When used with TJPARAM_NOREALLOC and with TJXOP_TRANSPOSE,
TJXOP_TRANSVERSE, TJXOP_ROT90, or TJXOP_ROT270, tj3Transform()
incorrectly based the destination buffer size for a transform on the
source image dimensions rather than the transformed image dimensions.
This was apparently a long-standing bug that had existed in the
tj*Transform() function since its inception. As initially implemented
in the evolving libjpeg-turbo v1.2 code base, tjTransform() required
dstSizes[i] to be set regardless of whether TJFLAG_NOREALLOC (the
predecessor to TJPARAM_NOREALLOC) was set.
ff78e37595, which was introduced later in
the evolving libjpeg-turbo v1.2 code base, removed that requirement and
planted the seed for the bug. However, the bug was not activated until
9b49f0e4c7 was introduced still later in
the evolving libjpeg-turbo v1.2 code base, adding a subsampling type
argument to the (new at the time) tjBufSize() function and thus making
the width and height arguments no longer commutative.
The bug opened up the possibility that a JPEG source image could cause
tj3Transform() to overflow the destination buffer for a transform if all
of the following were true:
- The JPEG source image used 4:2:2, 4:4:0, 4:1:1, or 4:4:1 subsampling.
(These are the only subsampling types for which the width and height
arguments to tj3JPEGBufSize() are not commutative.)
- The width and height of the JPEG source image were such that
tj3JPEGBufSize(height, width, subsamplingType) returned a smaller
value than tj3JPEGBufSize(width, height, subsamplingType).
- The JPEG source image contained enough metadata that the size of the
transformed image was larger than
tj3JPEGBufSize(height, width, subsamplingType).
- TJPARAM_NOREALLOC was set.
- TJXOP_TRANSPOSE, TJXOP_TRANSVERSE, TJXOP_ROT90, or TJXOP_ROT270 was
used.
- TJXOPT_COPYNONE was not set.
- TJXOPT_CROP was not set.
- The calling program allocated
tj3JPEGBufSize(height, width, subsamplingType) bytes for the
destination buffer, as the API documentation instructs.
The API documentation cautions that JPEG source images containing a
large amount of extraneous metadata (EXIF, IPTC, ICC, etc.) cannot
reliably be transformed if TJPARAM_NOREALLOC is set and TJXOPT_COPYNONE
is not set. Irrespective of the bug, there are still cases in which a
JPEG source image with a large amount of metadata can, when transformed,
exceed the worst-case transformed JPEG image size. For instance, if you
try to losslessly crop a JPEG image with 3 kB of EXIF data to 16x16
pixels, then you are guaranteed to exceed the worst-case 16x16 JPEG
image size unless you discard the EXIF data.
Even without the bug, tj3Transform() will still fail with "Buffer passed
to JPEG library is too small" when attempting to transform JPEG source
images that meet the aforementioned criteria. The bug is that the
function segfaults rather than failing gracefully, but the chances of
that occurring in a real-world application are very slim. Any
real-world application developers who attempted to transform arbitrary
JPEG source images with TJPARAM_NOREALLOC set would very quickly realize
that they cannot reliably do that without also setting TJXOPT_COPYNONE.
Thus, I posit that the actual risk posed by this bug is low.
Applications such as web browsers that are the most exposed to security
risks from arbitrary JPEG source images do not use the TurboJPEG
lossless transform feature. (None of those applications even use the
TurboJPEG API, to the best of my knowledge, and the public libjpeg API
has no equivalent transform function.) Our only command-line interface
to the tj3Transform() function, TJBench, was not exposed to the bug
because it had a compatible bug whereby it allocated the JPEG
destination buffer to the same size that tj3Transform() erroneously
expected. The TurboJPEG Java API was also not exposed to the bug
because of a similar compatible bug in the
Java_org_libjpegturbo_turbojpeg_TJTransformer_transform() JNI function.
(This commit fixes both compatible bugs.)
