Commit Graph

23 Commits

Author SHA1 Message Date
DRC
8d76e4e550 Doc: "EXIF" = "Exif" 2024-08-31 15:33:55 -04:00
DRC
9983840eb6 TJ/xform: Check crop region against dest. image
Lossless cropping is performed after other lossless transform
operations, so the cropping region must be specified relative to the
destination image dimensions and level of chrominance subsampling, not
the source image dimensions and level of chrominance subsampling.

More specifically, if the lossless transform operation swaps the X and Y
axes, or if the image is converted to grayscale, then that changes the
cropping region requirements.
2024-08-31 15:04:30 -04:00
DRC
8456d2b98c Doc: "MCU block" = "iMCU" or "MCU"
The JPEG-1 spec never uses the term "MCU block".  That term is rarely
used in other literature to describe the equivalent of an MCU in an
interleaved JPEG image, but the libjpeg documentation uses "iMCU" to
describe the same thing.  "iMCU" is a better term, since the equivalent
of an interleaved MCU can contain multiple DCT blocks (or samples in
lossless mode) that are only grouped together if the image is
interleaved.

In the case of restart markers, "MCU block" was used in the libjpeg
documentation instead of "MCU", but "MCU" is more accurate and less
confusing.  (The restart interval is literally in MCUs, where one MCU
is one data unit in a non-interleaved JPEG image and multiple data units
in a multi-component interleaved JPEG image.)

In the case of 9b704f96b2, the issue was
actually with progressive JPEG images exactly two DCT blocks wide, not
two MCU blocks wide.

This commit also defines "MCU" and "MCU row" in the description of the
various restart marker options/parameters.  Although an MCU row is
technically always a row of samples in lossless mode, "sample row" was
confusing, since it is used in other places to describe a row of samples
for a single component (whereas an MCU row in a typical lossless JPEG
image consists of a row of interleaved samples for all components.)
2024-08-30 14:16:09 -04:00
DRC
0c23b0ad60 Various doc tweaks
- "Optimized baseline entropy coding" = "Huffman table optimization"

  "Optimized baseline entropy coding" was meant to emphasize that the
  feature is only useful when generating baseline (single-scan lossy
  8-bit-per-sample Huffman-coded) JPEG images, because it is
  automatically enabled when generating Huffman-coded progressive
  (multi-scan), 12-bit-per-sample, and lossless JPEG images.  However,
  Huffman table optimization isn't actually an integral part of those
  non-baseline modes.  You can forego Huffman table optimization with
  12-bit data precision if you supply your own Huffman tables.  The spec
  doesn't require it with progressive or lossless mode, either, although
  our implementation does.  Furthermore, "baseline" describes more than
  just the type of entropy coding used.  It was incorrect to say that
  optimized "baseline" entropy coding is automatically enabled for
  Huffman-coded progressive, 12-bit-per-sample, and lossless JPEG
  images, since those are clearly not baseline images.

- "Progressive entropy coding" = "Progressive JPEG"

  "Progressive" describes more than just the type of entropy coding
  used.  (In fact, both Huffman-coded and arithmetic-coded images can be
  progressive.)

- Mention that TJPARAM_OPTIMIZE/TJ.PARAM_OPTIMIZE can be used with
  lossless transformation as well.

- General wordsmithing

- Formatting tweaks
2024-08-16 11:49:00 -04:00
DRC
96bc40c1b3 Implement arithmetic coding with 12-bit precision
This actually works and apparently always has worked.  It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
2023-01-26 13:11:58 -06:00
DRC
fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00
DRC
7ab6222cff Merge branch 'main' into dev 2023-01-20 14:09:25 -06:00
DRC
fb15efe94f TurboJPEG: More documentation improvements
- TJBench/TJUnitTest: Wordsmith command-line output

- Java: "decompress operations"="decompression operations"

- tjLoadImage(): Error message tweak

- Don't mention compression performance in the description of
  TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
  already been compressed at that point.

(Oversights from 9a146f0f23)
2023-01-20 12:50:21 -06:00
DRC
d4589f4f1c Merge branch 'main' into dev 2023-01-14 18:07:53 -06:00
DRC
9a146f0f23 TurboJPEG: Numerous documentation improvements
- Wordsmithing, formatting, and grammar tweaks

- Various clarifications and corrections, including specifying whether
  a particular buffer or image is used as a source or destination

- Accommodate/mention features that were introduced since the API
  documentation was created.

- For clarity, use "packed-pixel" to describe uncompressed
  source/destination images that are not planar YUV.

