Commit Graph

54 Commits

Author SHA1 Message Date
DRC
fc881ebb21 TurboJPEG: Implement 4:4:1 chrominance subsampling
This allows losslessly transposed or rotated 4:1:1 JPEG images to be
losslessly cropped, partially decompressed, or decompressed to planar
YUV images.

Because tj3Transform() allows multiple lossless transformations to be
chained together, all subsampling options need to have a corresponding
transposed subsampling option.  (This is why 4:4:0 was originally
implemented as well.)  Otherwise, the documentation would be technically
incorrect.  It says that images with unknown subsampling types cannot be
losslessly cropped, partially decompressed, or decompressed to planar
YUV images, but it doesn't say anything about images with known
subsampling types whose subsampling type becomes unknown if the image is
rotated or transposed.  This is one of those situations in which it is
easier to implement a feature that works around the problem than to
document the problem.

Closes #659
2023-03-10 10:46:14 -06:00
DRC
fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00
DRC
1a1ea4eeba Merge branch 'main' into dev 2023-01-25 12:28:42 -06:00
DRC
27f4ff80ce Java: Guard against int overflow in size methods
Because Java array sizes are ints, the various size methods in the TJ
class have int return values.  Thus, we have to guard against signed
int overflow at the JNI level, because the C functions can return sizes
greater than INT_MAX.

This also adds a test for TJ.planeWidth() and TJ.planeHeight(), in order
to validate 8a1526a442 in Java.
2023-01-25 12:21:35 -06:00
DRC
7ab6222cff Merge branch 'main' into dev 2023-01-20 14:09:25 -06:00
DRC
fb15efe94f TurboJPEG: More documentation improvements
- TJBench/TJUnitTest: Wordsmith command-line output

- Java: "decompress operations"="decompression operations"

- tjLoadImage(): Error message tweak

- Don't mention compression performance in the description of
  TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
  already been compressed at that point.

(Oversights from 9a146f0f23)
2023-01-20 12:50:21 -06:00
DRC
155a8b0321 Merge branch 'main' into dev 2023-01-16 17:02:01 -06:00
DRC
22a6636852 Java: Don't allow int overflow in buf size methods
This is similar to the fix that 2a9e3bd743
applied to the C API.  We have to apply it separately at the JNI level
because the Java API always stores buffer sizes in 32-bit integers, and
the C buffer size functions could overflow an int when using 64-bit
code.  (NOTE: The Java API stores buffer sizes in 32-bit integers
because Java itself always uses 32-bit integers for array sizes.)  Since
Java don't allow no buffer overruns 'round here, this commit doesn't
change the ultimate outcome.  It just makes the inevitable exception
easier to diagnose.
2023-01-16 16:48:40 -06:00
DRC
d859232da3 TurboJPEG: Use 4:4:4 for lossless JPEG buf calcs 2023-01-14 18:27:37 -06:00
DRC
d4589f4f1c Merge branch 'main' into dev 2023-01-14 18:07:53 -06:00
DRC
9a146f0f23 TurboJPEG: Numerous documentation improvements
- Wordsmithing, formatting, and grammar tweaks

- Various clarifications and corrections, including specifying whether
  a particular buffer or image is used as a source or destination

- Accommodate/mention features that were introduced since the API
  documentation was created.

- For clarity, use "packed-pixel" to describe uncompressed
  source/destination images that are not planar YUV.

- Use "row" rather than "line" to refer to a single horizontal group of
  pixels or component values, for consistency with the libjpeg API
  documentation.  (libjpeg also uses "scanline", which is a more archaic
  term.)

- Use "alignment" rather than "padding" to refer to the number of bytes
  by which a row's width is evenly divisible.  This consistifies the
  documention of the YUV functions and tjLoadImage().  ("Padding"
  typically refers to the number of bytes added to each row, which is
  not the same thing.)