In short, best practices for tj3Transform() are to use TJPARAM_NOREALLOC
only with JPEG source images that are known to be free of metadata (such
as images generated by tj3Compress*()) or to use TJXOPT_COPYNONE along
with TJPARAM_NOREALLOC. Still, however, the function shouldn't segfault
as long as the calling program allocates the suggested amount of space
for the JPEG destination buffer.
Usability notes:
tj3Transform() could hypothetically require dstSizes[i] to be set
regardless of the value of TJPARAM_NOREALLOC, but there are usability
pitfalls either way. The main pitfall I sought to avoid with
ff78e37595 was a calling program failing
to set dstSizes[i] at all, thus leaving its value undefined. It could
be argued that requiring dstSizes[i] to be set in all cases is more
consistent, but it could also be argued that not requiring it to be set
when TJPARAM_NOREALLOC is set is more user-proof. tj3Transform() could
also hypothetically set TJXOPT_COPYNONE automatically when
TJPARAM_NOREALLOC is set, but that could lead to user confusion.
Ultimately, I would like to address these issues in TurboJPEG v4 by
using managed buffer objects, but that would be an extensive overhaul.
In decompression and transform functions, use the libjpeg API state
rather than a TurboJPEG instance variable to determine whether
jpeg_mem_src_tj() and jpeg_read_header() have already been called by a
wrapper function.
This actually works and apparently always has worked. It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
(ChangeLog update forthcoming)
- Prefix all function names with "tj3" and remove version suffixes from
function names. (Future API overhauls will increment the prefix to
"tj4", etc., thus retaining backward API/ABI compatibility without
versioning each individual function.)
- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
TJ*FLAG_LOSSLESS, which were never released) with stateful integer
parameters, the value of which persists between function calls.
* Use parameters for the JPEG quality and subsampling as well, in
order to eliminate the awkwardness of specifying function arguments
that weren't relevant for lossless compression.
* tj3DecompressHeader() now stores all relevant information about the
JPEG image, including the width, height, subsampling type, entropy
coding type, etc. in parameters rather than returning that
information in its arguments.
* TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
(TJ*PARAM_SCANLIMIT) that allows the number of scans to be
specified.
- Use the const keyword for all pointer arguments to unmodified
buffers, as well as for both dimensions of 2D pointers. Addresses
#395.
- Use size_t rather than unsigned long to represent buffer sizes, since
unsigned long is a 32-bit type on Windows. Addresses #24.
- Return 0 from all buffer size functions if an error occurs, rather
than awkwardly trying to return -1 in an unsigned data type.
- Implement 12-bit and 16-bit data precision using dedicated
compression, decompression, and image I/O functions/methods.
* Suffix the names of all data-precision-specific functions with 8,
12, or 16.
* Because the YUV functions are intended to be used for video, they
are currently only implemented with 8-bit data precision, but they
can be expanded to 12-bit data precision in the future, if
necessary.
* Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
precision, using a new -precision option.
* Add appropriate regression tests for all of the above to the 'test'
target.
* Extend tjbenchtest to test 12-bit and 16-bit data precision, and
add separate 'tjtest12' and 'tjtest16' targets.
* BufferedImage I/O in the Java API is currently limited to 8-bit
data precision, since the BufferedImage class does not
straightforwardly support higher data precisions.
* Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
to grayscale or CMYK pixels, as it already does for 8-bit files.
- Properly accommodate lossless JPEG using dedicated parameters
(TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
rather than using a flag and awkwardly repurposing the JPEG quality.
Update TJBench to properly reflect whether a JPEG image is lossless.
- Re-organize the TJBench usage screen.
- Update the Java docs using Java 11, to improve the formatting and
eliminate HTML frames.
- Use the accurate integer DCT algorithm by default for both
compression and decompression, since the "fast" algorithm is a legacy
feature, it does not pass the ISO compliance tests, and it is not
actually faster on modern x86 CPUs.
