave it alone if UI has provided a value */
|
||||
if (cinfo->jpeg_color_space == CS_UNKNOWN) {
|
||||
short cid0 = cinfo->comp_info[0].component_id;
|
||||
short cid1 = cinfo->comp_info[1].component_id;
|
||||
short cid2 = cinfo->comp_info[2].component_id;
|
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
|
||||
cinfo->jpeg_color_space = CS_YCbCr; /* assume it's JFIF w/out marker */
|
||||
else if (cid0 == 1 && cid1 == 4 && cid2 == 5)
|
||||
cinfo->jpeg_color_space = CS_YIQ; /* prototype's YIQ matrix */
|
||||
else {
|
||||
TRACEMS3(cinfo->emethods, 0,
|
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr",
|
||||
cid0, cid1, cid2);
|
||||
cinfo->jpeg_color_space = CS_YCbCr;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 4:
|
||||
cinfo->jpeg_color_space = CS_CMYK;
|
||||
break;
|
||||
|
||||
default:
|
||||
cinfo->jpeg_color_space = CS_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read the start of a scan (everything through the SOS marker).
|
||||
* Return TRUE if find SOS, FALSE if find EOI.
|
||||
*/
|
||||
|
||||
METHODDEF boolean
|
||||
read_scan_header (decompress_info_ptr cinfo)
|
||||
{
|
||||
int c;
|
||||
|
||||
/* Process markers until SOS or EOI */
|
||||
c = process_tables(cinfo);
|
||||
|
||||
switch (c) {
|
||||
case M_SOS:
|
||||
get_sos(cinfo);
|
||||
return TRUE;
|
||||
|
||||
case M_EOI:
|
||||
TRACEMS(cinfo->emethods, 1, "End Of Image");
|
||||
return FALSE;
|
||||
|
||||
default:
|
||||
ERREXIT1(cinfo->emethods, "Unexpected marker 0x%02x", c);
|
||||
break;
|
||||
}
|
||||
return FALSE; /* keeps lint happy */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after a compressed scan (series of read_jpeg_data calls);
|
||||
* prepare for another read_scan_header call.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
read_scan_trailer (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
read_file_trailer (decompress_info_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for standard JPEG header reading.
|
||||
* Note that this must be called by the user interface before calling
|
||||
* jpeg_decompress. When a non-JFIF file is to be decompressed (TIFF,
|
||||
* perhaps), the user interface must discover the file type and call
|
||||
* the appropriate method selection routine.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselrjfif (decompress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->methods->read_file_header = read_file_header;
|
||||
cinfo->methods->read_scan_header = read_scan_header;
|
||||
/* For JFIF/raw-JPEG format, the user interface supplies read_jpeg_data. */
|
||||
#if 0
|
||||
cinfo->methods->read_jpeg_data = read_jpeg_data;
|
||||
#endif
|
||||
cinfo->methods->read_scan_trailer = read_scan_trailer;
|
||||
cinfo->methods->read_file_trailer = read_file_trailer;
|
||||
}
|
||||
|
||||
#endif /* JFIF_SUPPORTED */
|
||||
324
jrdppm.c
324
jrdppm.c
@@ -1,324 +0,0 @@
|
||||
/*
|
||||
* jrdppm.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to read input images in PPM format.
|
||||
* The PBMPLUS library is NOT required to compile this software,
|
||||
* but it is highly useful as a set of PPM image manipulation programs.
|
||||
*
|
||||
* These routines may need modification for non-Unix environments or
|
||||
* specialized applications. As they stand, they assume input from
|
||||
* an ordinary stdio stream. They further assume that reading begins
|
||||
* at the start of the file; input_init may need work if the
|
||||
* user interface has already read some data (e.g., to determine that
|
||||
* the file is indeed PPM format).
|
||||
*
|
||||
* These routines are invoked via the methods get_input_row
|
||||
* and input_init/term.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef PPM_SUPPORTED
|
||||
|
||||
|
||||
static JSAMPLE * rescale; /* => maxval-remapping array, or NULL */
|
||||
|
||||
|
||||
/* Portions of this code are based on the PBMPLUS library, which is:
|
||||
**
|
||||
** Copyright (C) 1988 by Jef Poskanzer.
|
||||
**
|
||||
** Permission to use, copy, modify, and distribute this software and its
|
||||
** documentation for any purpose and without fee is hereby granted, provided
|
||||
** that the above copyright notice appear in all copies and that both that
|
||||
** copyright notice and this permission notice appear in supporting
|
||||
** documentation. This software is provided "as is" without express or
|
||||
** implied warranty.
|
||||
*/
|
||||
|
||||
|
||||
LOCAL int
|
||||
pbm_getc (FILE * file)
|
||||
/* Read next char, skipping over any comments */
|
||||
/* A comment/newline sequence is returned as a newline */
|
||||
{
|
||||
register int ch;
|
||||
|
||||
ch = getc(file);
|
||||
if (ch == '#') {
|
||||
do {
|
||||
ch = getc(file);
|
||||
} while (ch != '\n' && ch != EOF);
|
||||
}
|
||||
return ch;
|
||||
}
|
||||
|
||||
|
||||
LOCAL unsigned int
|
||||
read_pbm_integer (compress_info_ptr cinfo)
|
||||
/* Read an unsigned decimal integer from the PPM file */
|
||||
/* Swallows one trailing character after the integer */
|
||||
/* Note that on a 16-bit-int machine, only values up to 64k can be read. */
|
||||
/* This should not be a problem in practice. */
|
||||
{
|
||||
register int ch;
|
||||
register unsigned int val;
|
||||
|
||||
/* Skip any leading whitespace */
|
||||
do {
|
||||
ch = pbm_getc(cinfo->input_file);
|
||||
if (ch == EOF)
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in PPM file");
|
||||
} while (ch == ' ' || ch == '\t' || ch == '\n');
|
||||
|
||||
if (ch < '0' || ch > '9')
|
||||
ERREXIT(cinfo->emethods, "Bogus data in PPM file");
|
||||
|
||||
val = ch - '0';
|
||||
while ((ch = pbm_getc(cinfo->input_file)) >= '0' && ch <= '9') {
|
||||
val *= 10;
|
||||
val += ch - '0';
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read one row of pixels.
|
||||
*
|
||||
* We provide several different versions depending on input file format.
|
||||
* In all cases, input is scaled to the size of JSAMPLE; it's possible that
|
||||
* when JSAMPLE is 12 bits, this would not really be desirable.
|
||||
*
|
||||
* Note that a really fast path is provided for reading raw files with
|
||||
* maxval = MAXJSAMPLE, which is the normal case (at least for 8-bit JSAMPLEs).
