Commit Graph

56 Commits

Author SHA1 Message Date
DRC
0d20aa15ce TJBench: Require known subsamp type w/tiled decomp
(oversight from 386ec0abc7)

Tiled decompression will ultimately fail if the subsampling type of the
JPEG input image is unknown, but the C version of TJBench needs to fail
earlier in order to avoid using -1 (TJSAMP_UNKNOWN) as an array index
for tjMCUWidth[]/tjMCUHeight[].  The Java version now fails earlier as
well, although there is no benefit to that other than making the error
message less cryptic.
2023-03-31 11:06:52 -05:00
DRC
9d2f189c29 TJBench: Change subsamp for transposed 4:*:1 img
If we have transformed a 4:1:1 or 4:4:1 JPEG input image in such a way
that the horizontal and vertical dimensions are transposed, then we need
to change the subsampling type that is passed to the decomp() function.
Otherwise, tj3YUVBufSize() may return an incorrect value.

(oversight from fc881ebb21)
2023-03-13 17:36:53 -05:00
DRC
386ec0abc7 TJBench: w/JPEG input imgs, set min tile= MCU size
When -tile is used with a JPEG input image, TJBench generates the tiles
using lossless cropping, which will fail if the cropping region doesn't
align with an MCU boundary.  Furthermore, there is no reason to avoid
8x8 tiles when decompressing 4:4:4 or grayscale JPEG images.
2023-03-13 13:27:10 -05:00
DRC
fc881ebb21 TurboJPEG: Implement 4:4:1 chrominance subsampling
This allows losslessly transposed or rotated 4:1:1 JPEG images to be
losslessly cropped, partially decompressed, or decompressed to planar
YUV images.

Because tj3Transform() allows multiple lossless transformations to be
chained together, all subsampling options need to have a corresponding
transposed subsampling option.  (This is why 4:4:0 was originally
implemented as well.)  Otherwise, the documentation would be technically
incorrect.  It says that images with unknown subsampling types cannot be
losslessly cropped, partially decompressed, or decompressed to planar
YUV images, but it doesn't say anything about images with known
subsampling types whose subsampling type becomes unknown if the image is
rotated or transposed.  This is one of those situations in which it is
easier to implement a feature that works around the problem than to
document the problem.

Closes #659
2023-03-10 10:46:14 -06:00
DRC
96bc40c1b3 Implement arithmetic coding with 12-bit precision
This actually works and apparently always has worked.  It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
2023-01-26 13:11:58 -06:00
DRC
fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00
DRC
52659f4f47 Merge branch 'main' into dev 2023-01-23 09:55:13 -06:00
DRC
af1b4c8df4 TJBench: Unset TJ*OPT_CROP when disabling tiling
Otherwise, if the input image is a JPEG image, then an unnecessary
lossless transformation will be performed.
2023-01-21 18:31:20 -06:00
DRC
7ab6222cff Merge branch 'main' into dev 2023-01-20 14:09:25 -06:00
DRC
98a6455875 TJBench: Set TJ*OPT_PROGRESSIVE with -progressive
The documented behavior of the -progressive option is to use progressive
entropy coding in JPEG images generated by compression and transform
operations.  However, setting TJFLAG_PROGRESSIVE was insufficient to
accomplish that, because TJBench doesn't enable lossless transformation
if xformOpt == 0.
2023-01-20 13:23:00 -06:00
DRC
b99e7590b0 TJBench/Java: Fix parsing of quality ranges 2023-01-20 13:02:38 -06:00
DRC
28c2e60770 TJBench: Strictly check all non-boolean arguments
+ document that the value of -yuvpad must be a power of 2 (refer to
d260858395)
2023-01-20 13:02:38 -06:00
DRC
fb15efe94f TurboJPEG: More documentation improvements
- TJBench/TJUnitTest: Wordsmith command-line output

- Java: "decompress operations"="decompression operations"

- tjLoadImage(): Error message tweak

- Don't mention compression performance in the description of
  TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
  already been compressed at that point.

(Oversights from 9a146f0f23)
2023-01-20 12:50:21 -06:00
DRC
d4589f4f1c Merge branch 'main' into dev 2023-01-14 18:07:53 -06:00
DRC
9a146f0f23 TurboJPEG: Numerous documentation improvements
- Wordsmithing, formatting, and grammar tweaks

- Various clarifications and corrections, including specifying whether
  a particular buffer or image is used as a source or destination

- Accommodate/mention features that were introduced since the API
  documentation was created.