- Remove all references to "the underlying codec."  Although the
  TurboJPEG API originated as a cross-platform wrapper for the Intel
  Integrated Performance Primitives, Sun mediaLib, QuickTime, and
  libjpeg, none of those TurboJPEG implementations has been maintained
  since 2009.  Nothing would prevent someone from implementing the
  TurboJPEG API without libjpeg-turbo, but such an implementation would
  not necessarily have an "underlying codec."  (It could be fully
  self-contained.)

- Use "destination image" rather than "output image", for consistency,
  or describe the type of image that will be output.

- Avoid the term "image buffer" and instead use "byte buffer" to
  refer to buffers that will hold JPEG images, or describe the type of
  image that will be contained in the buffer.  (The Java documentation
  doesn't use "byte buffer", because the buffer arrays literally have
  "byte" in front of them, and since Java doesn't have pointers, it is
  not possible for mere mortals to store any other type of data in those
  arrays.)

- C: Use "unified" to describe YUV images stored in a single buffer, for
  consistency with the Java documentation.

- Use "planar YUV" rather than "YUV planar".  Is is our convention to
  describe images using {component layout} {colorspace/pixel format}
  {image function}, e.g. "packed-pixel RGB source image" or "planar YUV
  destination image."

- C: Document the TurboJPEG API version in which a particular function
  or macro was introduced, and reorder the backward compatibility
  function stubs in turbojpeg.h alphabetically by API version.

- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
  comments.
2023-01-14 17:10:31 -06:00
DRC
25ccad99a0 TurboJPEG: 8-bit lossless JPEG support 2022-11-16 15:57:25 -06:00
DRC
eb8bba627f Java: Further style refinements
(detected by enabling additional checkstyle modules)

This commit also removes unnecessary uses of the "private" modifier in
the Java tests/examples.  The default access modifier disallows access
outside of the package, and none of these classes is in a package.  The
only reason we use "private" with member variables in these classes is
to make checkstyle happy, because we want it to enforce that behavior in
the TurboJPEG API code.
2018-05-16 11:05:01 -05:00
DRC
53bb941845 Java: Reformat code per checkstyle recommendations
... and modify tjbench.c to match the variable name changes made to
TJBench.java

("checkstyle" = http://checkstyle.sourceforge.net, not our regex-based
checkstyle script)
2018-05-15 14:59:57 -05:00
DRC
19c791cdac Improve code formatting consistency
With rare exceptions ...
- Always separate line continuation characters by one space from
  preceding code.
- Always use two-space indentation.  Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
  function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
  with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
  function name.
- Always precede pointer symbols ('*' and '**') by a space in type
  casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
  API libraries (using min() from tjutil.h is still necessary for
  TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
  line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.

The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions.  This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree.  The
new convention is more consistent with the formatting of other OSS code
bases.

This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.