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_text_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading text-format PGM files with any maxval */
|
||||
{
|
||||
register JSAMPROW ptr0;
|
||||
register unsigned int val;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
val = read_pbm_integer(cinfo);
|
||||
if (rescale != NULL)
|
||||
val = rescale[val];
|
||||
*ptr0++ = (JSAMPLE) val;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_text_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading text-format PPM files with any maxval */
|
||||
{
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register unsigned int val;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
val = read_pbm_integer(cinfo);
|
||||
if (rescale != NULL)
|
||||
val = rescale[val];
|
||||
*ptr0++ = (JSAMPLE) val;
|
||||
val = read_pbm_integer(cinfo);
|
||||
if (rescale != NULL)
|
||||
val = rescale[val];
|
||||
*ptr1++ = (JSAMPLE) val;
|
||||
val = read_pbm_integer(cinfo);
|
||||
if (rescale != NULL)
|
||||
val = rescale[val];
|
||||
*ptr2++ = (JSAMPLE) val;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_scaled_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading raw-format PGM files with any maxval */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register JSAMPROW ptr0;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
*ptr0++ = rescale[getc(infile)];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_scaled_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading raw-format PPM files with any maxval */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
*ptr0++ = rescale[getc(infile)];
|
||||
*ptr1++ = rescale[getc(infile)];
|
||||
*ptr2++ = rescale[getc(infile)];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_raw_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading raw-format PGM files with maxval = MAXJSAMPLE */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register JSAMPROW ptr0;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
*ptr0++ = (JSAMPLE) getc(infile);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_raw_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading raw-format PPM files with maxval = MAXJSAMPLE */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
*ptr0++ = (JSAMPLE) getc(infile);
|
||||
*ptr1++ = (JSAMPLE) getc(infile);
|
||||
*ptr2++ = (JSAMPLE) getc(infile);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read the file header; return image size and component count.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_init (compress_info_ptr cinfo)
|
||||
{
|
||||
int c;
|
||||
unsigned int w, h, maxval;
|
||||
|
||||
if (getc(cinfo->input_file) != 'P')
|
||||
ERREXIT(cinfo->emethods, "Not a PPM file");
|
||||
|
||||
c = getc(cinfo->input_file); /* save format discriminator for a sec */
|
||||
|
||||
w = read_pbm_integer(cinfo); /* while we fetch the header info */
|
||||
h = read_pbm_integer(cinfo);
|
||||
maxval = read_pbm_integer(cinfo);
|
||||
|
||||
switch (c) {
|
||||
case '2': /* it's a text-format PGM file */
|
||||
cinfo->methods->get_input_row = get_text_gray_row;
|
||||
cinfo->input_components = 1;
|
||||
cinfo->in_color_space = CS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case '3': /* it's a text-format PPM file */
|
||||
cinfo->methods->get_input_row = get_text_rgb_row;
|
||||
cinfo->input_components = 3;
|
||||
cinfo->in_color_space = CS_RGB;
|
||||
break;
|
||||
|
||||
case '5': /* it's a raw-format PGM file */
|
||||
if (maxval == MAXJSAMPLE)
|
||||
cinfo->methods->get_input_row = get_raw_gray_row;
|
||||
else
|
||||
cinfo->methods->get_input_row = get_scaled_gray_row;
|
||||
cinfo->input_components = 1;
|
||||
cinfo->in_color_space = CS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case '6': /* it's a raw-format PPM file */
|
||||
if (maxval == MAXJSAMPLE)
|
||||
cinfo->methods->get_input_row = get_raw_rgb_row;
|
||||
else
|
||||
cinfo->methods->get_input_row = get_scaled_rgb_row;
|
||||
cinfo->input_components = 3;
|
||||
cinfo->in_color_space = CS_RGB;
|
||||
break;
|
||||
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Not a PPM file");
|
||||
break;
|
||||
}
|
||||
|
||||
if (w <= 0 || h <= 0 || maxval <= 0) /* error check */
|
||||
ERREXIT(cinfo->emethods, "Not a PPM file");
|
||||
|
||||
/* Compute the rescaling array if necessary */
|
||||
/* This saves per-pixel calculation */
|
||||
if (maxval == MAXJSAMPLE)
|
||||
rescale = NULL; /* no rescaling required */
|
||||
else {
|
||||
INT32 val, half_maxval;
|
||||
|
||||
/* On 16-bit-int machines we have to be careful of maxval = 65535 */
|
||||
rescale = (JSAMPLE *) (*cinfo->emethods->alloc_small)
|
||||
((size_t) (((long) maxval + 1L) * SIZEOF(JSAMPLE)));
|
||||
half_maxval = maxval / 2;
|
||||
for (val = 0; val <= (INT32) maxval; val++) {
|
||||
/* The multiplication here must be done in 32 bits to avoid overflow */
|
||||
rescale[val] = (JSAMPLE) ((val * MAXJSAMPLE + half_maxval) / maxval);
|
||||
}
|
||||
}
|
||||
|
||||
cinfo->image_width = w;
|
||||
cinfo->image_height = h;
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_term (compress_info_ptr cinfo)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for PPM format input.
|
||||
* Note that this must be called by the user interface before calling
|
||||
* jpeg_compress. If multiple input formats are supported, the
|
||||
* user interface is responsible for discovering the file format and
|
||||
* calling the appropriate method selection routine.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselrppm (compress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->methods->input_init = input_init;
|
||||
/* cinfo->methods->get_input_row is set by input_init */
|
||||
cinfo->methods->input_term = input_term;
|
||||
}
|
||||
|
||||
#endif /* PPM_SUPPORTED */
|
||||
366
jrdrle.c
366
jrdrle.c
@@ -1,366 +0,0 @@
|
||||
/*
|
||||
* jrdrle.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to read input images in Utah RLE format.
|
||||
* The Utah Raster Toolkit library is required (version 3.0).
|
||||
*
|
||||
* These routines may need modification for non-Unix environments or
|
||||
* specialized applications. As they stand, they assume input from
|
||||
* an ordinary stdio stream. They further assume that reading begins
|
||||
* at the start of the file; input_init may need work if the
|
||||
* user interface has already read some data (e.g., to determine that
|
||||
* the file is indeed RLE format).
|
||||
*
|
||||
* These routines are invoked via the methods get_input_row
|
||||
* and input_init/term.
|
||||
*
|
||||
* Based on code contributed by Mike Lijewski.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef RLE_SUPPORTED
|
||||
|
||||
/* rle.h is provided by the Utah Raster Toolkit. */
|
||||
|
||||
#include <rle.h>
|
||||
|
||||
|
||||
/*
|
||||
* load_image assumes that JSAMPLE has the same representation as rle_pixel,
|
||||
* to wit, "unsigned char". Hence we can't cope with 12- or 16-bit samples.