- For clarity, use "packed-pixel" to describe uncompressed
  source/destination images that are not planar YUV.

- Use "row" rather than "line" to refer to a single horizontal group of
  pixels or component values, for consistency with the libjpeg API
  documentation.  (libjpeg also uses "scanline", which is a more archaic
  term.)

- Use "alignment" rather than "padding" to refer to the number of bytes
  by which a row's width is evenly divisible.  This consistifies the
  documention of the YUV functions and tjLoadImage().  ("Padding"
  typically refers to the number of bytes added to each row, which is
  not the same thing.)

- Remove all references to "the underlying codec."  Although the
  TurboJPEG API originated as a cross-platform wrapper for the Intel
  Integrated Performance Primitives, Sun mediaLib, QuickTime, and
  libjpeg, none of those TurboJPEG implementations has been maintained
  since 2009.  Nothing would prevent someone from implementing the
  TurboJPEG API without libjpeg-turbo, but such an implementation would
  not necessarily have an "underlying codec."  (It could be fully
  self-contained.)

- Use "destination image" rather than "output image", for consistency,
  or describe the type of image that will be output.

- Avoid the term "image buffer" and instead use "byte buffer" to
  refer to buffers that will hold JPEG images, or describe the type of
  image that will be contained in the buffer.  (The Java documentation
  doesn't use "byte buffer", because the buffer arrays literally have
  "byte" in front of them, and since Java doesn't have pointers, it is
  not possible for mere mortals to store any other type of data in those
  arrays.)

- C: Use "unified" to describe YUV images stored in a single buffer, for
  consistency with the Java documentation.

- Use "planar YUV" rather than "YUV planar".  Is is our convention to
  describe images using {component layout} {colorspace/pixel format}
  {image function}, e.g. "packed-pixel RGB source image" or "planar YUV
  destination image."

- C: Document the TurboJPEG API version in which a particular function
  or macro was introduced, and reorder the backward compatibility
  function stubs in turbojpeg.h alphabetically by API version.

- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
  comments.
2023-01-14 17:10:31 -06:00
DRC
98ff1fd103 TurboJPEG: Add lossless JPEG detection capability
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.)  This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.

More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
2022-11-21 22:46:12 -06:00
DRC
25ccad99a0 TurboJPEG: 8-bit lossless JPEG support 2022-11-16 15:57:25 -06:00
DRC
6002720c37 TurboJPEG: Opt. enable arithmetic entropy coding 2022-11-15 23:38:55 -06:00
DRC
14ce28a92d TJBench: Remove innocuous always-true condition
This was accidentally introduced into tjbench.c in
890f1e0413 and ported into the Java
version from there.

Based on
4be6d4e7bd

Refer to #571
2022-01-29 12:37:15 -06:00
DRC
c81e91e8ca TurboJPEG: New flag for limiting prog JPEG scans
This also fixes timeouts reported by OSS-Fuzz.
2021-04-05 16:33:44 -05:00
DRC
ac59b2c582 TJBench: Fix output with -componly -quiet 2019-11-04 18:49:46 -06:00
DRC
ad8330af72 TJBench.java: Remove space in method invocation
(to make checkstyle happy)
2019-07-12 17:29:27 -05:00
DRC
2a9e3bd743 TurboJPEG: Properly handle gigapixel images
Prevent several integer overflow issues and subsequent segfaults that
occurred when attempting to compress or decompress gigapixel images with
the TurboJPEG API:

- Modify tjBufSize(), tjBufSizeYUV2(), and tjPlaneSizeYUV() to avoid
  integer overflow when computing the return values and to return an
  error if such an overflow is unavoidable.
- Modify tjunittest to validate the above.
- Modify tjCompress2(), tjEncodeYUVPlanes(), tjDecompress2(), and
  tjDecodeYUVPlanes() to avoid integer overflow when computing the row
  pointers in the 64-bit TurboJPEG C API.
- Modify TJBench (both C and Java versions) to avoid overflowing the
  size argument to malloc()/new and to fail gracefully if such an
  overflow is unavoidable.

In general, this allows gigapixel images to be accommodated by the
64-bit TurboJPEG C API when using automatic JPEG buffer (re)allocation.
Such images cannot currently be accommodated without automatic JPEG
buffer (re)allocation, due to the fact that tjAlloc() accepts a 32-bit
integer argument (oops.)  Such images cannot be accommodated in the
TurboJPEG Java API due to the fact that Java always uses a signed 32-bit
integer as an array index.