- Use "row" rather than "line" to refer to a single horizontal group of
  pixels or component values, for consistency with the libjpeg API
  documentation.  (libjpeg also uses "scanline", which is a more archaic
  term.)

- Use "alignment" rather than "padding" to refer to the number of bytes
  by which a row's width is evenly divisible.  This consistifies the
  documention of the YUV functions and tjLoadImage().  ("Padding"
  typically refers to the number of bytes added to each row, which is
  not the same thing.)

- Remove all references to "the underlying codec."  Although the
  TurboJPEG API originated as a cross-platform wrapper for the Intel
  Integrated Performance Primitives, Sun mediaLib, QuickTime, and
  libjpeg, none of those TurboJPEG implementations has been maintained
  since 2009.  Nothing would prevent someone from implementing the
  TurboJPEG API without libjpeg-turbo, but such an implementation would
  not necessarily have an "underlying codec."  (It could be fully
  self-contained.)

- Use "destination image" rather than "output image", for consistency,
  or describe the type of image that will be output.

- Avoid the term "image buffer" and instead use "byte buffer" to
  refer to buffers that will hold JPEG images, or describe the type of
  image that will be contained in the buffer.  (The Java documentation
  doesn't use "byte buffer", because the buffer arrays literally have
  "byte" in front of them, and since Java doesn't have pointers, it is
  not possible for mere mortals to store any other type of data in those
  arrays.)

- C: Use "unified" to describe YUV images stored in a single buffer, for
  consistency with the Java documentation.

- Use "planar YUV" rather than "YUV planar".  Is is our convention to
  describe images using {component layout} {colorspace/pixel format}
  {image function}, e.g. "packed-pixel RGB source image" or "planar YUV
  destination image."

- C: Document the TurboJPEG API version in which a particular function
  or macro was introduced, and reorder the backward compatibility
  function stubs in turbojpeg.h alphabetically by API version.

- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
  comments.
2023-01-14 17:10:31 -06:00
DRC
25ccad99a0 TurboJPEG: 8-bit lossless JPEG support 2022-11-16 15:57:25 -06:00
DRC
6002720c37 TurboJPEG: Opt. enable arithmetic entropy coding 2022-11-15 23:38:55 -06:00
DRC
53bb941845 Java: Reformat code per checkstyle recommendations
... and modify tjbench.c to match the variable name changes made to
TJBench.java

("checkstyle" = http://checkstyle.sourceforge.net, not our regex-based
checkstyle script)
2018-05-15 14:59:57 -05:00
DRC
dadebcd79a TurboJPEG: Add "copy none", progressive xform opts
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.

Closes #153
2017-06-28 15:32:33 -05:00
DRC
739edeb8a6 Further exception cleanup
Use a new checked exception type (TJException) when passing through
errors from the underlying C library. This gives the application a
choice of catching all exceptions or just those from TurboJPEG.

Throw IllegalArgumentException at the JNI level when arguments to the
JNI function are incorrect, and when one of the TurboJPEG "utility"
functions returns an error (because, per the C API specification, those
functions will only return an error if one of their arguments is out of
range.)

Remove "throws Exception" from the signature of any methods that no
longer pass through an error from the TurboJPEG C library.

Credit Viktor for the new code

Code formatting tweaks
2015-07-27 03:40:58 -05:00
DRC
67bee8683d Code formatting tweaks
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@968 632fc199-4ca6-4c93-a231-07263d6284db
2013-04-27 12:36:07 +00:00
DRC
65d4a46d3b Java doc tweaks
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@966 632fc199-4ca6-4c93-a231-07263d6284db
2013-04-27 01:06:52 +00:00
DRC
80803ae5fe "which"="that"
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@730 632fc199-4ca6-4c93-a231-07263d6284db
2011-12-15 13:12:59 +00:00
DRC
f546711076 Implement custom filter callback in Java
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@707 632fc199-4ca6-4c93-a231-07263d6284db
2011-09-20 05:02:19 +00:00
DRC
86e51f2268 Fix compiler warning with OpenJDK
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@556 632fc199-4ca6-4c93-a231-07263d6284db
2011-04-01 20:31:03 +00:00
DRC
2c74e5124d More Java API cleanup
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@519 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-16 00:02:53 +00:00
DRC
92549de2c2 Java code cleanup + Java docs
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@518 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-15 20:52:02 +00:00
DRC
6bd084afd2 Oops. Forgot to add TJTransform class
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@509 632fc199-4ca6-4c93-a231-07263d6284db
2011-03-04 14:10:29 +00:00