Commit Graph

72 Commits

Author SHA1 Message Date
DRC
96bc40c1b3 Implement arithmetic coding with 12-bit precision
This actually works and apparently always has worked.  It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
2023-01-26 13:11:58 -06:00
DRC
fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00
DRC
7ab6222cff Merge branch 'main' into dev 2023-01-20 14:09:25 -06:00
DRC
fb15efe94f TurboJPEG: More documentation improvements
- TJBench/TJUnitTest: Wordsmith command-line output

- Java: "decompress operations"="decompression operations"

- tjLoadImage(): Error message tweak

- Don't mention compression performance in the description of
  TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
  already been compressed at that point.

(Oversights from 9a146f0f23)
2023-01-20 12:50:21 -06:00
DRC
d4589f4f1c Merge branch 'main' into dev 2023-01-14 18:07:53 -06:00
DRC
9a146f0f23 TurboJPEG: Numerous documentation improvements
- Wordsmithing, formatting, and grammar tweaks

- Various clarifications and corrections, including specifying whether
  a particular buffer or image is used as a source or destination

- Accommodate/mention features that were introduced since the API
  documentation was created.

- For clarity, use "packed-pixel" to describe uncompressed
  source/destination images that are not planar YUV.

- Use "row" rather than "line" to refer to a single horizontal group of
  pixels or component values, for consistency with the libjpeg API
  documentation.  (libjpeg also uses "scanline", which is a more archaic
  term.)

- Use "alignment" rather than "padding" to refer to the number of bytes
  by which a row's width is evenly divisible.  This consistifies the
  documention of the YUV functions and tjLoadImage().  ("Padding"
  typically refers to the number of bytes added to each row, which is
  not the same thing.)

- Remove all references to "the underlying codec."  Although the
  TurboJPEG API originated as a cross-platform wrapper for the Intel
  Integrated Performance Primitives, Sun mediaLib, QuickTime, and
  libjpeg, none of those TurboJPEG implementations has been maintained
  since 2009.  Nothing would prevent someone from implementing the
  TurboJPEG API without libjpeg-turbo, but such an implementation would
  not necessarily have an "underlying codec."  (It could be fully
  self-contained.)

- Use "destination image" rather than "output image", for consistency,
  or describe the type of image that will be output.

- Avoid the term "image buffer" and instead use "byte buffer" to
  refer to buffers that will hold JPEG images, or describe the type of
  image that will be contained in the buffer.  (The Java documentation
  doesn't use "byte buffer", because the buffer arrays literally have
  "byte" in front of them, and since Java doesn't have pointers, it is
  not possible for mere mortals to store any other type of data in those
  arrays.)

- C: Use "unified" to describe YUV images stored in a single buffer, for
  consistency with the Java documentation.

- Use "planar YUV" rather than "YUV planar".  Is is our convention to
  describe images using {component layout} {colorspace/pixel format}
  {image function}, e.g. "packed-pixel RGB source image" or "planar YUV
  destination image."

- C: Document the TurboJPEG API version in which a particular function
  or macro was introduced, and reorder the backward compatibility
  function stubs in turbojpeg.h alphabetically by API version.

- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
  comments.
2023-01-14 17:10:31 -06:00
DRC
d260858395 TurboJPEG: Ensure 'pad' arg is a power of 2
Because the PAD() macro can only handle powers of 2, this is a necessary
restriction (and a documented one, except in the case of
tjCompressFromYUV()-- oops.)  Failing to check the 'pad' argument
caused tjBufSizeYUV2() to return bogus results if 'pad' was less than 1
or otherwise not a power of 2.  tjEncodeYUV3() and tjDecodeYUV()
effectively treated a 'pad' value of 0 as unpadded, but that was subtle
and undocumented behavior.  tjCompressFromYUV() did not check whether
'pad' was a power of 2, so the strides passed to
tjCompressFromYUVPlanes() would have been incorrect if 'pad' was not a
power of 2.  That would not have caused tjCompressFromYUV() to overrun
the source buffer, as long as the calling application allocated the
buffer based on the return value of tjBufSizeYUV2() (which computes the
strides in the same manner as tjCompressFromYUV().)  However, if the
calling application attempted to initialize the source buffer using
correctly-computed strides, then it could have overrun its own
buffer in certain cases or produced incorrect JPEG images in others.

