If NEON_INTRINSICS=0, then run the GAS sanity check from libjpeg-turbo
2.0.x and force-enable NEON_INTRINSICS if the test fails. This fixes
the AArch32 build when using Clang 6.0 on Linux or the Clang toolchain
in the Android NDK r15*-r16*. It also prevents users from manually
disabling NEON_INTRINSICS if doing so would break the build (such as
with Xcode 5.)
- Use check_c_source_compiles() rather than check_symbol_exists() to
detect the presence of vld1_s16_x3(), vld1_u16_x2(), and
vld1q_u8_x4(). check_symbol_exists() is unreliable for detecting
intrinsics, and in practice, it did not detect the presence of the
aforementioned intrinsics in versions of GCC that support them.
- Set DEFAULT_NEON_INTRINSICS=0 for GCC < 12, even if the aforementioned
intrinsics are available. The AArch64 back end in GCC 10 and 11
supports the necessary intrinsics, but the GAS implementation is still
faster when using those compilers.
Fixes#547
When building for 32-bit Arm platforms, test whether basic Neon
intrinsics will compile with the specified compiler and C flags. This
prevents the build system from enabling the Neon SIMD extensions when
targetting Armv6 and other legacy architectures that do not support Neon
instructions.
Regression introduced by bbd8089297.
(Checking whether gas-preprocessor.pl was needed for 32-bit Arm builds
had the effect of checking whether Neon instructions were supported.)
Fixes#553
Arm compilers have three floating point ABI options:
'soft' compiles floating point operations as function calls into a
software floating point library, which emulates floating point
operations using integer operations. Floating point function arguments
are passed using integer registers.
'softfp' also compiles floating point operations as function calls into
a floating point library and passes floating point function arguments
using integer registers, but the floating point library functions can
use FPU instructions if the CPU supports them.
'hard' compiles floating point operations into inline FPU instructions,
similarly to x86 and other architectures, and passes floating point
function arguments using FPU registers.
Not all AArch32 CPUs have FPUs or support Neon instructions, so on Linux
and Android platforms, the AArch32 SIMD dispatcher in libjpeg-turbo only
enables the Neon SIMD extensions at run time if /proc/cpuinfo indicates
that the CPU supports Neon instructions or if Neon instructions are
explicitly enabled (e.g. by passing -mfpu=neon to the compiler.) In
order to support all AArch32 CPUs using the same code base, i.e. to
support run-time FPU and Neon auto-detection, it is necessary to compile
the scalar C source code using -mfloat-abi=soft. However, the 'soft'
floating point ABI cannot be used when compiling Neon intrinsics, so the
intrinsics implementation of the Neon SIMD extensions must be compiled
using -mfloat-abi=softfp if the scalar C source code is compiled using
-mfloat-abi=soft.
This commit modifies the build system so that it detects whether
-mfloat-abi=softfp must be explicitly added to the compiler flags when
building the intrinsics implementation of the Neon SIMD extensions.
This will be necessary if the build is using the 'soft' floating
point ABI along with run-time auto-detection of Neon instructions.
Fixes#523
* commit '8a2cad020171184a49fa8696df0b9e267f1cf2f6': (99 commits)
Build: Handle CMAKE_OSX_ARCHITECTURES=(i386|ppc)
Add Sponsor button for GitHub repository
Build: Support CMAKE_OSX_ARCHITECTURES
cjpeg: Fix FPE when compressing 0-width GIF
Fix build with Visual C++ and /std:c11 or /std:c17
Neon: Fix Huffman enc. error w/Visual Studio+Clang
Use CLZ compiler intrinsic for Windows/Arm builds
Build: Use correct SIMD exts w/VStudio IDE + Arm64
jcphuff.c: Fix compiler warning with clang-cl
Migrate from Travis CI to GitHub Actions
tjexample.c: Fix mem leak if tjTransform() fails
Build: Officially support Ninja
decompress_smooth_data(): Fix another uninit. read
LICENSE.md: Remove trailing whitespace
Build: Test for correct AArch32 RPM/DEBARCH value
LICENSE.md: Formatting tweak
Fix uninitialized read in decompress_smooth_data()
Fix buffer overrun with certain narrow prog JPEGs
Bump revision to 2.0.91 for post-beta fixes
Travis: Use Docker tag that matches Git branch
...