* Remove the -accuratedct option from TJBench and TJExample.
- Re-implement the 'tjtest' target using a CMake script that enables
the appropriate tests, depending on the data precision and whether or
not the Java API is part of the build.
- Consolidate the C and Java versions of tjbenchtest into one script.
- Consolidate the C and Java versions of tjexampletest into one script.
- Combine all initialization functions into a single function
(tj3Init()) that accepts an integer parameter specifying the
subsystems to initialize.
- Enable decompression scaling explicitly, using a new function/method
(tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
than implicitly using awkward "desired width"/"desired height"
parameters.
- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
a scaling factor of 1/1.
- Implement partial image decompression, using a new function/method
(tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
TJBench option (-crop). Extend tjbenchtest to test the new feature.
Addresses #1.
- Allow the JPEG colorspace to be specified explicitly when
compressing, using a new parameter (TJ*PARAM_COLORSPACE). This
allows JPEG images with the RGB and CMYK colorspaces to be created.
- Remove the error/difference image feature from TJBench. Identical
images to the ones that TJBench created can be generated using
ImageMagick with
'magick composite <original_image> <output_image> -compose difference <diff_image>'
- Handle JPEG images with unknown subsampling types. TJ*PARAM_SUBSAMP
is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
be decompressed fully into packed-pixel images or losslessly
transformed (with the exception of lossless cropping.) They cannot
be partially decompressed or decompressed into planar YUV images.
Note also that TJBench, due to its lack of support for imperfect
transforms, requires that the subsampling type be known when
rotating, flipping, or transversely transposing an image. Addresses
#436
- The Java version of TJBench now has identical functionality to the C
version. This was accomplished by (somewhat hackishly) calling the
TurboJPEG C image I/O functions through JNI and copying the pixels
between the C heap and the Java heap.
- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
a TJBench option (-restart) to allow the restart marker interval to
be specified when compressing. Eliminate the undocumented TJ_RESTART
environment variable.
- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
(TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
optimized baseline Huffman coding to be specified when compressing.
Eliminate the undocumented TJ_OPTIMIZE environment variable.
- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
TJ*DENSITYUNITS) to allow the pixel density to be specified when
compressing or saving a Windows BMP image and to be queried when
decompressing or loading a Windows BMP image. Addresses #77.
- Refactor the fuzz targets to use the new API.
* Extend decompression coverage to 12-bit and 16-bit data precision.
* Replace the awkward cjpeg12 and cjpeg16 targets with proper
TurboJPEG-based compress12, compress12-lossless, and
compress16-lossless targets
- Fix innocuous UBSan warnings uncovered by the new fuzzers.
- Implement previous versions of the TurboJPEG API by wrapping the new
functions (tested by running the 2.1.x versions of TJBench, via
tjbenchtest, and TJUnitTest against the new implementation.)
* Remove all JNI functions for deprecated Java methods and implement
the deprecated methods using pure Java wrappers. It should be
understood that backward API compatibility in Java applies only to
the Java classes and that one cannot mix and match a JAR file from
one version of libjpeg-turbo with a JNI library from another
version.
- tj3Destroy() now silently accepts a NULL handle.
- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
and free() do.
- The image I/O functions now accept a TurboJPEG instance handle, which
is used to transmit/receive parameters and to receive error
information.
Closes#517
tjPlaneWidth() and tjPlaneHeight() could overflow a signed int and
return a negative value if passed a width/height argument of INT_MAX and
a subsampling type for which the MCU block size is larger than 8x8.
- TJBench/TJUnitTest: Wordsmith command-line output
- Java: "decompress operations"="decompression operations"
- tjLoadImage(): Error message tweak
- Don't mention compression performance in the description of
TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
already been compressed at that point.
(Oversights from 9a146f0f23)
The documented behavior of the function is to use decompression scaling
to generate the largest possible image that will fit within the desired
image dimensions. Thus, if the desired image dimensions are larger than
the scaled image dimensions, then tjDecompressToYUV2() should use the
scaled image dimensions when computing the plane pointers and strides to
pass to tjDecompressToYUVPlanes().
