Referring to #408, this commit #ifdefs DSPr2 SIMD functions that only
work on little endian processors, and it completely excludes
jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2(). The
latter two functions fail with the TJBench tiling regression tests, most
likely because the implementation of the functions predates those tests.
Previously, these environment variables were not honored unless a 74K
CPU was detected, but this detection doesn't work properly with QEMU's
user mode emulation. With all other CPU types, libjpeg-turbo honors
JSIMD_FORCE* regardless of CPU detection.
This CMake variable is intended to define a wrapper program for
executing cross-compiled executables. However, CTest doesn't use
CMAKE_CROSSCOMPILING_EMULATOR, because it isn't obvious which tests
should be executed with the wrapper and which tests are scripts that
don't need it. This commit manually prepends
${CMAKE_CROSSCOMPILING_EMULATOR} to all unit test command lines that
execute a program built by the libjpeg-turbo build system. Thus, one
can set CMAKE_CROSSCOMPILING_EMULATOR in a CMake toolchain file to (for
instance) "qemu-{architecture} {qemu_arguments}") in order to execute
all eligible unit tests using QEMU.
+ document that tjFree() accepts NULL pointers without complaint.
Effectively, it has had that behavior all along, but the API does not
guarantee that tjFree() will be implemented with free() behind the
scenes, so it's best to formalize the behavior.
This programming practice (which exists in other code bases as well)
is a by-product of having used early C compilers that did not properly
handle free(NULL). All modern compilers should properly handle that.
Fixes#398
- Don't enumerate the types of SIMD instructions that libjpeg-turbo
supports, as this can change without notice.
- Use more clear terminology when describing support for libjpeg v7/v8
features ("libjpeg" is, colloquially but not officially, the name for
the IJG's software, whereas the "libjpeg API" refers to our emulation
of said software.)
- "PhotoShop" = "Photoshop" (StudLy Caps Police)
- Adjust dynamic library versions to reflect the addition of
jpeg_read_icc_profile() and jpeg_write_icc_profile() in
libjpeg-turbo 2.0.x.
Move constants out of the .text section in simd/arm64/jsimd_neon.S and
into a .rodata section. This ensures that the ARMv8 NEON SIMD
extensions are compatible with memory layouts that are marked
execute-only (and thus unreadable.)
Based on:
88f3ca7664Closes#318
libjpeg-turbo never included that code, because it requires an external
library (the Utah Raster Toolkit.) The RLE image format was supplanted
by GIF in the late 1980s, so it is rarely seen these days. (It had a
lousy Weissman score, anyhow.)
- Enable progress reporting at run time using a new -report argument
(cjpeg now supports that argument as well)
- Limit the allowable number of scans using a new -maxscans argument
- Treat warnings as fatal using a new -strict argument
This mainly demonstrates how to work around the two issues with the
JPEG standard described here:
https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf
since those and similar issues continue to be erroneously reported as
libjpeg-turbo bugs.
Modern Loongson processors are MIPS64-compatible, and MMI instructions
are now supported in the mainline of GCC. Thus, this commit adds
compile-time and run-time auto-detection of MMI instructions and moves
the MMI SIMD extensions for libjpeg-turbo from simd/loongson/ to
simd/mips64/. That will allow MMI and MSA instructions to co-exist
in the same build once #377 has been integrated.
Based on:
82953ddd61Closes#383
Because of 01e3032354 (officially
eliminating support for compilers without unsigned char, since we never
effectively supported those compilers anyhow), GETJOCTET() is now a
no-op. Since that macro is in jmorecfg.h, it is part of the de facto
libjpeg API and must remain in the public headers. However, there is no
reason to continue using it internally, and eliminating its internal use
improves code readability.
This commit adds ARM64 NEON optimizations for the
encode_mcu_AC_first() and encode_mcu_AC_refine() functions used in
progressive Huffman encoding.
Compression speedups for the typical set of five libjpeg-turbo test
images (https://libjpeg-turbo.org/About/Performance):
Cortex-A53: 23.8-39.2% (avg. 32.2%)
Cortex-A72: 26.8-41.1% (avg. 33.5%)
Apple A7: 29.7-45.9% (avg. 39.6%)
Closes#229
Homebrew tends to drop support for a macOS release the second that Apple
stops releasing security updates for it, and that makes HB difficult to
use with some of the Travis macOS images. Furthermore, even on
supported macOS releases, HB sometimes tries to build GCC from source
even if a binary (bottle) is available. Long story short, MacPorts just
generally has better backward compatibility. MacPorts is also what I
personally use on the official libjpeg-turbo build machine.
... detected by ASan. This is a similar issue to the issue that was
fixed with 402a715f82. Apparently it is
possible to create a malformed JPEG image that exceeds the Huffman
encoder's 256-byte local buffer when attempting to losslessly tranform
the image. That makes sense, given that it was necessary to extend the
Huffman decoder's local buffer to 512 bytes in order to handle all
pathological cases (refer to 0463f7c9aad060fcd56e98d025ce16185279e2bc.)
Since this issue affected only lossless transformation, a workflow that
isn't generally exposed to arbitrary data exploits, and since the
overrun did not overflow the stack (i.e. it did not result in a segfault
or other user-visible issue, and valgrind didn't even detect it), it did
not likely pose a security risk.
Fixes#392
... that caused some JPEG images with unusual sampling factors to be
misidentified as 4:4:4. This led to a buffer overflow when attempting
to decompress some such images using tjDecompressToYUV*().
Regression introduced by 479501b07c
The correct behavior is for the TurboJPEG API to refuse to decompress
such images, which it did prior to the aforementioned commit.
Fixes#389
Referring to #289, I'm not sure where I arrived at the conclusion that
the SSE2 progressive Huffman encoder doesn't provide any speedup for
x32. Upon re-testing, I discovered it to be about 50% faster than the
C encoder.
This commit also re-purposes one of the CI tests (specifically, the
jpeg-7 API/ABI test) so that it tests x32 as well.
... introduced by 42825b68d5. In fact,
fault-tolerant multi-scan block smoothing cannot currently be used with
the arithmetic decoder, because that decoder doesn't have any way of
distinguishing a normal end of scan from an unexpected end of scan.
Thus, this commit also modifies the change log to reset the expectations
regarding the scope of the fault-tolerant multi-scan block smoothing
feature. If, at some point in the future, the arithmetic decoder can be
modified to detect an unexpected end of scan, then one would need only
set entropy->pub.insufficient_data = TRUE when the arithmetic decoder
encounters an unexpected end of scan in order to make fault-tolerant
block smoothing work properly with that decoder.
This commit modifies the behavior of the block smoothing algorithm in
the libjpeg API library so that, if a scan in a multi-scan JPEG image is
incomplete (due to premature termination of the image stream), the block
smoothing parameters from the previous (complete) scan are used to
smooth any iMCU rows that the incomplete scan does not contain.
Closes#343