|
||||
*/
|
||||
|
||||
#ifndef EIGHT_BIT_SAMPLES
|
||||
Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* We support the following types of RLE files:
|
||||
*
|
||||
* GRAYSCALE - 8 bits, no colormap
|
||||
* PSEUDOCOLOR - 8 bits, colormap
|
||||
* TRUECOLOR - 24 bits, colormap
|
||||
* DIRECTCOLOR - 24 bits, no colormap
|
||||
*
|
||||
* For now, we ignore any alpha channel in the image.
|
||||
*/
|
||||
|
||||
typedef enum { GRAYSCALE, PSEUDOCOLOR, TRUECOLOR, DIRECTCOLOR } rle_kind;
|
||||
|
||||
static rle_kind visual; /* actual type of input file */
|
||||
|
||||
/*
|
||||
* Since RLE stores scanlines bottom-to-top, we have to invert the image
|
||||
* to conform to JPEG's top-to-bottom order. To do this, we read the
|
||||
* incoming image into a virtual array on the first get_input_row call,
|
||||
* then fetch the required row from the virtual array on subsequent calls.
|
||||
*/
|
||||
|
||||
static big_sarray_ptr image; /* single array for GRAYSCALE/PSEUDOCOLOR */
|
||||
static big_sarray_ptr red_channel; /* three arrays for TRUECOLOR/DIRECTCOLOR */
|
||||
static big_sarray_ptr green_channel;
|
||||
static big_sarray_ptr blue_channel;
|
||||
static long cur_row_number; /* last row# read from virtual array */
|
||||
|
||||
static rle_hdr header; /* Input file information */
|
||||
static rle_map *colormap; /* RLE colormap, if any */
|
||||
|
||||
|
||||
/*
|
||||
* Read the file header; return image size and component count.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_init (compress_info_ptr cinfo)
|
||||
{
|
||||
long width, height;
|
||||
|
||||
/* Use RLE library routine to get the header info */
|
||||
header.rle_file = cinfo->input_file;
|
||||
switch (rle_get_setup(&header)) {
|
||||
case RLE_SUCCESS:
|
||||
/* A-OK */
|
||||
break;
|
||||
case RLE_NOT_RLE:
|
||||
ERREXIT(cinfo->emethods, "Not an RLE file");
|
||||
break;
|
||||
case RLE_NO_SPACE:
|
||||
ERREXIT(cinfo->emethods, "Insufficient memory for RLE header");
|
||||
break;
|
||||
case RLE_EMPTY:
|
||||
ERREXIT(cinfo->emethods, "Empty RLE file");
|
||||
break;
|
||||
case RLE_EOF:
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in RLE header");
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Bogus RLE error code");
|
||||
break;
|
||||
}
|
||||
|
||||
/* Figure out what we have, set private vars and return values accordingly */
|
||||
|
||||
width = header.xmax - header.xmin + 1;
|
||||
height = header.ymax - header.ymin + 1;
|
||||
header.xmin = 0; /* realign horizontally */
|
||||
header.xmax = width-1;
|
||||
|
||||
cinfo->image_width = width;
|
||||
cinfo->image_height = height;
|
||||
cinfo->data_precision = 8; /* we can only handle 8 bit data */
|
||||
|
||||
if (header.ncolors == 1 && header.ncmap == 0) {
|
||||
visual = GRAYSCALE;
|
||||
TRACEMS(cinfo->emethods, 1, "Gray-scale RLE file");
|
||||
} else if (header.ncolors == 1 && header.ncmap == 3) {
|
||||
visual = PSEUDOCOLOR;
|
||||
colormap = header.cmap;
|
||||
TRACEMS1(cinfo->emethods, 1, "Colormapped RLE file with map of length %d",
|
||||
1 << header.cmaplen);
|
||||
} else if (header.ncolors == 3 && header.ncmap == 3) {
|
||||
visual = TRUECOLOR;
|
||||
colormap = header.cmap;
|
||||
TRACEMS1(cinfo->emethods, 1, "Full-color RLE file with map of length %d",
|
||||
1 << header.cmaplen);
|
||||
} else if (header.ncolors == 3 && header.ncmap == 0) {
|
||||
visual = DIRECTCOLOR;
|
||||
TRACEMS(cinfo->emethods, 1, "Full-color RLE file");
|
||||
} else
|
||||
ERREXIT(cinfo->emethods, "Can't handle this RLE setup");
|
||||
|
||||
switch (visual) {
|
||||
case GRAYSCALE:
|
||||
/* request one big array to hold the grayscale image */
|
||||
image = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
|
||||
cinfo->in_color_space = CS_GRAYSCALE;
|
||||
cinfo->input_components = 1;
|
||||
break;
|
||||
case PSEUDOCOLOR:
|
||||
/* request one big array to hold the pseudocolor image */
|
||||
image = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
|
||||
cinfo->in_color_space = CS_RGB;
|
||||
cinfo->input_components = 3;
|
||||
break;
|
||||
case TRUECOLOR:
|
||||
case DIRECTCOLOR:
|
||||
/* request three big arrays to hold the RGB channels */
|
||||
red_channel = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
|
||||
green_channel = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
|
||||
blue_channel = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
|
||||
cinfo->in_color_space = CS_RGB;
|
||||
cinfo->input_components = 3;
|
||||
break;
|
||||
}
|
||||
|
||||
cinfo->total_passes++; /* count file reading as separate pass */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read one row of pixels.
|
||||
* These are called only after load_image has read the image into
|
||||
* the virtual array(s).