Realistically, there is no reason why an application would want to pass
a non-power-of-2 'pad' value to a TurboJPEG API function, so this commit
is about user-proofing the API rather than fixing any known issue.
2023-01-05 14:22:17 -06:00
DRC
98ff1fd103 TurboJPEG: Add lossless JPEG detection capability
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.)  This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.

More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
2022-11-21 22:46:12 -06:00
DRC
25ccad99a0 TurboJPEG: 8-bit lossless JPEG support 2022-11-16 15:57:25 -06:00
DRC
6002720c37 TurboJPEG: Opt. enable arithmetic entropy coding 2022-11-15 23:38:55 -06:00
DRC
ba22c0f76d tjDecompressHeader3(): Accept tables-only streams
Inspired by:
b3b15cfe74

Closes #604
Closes #605
2022-06-24 14:10:44 -05:00
DRC
cd9a318502 Bump TurboJPEG C API version to 2.1
(because of TJFLAG_LIMITSCANS)
2021-04-05 22:20:52 -05:00
DRC
c81e91e8ca TurboJPEG: New flag for limiting prog JPEG scans
This also fixes timeouts reported by OSS-Fuzz.
2021-04-05 16:33:44 -05:00
DRC
2d14fc2e3b Dox: Re-generate using Doxygen 1.8.20
This fixes a GitHub Dependabot alert regarding jquery.js.

Fixes #421
2020-10-01 14:36:30 -05:00
DRC
ae87a95861 TurboJPEG: Make global error handling thread-safe
... on platforms that support thread-local storage.  This currently
includes all supported platforms except 32-bit macOS.

Fixes #396
2020-06-18 23:40:20 -05:00
DRC
00607ec260 Eliminate unnecessary NULL checks before tjFree()
+ document that tjFree() accepts NULL pointers without complaint.
Effectively, it has had that behavior all along, but the API does not
guarantee that tjFree() will be implemented with free() behind the
scenes, so it's best to formalize the behavior.
2020-01-08 14:24:37 -06:00
DRC
c0ca354eb4 Label this release 2.0 instead of 1.6
This also pulls the formatting changes from
19c791cdac into the TurboJPEG C API docs.
2018-03-22 16:05:58 -05:00
DRC
479fa1d870 tjLoadImage(): Don't convert RGB to grayscale
Loading RGB image files into a grayscale buffer isn't a particularly
useful feature, given that libjpeg-turbo can perform this conversion
much more optimally (with SIMD acceleration on some platforms) during
the compression process.  Also, the RGB2GRAY() macro was not producing
deterministic cross-platform results because of variations in the
round-off behavior of various floating point implementations, so
`tjunittest -bmp` was failing in i386 builds.
2017-11-18 11:40:53 -06:00
DRC
dc4b900223 TurboJPEG: Add alpha offset array/method
Also, set the red/green/blue offsets for TJPF_GRAY to -1 rather than 0.
It was undefined behavior for an application to use those arrays/methods
with TJPF_GRAY anyhow, and this makes it easier for applications to
programmatically detect whether a given pixel format has red, green, and
blue components.
2017-11-17 22:49:07 -06:00
DRC
aa7459050d TurboJPEG C API: Add BMP/PPM load/save functions
The main justification for this is to provide new libjpeg-turbo users
with a quick & easy way of developing a complete JPEG
compression/decompression program without requiring them to build
libjpeg-turbo from source (which was necessary in order to use the
project-private bmp API) or to use external libraries.  These new
functions build upon significant enhancements to rdbmp.c, wrbmp.c,
rdppm.c, and wrppm.c which allow those engines to convert directly
between the native pixel format of the file and a pixel format
("colorspace" in libjpeg parlance) specified by the calling program.
rdbmp.c and wrbmp.c have also been modified such that the calling
program can choose to read or write image rows in the native (bottom-up)
order of the file format, thus eliminating the need to use an inversion
array.  tjLoadImage() and tjSaveImage() leverage these new underlying
features in order to significantly improve upon the performance of the
old bmp API.

