This actually works and apparently always has worked. It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
(ChangeLog update forthcoming)
- Prefix all function names with "tj3" and remove version suffixes from
function names. (Future API overhauls will increment the prefix to
"tj4", etc., thus retaining backward API/ABI compatibility without
versioning each individual function.)
- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
TJ*FLAG_LOSSLESS, which were never released) with stateful integer
parameters, the value of which persists between function calls.
* Use parameters for the JPEG quality and subsampling as well, in
order to eliminate the awkwardness of specifying function arguments
that weren't relevant for lossless compression.
* tj3DecompressHeader() now stores all relevant information about the
JPEG image, including the width, height, subsampling type, entropy
coding type, etc. in parameters rather than returning that
information in its arguments.
* TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
(TJ*PARAM_SCANLIMIT) that allows the number of scans to be
specified.
- Use the const keyword for all pointer arguments to unmodified
buffers, as well as for both dimensions of 2D pointers. Addresses
#395.
- Use size_t rather than unsigned long to represent buffer sizes, since
unsigned long is a 32-bit type on Windows. Addresses #24.
- Return 0 from all buffer size functions if an error occurs, rather
than awkwardly trying to return -1 in an unsigned data type.
- Implement 12-bit and 16-bit data precision using dedicated
compression, decompression, and image I/O functions/methods.
* Suffix the names of all data-precision-specific functions with 8,
12, or 16.
* Because the YUV functions are intended to be used for video, they
are currently only implemented with 8-bit data precision, but they
can be expanded to 12-bit data precision in the future, if
necessary.
* Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
precision, using a new -precision option.
* Add appropriate regression tests for all of the above to the 'test'
target.
* Extend tjbenchtest to test 12-bit and 16-bit data precision, and
add separate 'tjtest12' and 'tjtest16' targets.
* BufferedImage I/O in the Java API is currently limited to 8-bit
data precision, since the BufferedImage class does not
straightforwardly support higher data precisions.
* Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
to grayscale or CMYK pixels, as it already does for 8-bit files.
- Properly accommodate lossless JPEG using dedicated parameters
(TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
rather than using a flag and awkwardly repurposing the JPEG quality.
Update TJBench to properly reflect whether a JPEG image is lossless.
- Re-organize the TJBench usage screen.
- Update the Java docs using Java 11, to improve the formatting and
eliminate HTML frames.
- Use the accurate integer DCT algorithm by default for both
compression and decompression, since the "fast" algorithm is a legacy
feature, it does not pass the ISO compliance tests, and it is not
actually faster on modern x86 CPUs.
* Remove the -accuratedct option from TJBench and TJExample.
- Re-implement the 'tjtest' target using a CMake script that enables
the appropriate tests, depending on the data precision and whether or
not the Java API is part of the build.
- Consolidate the C and Java versions of tjbenchtest into one script.
- Consolidate the C and Java versions of tjexampletest into one script.
- Combine all initialization functions into a single function
(tj3Init()) that accepts an integer parameter specifying the
subsystems to initialize.
- Enable decompression scaling explicitly, using a new function/method
(tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
than implicitly using awkward "desired width"/"desired height"
parameters.
- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
a scaling factor of 1/1.
- Implement partial image decompression, using a new function/method
(tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
TJBench option (-crop). Extend tjbenchtest to test the new feature.
Addresses #1.
- Allow the JPEG colorspace to be specified explicitly when
compressing, using a new parameter (TJ*PARAM_COLORSPACE). This
allows JPEG images with the RGB and CMYK colorspaces to be created.
- Remove the error/difference image feature from TJBench. Identical
images to the ones that TJBench created can be generated using
ImageMagick with
'magick composite <original_image> <output_image> -compose difference <diff_image>'
- Handle JPEG images with unknown subsampling types. TJ*PARAM_SUBSAMP
is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
be decompressed fully into packed-pixel images or losslessly
transformed (with the exception of lossless cropping.) They cannot
be partially decompressed or decompressed into planar YUV images.
Note also that TJBench, due to its lack of support for imperfect
transforms, requires that the subsampling type be known when
rotating, flipping, or transversely transposing an image. Addresses
#436
- The Java version of TJBench now has identical functionality to the C
version. This was accomplished by (somewhat hackishly) calling the
TurboJPEG C image I/O functions through JNI and copying the pixels
between the C heap and the Java heap.
- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
a TJBench option (-restart) to allow the restart marker interval to
be specified when compressing. Eliminate the undocumented TJ_RESTART
environment variable.
- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
(TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
optimized baseline Huffman coding to be specified when compressing.
Eliminate the undocumented TJ_OPTIMIZE environment variable.
- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
TJ*DENSITYUNITS) to allow the pixel density to be specified when
compressing or saving a Windows BMP image and to be queried when
decompressing or loading a Windows BMP image. Addresses #77.
- Refactor the fuzz targets to use the new API.
* Extend decompression coverage to 12-bit and 16-bit data precision.
* Replace the awkward cjpeg12 and cjpeg16 targets with proper
TurboJPEG-based compress12, compress12-lossless, and
compress16-lossless targets
- Fix innocuous UBSan warnings uncovered by the new fuzzers.
- Implement previous versions of the TurboJPEG API by wrapping the new
functions (tested by running the 2.1.x versions of TJBench, via
tjbenchtest, and TJUnitTest against the new implementation.)
* Remove all JNI functions for deprecated Java methods and implement
the deprecated methods using pure Java wrappers. It should be
understood that backward API compatibility in Java applies only to
the Java classes and that one cannot mix and match a JAR file from
one version of libjpeg-turbo with a JNI library from another
version.
- tj3Destroy() now silently accepts a NULL handle.
- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
and free() do.
- The image I/O functions now accept a TurboJPEG instance handle, which
is used to transmit/receive parameters and to receive error
information.
Closes#517
- TJBench/TJUnitTest: Wordsmith command-line output
- Java: "decompress operations"="decompression operations"
- tjLoadImage(): Error message tweak
- Don't mention compression performance in the description of
TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
already been compressed at that point.
(Oversights from 9a146f0f23)
- Wordsmithing, formatting, and grammar tweaks
- Various clarifications and corrections, including specifying whether
a particular buffer or image is used as a source or destination
- Accommodate/mention features that were introduced since the API
documentation was created.
- For clarity, use "packed-pixel" to describe uncompressed
source/destination images that are not planar YUV.
- Use "row" rather than "line" to refer to a single horizontal group of
pixels or component values, for consistency with the libjpeg API
documentation. (libjpeg also uses "scanline", which is a more archaic
term.)
- Use "alignment" rather than "padding" to refer to the number of bytes
by which a row's width is evenly divisible. This consistifies the
documention of the YUV functions and tjLoadImage(). ("Padding"
typically refers to the number of bytes added to each row, which is
not the same thing.)
- Remove all references to "the underlying codec." Although the
TurboJPEG API originated as a cross-platform wrapper for the Intel
Integrated Performance Primitives, Sun mediaLib, QuickTime, and
libjpeg, none of those TurboJPEG implementations has been maintained
since 2009. Nothing would prevent someone from implementing the
TurboJPEG API without libjpeg-turbo, but such an implementation would
not necessarily have an "underlying codec." (It could be fully
self-contained.)
- Use "destination image" rather than "output image", for consistency,
or describe the type of image that will be output.
- Avoid the term "image buffer" and instead use "byte buffer" to
refer to buffers that will hold JPEG images, or describe the type of
image that will be contained in the buffer. (The Java documentation
doesn't use "byte buffer", because the buffer arrays literally have
"byte" in front of them, and since Java doesn't have pointers, it is
not possible for mere mortals to store any other type of data in those
arrays.)
- C: Use "unified" to describe YUV images stored in a single buffer, for
consistency with the Java documentation.
- Use "planar YUV" rather than "YUV planar". Is is our convention to
describe images using {component layout} {colorspace/pixel format}
{image function}, e.g. "packed-pixel RGB source image" or "planar YUV
destination image."
- C: Document the TurboJPEG API version in which a particular function
or macro was introduced, and reorder the backward compatibility
function stubs in turbojpeg.h alphabetically by API version.
- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
comments.
Because the PAD() macro can only handle powers of 2, this is a necessary
restriction (and a documented one, except in the case of
tjCompressFromYUV()-- oops.) Failing to check the 'pad' argument
caused tjBufSizeYUV2() to return bogus results if 'pad' was less than 1
or otherwise not a power of 2. tjEncodeYUV3() and tjDecodeYUV()
effectively treated a 'pad' value of 0 as unpadded, but that was subtle
and undocumented behavior. tjCompressFromYUV() did not check whether
'pad' was a power of 2, so the strides passed to
tjCompressFromYUVPlanes() would have been incorrect if 'pad' was not a
power of 2. That would not have caused tjCompressFromYUV() to overrun
the source buffer, as long as the calling application allocated the
buffer based on the return value of tjBufSizeYUV2() (which computes the
strides in the same manner as tjCompressFromYUV().) However, if the
calling application attempted to initialize the source buffer using
correctly-computed strides, then it could have overrun its own
buffer in certain cases or produced incorrect JPEG images in others.