This allows the Neon intrinsics code to be built successfully (albeit
likely with reduced run-time performance) with Xcode 5.0-6.2
(iOS/AArch64) and Android NDK < r19 (AArch32). Note that Xcode 5.0-6.2
will not build the Armv8 GAS code without gas-preprocessor.pl, and no
version of Xcode will build the Armv7 GAS code without
gas-preprocessor.pl, so we always use the full Neon intrinsics
implementation by default with macOS and iOS builds.
Auto-detecting the completeness of the compiler's set of Neon intrinsics
also allows us to more intelligently set the default value of
NEON_INTRINSICS, based on the values of HAVE_VLD1*. This is a
reasonable, albeit imperfect, proxy for whether a compiler has a full
and optimal set of Neon intrinsics. Specific notes:
- 64-bit RGB-to-YCbCr color conversion
does not use any of the intrinsics in question, regresses with GCC
- 64-bit accurate integer forward DCT
uses vld1_s16_x3(), regresses with GCC
- 64-bit Huffman encoding
uses vld1q_u8_x4(), regresses with GCC
- 64-bit YCbCr-to-RGB color conversion
does not use any of the intrinsics in question, regresses with GCC
- 64-bit accurate integer inverse DCT
uses vld1_s16_x3(), regresses with GCC
- 64-bit 4x4 inverse DCT
uses vld1_s16_x3(). I did not test this algorithm in isolation, so
it may in fact regress with GCC, but the regression may be hidden by
the speedup from the new SIMD-accelerated upsampling algorithms.
- 32-bit RGB-to-YCbCr color conversion:
uses vld1_u16_x2(), regresses with GCC
- 32-bit accurate integer forward DCT
uses vld1_s16_x3(), regression irrelevant because there was no
previous implementation
- 32-bit accurate integer inverse DCT
uses vld1_s16_x3(), regresses with GCC
- 32-bit fast integer inverse DCT
does not use any of the intrinsics in question, regresses with GCC
- 32-bit 4x4 inverse DCT
uses vld1_s16_x3(). I did not test this algorithm in isolation, so
it may in fact regress with GCC, but the regression may be hidden by
the speedup from the new SIMD-accelerated upsampling algorithms.
Presumably when GCC includes a full and optimal set of Neon intrinsics,
the HAVE_VLD1* tests will pass, and the full Neon intrinsics
implementation will be enabled automatically.
- Remove gas-preprocessor.pl. None of the compilers that can build the
new intrinsics implementation require gas-preprocessor.pl (tested
with Xcode and with Clang 3.9+ for Linux.)
- Document that Xcode 6.3.x or later is now required for iOS builds
(older versions of Xcode do not have a full set of Neon intrinsics.)
- Add a change log entry.
- Do not enable the ASM CMake language unless NEON_INTRINSICS is false.
- Add a Clang/Arm64 test to .travis.yml in order to test the new
intrinsics implementation.
Closes#455
There was no previous GAS implementation.
This commit also reverts 40557b2301 and
7723d7f7d0.
7723d7f7d0 was only necessary because
there was no Neon implementation of merged upsampling/color conversion,
and 40557b2301 was only necessary because
of 7723d7f7d0.
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression. The
intrinsics implementation can be forced on or off using the new
NEON_INTRINSICS CMake variable.
The previous AArch32 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch64 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch32 GAS implementation of h2v1 fancy upsampling has
been removed, since the intrinsics implementation provides the same or
better performance. There was no previous GAS implementation of h2v2
fancy upsampling, and there was no previous AArch64 GAS implementation
of h2v1 fancy upsampling.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. There was no previous AArch32 GAS implementation.