NOTES:
- Although it is no longer necessary for the function name in function
  declarations to begin in Column 1 (this was historically necessary
  because of the ansi2knr utility, which allowed libjpeg to be built
  with non-ANSI compilers), we retain that formatting for the libjpeg
  code because it improves readability when using libjpeg's function
  attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
  Uncrustify, although neither was completely up to the task, and thus
  a great deal of manual tweaking was required.  Note to developers of
  code formatting utilities:  the libjpeg-turbo code base is an
  excellent test bed, because AFAICT, it breaks every single one of the
  utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
  formatted to match the SSE2 code (refer to
  ff5685d5344273df321eb63a005eaae19d2496e3.)  I hadn't intended to
  bother with this, but the Loongson MMI implementation demonstrated
  that there is still academic value to the MMX implementation, as an
  algorithmic model for other 64-bit vector implementations.  Thus, it
  is desirable to improve its readability in the same manner as that of
  the SSE2 implementation.
2018-03-16 02:14:34 -05:00
DRC
dc4b900223 TurboJPEG: Add alpha offset array/method
Also, set the red/green/blue offsets for TJPF_GRAY to -1 rather than 0.
It was undefined behavior for an application to use those arrays/methods
with TJPF_GRAY anyhow, and this makes it easier for applications to
programmatically detect whether a given pixel format has red, green, and
blue components.
2017-11-17 22:49:07 -06:00
DRC
f3ad13e3d8 TJBench/TJUnitTest: Don't ignore mistyped args 2017-11-13 16:00:35 -06:00
DRC
5426a4cb16 TJUnitTest: Usage formatting tweaks 2017-09-02 04:08:06 +00:00
DRC
d0bac69a8a Java: Fix TJUnitTest on big endian platforms
It is necessary for the C code to be aware of the machine's endianness,
which is why the TurboJPEG Java wrapper sets a different pixel format
for integer BufferedImages depending on ByteOrder.nativeOrder().
However, it isn't necessary to handle endianness in pure Java code such
as TJUnitTest (d'oh!)  This was a product of porting the C version of
TJUnitTest too literally, and of insufficient testing (historically,
the big endian systems I had available for testing didn't have Java.)
2017-09-02 03:47:56 +00:00
DRC
d123c125c5 Java: Avoid OOM error when running 'make test'
We need to garbage collect between iterations of the outside loop in
bufSizeTest() in order to avoid exhausting the heap when running with
Java 6 (which is still used on Linux to test the 32-bit version of
libjpeg-turbo in automated builds.)
2016-02-09 01:35:39 -06:00
DRC
dcf9f15d6e Oops. Need to set the alpha channel when using TYPE_4BYTE_ABGR*. This has no bearing on the actual tests, but it prevents the PNG pre-encode reference images for those tests from being blank.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.4.x@1525 632fc199-4ca6-4c93-a231-07263d6284db
2015-01-27 20:59:16 +00:00
DRC
1a45b81fa2 Remove trailing spaces (+ one additional tab in TJUnitTest.java that was missed in the previous commit)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1279 632fc199-4ca6-4c93-a231-07263d6284db
2014-05-09 18:06:58 +00:00
DRC
fc26b6577a Extend the YUV decode functionality to the TurboJPEG Java API, and port the TJUnitTest modifications that treat YUV encoding/decoding as an intermediate step of the JPEG compression/decompression pipeline rather than a separate test case; Add the ability to encode YUV images from an arbitrary position in a large image buffer; Significantly refactor the handling of YUV images; numerous doc tweaks; other Java API cleanup and usability improvements
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1176 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-16 22:56:26 +00:00
DRC
b14813947e Streamline the BufferedImage functionality in the compressor so that it works the same way as compressing a "normal" image, and deprecate the old BufferedImage methods and other redundant methods. Eliminate the use of deprecated features in the test programs.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1168 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-14 08:53:33 +00:00
DRC
d772f9ac45 Remove benchmarks. They were originally intended as a way of measuring overhead for small compress/decompress operations, but using TJBench with a small image is a better way to accomplish that.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1167 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-14 04:32:03 +00:00
DRC
4f7b7b339c Formatting tweak
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1166 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-14 04:27:03 +00:00
DRC
38c9970b95 Fix an issue that prevented tjEncodeYUV3() and TJCompressor.encodeYUV() from working properly if the source image was very tiny. Basically, jpeg_start_compress() was attempting to write the JPEG headers, which was overrunning the YUV buffer. This patch removes the call to jpeg_start_compress() in tjEncodeYUV3() and replaces it with calls to the individual routines that are necessary to initialize the color converter and downsampler. TJUnitTest has also been modified to test for this condition (the buffer size regression test now works in YUV mode.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1118 632fc199-4ca6-4c93-a231-07263d6284db
2014-02-11 09:45:18 +00:00