Fixes #361
2019-07-11 16:56:50 -05:00
DRC
0fa5ae6b54 TJBench Java: Properly handle transform warnings
+ warnings from TJDecompressor.decompressHeader()
2019-01-01 21:16:33 -06:00
DRC
53bb941845 Java: Reformat code per checkstyle recommendations
... and modify tjbench.c to match the variable name changes made to
TJBench.java

("checkstyle" = http://checkstyle.sourceforge.net, not our regex-based
checkstyle script)
2018-05-15 14:59:57 -05:00
DRC
19c791cdac Improve code formatting consistency
With rare exceptions ...
- Always separate line continuation characters by one space from
  preceding code.
- Always use two-space indentation.  Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
  function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
  with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
  function name.
- Always precede pointer symbols ('*' and '**') by a space in type
  casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
  API libraries (using min() from tjutil.h is still necessary for
  TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
  line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.

The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions.  This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree.  The
new convention is more consistent with the formatting of other OSS code
bases.

This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.

NOTES:
- Although it is no longer necessary for the function name in function
  declarations to begin in Column 1 (this was historically necessary
  because of the ansi2knr utility, which allowed libjpeg to be built
  with non-ANSI compilers), we retain that formatting for the libjpeg
  code because it improves readability when using libjpeg's function
  attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
  Uncrustify, although neither was completely up to the task, and thus
  a great deal of manual tweaking was required.  Note to developers of
  code formatting utilities:  the libjpeg-turbo code base is an
  excellent test bed, because AFAICT, it breaks every single one of the
  utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
  formatted to match the SSE2 code (refer to
  ff5685d5344273df321eb63a005eaae19d2496e3.)  I hadn't intended to
  bother with this, but the Loongson MMI implementation demonstrated
  that there is still academic value to the MMX implementation, as an
  algorithmic model for other 64-bit vector implementations.  Thus, it
  is desirable to improve its readability in the same manner as that of
  the SSE2 implementation.
2018-03-16 02:14:34 -05:00
DRC
4893e5d8b8 Merge branch 'master' into dev 2017-11-17 19:00:53 -06:00
DRC
f3ad13e3d8 TJBench/TJUnitTest: Don't ignore mistyped args 2017-11-13 16:00:35 -06:00
DRC
c94531212f TJBench: Recover from non-fatal errors if possible
Previously, -stoponwarning only had an effect on the underlying
TurboJPEG C functions, but TJBench still aborted if a non-fatal error
occurred.  This commit modifies the C version of TJBench such that it
always recovers from a non-fatal error unless -stoponwarning is
specified.  Furthermore, the benchmark stores the details of the last
non-fatal error and does not print any subsequent non-fatal error
messages unless they differ from the last one.

Due to limitations in the Java API (specifically, the fact that it
cannot communicate errors, fatal or otherwise, to the calling program
without throwing a TJException), it was only possible to make
decompression operations fully recoverable within TJBench.  With other
operations, -stoponwarning still has an effect on the underlying C
library but has no effect at the Java level.

The Java API documentation has been amended to reflect that only certain
methods are truly recoverable, regardless of the state of
TJ.FLAG_STOPONWARNING.
2017-06-29 17:09:53 -05:00
DRC
dadebcd79a TurboJPEG: Add "copy none", progressive xform opts
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.

Closes #153
2017-06-28 15:32:33 -05:00
DRC
dedce66eb5 Merge branch 'master' into dev 2017-06-28 15:30:41 -05:00
DRC
e248d430e2 Java TJBench: Fix parsing of -warmup argument
Due to an oversight, this wasn't included in
1db1ce45da.
2017-06-28 15:22:32 -05:00
DRC
1db1ce45da TJBench: Improve consistency of results
Given that libjpeg-turbo can often process hundreds of megapixels/second
on modern hardware, the default of one warmup iteration was essentially
meaningless.  Furthermore, the -warmup option was a bit clunky, since
it required some foreknowledge of how fast the benchmarks were going to
execute.

This commit introduces a 1-second warmup interval for each benchmark by
default, and the -warmup option has been retasked to control the length
of that interval.
2017-06-27 14:28:43 -05:00
DRC
aba6ae5950 TurboJPEG: Opt. enable progressive entropy coding
Fulfills part of the feature request in #153.  Also paves the way for
SIMD-accelerated progressive Huffman coding (refer to #46.)
2017-06-27 13:26:26 -05:00
DRC
d4092f6b4d TurboJPEG: Improve error handling
- Provide a new C API function and TJException method that allows
  calling programs to query the severity of a compression/decompression/
  transform error.
- Provide a new flag that instructs the library to immediately stop
  compressing/decompressing/transforming if a warning is encountered.