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_grayscale_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This is used for GRAYSCALE images */
|
||||
{
|
||||
JSAMPROW inputrows[1]; /* a pseudo JSAMPARRAY structure */
|
||||
|
||||
cur_row_number--; /* work down in array */
|
||||
|
||||
inputrows[0] = *((*cinfo->emethods->access_big_sarray)
|
||||
(image, cur_row_number, FALSE));
|
||||
|
||||
jcopy_sample_rows(inputrows, 0, pixel_row, 0, 1, cinfo->image_width);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_pseudocolor_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This is used for PSEUDOCOLOR images */
|
||||
{
|
||||
long col;
|
||||
JSAMPROW image_ptr, ptr0, ptr1, ptr2;
|
||||
int val;
|
||||
|
||||
cur_row_number--; /* work down in array */
|
||||
|
||||
image_ptr = *((*cinfo->emethods->access_big_sarray)
|
||||
(image, cur_row_number, FALSE));
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
val = GETJSAMPLE(*image_ptr++);
|
||||
*ptr0++ = colormap[val ] >> 8;
|
||||
*ptr1++ = colormap[val + 256] >> 8;
|
||||
*ptr2++ = colormap[val + 512] >> 8;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_truecolor_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This is used for TRUECOLOR images */
|
||||
/* The colormap consists of 3 independent lookup tables */
|
||||
{
|
||||
long col;
|
||||
JSAMPROW red_ptr, green_ptr, blue_ptr, ptr0, ptr1, ptr2;
|
||||
|
||||
cur_row_number--; /* work down in array */
|
||||
|
||||
red_ptr = *((*cinfo->emethods->access_big_sarray)
|
||||
(red_channel, cur_row_number, FALSE));
|
||||
green_ptr = *((*cinfo->emethods->access_big_sarray)
|
||||
(green_channel, cur_row_number, FALSE));
|
||||
blue_ptr = *((*cinfo->emethods->access_big_sarray)
|
||||
(blue_channel, cur_row_number, FALSE));
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
*ptr0++ = colormap[GETJSAMPLE(*red_ptr++) ] >> 8;
|
||||
*ptr1++ = colormap[GETJSAMPLE(*green_ptr++) + 256] >> 8;
|
||||
*ptr2++ = colormap[GETJSAMPLE(*blue_ptr++) + 512] >> 8;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_directcolor_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This is used for DIRECTCOLOR images */
|
||||
{
|
||||
JSAMPROW inputrows[3]; /* a pseudo JSAMPARRAY structure */
|
||||
|
||||
cur_row_number--; /* work down in array */
|
||||
|
||||
inputrows[0] = *((*cinfo->emethods->access_big_sarray)
|
||||
(red_channel, cur_row_number, FALSE));
|
||||
inputrows[1] = *((*cinfo->emethods->access_big_sarray)
|
||||
(green_channel, cur_row_number, FALSE));
|
||||
inputrows[2] = *((*cinfo->emethods->access_big_sarray)
|
||||
(blue_channel, cur_row_number, FALSE));
|
||||
|
||||
jcopy_sample_rows(inputrows, 0, pixel_row, 0, 3, cinfo->image_width);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Load the color channels into separate arrays. We have to do
|
||||
* this because RLE files start at the lower left while the JPEG standard
|
||||
* has them starting in the upper left. This is called the first time
|
||||
* we want to get a row of input. What we do is load the RLE data into
|
||||
* big arrays and then call the appropriate routine to read one row from
|
||||
* the big arrays. We also change cinfo->methods->get_input_row so that
|
||||
* subsequent calls go straight to the row-reading routine.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
load_image (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
{
|
||||
long row;
|
||||
rle_pixel *rle_row[3];
|
||||
|
||||
/* Read the RLE data into our virtual array(s).
|
||||
* We assume here that (a) rle_pixel is represented the same as JSAMPLE,
|
||||
* and (b) we are not on a machine where FAR pointers differ from regular.
|
||||
*/
|
||||
RLE_CLR_BIT(header, RLE_ALPHA); /* don't read the alpha channel */
|
||||
|
||||
switch (visual) {
|
||||
case GRAYSCALE:
|
||||
case PSEUDOCOLOR:
|
||||
for (row = 0; row < cinfo->image_height; row++) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, row, cinfo->image_height);
|
||||
/*
|
||||
* Read a row of the image directly into our big array.
|
||||
* Too bad this doesn't seem to return any indication of errors :-(.
|
||||
*/
|
||||
rle_row[0] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
|
||||
(image, row, TRUE));
|
||||
rle_getrow(&header, rle_row);
|
||||
}
|
||||
break;
|
||||
case TRUECOLOR:
|
||||
case DIRECTCOLOR:
|
||||
for (row = 0; row < cinfo->image_height; row++) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, row, cinfo->image_height);
|
||||
/*
|
||||
* Read a row of the image directly into our big arrays.
|
||||
* Too bad this doesn't seem to return any indication of errors :-(.
|
||||
*/
|
||||
rle_row[0] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
|
||||
(red_channel, row, TRUE));
|
||||
rle_row[1] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
|
||||
(green_channel, row, TRUE));
|
||||
rle_row[2] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
|
||||
(blue_channel, row, TRUE));
|
||||
rle_getrow(&header, rle_row);
|
||||
}
|
||||
break;
|
||||
}
|
||||
cinfo->completed_passes++;
|
||||
|
||||
/* Set up to call proper row-extraction routine in future */
|
||||
switch (visual) {
|
||||
case GRAYSCALE:
|
||||
cinfo->methods->get_input_row = get_grayscale_row;
|
||||
break;
|
||||
case PSEUDOCOLOR:
|
||||
cinfo->methods->get_input_row = get_pseudocolor_row;
|
||||
break;
|
||||
case TRUECOLOR:
|
||||
cinfo->methods->get_input_row = get_truecolor_row;
|
||||
break;
|
||||
case DIRECTCOLOR:
|
||||
cinfo->methods->get_input_row = get_directcolor_row;
|
||||
break;
|
||||
}
|
||||
|
||||
/* And fetch the topmost (bottommost) row */
|
||||
cur_row_number = cinfo->image_height;
|
||||
(*cinfo->methods->get_input_row) (cinfo, pixel_row);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_term (compress_info_ptr cinfo)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for RLE format input.
|
||||
* Note that this must be called by the user interface before calling
|
||||
* jpeg_compress. If multiple input formats are supported, the
|
||||
* user interface is responsible for discovering the file format and
|
||||
* calling the appropriate method selection routine.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselrrle (compress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->methods->input_init = input_init;
|
||||
cinfo->methods->get_input_row = load_image; /* until first call */
|
||||
cinfo->methods->input_term = input_term;
|
||||
}
|
||||
|
||||
#endif /* RLE_SUPPORTED */
|
||||
464
jrdtarga.c
464
jrdtarga.c
@@ -1,464 +0,0 @@
|
||||
/*
|
||||
* jrdtarga.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to read input images in Targa format.
|
||||
*
|
||||
* These routines may need modification for non-Unix environments or
|
||||
* specialized applications. As they stand, they assume input from
|
||||
* an ordinary stdio stream. They further assume that reading begins
|
||||
* at the start of the file; input_init may need work if the
|
||||
* user interface has already read some data (e.g., to determine that
|
||||
* the file is indeed Targa format).
|
||||
*
|
||||
* These routines are invoked via the methods get_input_row
|
||||
* and input_init/term.