Because these new functions cannot work without the libjpeg-turbo
colorspace extensions, the libjpeg-compatible code in turbojpeg.c has
been removed.  That code was only there to serve as an example of how
to use the TurboJPEG API on top of libjpeg, but more specific, buildable
examples now exist in the https://github.com/libjpeg-turbo/ijg
repository.
2017-11-17 19:32:52 -06:00
DRC
4893e5d8b8 Merge branch 'master' into dev 2017-11-17 19:00:53 -06:00
DRC
5abf2536f6 Doc tweak: TJFLAG_ACCURATEDCT is the first flag 2017-11-14 16:12:13 -06:00
DRC
dadebcd79a TurboJPEG: Add "copy none", progressive xform opts
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.

Closes #153
2017-06-28 15:32:33 -05:00
DRC
dedce66eb5 Merge branch 'master' into dev 2017-06-28 15:30:41 -05:00
DRC
b0971e47d7 TurboJPEG: Document xform issue w/ big marker data
If the source image for a transform operation has a lot of EXIF or ICC
data embedded in it, then it may cause the output image size to exceed
the worst-case size returned by tjBufSize() (because tjTransform()
transfers all markers to the output image.)  This is only a problem if
TJFLAG_NOREALLOC is passed to the function.  Since the TurboJPEG C API
doesn't require the destination image size to be set in this case, it
makes the documented assumption that the calling program has allocated
the destination buffer to exactly the size returned by tjBufSize().
Changing this assumption would change the API behavior and necessitate
a new function name (tjTransform2().)  At the moment, it's easier to
just document this as a known issue, since it's easy to work around in
the C API.

The Java API is unfortunately a different story, since it must always
use TJFLAG_NOREALLOC (because, when using the TurboJPEG Java API, all
buffers are allocated on the Java heap, and thus they can't be
reallocated by the C code.)  There is no easy way to work around this
without changing the C API as discussed above, because if the source
image contains large amounts of marker data, it's virtually impossible
to determine how big the output image will be.
2017-06-28 15:22:33 -05:00
DRC
aba6ae5950 TurboJPEG: Opt. enable progressive entropy coding
Fulfills part of the feature request in #153.  Also paves the way for
SIMD-accelerated progressive Huffman coding (refer to #46.)
2017-06-27 13:26:26 -05:00
DRC
596e3965e7 Merge branch 'master' into dev 2017-06-27 11:51:34 -05:00
DRC
d0c3aa900b TurboJPEG: C API documentation buglet
TJFLAG_NOREALLOC, tjAlloc(), and tjFree() apply to all TurboJPEG
compression functions, not just tjCompress2().
2017-06-27 11:49:38 -05:00
DRC
d4092f6b4d TurboJPEG: Improve error handling
- Provide a new C API function and TJException method that allows
  calling programs to query the severity of a compression/decompression/
  transform error.
- Provide a new flag that instructs the library to immediately stop
  compressing/decompressing/transforming if a warning is encountered.

Fixes #151
2017-06-27 11:03:26 -05:00
DRC
b9ab64d8db TurboJPEG: Thread-safe error message retrieval
Introduce a new C API function (tjGetErrorStr2()) that can be used to
retrieve compression/decompression/transform error messages in a
thread-safe (i.e. instance-specific) manner.  Retrieving error messages
from global functions is still thread-unsafe.

Addresses a concern expressed in #151.
2017-06-27 10:58:36 -05:00
DRC
7c202f76e7 Bump TurboJPEG C API revision to 1.5
The changes relative to 1.4.x are only cosmetic (using const pointers)
and should not affect API/ABI compatibility, but our practice is to
synchronize the API revision with the most recent release that provides
user-visible changes to the API.
2016-02-29 13:21:12 -06:00
DRC
6fa14b37ee Declare source buffers in TurboJPEG C API as const
This reassures the caller that the buffers will not be modified and also
allows read-only buffers to be passed to the functions.

