- Referring to 073b0e88a1 and #185, the
reason why BMP and RLE didn't (and won't) work with partial image
decompression is that the output engines for both formats maintain a
whole-image buffer, which is used to reverse the order of scanlines.
However, it was straightforward to add -crop support for GIF and
Targa, which is useful for testing partial image decompression along
with color quantization.
- Such testing reproduced a bug reported by Mozilla (refer to PR #182)
whereby jpeg_skip_scanlines() would segfault if color quantization was
enabled. To fix this issue, read_and_discard_scanlines() now sets up
a dummy quantize function in the same manner that it sets up a dummy
color conversion function.
Closes#182
... and document that only PPM/PGM output images are supported with the
-crop option for the moment.
I investigated the possibility of supporting -crop with -bmp, but even
after resetting the buffer dimensions, I still kept getting virtual
array access errors. It seems that doing this the "right way" would
require creating a re-initialization function for each image format's
destination manager. I'm disinclined to do that right now, given that
this feature was Google's baby (developed as a prerequisite for
including libjpeg-turbo in Android), and the -crop option in djpeg is
intended only as an example of how to use the partial image
decompression API. Real-world applications would need to handle this
in their own destination managers.
It would probably be possible to make this work with Targa by employing
a similar hack to the one we used with PPM, but Targa isn't popular
enough to bother.
Fixes#185
Setting _libdir to CMAKE_INSTALL_FULL_LIBDIR only works when doing an
in-tree RPM build. SRPMs are architecture-agnostic, so the spec needs
to compute_libdir at the time the SRPM is rebuilt, not at the time it
is generated.
This is a regression introduced when implementing the new CMake-based
cross-platform build system.
The version of RPM on RHEL 5 and older platforms defines _libdir
as %{_exec_prefix}/%{_lib}, so defining _lib in the spec file redefined
_libdir. However, newer versions of RPM (probably >= 4.6, since that
was the version that introduced the ISA macros) define _libdir as either
%{_prefix}/lib or %{_prefix}/lib64. Thus, we need to explicitly
override _libdir in our spec file.
It is necessary for the C code to be aware of the machine's endianness,
which is why the TurboJPEG Java wrapper sets a different pixel format
for integer BufferedImages depending on ByteOrder.nativeOrder().
However, it isn't necessary to handle endianness in pure Java code such
as TJUnitTest (d'oh!) This was a product of porting the C version of
TJUnitTest too literally, and of insufficient testing (historically,
the big endian systems I had available for testing didn't have Java.)
planes == null is a valid argument to setBuf() if alloc == true, so we
need to make sure that planes is non-null before validating its length.
We also need to allocate one dimension of the planes array if it's null.
Fixes#168
Previously, -stoponwarning only had an effect on the underlying
TurboJPEG C functions, but TJBench still aborted if a non-fatal error
occurred. This commit modifies the C version of TJBench such that it
always recovers from a non-fatal error unless -stoponwarning is
specified. Furthermore, the benchmark stores the details of the last
non-fatal error and does not print any subsequent non-fatal error
messages unless they differ from the last one.
Due to limitations in the Java API (specifically, the fact that it
cannot communicate errors, fatal or otherwise, to the calling program
without throwing a TJException), it was only possible to make
decompression operations fully recoverable within TJBench. With other
operations, -stoponwarning still has an effect on the underlying C
library but has no effect at the Java level.
The Java API documentation has been amended to reflect that only certain
methods are truly recoverable, regardless of the state of
TJ.FLAG_STOPONWARNING.
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.
Closes#153
If the source image for a transform operation has a lot of EXIF or ICC
data embedded in it, then it may cause the output image size to exceed
the worst-case size returned by tjBufSize() (because tjTransform()
transfers all markers to the output image.) This is only a problem if
TJFLAG_NOREALLOC is passed to the function. Since the TurboJPEG C API
doesn't require the destination image size to be set in this case, it
makes the documented assumption that the calling program has allocated
the destination buffer to exactly the size returned by tjBufSize().
Changing this assumption would change the API behavior and necessitate
a new function name (tjTransform2().) At the moment, it's easier to
just document this as a known issue, since it's easy to work around in
the C API.
The Java API is unfortunately a different story, since it must always
use TJFLAG_NOREALLOC (because, when using the TurboJPEG Java API, all
buffers are allocated on the Java heap, and thus they can't be
reallocated by the C code.) There is no easy way to work around this
without changing the C API as discussed above, because if the source
image contains large amounts of marker data, it's virtually impossible
to determine how big the output image will be.
Given that libjpeg-turbo can often process hundreds of megapixels/second
on modern hardware, the default of one warmup iteration was essentially
meaningless. Furthermore, the -warmup option was a bit clunky, since
it required some foreknowledge of how fast the benchmarks were going to
execute.
This commit introduces a 1-second warmup interval for each benchmark by
default, and the -warmup option has been retasked to control the length
of that interval.
- Provide a new C API function and TJException method that allows
calling programs to query the severity of a compression/decompression/
transform error.
- Provide a new flag that instructs the library to immediately stop
compressing/decompressing/transforming if a warning is encountered.
Fixes#151
Introduce a new C API function (tjGetErrorStr2()) that can be used to
retrieve compression/decompression/transform error messages in a
thread-safe (i.e. instance-specific) manner. Retrieving error messages
from global functions is still thread-unsafe.
Addresses a concern expressed in #151.
Embedded ICC profiles can cause the size of a JPEG file to exceed the
size returned by tjBufSize() (which is really meant to be used for
compression anyhow, not for decompression), and this was causing a
segfault (C) or an ArrayIndexOutOfBoundsException (Java) when
decompressing such files with TJBench. This commit modifies the
benchmark such that, when tiled decompression is disabled, it re-uses
the source buffer as the primary JPEG buffer.
The Travis xcode7.3 image now apparently includes GnuPG 1.4.x by
default, so use it instead of installing GnuPG 2. Using GnuPG 2.1.x,
the default version in Homebrew as of this writing, is problematic for
this reason:
https://wiki.archlinux.org/index.php/GnuPG#Unattended_passphrase
This re-introduces a feature of the obsolete system-specific libjpeg
memory managers-- namely the ability to limit the amount of main memory
used by the library during decompression or multi-pass compression.
This is mainly beneficial for two reasons:
- Works around a 2 GB limit in libFuzzer
- Allows security-sensitive applications to set a memory limit for the
JPEG decoder so as to work around the progressive JPEG exploit
(LJT-01-004) described here:
http://www.libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf
This commit also removes obsolete documentation regarding the MS-DOS
memory manager (which itself was removed long ago) and changes the
documentation of the -maxmemory switch and JPEGMEM environment variable
to reflect the fact that backing stores are never used in libjpeg-turbo.
Inspired by:
066fee2e7dCloses#143
Something changed in the CI build environment, and our previous trick of
setting the Git URL to file://c:/projects/libjpeg-turbo no longer works.
Using cygpath to translate the Windows path to a MinGW-friendly format
is a better solution anyhow.