- Introduce a partial image decompression regression test script that
validates the correctness of jpeg_skip_scanlines() and
jpeg_crop_scanlines() for a variety of cropping regions and libjpeg
settings.
This regression test catches the following issues:
#182, fixed in 5bc43c7821#237, fixed in 6e95c08649794f5018608f37250026a45ead2db8
#244, fixed in 398c1e9acc#441, fully fixed in this commit
It does not catch the following issues:
#194, fixed in 773040f9d9#244 (additional segfault), fixed in
9120a24743
- Modify the libjpeg-turbo regression test suite (make test) so that it
checks for the issue reported in #441 (segfault in
jpeg_skip_scanlines() when used with 4:2:0 merged upsampling/color
conversion.)
- Fix issues in jpeg_skip_scanlines() that caused incorrect output with
h2v2 (4:2:0) merged upsampling/color conversion. The previous commit
fixed the segfault reported in #441, but that was a symptom of a
larger problem. Because merged 4:2:0 upsampling uses a "spare row"
buffer, it is necessary to allow the upsampler to run when skipping
rows (fancy 4:2:0 upsampling, which uses context rows, also requires
this.) Otherwise, if skipping starts at an odd-numbered row, the
output image will be incorrect.
- Throw an error if jpeg_skip_scanlines() is called with two-pass color
quantization enabled. With two-pass color quantization, the first
pass occurs within jpeg_start_decompress(), so subsequent calls to
jpeg_skip_scanlines() interfere with the multipass state and prevent
the second pass from occurring during subsequent calls to
jpeg_read_scanlines().
The additional segfault mentioned in #244 was due to the fact that
the merged upsamplers use a different private structure than the
non-merged upsamplers. jpeg_skip_scanlines() was assuming the latter, so
when merged upsampling was enabled, jpeg_skip_scanlines() clobbered one
of the IDCT method pointers in the merged upsampler's private structure.
For reasons unknown, the test image in #441 did not encounter this
segfault (too small?), but it encountered an issue similar to the one
fixed in 5bc43c7821, whereby it was
necessary to set up a dummy postprocessing function in
read_and_discard_scanlines() when merged upsampling was enabled.
Failing to do so caused either a segfault in merged_2v_upsample() (due
to a NULL pointer being passed to jcopy_sample_rows()) or an error
("Corrupt JPEG data: premature end of data segment"), depending on the
number of scanlines skipped and whether the first scanline skipped was
an odd- or even-numbered row.
Fixes#441Fixes#244 (for real this time)
This extends the fix in 1e81b0c3ea to
include binary PPM files with maximum values < 255, thus preventing a
malformed binary PPM input file with those specifications from
triggering an overrun of the rescale array and potentially crashing
cjpeg, TJBench, or any program that uses the tjLoadImage() function.
Fixes#433
Move constants out of the .text section in simd/arm64/jsimd_neon.S and
into a .rodata section. This ensures that the ARMv8 NEON SIMD
extensions are compatible with memory layouts that are marked
execute-only (and thus unreadable.)
Based on:
88f3ca7664Closes#318
... detected by ASan. This is a similar issue to the issue that was
fixed with 402a715f82. Apparently it is
possible to create a malformed JPEG image that exceeds the Huffman
encoder's 256-byte local buffer when attempting to losslessly tranform
the image. That makes sense, given that it was necessary to extend the
Huffman decoder's local buffer to 512 bytes in order to handle all
pathological cases (refer to 0463f7c9aad060fcd56e98d025ce16185279e2bc.)
Since this issue affected only lossless transformation, a workflow that
isn't generally exposed to arbitrary data exploits, and since the
overrun did not overflow the stack (i.e. it did not result in a segfault
or other user-visible issue, and valgrind didn't even detect it), it did
not likely pose a security risk.
Fixes#392
... that caused some JPEG images with unusual sampling factors to be
misidentified as 4:4:4. This led to a buffer overflow when attempting
to decompress some such images using tjDecompressToYUV*().
Regression introduced by 479501b07c
The correct behavior is for the TurboJPEG API to refuse to decompress
such images, which it did prior to the aforementioned commit.
Fixes#389
If the TurboJPEG instance passed to tjDecodeYUV[Planes]() was previously
used to decompress a progressive JPEG image, then we need to disable the
progressive decompression parameters in the underlying libjpeg instance
before calling jinit_master_decompress().
This commit also modifies the build system so that the "tjtest" target
will test for this issue, and it corrects a previous oversight in the
build system whereby tjbenchtest did not test progressive
compression/decompression unless WITH_JAVA was true.
(regression introduced by 5b177b3cab)
The SSE2 implementation of progressive Huffman encoding performed
extraneous iterations when the scan length was a multiple of 16.
Based on:
bb7f1ef983Fixes#335Closes#367
Prevent several integer overflow issues and subsequent segfaults that
occurred when attempting to compress or decompress gigapixel images with
the TurboJPEG API:
- Modify tjBufSize(), tjBufSizeYUV2(), and tjPlaneSizeYUV() to avoid
integer overflow when computing the return values and to return an
error if such an overflow is unavoidable.
- Modify tjunittest to validate the above.
- Modify tjCompress2(), tjEncodeYUVPlanes(), tjDecompress2(), and
tjDecodeYUVPlanes() to avoid integer overflow when computing the row
pointers in the 64-bit TurboJPEG C API.
- Modify TJBench (both C and Java versions) to avoid overflowing the
size argument to malloc()/new and to fail gracefully if such an
overflow is unavoidable.
In general, this allows gigapixel images to be accommodated by the
64-bit TurboJPEG C API when using automatic JPEG buffer (re)allocation.
