Also, set the red/green/blue offsets for TJPF_GRAY to -1 rather than 0.
It was undefined behavior for an application to use those arrays/methods
with TJPF_GRAY anyhow, and this makes it easier for applications to
programmatically detect whether a given pixel format has red, green, and
blue components.
It is necessary for the C code to be aware of the machine's endianness,
which is why the TurboJPEG Java wrapper sets a different pixel format
for integer BufferedImages depending on ByteOrder.nativeOrder().
However, it isn't necessary to handle endianness in pure Java code such
as TJUnitTest (d'oh!) This was a product of porting the C version of
TJUnitTest too literally, and of insufficient testing (historically,
the big endian systems I had available for testing didn't have Java.)
planes == null is a valid argument to setBuf() if alloc == true, so we
need to make sure that planes is non-null before validating its length.
We also need to allocate one dimension of the planes array if it's null.
Fixes#168
Previously, -stoponwarning only had an effect on the underlying
TurboJPEG C functions, but TJBench still aborted if a non-fatal error
occurred. This commit modifies the C version of TJBench such that it
always recovers from a non-fatal error unless -stoponwarning is
specified. Furthermore, the benchmark stores the details of the last
non-fatal error and does not print any subsequent non-fatal error
messages unless they differ from the last one.
Due to limitations in the Java API (specifically, the fact that it
cannot communicate errors, fatal or otherwise, to the calling program
without throwing a TJException), it was only possible to make
decompression operations fully recoverable within TJBench. With other
operations, -stoponwarning still has an effect on the underlying C
library but has no effect at the Java level.
The Java API documentation has been amended to reflect that only certain
methods are truly recoverable, regardless of the state of
TJ.FLAG_STOPONWARNING.
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.
Closes#153
Given that libjpeg-turbo can often process hundreds of megapixels/second
on modern hardware, the default of one warmup iteration was essentially
meaningless. Furthermore, the -warmup option was a bit clunky, since
it required some foreknowledge of how fast the benchmarks were going to
execute.
This commit introduces a 1-second warmup interval for each benchmark by
default, and the -warmup option has been retasked to control the length
of that interval.
- Provide a new C API function and TJException method that allows
calling programs to query the severity of a compression/decompression/
transform error.
- Provide a new flag that instructs the library to immediately stop
compressing/decompressing/transforming if a warning is encountered.
Fixes#151
Embedded ICC profiles can cause the size of a JPEG file to exceed the
size returned by tjBufSize() (which is really meant to be used for
compression anyhow, not for decompression), and this was causing a
segfault (C) or an ArrayIndexOutOfBoundsException (Java) when
decompressing such files with TJBench. This commit modifies the
benchmark such that, when tiled decompression is disabled, it re-uses
the source buffer as the primary JPEG buffer.
These improvements enable build systems to use GNUInstallDirs to define
custom directory variables.
- The set_dir() macro was renamed to GNUInstallDirs_set_install_dir(),
in keeping with the module's established macro naming convention.
- Rather than detecting whether the prefix has changed, the new
GNUInstallDirs_set_install_dir() macro instead examines whether the
default for the variable in question has changed. This allows for
more flexibility, since build systems may decide to change the
defaults based on factors other than the prefix. It also enables the
macro to work properly outside of the module.
- The module now performs directory variable substitution within the
body of GNUInstallDirs_get_absolute_install_dir().
- The JAVADIR variable is no longer included in GNUInstallDirs. That
directory is not part of the GNU spec, and it turns out that various
operating systems use different conventions for the location of Java
classes. Instead, the variable is now implemented in our build
system as a demonstration of the aforementioned GNUInstallDirs
enhancements.
This builds upon the existing GNUInstallDirs module in CMake but adds
the following features to that module:
- The ability to override the defaults for each install directory
through a new set of variables (`CMAKE_INSTALL_DEFAULT_*DIR`).