|
||||
*
|
||||
* Based on code contributed by Lee Daniel Crocker.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
#ifdef TARGA_SUPPORTED
|
||||
|
||||
|
||||
/* Macros to deal with unsigned chars as efficiently as compiler allows */
|
||||
|
||||
#ifdef HAVE_UNSIGNED_CHAR
|
||||
typedef unsigned char U_CHAR;
|
||||
#define UCH(x) ((int) (x))
|
||||
#else /* !HAVE_UNSIGNED_CHAR */
|
||||
#ifdef CHAR_IS_UNSIGNED
|
||||
typedef char U_CHAR;
|
||||
#define UCH(x) ((int) (x))
|
||||
#else
|
||||
typedef char U_CHAR;
|
||||
#define UCH(x) ((int) (x) & 0xFF)
|
||||
#endif
|
||||
#endif /* HAVE_UNSIGNED_CHAR */
|
||||
|
||||
|
||||
#define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len)))
|
||||
|
||||
|
||||
static JSAMPARRAY colormap; /* Targa colormap (converted to my format) */
|
||||
|
||||
static big_sarray_ptr whole_image; /* Needed if funny input row order */
|
||||
static long current_row; /* Current logical row number to read */
|
||||
|
||||
/* Pointer to routine to extract next Targa pixel from input file */
|
||||
static void (*read_pixel) PP((compress_info_ptr cinfo));
|
||||
|
||||
/* Result of read_pixel is delivered here: */
|
||||
static U_CHAR tga_pixel[4];
|
||||
|
||||
static int pixel_size; /* Bytes per Targa pixel (1 to 4) */
|
||||
|
||||
/* State info for reading RLE-coded pixels; both counts must be init to 0 */
|
||||
static int block_count; /* # of pixels remaining in RLE block */
|
||||
static int dup_pixel_count; /* # of times to duplicate previous pixel */
|
||||
|
||||
/* This saves the correct pixel-row-expansion method for preload_image */
|
||||
static void (*get_pixel_row) PP((compress_info_ptr cinfo,
|
||||
JSAMPARRAY pixel_row));
|
||||
|
||||
|
||||
/* For expanding 5-bit pixel values to 8-bit with best rounding */
|
||||
|
||||
static const UINT8 c5to8bits[32] = {
|
||||
0, 8, 16, 24, 32, 41, 49, 57,
|
||||
65, 74, 82, 90, 98, 106, 115, 123,
|
||||
131, 139, 148, 156, 164, 172, 180, 189,
|
||||
197, 205, 213, 222, 230, 238, 246, 255
|
||||
};
|
||||
|
||||
|
||||
|
||||
LOCAL int
|
||||
read_byte (compress_info_ptr cinfo)
|
||||
/* Read next byte from Targa file */
|
||||
{
|
||||
register FILE *infile = cinfo->input_file;
|
||||
register int c;
|
||||
|
||||
if ((c = getc(infile)) == EOF)
|
||||
ERREXIT(cinfo->emethods, "Premature EOF in Targa file");
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
read_colormap (compress_info_ptr cinfo, int cmaplen, int mapentrysize)
|
||||
/* Read the colormap from a Targa file */
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Presently only handles 24-bit BGR format */
|
||||
if (mapentrysize != 24)
|
||||
ERREXIT(cinfo->emethods, "Unsupported Targa colormap format");
|
||||
|
||||
for (i = 0; i < cmaplen; i++) {
|
||||
colormap[2][i] = (JSAMPLE) read_byte(cinfo);
|
||||
colormap[1][i] = (JSAMPLE) read_byte(cinfo);
|
||||
colormap[0][i] = (JSAMPLE) read_byte(cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* read_pixel methods: get a single pixel from Targa file into tga_pixel[]
|
||||
*/
|
||||
|
||||
LOCAL void
|
||||
read_non_rle_pixel (compress_info_ptr cinfo)
|
||||
/* Read one Targa pixel from the input file; no RLE expansion */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register int i;
|
||||
|
||||
for (i = 0; i < pixel_size; i++) {
|
||||
tga_pixel[i] = (U_CHAR) getc(infile);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL void
|
||||
read_rle_pixel (compress_info_ptr cinfo)
|
||||
/* Read one Targa pixel from the input file, expanding RLE data as needed */
|
||||
{
|
||||
register FILE * infile = cinfo->input_file;
|
||||
register int i;
|
||||
|
||||
/* Duplicate previously read pixel? */
|
||||
if (dup_pixel_count > 0) {
|
||||
dup_pixel_count--;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Time to read RLE block header? */
|
||||
if (--block_count < 0) { /* decrement pixels remaining in block */
|
||||
i = read_byte(cinfo);
|
||||
if (i & 0x80) { /* Start of duplicate-pixel block? */
|
||||
dup_pixel_count = i & 0x7F; /* number of duplications after this one */
|
||||
block_count = 0; /* then read new block header */
|
||||
} else {
|
||||
block_count = i & 0x7F; /* number of pixels after this one */
|
||||
}
|
||||
}
|
||||
|
||||
/* Read next pixel */
|
||||
for (i = 0; i < pixel_size; i++) {
|
||||
tga_pixel[i] = (U_CHAR) getc(infile);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read one row of pixels.
|
||||
*
|
||||
* We provide several different versions depending on input file format.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF void
|
||||
get_8bit_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading 8-bit grayscale pixels */
|
||||
{
|
||||
register JSAMPROW ptr0;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
(*read_pixel) (cinfo); /* Load next pixel into tga_pixel */
|
||||
*ptr0++ = (JSAMPLE) UCH(tga_pixel[0]);
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF void
|
||||
get_8bit_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading 8-bit colormap indexes */
|
||||
{
|
||||
register int t;
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
(*read_pixel) (cinfo); /* Load next pixel into tga_pixel */
|
||||
t = UCH(tga_pixel[0]);
|
||||
*ptr0++ = colormap[0][t];
|
||||
*ptr1++ = colormap[1][t];
|
||||
*ptr2++ = colormap[2][t];
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF void
|
||||
get_16bit_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading 16-bit pixels */
|
||||
{
|
||||
register int t;
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
(*read_pixel) (cinfo); /* Load next pixel into tga_pixel */
|
||||
t = UCH(tga_pixel[0]);
|
||||
t += UCH(tga_pixel[1]) << 8;
|
||||
/* We expand 5 bit data to 8 bit sample width.
|
||||
* The format of the 16-bit (LSB first) input word is
|
||||
* xRRRRRGGGGGBBBBB
|
||||
*/
|
||||
*ptr2++ = (JSAMPLE) c5to8bits[t & 0x1F];
|
||||
t >>= 5;
|
||||
*ptr1++ = (JSAMPLE) c5to8bits[t & 0x1F];
|
||||
t >>= 5;
|
||||
*ptr0++ = (JSAMPLE) c5to8bits[t & 0x1F];
|
||||
}
|
||||
}
|
||||
|
||||
METHODDEF void
|
||||
get_24bit_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
/* This version is for reading 24-bit pixels */
|
||||
{
|
||||
register JSAMPROW ptr0, ptr1, ptr2;
|
||||
register long col;
|
||||
|
||||
ptr0 = pixel_row[0];
|
||||
ptr1 = pixel_row[1];
|
||||
ptr2 = pixel_row[2];
|
||||
for (col = cinfo->image_width; col > 0; col--) {
|
||||
(*read_pixel) (cinfo); /* Load next pixel into tga_pixel */
|
||||
*ptr0++ = (JSAMPLE) UCH(tga_pixel[2]); /* convert BGR to RGB order */
|
||||
*ptr1++ = (JSAMPLE) UCH(tga_pixel[1]);
|
||||
*ptr2++ = (JSAMPLE) UCH(tga_pixel[0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Targa also defines a 32-bit pixel format with order B,G,R,A.