Such images cannot currently be accommodated without automatic JPEG
buffer (re)allocation, due to the fact that tjAlloc() accepts a 32-bit
integer argument (oops.) Such images cannot be accommodated in the
TurboJPEG Java API due to the fact that Java always uses a signed 32-bit
integer as an array index.
Fixes#361
This commit modifies h1v2_fancy_upsample() so that it uses an ordered
dither pattern, similar to that of h2v1_fancy_upsample(), rounding up or
down the result for alternate pixels rather than always rounding down.
This ensures that the decompression error pattern for a 4:4:0 JPEG image
will be similar to the rotated decompression error pattern for a 4:2:2
JPEG image. Thus, the final result will be similar regardless of
whether a 4:2:2 JPEG image is rotated or transposed before or after
decompression.
Closes#356
According to Intel's manual [1], "If a value entered for CPUID.EAX is
higher than the maximum input value for basic or extended function for
that processor then the data for the highest basic information leaf is
returned."
Right now, libjpeg-turbo doesn't first check that leaf 07H is supported
before attempting to use it, so the ostensible AVX2 bit (Bit 05) of the
CPUID result might actually be Bit 05 from a lower leaf. That bit might
be set, even if the CPU doesn't support AVX2.
This commit modifies the x86 and x86-64 SIMD feature detection code so
that it first checks whether CPUID leaf 07H is supported before
attempting to use it to check for AVX2 instruction support.
DRC:
This commit should fix
https://bugzilla.mozilla.org/show_bug.cgi?id=1520760
However, I have not personally been able to reproduce that issue,
despite using a Nehalem (pre-AVX2) CPU on which the maximum CPUID leaf
has been limited via a BIOS setting.
Closes#348
[1]
"Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2 (2A, 2B, 2C & 2D): Instruction Set Reference, A-Z", https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf, page 3-192.
Unfortunately, this hack is necessary because:
- install(TARGETS, ...) doesn't support the RENAME option.
- We can't modify OUTPUT_NAME for the "-static" targets without breaking
the regression tests.
- ${CMAKE_CFG_INTDIR} doesn't seem to work properly in an install()
command.
Refer to #307
Normally, 4:4:4 JPEGs have horizontal x vertical luminance & chrominance
sampling factors of 1x1. However, it is technically legal to create
4:4:4 JPEGs with sampling factors of 2x1, 1x2, 3x1, or 1x3, since the
sums of the products of those sampling factors are still <= 10. The
libjpeg API correctly decodes such images, so the TurboJPEG API should
as well.
Fixes#323
If cinfo->quantize_colors == 1, then jpeg_calc_output_dimensions() will
set cinfo->output_components to 1, and if cinfo->out_color_space is not
RGB (or extended RGB), hilarity will ensue.
Fixes#305
Caused by 950580eb0c. Since the code that
sets CMAKE_INSTALL_RPATH now depends on ENABLE_SHARED, that code needed
to be moved to after the point at which ENABLE_SHARED is defined.
Apparently Windows 7 without SP1 has O/S support for XSAVE but not for
YMM registers, and this exposed a bug in our usage of xgetbv. The test
instruction will set ZF only if none of the bits match between the two
operarands, so in effect, we were enabling AVX2 instructions if the O/S
supported XSAVE and the CPU supported AVX2 but the O/S only supported
XMM registers. This bug was not exposed on, for instance, Windows XP or
RHEL 5 because those O/S's do not support XSAVE.
Fixes#288
(for instance, when passing -msoft-float to the compiler)
The instructions used by jsimd_quantize_float_dspr2() and
jsimd_convsamp_float_dspr2() don't work with the soft float ABI, so
disable those functions when soft float is enabled.
Based on:
129a739bfaCloses#272
- When referring to specific clauses, annexes, tables, and figures, a
"timed reference" (a reference that includes the year) must be used in
order to avoid confusion.
- "CCITT" = "ITU-T"
- Replace ambiguous "JPEG spec" with the specific document number.
... in which one or more of the color indices is out of range for the
number of palette entries.
Fix partly borrowed from jpeg-9c. This commit also adopts Guido's
JERR_PPM_OUTOFRANGE enum value in lieu of our project-specific
JERR_PPM_TOOLARGE enum value.
Fixes#258
This is basically the same test that was performed in acinclude.m4 in
the old autotools-based build system. It was not ported to the
CMake-based build system because I previously had no way of testing
a non-DSPr2 build environment.
Fixes#248
... caused by using certain specific combinations of
jpeg_skip_scanlines() and jpeg_read_scanlines() calls with progressive,
vertically-subsampled JPEG images.
Fixes#237
In rdbmp.c, it is necessary to guard against 32-bit overflow/wraparound
when allocating the row buffer, because since BMP files have 32-bit
width and height fields, the value of biWidth can be up to 4294967295.
Specifically, if biWidth is 1073741824 and cinfo->input_components = 4,
then the samplesperrow argument in alloc_sarray() would wrap around to
0, and a division by zero error would occur at line 458 in jmemmgr.c.
If biWidth is set to a higher value, then samplesperrow would wrap
around to a small number, which would likely cause a buffer overflow
(this has not been tested or verified.)
... in tjLoadImage()/tjSaveImage(). These error codes require an add-on
message table, and if it isn't initialized, then format_message()
produces "Bogus message code XXXX" instead.
Arguably it doesn't make much sense for non-chroma components to be
subsampled (which is why this type of image was overlooked in
cd7c3e6672cce3779450c6dd10d0d70b0c2278b2-- I didn't realize it was a
thing), but certain Adobe applications apparently generate these images.
Fixes#236