The primary purpose of this is to encourage adoption of libjpeg-turbo in
downstream Windows projects that forbid the use of "deprecated"
functions. libjpeg-turbo's usage of those functions was not actually
unsafe, because:
- libjpeg-turbo always checks the return value of fopen() and ensures
that a NULL filename can never be passed to it.
- libjpeg-turbo always checks the return value of getenv() and never
passes a NULL argument to it.
- The sprintf() calls in format_message() (jerror.c) could never
overflow the destination string buffer or leave it unterminated as
long as the buffer was at least JMSG_LENGTH_MAX bytes in length, as
instructed. (Regardless, this commit replaces those calls with
snprintf() calls.)
- libjpeg-turbo never uses sscanf() to read strings or multi-byte
character arrays.
- Because of b7d6e84d6a, wrjpgcom
explicitly checks the bounds of the source and destination strings
before calling strcat() and strcpy().
- libjpeg-turbo always ensures that the destination string is
terminated when using strncpy().
(548490fe5e made this explicit.)
Regarding thread safety:
Technically speaking, getenv() is not thread-safe, because the returned
pointer may be invalidated if another thread sets the same environment
variable between the time that the first thread calls getenv() and the
time that that thread uses the return value. In practice, however, this
could only occur with libjpeg-turbo if:
(1) A multithreaded calling application used the deprecated and
undocumented TJFLAG_FORCEMMX/TJFLAG_FORCESSE/TJFLAG_FORCESSE2 flags in
the TurboJPEG API or set one of the corresponding environment variables
(which are only intended for testing purposes.) Since the TurboJPEG API
library only ever passed string constants to putenv(), the only inherent
risk (i.e. the only risk introduced by the library and not the calling
application) was that the SIMD extensions may have read an incorrect
value from one of the aforementioned environment variables.
or
(2) A multithreaded calling application modified the value of the
JPEGMEM environment variable in one thread while another thread was
reading the value of that environment variable (in the body of
jpeg_create_compress() or jpeg_create_decompress().) Given that the
libjpeg API provides a thread-safe way for applications to modify the
default memory limit without using the JPEGMEM environment variable,
direct modification of that environment variable by calling applications
is not supported.
Microsoft's implementation of getenv_s() does not claim to be
thread-safe either, so this commit uses getenv_s() solely to mollify
Visual Studio. New inline functions and macros (GETENV_S() and
PUTENV_S) wrap getenv_s()/_putenv_s() when building for Visual Studio
and getenv()/setenv() otherwise, but GETENV_S()/PUTENV_S() provide no
advantages over getenv()/setenv() other than parameter validation. They
are implemented solely for convenience.
Technically speaking, strerror() is not thread-safe, because the
returned pointer may be invalidated if another thread changes the locale
and/or calls strerror() between the time that the first thread calls
strerror() and the time that that thread uses the return value. In
practice, however, this could only occur with libjpeg-turbo if a
multithreaded calling application encountered a file I/O error in
tjLoadImage() or tjSaveImage(). Since both of those functions
immediately copy the string returned from strerror() into a thread-local
buffer, the risk is minimal, and the worst case would involve an
incorrect error string being reported to the calling application.
Regardless, this commit uses strerror_s() in the TurboJPEG API library
when building for Visual Studio. Note that strerror_r() could have been
used on Un*x systems, but it would have been necessary to handle both
the POSIX and GNU implementations of that function and perform
widespread compatibility testing. Such is left as an exercise for
another day.
Fixes#568
- Since the ERREXITS() and TRACEMSS() macros are never used internally
(they are a relic of the legacy memory managers that libjpeg
provided), the only risk was that an external program might have
invoked one of those macros with a string longer than 79 characters
(JMSG_STR_PARM_MAX - 1).
- TJBench never invokes the THROW_TJ() macro with a string longer than
199 (JMSG_LENGTH_MAX - 1) characters, so there was no risk. However,
it's a good idea to explicitly terminate the destination strings so
that anyone looking at the code can immediately tell that it is safe.
+ document that tjFree() accepts NULL pointers without complaint.
Effectively, it has had that behavior all along, but the API does not
guarantee that tjFree() will be implemented with free() behind the
scenes, so it's best to formalize the behavior.
This programming practice (which exists in other code bases as well)
is a by-product of having used early C compilers that did not properly
handle free(NULL). All modern compilers should properly handle that.
Fixes#398
Prevent several integer overflow issues and subsequent segfaults that
occurred when attempting to compress or decompress gigapixel images with
the TurboJPEG API:
- Modify tjBufSize(), tjBufSizeYUV2(), and tjPlaneSizeYUV() to avoid
integer overflow when computing the return values and to return an
error if such an overflow is unavoidable.
- Modify tjunittest to validate the above.
- Modify tjCompress2(), tjEncodeYUVPlanes(), tjDecompress2(), and
tjDecodeYUVPlanes() to avoid integer overflow when computing the row
pointers in the 64-bit TurboJPEG C API.