|
||||
* We presently ignore the attribute byte, so the code for reading
|
||||
* these pixels is identical to the 24-bit routine above.
|
||||
* This works because the actual pixel length is only known to read_pixel.
|
||||
*/
|
||||
|
||||
#define get_32bit_row get_24bit_row
|
||||
|
||||
|
||||
/*
|
||||
* This method is for re-reading the input data in standard top-down
|
||||
* row order. The entire image has already been read into whole_image
|
||||
* with proper conversion of pixel format, but it's in a funny row order.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
get_memory_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
{
|
||||
JSAMPARRAY image_ptr;
|
||||
long source_row;
|
||||
|
||||
/* Compute row of source that maps to current_row of normal order */
|
||||
/* For now, assume image is bottom-up and not interlaced. */
|
||||
/* NEEDS WORK to support interlaced images! */
|
||||
source_row = cinfo->image_height - current_row - 1;
|
||||
|
||||
/* Fetch that row from virtual array */
|
||||
image_ptr = (*cinfo->emethods->access_big_sarray)
|
||||
(whole_image, source_row * cinfo->input_components, FALSE);
|
||||
|
||||
jcopy_sample_rows(image_ptr, 0, pixel_row, 0,
|
||||
cinfo->input_components, cinfo->image_width);
|
||||
|
||||
current_row++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This method loads the image into whole_image during the first call on
|
||||
* get_input_row. The get_input_row pointer is then adjusted to call
|
||||
* get_memory_row on subsequent calls.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
preload_image (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
|
||||
{
|
||||
JSAMPARRAY image_ptr;
|
||||
long row;
|
||||
|
||||
/* Read the data into a virtual array in input-file row order */
|
||||
for (row = 0; row < cinfo->image_height; row++) {
|
||||
(*cinfo->methods->progress_monitor) (cinfo, row, cinfo->image_height);
|
||||
image_ptr = (*cinfo->emethods->access_big_sarray)
|
||||
(whole_image, row * cinfo->input_components, TRUE);
|
||||
(*get_pixel_row) (cinfo, image_ptr);
|
||||
}
|
||||
cinfo->completed_passes++;
|
||||
|
||||
/* Set up to read from the virtual array in unscrambled order */
|
||||
cinfo->methods->get_input_row = get_memory_row;
|
||||
current_row = 0;
|
||||
/* And read the first row */
|
||||
get_memory_row(cinfo, pixel_row);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read the file header; return image size and component count.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_init (compress_info_ptr cinfo)
|
||||
{
|
||||
U_CHAR targaheader[18];
|
||||
int idlen, cmaptype, subtype, flags, interlace_type, components;
|
||||
UINT16 width, height, maplen;
|
||||
boolean is_bottom_up;
|
||||
|
||||
#define GET_2B(offset) ((unsigned int) UCH(targaheader[offset]) + \
|
||||
(((unsigned int) UCH(targaheader[offset+1])) << 8))
|
||||
|
||||
if (! ReadOK(cinfo->input_file, targaheader, 18))
|
||||
ERREXIT(cinfo->emethods, "Unexpected end of file");
|
||||
|
||||
/* Pretend "15-bit" pixels are 16-bit --- we ignore attribute bit anyway */
|
||||
if (targaheader[16] == 15)
|
||||
targaheader[16] = 16;
|
||||
|
||||
idlen = UCH(targaheader[0]);
|
||||
cmaptype = UCH(targaheader[1]);
|
||||
subtype = UCH(targaheader[2]);
|
||||
maplen = GET_2B(5);
|
||||
width = GET_2B(12);
|
||||
height = GET_2B(14);
|
||||
pixel_size = UCH(targaheader[16]) >> 3;
|
||||
flags = UCH(targaheader[17]); /* Image Descriptor byte */
|
||||
|
||||
is_bottom_up = ((flags & 0x20) == 0); /* bit 5 set => top-down */
|
||||
interlace_type = flags >> 6; /* bits 6/7 are interlace code */
|
||||
|
||||
if (cmaptype > 1 || /* cmaptype must be 0 or 1 */
|
||||
pixel_size < 1 || pixel_size > 4 ||
|
||||
(UCH(targaheader[16]) & 7) != 0 || /* bits/pixel must be multiple of 8 */
|
||||
interlace_type != 0) /* currently don't allow interlaced image */
|
||||
ERREXIT(cinfo->emethods, "Invalid or unsupported Targa file");
|
||||
|
||||
if (subtype > 8) {
|
||||
/* It's an RLE-coded file */
|
||||
read_pixel = read_rle_pixel;
|
||||
block_count = dup_pixel_count = 0;
|
||||
subtype -= 8;
|
||||
} else {
|
||||
/* Non-RLE file */
|
||||
read_pixel = read_non_rle_pixel;
|
||||
}
|
||||
|
||||
/* Now should have subtype 1, 2, or 3 */
|
||||
components = 3; /* until proven different */
|
||||
cinfo->in_color_space = CS_RGB;
|
||||
|
||||
switch (subtype) {
|
||||
case 1: /* colormapped image */
|
||||
if (pixel_size == 1 && cmaptype == 1)
|
||||
get_pixel_row = get_8bit_row;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Invalid or unsupported Targa file");
|
||||
break;
|
||||
case 2: /* RGB image */
|
||||
switch (pixel_size) {
|
||||
case 2:
|
||||
get_pixel_row = get_16bit_row;
|
||||
break;
|
||||
case 3:
|
||||
get_pixel_row = get_24bit_row;
|
||||
break;
|
||||
case 4:
|
||||
get_pixel_row = get_32bit_row;
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Invalid or unsupported Targa file");
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case 3: /* Grayscale image */
|
||||
components = 1;
|
||||
cinfo->in_color_space = CS_GRAYSCALE;
|
||||
if (pixel_size == 1)
|
||||
get_pixel_row = get_8bit_gray_row;
|
||||
else
|
||||
ERREXIT(cinfo->emethods, "Invalid or unsupported Targa file");
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo->emethods, "Invalid or unsupported Targa file");
|
||||
break;
|
||||
}
|
||||
|
||||
if (is_bottom_up) {
|
||||
whole_image = (*cinfo->emethods->request_big_sarray)
|
||||
((long) width, (long) height * components,
|
||||
(long) components);
|
||||
cinfo->methods->get_input_row = preload_image;
|
||||
cinfo->total_passes++; /* count file reading as separate pass */
|
||||
} else {
|
||||
whole_image = NULL;
|
||||
cinfo->methods->get_input_row = get_pixel_row;
|
||||
}
|
||||
|
||||
while (idlen--) /* Throw away ID field */
|
||||
(void) read_byte(cinfo);
|
||||
|
||||
if (maplen > 0) {
|
||||
if (maplen > 256 || GET_2B(3) != 0)
|
||||
ERREXIT(cinfo->emethods, "Colormap too large");
|
||||
/* Allocate space to store the colormap */
|
||||
colormap = (*cinfo->emethods->alloc_small_sarray)
|
||||
((long) maplen, 3L);
|
||||
/* and read it from the file */
|
||||
read_colormap(cinfo, (int) maplen, UCH(targaheader[7]));
|
||||
} else {
|
||||
if (cmaptype) /* but you promised a cmap! */
|
||||
ERREXIT(cinfo->emethods, "Invalid or unsupported Targa file");
|
||||
colormap = NULL;
|
||||
}
|
||||
|
||||
cinfo->input_components = components;
|
||||
cinfo->image_width = width;
|
||||
cinfo->image_height = height;
|
||||
cinfo->data_precision = 8; /* always, even if 12-bit JSAMPLEs */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of the file.