Fixes #151
2017-06-27 11:03:26 -05:00
DRC
11eec4a398 TJBench: Fix errors when decomp. files w/ ICC data
Embedded ICC profiles can cause the size of a JPEG file to exceed the
size returned by tjBufSize() (which is really meant to be used for
compression anyhow, not for decompression), and this was causing a
segfault (C) or an ArrayIndexOutOfBoundsException (Java) when
decompressing such files with TJBench.  This commit modifies the
benchmark such that, when tiled decompression is disabled, it re-uses
the source buffer as the primary JPEG buffer.
2017-06-26 21:12:40 -05:00
DRC
74e4c793cd TJBench: Fix regression/-nowrite always enabled
Introduced by eb59b6e72d
2016-11-20 16:22:23 -06:00
DRC
eb59b6e72d Add -nowrite arg to TJBench to improve consistency
Prevents any images from being written to disk, thus making the
performance of the benchmark as CPU-bound as possible.
2016-01-12 00:36:32 -06:00
DRC
d92949b0ac Run the TurboJPEG conformance tests out of a directory in /tmp (for improved performance, if the source directory is on a remote file share.) Fix an issue in TJBench.java that prevented it from working properly if the source image resided in a directory with a dot in the name.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1373 632fc199-4ca6-4c93-a231-07263d6284db
2014-08-22 03:00:37 +00:00
DRC
7a6ed075ea Extend YUVImage class to allow reuse of the same buffer with different metadata; port TJBench changes that treat YUV encoding/decoding as an intermediate step of the JPEG compression/decompression pipeline rather than a separate test case; add YUV encode/decode tests to the Java version of tjbenchtest
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1184 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-17 11:14:52 +00:00
DRC
6e11d6899c Fix an error that occurred when trying to use the lossless transform feature without specifying -quiet; formatting tweak
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1182 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-17 10:19:42 +00:00
DRC
4dafea685d Move the garbage collection of the JPEG tiles into the decompression function to increase the chances that tiled decompression of large images will succeed without an OutOfMemoryError.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1180 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-17 10:13:17 +00:00
DRC
88f260c78c Move the garbage collection of the JPEG tiles into the decompression function to increase the chances that tiled decompression of large images will succeed without an OutOfMemoryError.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1179 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-17 10:12:11 +00:00
DRC
fc26b6577a Extend the YUV decode functionality to the TurboJPEG Java API, and port the TJUnitTest modifications that treat YUV encoding/decoding as an intermediate step of the JPEG compression/decompression pipeline rather than a separate test case; Add the ability to encode YUV images from an arbitrary position in a large image buffer; Significantly refactor the handling of YUV images; numerous doc tweaks; other Java API cleanup and usability improvements
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1176 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-16 22:56:26 +00:00
DRC
695b6e8680 Don't use deprecated constructor
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1174 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-16 19:33:07 +00:00
DRC
c33347c0aa Add @Deprecated to the deprecated Java methods, so javac will actually print deprecation warnings, as opposed to just listing the methods as deprecated in javadoc; remove the use of the deprecated methods by our own test programs.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1171 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-15 13:25:11 +00:00
DRC
b14813947e Streamline the BufferedImage functionality in the compressor so that it works the same way as compressing a "normal" image, and deprecate the old BufferedImage methods and other redundant methods. Eliminate the use of deprecated features in the test programs.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1168 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-14 08:53:33 +00:00
DRC
d4b453c26e Back-port the -subsamp option from 1.4 rather than use the hackish approach of replacing 4:2:2 with 4:4:0. This has the added advantage of allowing the user to test only a specific level of subsampling.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1153 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-11 08:28:47 +00:00
DRC
db0e2791e0 Oops. This was apparently the victim of an overly aggressive search/replace.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1152 632fc199-4ca6-4c93-a231-07263d6284db
2014-03-11 08:25:59 +00:00
DRC
2e8ff4b084 Add the ability to test scaling when decompressing to YUV; compression from YUV to JPEG; and YUV padding. Replace clunky -411 and -440 parameters with a -subsamp parameter that allows any of the subsampling options to be tested in isolation.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1075 632fc199-4ca6-4c93-a231-07263d6284db
2013-11-05 19:53:12 +00:00