Note that this bug was not previously detected, because tjunittest and
tjbench always passed the scaled image dimensions to
tjDecompressToYUV2().
- Wordsmithing, formatting, and grammar tweaks
- Various clarifications and corrections, including specifying whether
a particular buffer or image is used as a source or destination
- Accommodate/mention features that were introduced since the API
documentation was created.
- For clarity, use "packed-pixel" to describe uncompressed
source/destination images that are not planar YUV.
- Use "row" rather than "line" to refer to a single horizontal group of
pixels or component values, for consistency with the libjpeg API
documentation. (libjpeg also uses "scanline", which is a more archaic
term.)
- Use "alignment" rather than "padding" to refer to the number of bytes
by which a row's width is evenly divisible. This consistifies the
documention of the YUV functions and tjLoadImage(). ("Padding"
typically refers to the number of bytes added to each row, which is
not the same thing.)
- Remove all references to "the underlying codec." Although the
TurboJPEG API originated as a cross-platform wrapper for the Intel
Integrated Performance Primitives, Sun mediaLib, QuickTime, and
libjpeg, none of those TurboJPEG implementations has been maintained
since 2009. Nothing would prevent someone from implementing the
TurboJPEG API without libjpeg-turbo, but such an implementation would
not necessarily have an "underlying codec." (It could be fully
self-contained.)
- Use "destination image" rather than "output image", for consistency,
or describe the type of image that will be output.
- Avoid the term "image buffer" and instead use "byte buffer" to
refer to buffers that will hold JPEG images, or describe the type of
image that will be contained in the buffer. (The Java documentation
doesn't use "byte buffer", because the buffer arrays literally have
"byte" in front of them, and since Java doesn't have pointers, it is
not possible for mere mortals to store any other type of data in those
arrays.)
- C: Use "unified" to describe YUV images stored in a single buffer, for
consistency with the Java documentation.
- Use "planar YUV" rather than "YUV planar". Is is our convention to
describe images using {component layout} {colorspace/pixel format}
{image function}, e.g. "packed-pixel RGB source image" or "planar YUV
destination image."
- C: Document the TurboJPEG API version in which a particular function
or macro was introduced, and reorder the backward compatibility
function stubs in turbojpeg.h alphabetically by API version.
- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
comments.
Macros from older versions of the TurboJPEG API are supported but not
documented, so using the current version of those macros makes the code
more readable.
Because the PAD() macro can only handle powers of 2, this is a necessary
restriction (and a documented one, except in the case of
tjCompressFromYUV()-- oops.) Failing to check the 'pad' argument
caused tjBufSizeYUV2() to return bogus results if 'pad' was less than 1
or otherwise not a power of 2. tjEncodeYUV3() and tjDecodeYUV()
effectively treated a 'pad' value of 0 as unpadded, but that was subtle
and undocumented behavior. tjCompressFromYUV() did not check whether
'pad' was a power of 2, so the strides passed to
tjCompressFromYUVPlanes() would have been incorrect if 'pad' was not a
power of 2. That would not have caused tjCompressFromYUV() to overrun
the source buffer, as long as the calling application allocated the
buffer based on the return value of tjBufSizeYUV2() (which computes the
strides in the same manner as tjCompressFromYUV().) However, if the
calling application attempted to initialize the source buffer using
correctly-computed strides, then it could have overrun its own
buffer in certain cases or produced incorrect JPEG images in others.
Realistically, there is no reason why an application would want to pass
a non-power-of-2 'pad' value to a TurboJPEG API function, so this commit
is about user-proofing the API rather than fixing any known issue.
