TJPARAM_MAXPIXELS was previously hidden and used only for fuzz testing,
but it is potentially useful for calling applications as well,
particularly if they want to guard against excessive memory consumption
by the tj3LoadImage*() functions. The parameter has also been extended
to decompression and lossless transformation functions/methods, mainly
as a convenience. (It was already possible for calling applications to
impose their own JPEG image size limits by reading the JPEG header prior
to decompressing or transforming the image.)
The Gordian knot that 7fec5074f9 attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API. If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application. (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)
Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation. Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.
In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:
- The colormap and sample_range_limit fields in jpeg_decompress_struct
- The alloc_sarray() and access_virt_sarray() methods in
jpeg_memory_mgr
- jpeg_write_scanlines() and jpeg_write_raw_data()
- jpeg_read_scanlines() and jpeg_read_raw_data()
- jpeg_skip_scanlines() and jpeg_crop_scanline()
(This is subtle, but both of those functions use JSAMPLE-dependent
opaque structures behind the scenes.)
It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples. Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:
- Compile only the precision-dependent libjpeg modules (the
coefficient buffer controllers, the colorspace converters, the
DCT/IDCT managers, the main buffer controllers, the preprocessing
and postprocessing controller, the downsampler and upsamplers, the
quantizers, the integer DCT methods, and the IDCT methods) for
multiple data precisions.
- Introduce 12-bit-specific methods into the various internal
structures defined in jpegint.h.
- Create precision-independent data type, macro, method, field, and
function names that are prefixed by an underscore, and use an
internal header to convert those into precision-dependent data
type, macro, method, field, and function names, based on the value
of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
modules.
- Expose precision-dependent jinit*() functions for each of the
precision-dependent libjpeg modules.
- Abstract the precision-dependent libjpeg modules by calling the
appropriate precision-dependent jinit*() function, based on the
value of cinfo->data_precision, from top-level libjpeg API
functions.
libjpeg-turbo has never supported non-ANSI C compilers. Per the spec,
ANSI C compilers must have locale.h, stddef.h, stdlib.h, memset(),
memcpy(), unsigned char, and unsigned short. They must also handle
undefined structures.
After the completion of the start_input() method, it's too late to check
the image size, because the image readers may have already tried to
allocate memory for the image. If the width and height are excessively
large, then attempting to allocate memory for the image could slow
performance or lead to out-of-memory errors prior to the fuzz target
checking the image size.
NOTE: Specifically, the aforementioned OOM errors and slow units were
observed with the compression fuzz targets when using MSan.
- Referring to 3311fc0001, we need to use
unsigned intermediate math in order to make UBSan happy, even though
(JDIMENSION)(A * B) is effectively the same as
(JDIMENSION)A *(JDIMENSION)B, regardless of intermediate overflow.
- Because of the previous commit, it is now possible for bfOffBits to be
INT_MIN, which would cause the initial computation of bPad to
underflow a signed integer. Thus, we need to check for that
possibility as soon as we know the values of bfOffBits and headerSize.
The worst case from this regression is that bPad could wrap around to
a large positive value, which would cause a "Premature end of input
file" error in the subsequent read_byte() loop. Thus, this issue was
effectively innocuous as well, since it resulted in catching the same
error later and in a different way. Also, the issue was very
well-contained, since it was both introduced and fixed as part of the
ongoing OSS-Fuzz integration project.
- rdbmp.c: Because of 8fb37b8171,
bfOffBits, biClrUsed, and headerSize were made into unsigned ints.
Thus, if bPad would eventually be negative due to a malformed header,
UBSan complained about unsigned math being used in the intermediate
computations. It was unnecessary to make those variables unsigned,
since they are only meant to hold small values, so this commit makes
them signed again. The UBSan error was innocuous, because it is
effectively (if not officially) the case that
(int)((unsigned int)a - (unsigned int)b) == (int)a - (int)b.
- rdbmp.c: If (biWidth * source->bits_per_pixel / 8) would overflow an
unsigned int, then UBSan complained at the point at which row_width
was set in start_input_bmp(), even though the overflow would have been
detected later in the function. This commit adds overflow checks
prior to setting row_width.
- rdppm.c: read_pbm_integer() now bounds-checks the intermediate
value computations in order to catch integer overflow caused by a
malformed text PPM. It's possible, though extremely unlikely, that
the intermediate value computations could have wrapped around to a
value smaller than maxval, but the worst case is that this would have
generated a bogus pixel in the uncompressed image rather than throwing
an error.
A fuzzing test case with an image width of 838860946 triggered a UBSan
error:
rdbmp.c:633:34: runtime error: signed integer overflow:
838860946 * 3 cannot be represented in type 'int'
Because the result is cast to an unsigned int (JDIMENSION), this error
is irrelevant, because
(unsigned int)((int)838860946 * (int)3) ==
(unsigned int)838860946 * (unsigned int)3
- Restore GIF read/compressed GIF write support from jpeg-6a and
jpeg-9d.