|
||||
*/
|
||||
|
||||
METHODDEF void
|
||||
input_term (compress_info_ptr cinfo)
|
||||
{
|
||||
/* no work (we let free_all release the workspace) */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The method selection routine for Targa format input.
|
||||
* Note that this must be called by the user interface before calling
|
||||
* jpeg_compress. If multiple input formats are supported, the
|
||||
* user interface is responsible for discovering the file format and
|
||||
* calling the appropriate method selection routine.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
jselrtarga (compress_info_ptr cinfo)
|
||||
{
|
||||
cinfo->methods->input_init = input_init;
|
||||
/* cinfo->methods->get_input_row is set by input_init */
|
||||
cinfo->methods->input_term = input_term;
|
||||
}
|
||||
|
||||
#endif /* TARGA_SUPPORTED */
|
||||
221
jrevdct.c
221
jrevdct.c
@@ -1,221 +0,0 @@
|
||||
/*
|
||||
* jrevdct.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the basic inverse-DCT transformation subroutine.
|
||||
*
|
||||
* This implementation is based on Appendix A.2 of the book
|
||||
* "Discrete Cosine Transform---Algorithms, Advantages, Applications"
|
||||
* by K.R. Rao and P. Yip (Academic Press, Inc, London, 1990).
|
||||
* It uses scaled fixed-point arithmetic instead of floating point.
|
||||
*/
|
||||
|
||||
#include "jinclude.h"
|
||||
|
||||
/*
|
||||
* This routine is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* The poop on this scaling stuff is as follows:
|
||||
*
|
||||
* We have to do addition and subtraction of the integer inputs, which
|
||||
* is no problem, and multiplication by fractional constants, which is
|
||||
* a problem to do in integer arithmetic. We multiply all the constants
|
||||
* by DCT_SCALE and convert them to integer constants (thus retaining
|
||||
* LG2_DCT_SCALE bits of precision in the constants). After doing a
|
||||
* multiplication we have to divide the product by DCT_SCALE, with proper
|
||||
* rounding, to produce the correct output. The division can be implemented
|
||||
* cheaply as a right shift of LG2_DCT_SCALE bits. The DCT equations also
|
||||
* specify an additional division by 2 on the final outputs; this can be
|
||||
* folded into the right-shift by shifting one more bit (see UNFIXH).
|
||||
*
|
||||
* If you are planning to recode this in assembler, you might want to set
|
||||
* LG2_DCT_SCALE to 15. This loses a bit of precision, but then all the
|
||||
* multiplications are between 16-bit quantities (given 8-bit JSAMPLEs!)
|
||||
* so you could use a signed 16x16=>32 bit multiply instruction instead of
|
||||
* full 32x32 multiply. Unfortunately there's no way to describe such a
|
||||
* multiply portably in C, so we've gone for the extra bit of accuracy here.
|
||||
*/
|
||||
|
||||
#ifdef EIGHT_BIT_SAMPLES
|
||||
#define LG2_DCT_SCALE 16
|
||||
#else
|
||||
#define LG2_DCT_SCALE 15 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
#define ONE ((INT32) 1)
|
||||
|
||||
#define DCT_SCALE (ONE << LG2_DCT_SCALE)
|
||||
|
||||
/* In some places we shift the inputs left by a couple more bits, */
|
||||
/* so that they can be added to fractional results without too much */
|
||||
/* loss of precision. */
|
||||
#define LG2_OVERSCALE 2
|
||||
#define OVERSCALE (ONE << LG2_OVERSCALE)
|
||||
#define OVERSHIFT(x) ((x) <<= LG2_OVERSCALE)
|
||||
|
||||
/* Scale a fractional constant by DCT_SCALE */
|
||||
#define FIX(x) ((INT32) ((x) * DCT_SCALE + 0.5))
|
||||
|
||||
/* Scale a fractional constant by DCT_SCALE/OVERSCALE */
|
||||
/* Such a constant can be multiplied with an overscaled input */
|
||||
/* to produce something that's scaled by DCT_SCALE */
|
||||
#define FIXO(x) ((INT32) ((x) * DCT_SCALE / OVERSCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round a value that's scaled by DCT_SCALE */
|
||||
#define UNFIX(x) RIGHT_SHIFT((x) + (ONE << (LG2_DCT_SCALE-1)), LG2_DCT_SCALE)
|
||||
|
||||
/* Same with an additional division by 2, ie, correctly rounded UNFIX(x/2) */
|
||||
#define UNFIXH(x) RIGHT_SHIFT((x) + (ONE << LG2_DCT_SCALE), LG2_DCT_SCALE+1)
|
||||
|
||||
/* Take a value scaled by DCT_SCALE and round to integer scaled by OVERSCALE */
|
||||
#define UNFIXO(x) RIGHT_SHIFT((x) + (ONE << (LG2_DCT_SCALE-1-LG2_OVERSCALE)),\
|
||||
LG2_DCT_SCALE-LG2_OVERSCALE)
|
||||
|
||||
/* Here are the constants we need */
|
||||
/* SIN_i_j is sine of i*pi/j, scaled by DCT_SCALE */
|
||||
/* COS_i_j is cosine of i*pi/j, scaled by DCT_SCALE */
|
||||
|
||||
#define SIN_1_4 FIX(0.707106781)
|
||||
#define COS_1_4 SIN_1_4
|
||||
|
||||
#define SIN_1_8 FIX(0.382683432)
|
||||
#define COS_1_8 FIX(0.923879533)
|
||||
#define SIN_3_8 COS_1_8
|
||||
#define COS_3_8 SIN_1_8
|
||||
|
||||
#define SIN_1_16 FIX(0.195090322)
|
||||
#define COS_1_16 FIX(0.980785280)
|
||||
#define SIN_7_16 COS_1_16
|
||||
#define COS_7_16 SIN_1_16
|
||||
|
||||
#define SIN_3_16 FIX(0.555570233)
|
||||
#define COS_3_16 FIX(0.831469612)
|
||||
#define SIN_5_16 COS_3_16
|
||||
#define COS_5_16 SIN_3_16
|
||||
|
||||
/* OSIN_i_j is sine of i*pi/j, scaled by DCT_SCALE/OVERSCALE */
|
||||
/* OCOS_i_j is cosine of i*pi/j, scaled by DCT_SCALE/OVERSCALE */
|
||||
|
||||
#define OSIN_1_4 FIXO(0.707106781)
|
||||
#define OCOS_1_4 OSIN_1_4
|
||||
|
||||
#define OSIN_1_8 FIXO(0.382683432)
|
||||
#define OCOS_1_8 FIXO(0.923879533)
|
||||
#define OSIN_3_8 OCOS_1_8
|
||||
#define OCOS_3_8 OSIN_1_8
|
||||
|
||||
#define OSIN_1_16 FIXO(0.195090322)
|
||||
#define OCOS_1_16 FIXO(0.980785280)
|
||||
#define OSIN_7_16 OCOS_1_16
|
||||
#define OCOS_7_16 OSIN_1_16
|
||||
|
||||
#define OSIN_3_16 FIXO(0.555570233)
|
||||
#define OCOS_3_16 FIXO(0.831469612)
|
||||
#define OSIN_5_16 OCOS_3_16
|
||||
#define OCOS_5_16 OSIN_3_16
|
||||
|
||||
|
||||
/*
|
||||
* Perform the inverse DCT on one block of coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each row
|
||||
* followed by 1-D IDCT on each column.