DRC
1e67274bd7 Extend the TurboJPEG Java API to support compressing JPEG images from YUV planar images
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1071 632fc199-4ca6-4c93-a231-07263d6284db
2013-10-31 05:04:51 +00:00
DRC
38cb1ec2a7 Add CMYK support to the TurboJPEG Java API & clean up a few things in the C API
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1020 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-23 04:45:43 +00:00
DRC
a5830628b9 Add 4:1:1 subsampling support in the TurboJPEG Java API
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1017 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-18 11:04:21 +00:00
DRC
418fe286c2 Fix incorrect data output and buffer overruns in the new tjDecompressToYUV2() function whenever scaling is used along with a 4:2:0 JPEG image; extend tjunittest and TJUnitTest to test for these issues.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@982 632fc199-4ca6-4c93-a231-07263d6284db
2013-05-07 21:17:35 +00:00
DRC
b7c41932ed Clean up the output of tjunittest and TJUnitTest
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@981 632fc199-4ca6-4c93-a231-07263d6284db
2013-05-04 23:41:33 +00:00
DRC
fef9852da3 Extend the TurboJPEG Java API to support generating YUV images with arbitrary padding and to support image scaling when decompressing to YUV
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@975 632fc199-4ca6-4c93-a231-07263d6284db
2013-04-28 01:32:52 +00:00
DRC
67bee8683d Code formatting tweaks
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@968 632fc199-4ca6-4c93-a231-07263d6284db
2013-04-27 12:36:07 +00:00
DRC
cac105133e Fix the behavior of the alpha-enabled colorspace constants whenever libjpeg-turbo is built without SIMD support and merged upsampling is used.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.2.x@811 632fc199-4ca6-4c93-a231-07263d6284db
2012-03-16 14:37:36 +00:00
DRC
67ce3b2352 Added new alpha channel colorspace constants/pixel formats, so applications can specify that they need the unused byte in a 4-component RGB output buffer set to 0xFF when decompressing.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@732 632fc199-4ca6-4c93-a231-07263d6284db
2011-12-19 02:21:03 +00:00
DRC
c08e8c15bc When decompressing to a 4-byte RGB buffer, set the unused byte to 0xFF so it can be interpreted as an opaque alpha channel.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@699 632fc199-4ca6-4c93-a231-07263d6284db
2011-09-08 23:54:40 +00:00
DRC
724c56b46a Use random noise to ensure that the JPEG image generated in the buffer size test exceeds the size of the uncompressed source image.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@669 632fc199-4ca6-4c93-a231-07263d6284db
2011-07-12 06:22:06 +00:00
DRC
9b49f0e4c7 Re-work TJBUFSIZE() to take into account the level of chrominance subsampling
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@668 632fc199-4ca6-4c93-a231-07263d6284db
2011-07-12 03:17:23 +00:00
DRC
215aa8b78b Re-factor checkBufYUV() function to more closely resemble re-factored checkBuf() function
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@654 632fc199-4ca6-4c93-a231-07263d6284db
2011-05-27 02:10:42 +00:00
DRC
f962fbb44a Refactor slightly to match new C code
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@620 632fc199-4ca6-4c93-a231-07263d6284db
2011-05-23 05:49:08 +00:00
DRC
b2f9415a63 Slight refactor to put ScalingFactor into its own class (mainly because the $ in the class name was wreaking havoc on the build scripts, but also to add a few convenience methods to it) and to create a separate loader class so we can provide a .jar file with the MinGW distribution that loads the correct DLL
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@557 632fc199-4ca6-4c93-a231-07263d6284db
2011-04-02 02:09:03 +00:00
DRC
b6ed7d347a Use a different naming convention, to avoid conflict with jpegut
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@548 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-31 20:58:03 +00:00
DRC
4f8c29572e Clean up compiler warnings
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@546 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-31 10:06:17 +00:00
DRC
2c74e5124d More Java API cleanup
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@519 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-16 00:02:53 +00:00
DRC
92549de2c2 Java code cleanup + Java docs
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@518 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-15 20:52:02 +00:00
DRC
d0a813632b Handle 4:4:0 (transposed 4:2:2 subsampling)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@503 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-04 13:04:24 +00:00
DRC
2e2358eae4 Print stack trace on error
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@499 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-04 09:54:59 +00:00
DRC
f7f3ea404c Use consistent formatting conventions
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@479 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-01 20:03:32 +00:00
DRC
109a578e89 tjGetScaledSize() would never be able to accommodate scaling factors > 1, so replace it with a function that returns a list of fractional scaling factors that TurboJPEG supports.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@477 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-01 09:53:07 +00:00