Partially reverts 3947a19f25fc8186d3812dbcf8e70baea36ef652.
2015-08-13 20:08:08 -05:00
DRC
7a8c53e4bd Clarify that the TurboJPEG API functions/methods do not modify the source buffer.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.4.x@1567 632fc199-4ca6-4c93-a231-07263d6284db
2015-06-19 16:07:14 +00:00
DRC
fe80ec2275 If the output buffer in the TurboJPEG destination manager was allocated by the destination manager and is being reused from a previous compression operation, then we need to get the buffer size from the previous operation, since the calling program doesn't know the actual buffer size.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1368 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-21 15:51:47 +00:00
DRC
40dd3146cd Refactored YUVImage Java class so that it supports both unified YUV image buffers as well as separate YUV image planes; modified the JNI functions accordingly and added new helper functions to the TurboJPEG C API (tjPlaneWidth(), tjPlaneHeight(), tjPlaneSizeYUV()) to facilitate those modifications; changed potentially confusing "component width" and "component height" terms to "plane width" and "plane height" and modified variable names in turbojpeg.c to reflect this; numerous other documentation tweaks
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1360 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-17 12:23:49 +00:00
DRC
f7c11051de Oops. Parameter name is "strides", not "stride"
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1345 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-12 15:52:51 +00:00
DRC
9d77dad4c9 Reformat TurboJPEG C API documentation to improve ease of maintenance and to make it more consistent with the javadoc formatting; fix minor error in tjCompressFromYUV() prototype.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1344 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-12 15:06:30 +00:00
DRC
aecea388c7 Extend the TurboJPEG C API to support handling YUV images stored in separate image planes instead of a unified buffer
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1343 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-11 18:05:41 +00:00
DRC
493be61707 Clean up and consolidate notes regarding the YUV image format. This also corrects a factual error regarding the padding of the luminance plane-- because we now support 4:1:1, the component width is not necessarily padded to the nearest multiple of 2 if horizontal subsampling is used.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1342 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-10 20:12:17 +00:00
DRC
779bd68d20 Clean up notes using the doxygen @note command
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1341 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-10 18:30:52 +00:00
DRC
c71ab2f7c2 Make the documentation more readable by displaying fixed-width text (which is used to refer to variables and functions) in a different color.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1339 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-10 16:43:31 +00:00
DRC
1909c59bad As with tjDecompressToYUV*(), tjCompressFromYUV() also conditionally uses an intermediate buffer if the source image dimensions do not fall on MCU boundaries.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1170 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-15 08:48:53 +00:00
DRC
34dca05227 Implement a YUV decode function in the TurboJPEG API, to be symmetric with tjEncodeYUV().
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1132 632fc199-4ca6-4c93-a231-07263d6284db
2014-02-28 09:17:14 +00:00
DRC
07e982d9b4 Deprecate and undocument the FORCE{MMX|SSE|SSE2|SSE3} flags. These were originally introduced in TurboJPEG/IPP as a way to override the automatic CPU selection in the underlying IPP codec, which was closed source. They are not meaningful anymore, since libjpeg-turbo provides environment variables to accomplish the same thing and since it no longer necessarily uses x86 SIMD code behind the scenes.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1072 632fc199-4ca6-4c93-a231-07263d6284db
2013-10-31 07:11:39 +00:00
DRC
910a35725c Extend the TurboJPEG C API to support compressing JPEG images from YUV planar images
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1067 632fc199-4ca6-4c93-a231-07263d6284db
2013-10-30 23:02:57 +00:00
DRC
b2c4745aa3 Wordsmithing
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1021 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-23 06:38:59 +00:00
DRC
cd7c3e6672 Add CMYK support to the TurboJPEG C API
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1019 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-23 02:49:25 +00:00
DRC
1f3635c496 Add 4:1:1 subsampling support in the TurboJPEG C API
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1014 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-18 10:19:00 +00:00
DRC
7bd24b26e0 Disable timestamp in generated HTML files to make diffing and merging easier.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1013 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-18 09:38:52 +00:00
DRC
ca866c48f0 Disable timestamp in generated HTML files to make diffing and merging easier.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1012 632fc199-4ca6-4c93-a231-07263d6284db
2013-08-18 09:37:48 +00:00