TJFLAG_LOSSLESS is irrelevant to planar YUV encoding, and setting the
flag caused tjEncode*() to fail with "Invalid lossless parameters"
because tjEncodeYUVPlanes() passes a JPEG quality value of -1 to
setCompDefaults(). This commit modifies setCompDefaults() so that it
takes no action related to the jpegQual parameter unless jpegQual >= 0.
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.) This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.
More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
The Gordian knot that 7fec5074f9 attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API. If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application. (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)
Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation. Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.
In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:
- The colormap and sample_range_limit fields in jpeg_decompress_struct
- The alloc_sarray() and access_virt_sarray() methods in
jpeg_memory_mgr
- jpeg_write_scanlines() and jpeg_write_raw_data()
- jpeg_read_scanlines() and jpeg_read_raw_data()
- jpeg_skip_scanlines() and jpeg_crop_scanline()
(This is subtle, but both of those functions use JSAMPLE-dependent
opaque structures behind the scenes.)
It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples. Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:
- Compile only the precision-dependent libjpeg modules (the
coefficient buffer controllers, the colorspace converters, the
DCT/IDCT managers, the main buffer controllers, the preprocessing
and postprocessing controller, the downsampler and upsamplers, the
quantizers, the integer DCT methods, and the IDCT methods) for
multiple data precisions.
- Introduce 12-bit-specific methods into the various internal
structures defined in jpegint.h.
- Create precision-independent data type, macro, method, field, and
function names that are prefixed by an underscore, and use an
internal header to convert those into precision-dependent data
type, macro, method, field, and function names, based on the value
of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
modules.
- Expose precision-dependent jinit*() functions for each of the
precision-dependent libjpeg modules.
- Abstract the precision-dependent libjpeg modules by calling the
appropriate precision-dependent jinit*() function, based on the
value of cinfo->data_precision, from top-level libjpeg API
functions.
(broken by 607b668ff9)
- Visual Studio 2010 apparently doesn't have the snprintf() inline
function, so restore the macro that emulates that function using
_snprintf_s().
- Explicitly include errno.h in strtest.c, since jinclude.h doesn't
include it when building with Visual Studio.
The primary purpose of this is to encourage adoption of libjpeg-turbo in
downstream Windows projects that forbid the use of "deprecated"
functions. libjpeg-turbo's usage of those functions was not actually
unsafe, because:
- libjpeg-turbo always checks the return value of fopen() and ensures
that a NULL filename can never be passed to it.
- libjpeg-turbo always checks the return value of getenv() and never
passes a NULL argument to it.
- The sprintf() calls in format_message() (jerror.c) could never
overflow the destination string buffer or leave it unterminated as
long as the buffer was at least JMSG_LENGTH_MAX bytes in length, as
instructed. (Regardless, this commit replaces those calls with
snprintf() calls.)
- libjpeg-turbo never uses sscanf() to read strings or multi-byte
character arrays.
- Because of b7d6e84d6a, wrjpgcom
explicitly checks the bounds of the source and destination strings
before calling strcat() and strcpy().
- libjpeg-turbo always ensures that the destination string is
terminated when using strncpy().
(548490fe5e made this explicit.)
Regarding thread safety:
Technically speaking, getenv() is not thread-safe, because the returned
pointer may be invalidated if another thread sets the same environment
variable between the time that the first thread calls getenv() and the
time that that thread uses the return value. In practice, however, this
could only occur with libjpeg-turbo if:
(1) A multithreaded calling application used the deprecated and
undocumented TJFLAG_FORCEMMX/TJFLAG_FORCESSE/TJFLAG_FORCESSE2 flags in
the TurboJPEG API or set one of the corresponding environment variables
(which are only intended for testing purposes.) Since the TurboJPEG API
library only ever passed string constants to putenv(), the only inherent
risk (i.e. the only risk introduced by the library and not the calling
application) was that the SIMD extensions may have read an incorrect
value from one of the aforementioned environment variables.
or
(2) A multithreaded calling application modified the value of the
JPEGMEM environment variable in one thread while another thread was
reading the value of that environment variable (in the body of
jpeg_create_compress() or jpeg_create_decompress().) Given that the
libjpeg API provides a thread-safe way for applications to modify the
default memory limit without using the JPEGMEM environment variable,
direct modification of that environment variable by calling applications
is not supported.