- Integrate jpegtran -wipe and -drop options from jpeg-9a and jpeg-9d.
- Integrate jpegtran -crop extension (for expanding the image size) from
jpeg-9a and jpeg-9d.
- Integrate other minor code tweaks from jpeg-9*
libjpeg-turbo has never really supported such compilers, since (AFAIK)
they are non-existent on any modern computing platform and thus
impossible for us to test. (Also, the TurboJPEG API would break without
unsigned chars.)
Furthermore, the unified CMake-based build system introduced in 2.0
always defines HAVE_UNSIGNED_CHAR, so retaining other code paths is
pointless. Eliminating support for compilers without unsigned char
eliminates the need for the GETJSAMPLE() macro, which improves the
readability of many parts of the code as well as improving the
performance of writing Targa and Windows BMP files.
Fixes#317
... in which one or more of the color indices is out of range for the
number of palette entries.
Fix partly borrowed from jpeg-9c. This commit also adopts Guido's
JERR_PPM_OUTOFRANGE enum value in lieu of our project-specific
JERR_PPM_TOOLARGE enum value.
Fixes#258
In rdbmp.c, it is necessary to guard against 32-bit overflow/wraparound
when allocating the row buffer, because since BMP files have 32-bit
width and height fields, the value of biWidth can be up to 4294967295.
Specifically, if biWidth is 1073741824 and cinfo->input_components = 4,
then the samplesperrow argument in alloc_sarray() would wrap around to
0, and a division by zero error would occur at line 458 in jmemmgr.c.
If biWidth is set to a higher value, then samplesperrow would wrap
around to a small number, which would likely cause a buffer overflow
(this has not been tested or verified.)
With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
Loading RGB image files into a grayscale buffer isn't a particularly
useful feature, given that libjpeg-turbo can perform this conversion
much more optimally (with SIMD acceleration on some platforms) during
the compression process. Also, the RGB2GRAY() macro was not producing
deterministic cross-platform results because of variations in the
round-off behavior of various floating point implementations, so
`tjunittest -bmp` was failing in i386 builds.
The main justification for this is to provide new libjpeg-turbo users
with a quick & easy way of developing a complete JPEG
compression/decompression program without requiring them to build
libjpeg-turbo from source (which was necessary in order to use the
project-private bmp API) or to use external libraries. These new
functions build upon significant enhancements to rdbmp.c, wrbmp.c,
rdppm.c, and wrppm.c which allow those engines to convert directly
between the native pixel format of the file and a pixel format
("colorspace" in libjpeg parlance) specified by the calling program.
rdbmp.c and wrbmp.c have also been modified such that the calling
program can choose to read or write image rows in the native (bottom-up)
order of the file format, thus eliminating the need to use an inversion
array. tjLoadImage() and tjSaveImage() leverage these new underlying
features in order to significantly improve upon the performance of the
old bmp API.
Because these new functions cannot work without the libjpeg-turbo
colorspace extensions, the libjpeg-compatible code in turbojpeg.c has
been removed. That code was only there to serve as an example of how
to use the TurboJPEG API on top of libjpeg, but more specific, buildable
examples now exist in the https://github.com/libjpeg-turbo/ijg
repository.
The convention used by libjpeg:
type * variable;
is not very common anymore, because it looks too much like
multiplication. Some (particularly C++ programmers) prefer to tuck the
pointer symbol against the type:
type* variable;
to emphasize that a pointer to a type is effectively a new type.
However, this can also be confusing, since defining multiple variables
on the same line would not work properly:
type* variable1, variable2; /* Only variable1 is actually a
pointer. */
This commit reformats the entirety of the libjpeg-turbo code base so
that it uses the same code formatting convention for pointers that the
TurboJPEG API code uses:
type *variable1, *variable2;
This seems to be the most common convention among C programmers, and
it is the convention used by other codec libraries, such as libpng and
libtiff.
The IJG README file has been renamed to README.ijg, in order to avoid
confusion (many people were assuming that that was our project's README
file and weren't reading README-turbo.txt) and to lay the groundwork for
markdown versions of the libjpeg-turbo README and build instructions.
rdbmp.c used the ambiguous INT32 datatype, which is sometimes typedef'ed
to long. Windows bitmap headers use 32-bit signed integers for the
width and height, because height can sometimes be negative (this
indicates a top-down bitmap.) If biWidth or biHeight was negative and
INT32 was a 64-bit long, then biWidth and biHeight were read as a
positive integer > INT32_MAX, which failed the test in line 385:
if (biWidth <= 0 || biHeight <= 0)
ERREXIT(cinfo, JERR_BMP_EMPTY);
This commit refactors rdbmp.c so that it uses the datatypes specified by
Microsoft for the Windows BMP header.
This closes#9 and also provides a better solution for mozilla/mozjpeg#153.