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression. The
intrinsics implementation can be forced on or off using a new
NEON_INTRINSICS CMake variable.
Modern Loongson processors are MIPS64-compatible, and MMI instructions
are now supported in the mainline of GCC. Thus, this commit adds
compile-time and run-time auto-detection of MMI instructions and moves
the MMI SIMD extensions for libjpeg-turbo from simd/loongson/ to
simd/mips64/. That will allow MMI and MSA instructions to co-exist
in the same build once #377 has been integrated.
Based on:
82953ddd61Closes#383
The DSPr2 extensions have been verified to work with little endian MIPS.
Whether or not CMAKE_SYSTEM_PROCESSOR is set to "mips" or "mipsel" in a
little endian MIPS environment seems to be inconsistent, but our build
system needs to handle both cases.
This is basically the same test that was performed in acinclude.m4 in
the old autotools-based build system. It was not ported to the
CMake-based build system because I previously had no way of testing
a non-DSPr2 build environment.
Fixes#248
The old Un*x (autotools-based) build system always auto-generated this
file, but that behavior was more or less a relic of the days before the
libjpeg-turbo colorspace extensions were implemented. The thinking was
that, if a particular developer wanted to change RGB_RED, RGB_GREEN,
RGB_BLUE, or RGB_PIXELSIZE in order to compress from/decompress to
different RGB pixel layouts, then the SIMD extensions should
automatically respond to those changes whenever they were made to
jmorecfg.h. The modern reality is that changing RGB_* is no longer
necessary because of the libjpeg-turbo colorspace extensions, and
changing any of the other constants in jsimdcfg.inc can't be done
without making deeper modifications to the SIMD extensions. In general,
we treat RGB_* as a de facto, immutable part of the legacy libpjeg API.
Realistically, since the values of those constants have been the same in
every Un*x distribution released in the past 20-30 years, any software
that uses a system-supplied build of libjpeg must assume that those
constants will have default values.
Furthermore, even if it made sense to auto-generate jsimdcfg.inc, it was
never possible to do so on Windows, so it was always going to be
necessary to manually generate the Windows version of the file whenever
any of the constants changed. This commit introduces a new custom CMake
target called "jsimdcfg" that can be used, on Un*x platforms, to
generate jsimdcfg.inc on demand, although this should only be necessary
when introducing new x86 SIMD instructions or making other deep
modifications, such as SIMD acceleration for 12-bit JPEGs.
For those who may be wondering why we don't do the same thing for
win/jconfig.h.in, it's because performing all of the necessary CMake
checks to populate that file is very slow on Windows.
This commit adds C and SSE2 optimizations for the encode_mcu_AC_refine()
function used in progressive Huffman encoding.
The image used for testing can be retrieved from this page:
https://blog.cloudflare.com/doubling-the-speed-of-jpegtran
All timings done on `Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz`
clang version is `Apple LLVM version 9.0.0 (clang-900.0.39.2)`
gcc-5 version is `gcc-5 (Homebrew GCC 5.5.0) 5.5.0`
gcc-7 version is `gcc-7 (Homebrew GCC 7.2.0) 7.2.0`
Here are the results in comparison to libjpeg-turbo@3c54642 using
`time ./jpegtran -outfile /dev/null -progressive -optimise -copy none print_poster_0025.jpg`
C
clang x86_64: +7%
gcc-5 x86_64: +30%
gcc-7 x86_64: +33%
clang i386: +0%
gcc-5 i386: +24%
gcc-7 i386: +23%
SSE2
clang x86_64: +42%
gcc-5 x86_64: +53%
gcc-7 x86_64: +64%
clang i386: +35%
gcc-5 i386: +46%
gcc-7 i386: +49%
Discussion in libjpeg-turbo/libjpeg-turbo#46
Newer versions of CMake (known to be the case with 3.7.x and 3.10.x)
fail to add a space between CMAKE_C_FLAGS and CMAKE_ASM_FLAGS, which
causes the build to fail when using the official build procedure.
Closes#216