Before operating system vendors began shipping libjpeg-turbo, it was
meant to be a run-time drop-in replacement for the system's
distribution of libjpeg, so it has traditionally installed itself
under /opt/libjpeg-turbo on Un*x systems by default. On Windows, it
has traditionally installed itself under %SystemDrive%\libjpeg-turbo*,
which is not uncommon behavior for open source libraries (open source
SDKs tend to install outside of the Program Files directory so as to
avoid spaces in the directory name.) At least in the case of Un*x,
the install directory behavior is based somewhat on the Solaris
standard, which requires all non-O/S packages to install their files
under /opt/{package_name}. I adopted that standard for VirtualGL and
TurboVNC while working at Sun, because it allowed those packages to be
located under the same directory on all platforms. I adopted it for
libjpeg-turbo because it ensured that our files would never conflict
with the system's version of libjpeg. Even though many Un*x
distributions ship libjpeg-turbo these days, not all of them ship the
TurboJPEG API library or the Java classes or even the latest version
of the libjpeg API library, so there are still many cases in which it
is desirable to install a separate version of libjpeg-turbo than the
one installed by the system. Furthermore, installing the files under
/opt mimics the directory structure of our official binary packages,
and it makes it very easy to uninstall libjpeg-turbo.
For these reasons, our build system needs to be able to use
non-GNU-compliant defaults for each install directory if
`CMAKE_INSTALL_PREFIX` is set to the default value.
- For each directory variable, the module now detects changes to
`CMAKE_INSTALL_PREFIX` and changes the directory variable accordingly,
if the variable has not been changed by the user.
This makes it easy to switch between our "official" directory
structure and the GNU-compliant directory structure "on the fly"
simply by changing `CMAKE_INSTALL_PREFIX`. Also, this new mechanism
eliminated the need for the crufty mechanism that previously did the
same thing just for the library directory variable.
How it should work:
- If a dir variable is unset, then the module will set an internal
property indicating that the dir variable was initialized to its
default value.
- If the dir variable ever diverges from its default value, then the
internal property is cleared, and it cannot be set again without
unsetting the dir variable.
- If the install prefix changes, and if the internal property
indicates that the dir variable is still set to its default value,
and if the dir variable's value is not being manually changed at the
same time that the install prefix is being changed, then the dir
variable's value is automatically changed to the new default value
for that variable (as determined by the new install prefix.)
- The directory variables are now always cached, regardless of whether
they were set on the command line or not. This ensures that they can
easily be examined and modified after being set, regardless of how they
were set.
This was made possible by the introduction of the aforementioned
`CMAKE_INSTALL_DEFAULT_*DIR` variables.
- Improved directory variable documentation (based on descriptions at
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html)
- The module now allows "<DATAROOTDIR>" to be used as a placeholder in
relative directory variables.
It is replaced "on the fly" with the actual path of
`CMAKE_INSTALL_DATAROOTDIR`.
This should more closely mimic the behavior of the old autotools build
system while retaining our customizations to it, and it should retain
the behavior of the old CMake build system.
Closes#124
Running 'make -j{jobs}' on a build that was configured with Java
(--with-java) would previously cause an error:
make: *** No rule to make target `TJExample.class', needed by
`turbojpeg.jar'.
It seems that parallel make doesn't understand that the files in
$(JAVA_CLASSES) are all generated from the same invocation of javac, so
it tries to parallelize the building of those files (which of course
doesn't work.) This patch instead makes turbojpeg.jar depend on
classnoinst.stamp. This effectively creates a synchronization fence,
since that file is only created when all of the class files have been
built.
Fixes#62
We need to garbage collect between iterations of the outside loop in
bufSizeTest() in order to avoid exhausting the heap when running with
Java 6 (which is still used on Linux to test the 32-bit version of
libjpeg-turbo in automated builds.)
Use a new checked exception type (TJException) when passing through
errors from the underlying C library. This gives the application a
choice of catching all exceptions or just those from TurboJPEG.
Throw IllegalArgumentException at the JNI level when arguments to the
JNI function are incorrect, and when one of the TurboJPEG "utility"
functions returns an error (because, per the C API specification, those
functions will only return an error if one of their arguments is out of
range.)
Remove "throws Exception" from the signature of any methods that no
longer pass through an error from the TurboJPEG C library.
Credit Viktor for the new code
Code formatting tweaks
Change the behavior of the bailif0() macro in the JNI wrapper so that it doesn't throw an exception for an unexpected NULL condition. In fact, in all cases, the underlying JNI API function (such as GetFieldID(), etc.) will throw an Error on its own whenever it returns NULL, so our custom exceptions were never being thrown in that case anyhow. All we need to do is just detect the error and bail out of the C code.
This also corrects a couple of formatting issues (semicolons aren't needed at the end of class definitions, and @Override should be specified for the methods we're overriding from super-classes, so the compiler can sanity-check that we're actually overriding a method and not declaring a new one.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1595 632fc199-4ca6-4c93-a231-07263d6284db