|
||||
*/
|
||||
|
||||
GLOBAL void
|
||||
j_rev_dct (DCTBLOCK data)
|
||||
{
|
||||
int pass, rowctr;
|
||||
register DCTELEM *inptr, *outptr;
|
||||
DCTBLOCK workspace;
|
||||
|
||||
/* Each iteration of the inner loop performs one 8-point 1-D IDCT.
|
||||
* It reads from a *row* of the input matrix and stores into a *column*
|
||||
* of the output matrix. In the first pass, we read from the data[] array
|
||||
* and store into the local workspace[]. In the second pass, we read from
|
||||
* the workspace[] array and store into data[], thus performing the
|
||||
* equivalent of a columnar IDCT pass with no variable array indexing.
|
||||
*/
|
||||
|
||||
inptr = data; /* initialize pointers for first pass */
|
||||
outptr = workspace;
|
||||
for (pass = 1; pass >= 0; pass--) {
|
||||
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
||||
/* many tmps have nonoverlapping lifetime -- flashy register colourers
|
||||
* should be able to do this lot very well
|
||||
*/
|
||||
INT32 in0, in1, in2, in3, in4, in5, in6, in7;
|
||||
INT32 tmp10, tmp11, tmp12, tmp13;
|
||||
INT32 tmp20, tmp21, tmp22, tmp23;
|
||||
INT32 tmp30, tmp31;
|
||||
INT32 tmp40, tmp41, tmp42, tmp43;
|
||||
INT32 tmp50, tmp51, tmp52, tmp53;
|
||||
SHIFT_TEMPS
|
||||
|
||||
in0 = inptr[0];
|
||||
in1 = inptr[1];
|
||||
in2 = inptr[2];
|
||||
in3 = inptr[3];
|
||||
in4 = inptr[4];
|
||||
in5 = inptr[5];
|
||||
in6 = inptr[6];
|
||||
in7 = inptr[7];
|
||||
|
||||
/* These values are scaled by DCT_SCALE */
|
||||
|
||||
tmp10 = (in0 + in4) * COS_1_4;
|
||||
tmp11 = (in0 - in4) * COS_1_4;
|
||||
tmp12 = in2 * SIN_1_8 - in6 * COS_1_8;
|
||||
tmp13 = in6 * SIN_1_8 + in2 * COS_1_8;
|
||||
|
||||
tmp20 = tmp10 + tmp13;
|
||||
tmp21 = tmp11 + tmp12;
|
||||
tmp22 = tmp11 - tmp12;
|
||||
tmp23 = tmp10 - tmp13;
|
||||
|
||||
/* These values are scaled by OVERSCALE */
|
||||
|
||||
tmp30 = UNFIXO((in3 + in5) * COS_1_4);
|
||||
tmp31 = UNFIXO((in3 - in5) * COS_1_4);
|
||||
|
||||
OVERSHIFT(in1);
|
||||
OVERSHIFT(in7);
|
||||
|
||||
tmp40 = in1 + tmp30;
|
||||
tmp41 = in7 + tmp31;
|
||||
tmp42 = in1 - tmp30;
|
||||
tmp43 = in7 - tmp31;
|
||||
|
||||
/* And these are scaled by DCT_SCALE */
|
||||
|
||||
tmp50 = tmp40 * OCOS_1_16 + tmp41 * OSIN_1_16;
|
||||
tmp51 = tmp40 * OSIN_1_16 - tmp41 * OCOS_1_16;
|
||||
tmp52 = tmp42 * OCOS_5_16 + tmp43 * OSIN_5_16;
|
||||
tmp53 = tmp42 * OSIN_5_16 - tmp43 * OCOS_5_16;
|
||||
|
||||
outptr[ 0] = (DCTELEM) UNFIXH(tmp20 + tmp50);
|
||||
outptr[DCTSIZE ] = (DCTELEM) UNFIXH(tmp21 + tmp53);
|
||||
outptr[DCTSIZE*2] = (DCTELEM) UNFIXH(tmp22 + tmp52);
|
||||
outptr[DCTSIZE*3] = (DCTELEM) UNFIXH(tmp23 + tmp51);
|
||||
outptr[DCTSIZE*4] = (DCTELEM) UNFIXH(tmp23 - tmp51);
|
||||
outptr[DCTSIZE*5] = (DCTELEM) UNFIXH(tmp22 - tmp52);
|
||||
outptr[DCTSIZE*6] = (DCTELEM) UNFIXH(tmp21 - tmp53);
|
||||
outptr[DCTSIZE*7] = (DCTELEM) UNFIXH(tmp20 - tmp50);
|
||||
|
||||
inptr += DCTSIZE; /* advance inptr to next row */
|
||||
outptr++; /* advance outptr to next column */
|
||||
}
|
||||
/* end of pass; in case it was pass 1, set up for pass 2 */
|
||||
inptr = workspace;
|
||||
outptr = data;
|
||||
}
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user