Microsoft's implementation of getenv_s() does not claim to be
thread-safe either, so this commit uses getenv_s() solely to mollify
Visual Studio. New inline functions and macros (GETENV_S() and
PUTENV_S) wrap getenv_s()/_putenv_s() when building for Visual Studio
and getenv()/setenv() otherwise, but GETENV_S()/PUTENV_S() provide no
advantages over getenv()/setenv() other than parameter validation. They
are implemented solely for convenience.
Technically speaking, strerror() is not thread-safe, because the
returned pointer may be invalidated if another thread changes the locale
and/or calls strerror() between the time that the first thread calls
strerror() and the time that that thread uses the return value. In
practice, however, this could only occur with libjpeg-turbo if a
multithreaded calling application encountered a file I/O error in
tjLoadImage() or tjSaveImage(). Since both of those functions
immediately copy the string returned from strerror() into a thread-local
buffer, the risk is minimal, and the worst case would involve an
incorrect error string being reported to the calling application.
Regardless, this commit uses strerror_s() in the TurboJPEG API library
when building for Visual Studio. Note that strerror_r() could have been
used on Un*x systems, but it would have been necessary to handle both
the POSIX and GNU implementations of that function and perform
widespread compatibility testing. Such is left as an exercise for
another day.
Fixes#568
libjpeg-turbo has never supported non-ANSI C compilers. Per the spec,
ANSI C compilers must have locale.h, stddef.h, stdlib.h, memset(),
memcpy(), unsigned char, and unsigned short. They must also handle
undefined structures.
Although sizeof(void *) == sizeof(size_t) for all architectures that are
currently supported by libjpeg-turbo, such is not guaranteed by the C
standard. Specifically, CHERI-enabled architectures (e.g. CHERI-RISC-V
or Arm's Morello) use capability pointers that are twice the size of
size_t (128 bits for Morello and RV64), so casting to size_t strips the
upper bits of the pointer (including the validity bit) and makes it
non-deferenceable, as indicated by the following compiler warning:
warning: cast from provenance-free integer type to pointer type will
give pointer that can not be dereferenced
[-Werror,-Wcheri-capability-misuse]
cvalue = values = (JCOEF *)PAD((size_t)values_unaligned, 16);
Ignoring this warning results in a run-time crash. Casting pointers to
uintptr_t, if it is available, avoids this problem, since uintptr_t is
defined as an unsigned integer type that can hold a pointer value.
Since C89 compatibility is still necessary in libjpeg-turbo, this commit
introduces a new typedef for pointer-to-integer casts that uses a
GNU-specific extension available in GCC 4.6+ and Clang 3.0+ and falls
back to using size_t if the extension is unavailable. The only other
options would require C99 or Clang-specific builtins.
Closes#538
When using the in-memory destination manager, it is necessary to
explicitly call the destination manager's term_destination() method if
an error occurs. That method is called by jpeg_finish_compress() but
not by jpeg_abort_compress().
This fixes a potential double free() that could occur if tjCompress*()
or tjTransform() returned an error and the calling application tried to
clean up a JPEG buffer that was dynamically re-allocated by one of those
functions.
After the completion of the start_input() method, it's too late to check
the image size, because the image readers may have already tried to
allocate memory for the image. If the width and height are excessively
large, then attempting to allocate memory for the image could slow
performance or lead to out-of-memory errors prior to the fuzz target
checking the image size.
NOTE: Specifically, the aforementioned OOM errors and slow units were
observed with the compression fuzz targets when using MSan.
This limits the tjLoadImage() behavioral changes to the scope of the
compress_fuzzer target. Otherwise, TJBench in fuzzer builds would
refuse to load images larger than 1 Mpixel.