- Modify TJBench (both C and Java versions) to avoid overflowing the
size argument to malloc()/new and to fail gracefully if such an
overflow is unavoidable.
In general, this allows gigapixel images to be accommodated by the
64-bit TurboJPEG C API when using automatic JPEG buffer (re)allocation.
Such images cannot currently be accommodated without automatic JPEG
buffer (re)allocation, due to the fact that tjAlloc() accepts a 32-bit
integer argument (oops.) Such images cannot be accommodated in the
TurboJPEG Java API due to the fact that Java always uses a signed 32-bit
integer as an array index.
Fixes#361
... including, but not limited to:
- unused macros
- private functions not marked as static
- unprototyped global functions
- variable shadowing
(detected by various non-default GCC 8 warning options)
... and modify tjbench.c to match the variable name changes made to
TJBench.java
("checkstyle" = http://checkstyle.sourceforge.net, not our regex-based
checkstyle script)
Arguably it doesn't make much sense for non-chroma components to be
subsampled (which is why this type of image was overlooked in
cd7c3e6672cce3779450c6dd10d0d70b0c2278b2-- I didn't realize it was a
thing), but certain Adobe applications apparently generate these images.
Fixes#236
Within the libjpeg API code, it seems to be more the convention than not
to separate the macro name and value by two or more spaces, which
improves general readability. Making this consistent across all of
libjpeg-turbo is less about my individual preferences and more about
making it easy to automatically detect variations from our chosen
formatting convention. I intend to release the script I'm using to
validate this stuff, once it matures and stabilizes a bit.
With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
The main justification for this is to provide new libjpeg-turbo users
with a quick & easy way of developing a complete JPEG
compression/decompression program without requiring them to build
libjpeg-turbo from source (which was necessary in order to use the
project-private bmp API) or to use external libraries. These new
functions build upon significant enhancements to rdbmp.c, wrbmp.c,
rdppm.c, and wrppm.c which allow those engines to convert directly
between the native pixel format of the file and a pixel format
("colorspace" in libjpeg parlance) specified by the calling program.
rdbmp.c and wrbmp.c have also been modified such that the calling
program can choose to read or write image rows in the native (bottom-up)
order of the file format, thus eliminating the need to use an inversion
array. tjLoadImage() and tjSaveImage() leverage these new underlying
features in order to significantly improve upon the performance of the
old bmp API.
Because these new functions cannot work without the libjpeg-turbo
colorspace extensions, the libjpeg-compatible code in turbojpeg.c has
been removed. That code was only there to serve as an example of how
to use the TurboJPEG API on top of libjpeg, but more specific, buildable
examples now exist in the https://github.com/libjpeg-turbo/ijg
repository.
The program crashed when a JPEG image was passed on the command line,
because we were mixing our metaphors vis-a-vis malloc()/free() and
tjAlloc()/tjFree() (malloc()/free() uses the tjbench.exe heap,
whereas tjAlloc()/tjFree() uses the turbojpeg.dll heap.)
Previously, -stoponwarning only had an effect on the underlying
TurboJPEG C functions, but TJBench still aborted if a non-fatal error
occurred. This commit modifies the C version of TJBench such that it
always recovers from a non-fatal error unless -stoponwarning is
specified. Furthermore, the benchmark stores the details of the last
non-fatal error and does not print any subsequent non-fatal error
messages unless they differ from the last one.
Due to limitations in the Java API (specifically, the fact that it
cannot communicate errors, fatal or otherwise, to the calling program
without throwing a TJException), it was only possible to make
decompression operations fully recoverable within TJBench. With other
operations, -stoponwarning still has an effect on the underlying C
library but has no effect at the Java level.
The Java API documentation has been amended to reflect that only certain
methods are truly recoverable, regardless of the state of
TJ.FLAG_STOPONWARNING.
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.
Closes#153
Given that libjpeg-turbo can often process hundreds of megapixels/second
on modern hardware, the default of one warmup iteration was essentially
meaningless. Furthermore, the -warmup option was a bit clunky, since
it required some foreknowledge of how fast the benchmarks were going to
execute.
This commit introduces a 1-second warmup interval for each benchmark by
default, and the -warmup option has been retasked to control the length
of that interval.
- Provide a new C API function and TJException method that allows
calling programs to query the severity of a compression/decompression/
transform error.
- Provide a new flag that instructs the library to immediately stop
compressing/decompressing/transforming if a warning is encountered.
Fixes#151
Embedded ICC profiles can cause the size of a JPEG file to exceed the
size returned by tjBufSize() (which is really meant to be used for
compression anyhow, not for decompression), and this was causing a
segfault (C) or an ArrayIndexOutOfBoundsException (Java) when
decompressing such files with TJBench. This commit modifies the
benchmark such that, when tiled decompression is disabled, it re-uses
the source buffer as the primary JPEG buffer.
For whatever reason, the "write" global variable in tjbench.c was
overriding the linkage with the write() system function. This may have
affected other platforms as well but was not known to.