Realistically, there is no reason why an application would want to pass
a non-power-of-2 'pad' value to a TurboJPEG API function, so this commit
is about user-proofing the API rather than fixing any known issue.
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.) This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.
More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
+ document that tjFree() accepts NULL pointers without complaint.
Effectively, it has had that behavior all along, but the API does not
guarantee that tjFree() will be implemented with free() behind the
scenes, so it's best to formalize the behavior.
Loading RGB image files into a grayscale buffer isn't a particularly
useful feature, given that libjpeg-turbo can perform this conversion
much more optimally (with SIMD acceleration on some platforms) during
the compression process. Also, the RGB2GRAY() macro was not producing
deterministic cross-platform results because of variations in the
round-off behavior of various floating point implementations, so
`tjunittest -bmp` was failing in i386 builds.
Also, set the red/green/blue offsets for TJPF_GRAY to -1 rather than 0.
It was undefined behavior for an application to use those arrays/methods
with TJPF_GRAY anyhow, and this makes it easier for applications to
programmatically detect whether a given pixel format has red, green, and
blue components.
The main justification for this is to provide new libjpeg-turbo users
with a quick & easy way of developing a complete JPEG
compression/decompression program without requiring them to build
libjpeg-turbo from source (which was necessary in order to use the
project-private bmp API) or to use external libraries. These new
functions build upon significant enhancements to rdbmp.c, wrbmp.c,
rdppm.c, and wrppm.c which allow those engines to convert directly
between the native pixel format of the file and a pixel format
("colorspace" in libjpeg parlance) specified by the calling program.
rdbmp.c and wrbmp.c have also been modified such that the calling
program can choose to read or write image rows in the native (bottom-up)
order of the file format, thus eliminating the need to use an inversion
array. tjLoadImage() and tjSaveImage() leverage these new underlying
features in order to significantly improve upon the performance of the
old bmp API.
Because these new functions cannot work without the libjpeg-turbo
colorspace extensions, the libjpeg-compatible code in turbojpeg.c has
been removed. That code was only there to serve as an example of how
to use the TurboJPEG API on top of libjpeg, but more specific, buildable
examples now exist in the https://github.com/libjpeg-turbo/ijg
repository.
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.
Closes#153
If the source image for a transform operation has a lot of EXIF or ICC
data embedded in it, then it may cause the output image size to exceed
the worst-case size returned by tjBufSize() (because tjTransform()
transfers all markers to the output image.) This is only a problem if
TJFLAG_NOREALLOC is passed to the function. Since the TurboJPEG C API
doesn't require the destination image size to be set in this case, it
makes the documented assumption that the calling program has allocated
the destination buffer to exactly the size returned by tjBufSize().
Changing this assumption would change the API behavior and necessitate
a new function name (tjTransform2().) At the moment, it's easier to
just document this as a known issue, since it's easy to work around in
the C API.
The Java API is unfortunately a different story, since it must always
use TJFLAG_NOREALLOC (because, when using the TurboJPEG Java API, all
buffers are allocated on the Java heap, and thus they can't be
reallocated by the C code.) There is no easy way to work around this
without changing the C API as discussed above, because if the source
image contains large amounts of marker data, it's virtually impossible
to determine how big the output image will be.
- Provide a new C API function and TJException method that allows
calling programs to query the severity of a compression/decompression/
transform error.
- Provide a new flag that instructs the library to immediately stop
compressing/decompressing/transforming if a warning is encountered.
Fixes#151
Introduce a new C API function (tjGetErrorStr2()) that can be used to
retrieve compression/decompression/transform error messages in a
thread-safe (i.e. instance-specific) manner. Retrieving error messages
from global functions is still thread-unsafe.
Addresses a concern expressed in #151.
The changes relative to 1.4.x are only cosmetic (using const pointers)
and should not affect API/ABI compatibility, but our practice is to
synchronize the API revision with the most recent release that provides
user-visible changes to the API.
This reassures the caller that the buffers will not be modified and also
allows read-only buffers to be passed to the functions.
Partially reverts 3947a19f25fc8186d3812dbcf8e70baea36ef652.