Commit Graph

381 Commits

Author SHA1 Message Date
Jonathan Wright
2acfb93c94 Neon: Intrinsics impl. of h1v2 fancy upsamling
There was no previous GAS implementation.
2020-11-10 19:09:09 -06:00
Jonathan Wright
975307775c Neon: Intrinsics impl. of h2v1 & h2v2 fancy upsamp
The previous AArch32 GAS implementation of h2v1 fancy upsampling has
been removed, since the intrinsics implementation provides the same or
better performance.  There was no previous GAS implementation of h2v2
fancy upsampling, and there was no previous AArch64 GAS implementation
of h2v1 fancy upsampling.
2020-11-10 19:09:09 -06:00
Jonathan Wright
5dbd39323c Neon: Intrinsics implementation of YCbCr->RGB565
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression.  The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable.  The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
0f35cd68f2 Neon: Intrinsics implementation of YCbCr->RGB
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression.  The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable.  The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
f3c3f01d23 Neon: Intrinsics impl. of Huffman encoding
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression.  The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable.  The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
d0004de5dd Neon: Intrinsics impl. of accurate int forward DCT
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression.  The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable.  There was no previous AArch32 GAS implementation.
2020-11-10 19:09:09 -06:00
Jonathan Wright
3d84668d42 Neon: Intrinsics impl. of fast integer forward DCT
The previous AArch32 and AArch64 GAS implementations have been removed,
since the intrinsics implementation provides the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
951d3677eb Neon: Intrinsics impl. of int sample conv./quant.
The previous AArch32 and AArch64 GAS implementations have been removed,
since the intrinsics implementation provides the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
366168aa7d Neon: Intrinsics impl. of h2v1 & h2v2 downsampling
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
2020-11-10 19:09:09 -06:00
Jonathan Wright
f73b1dbc60 Neon: Intrinsics implementation of RGB->Grayscale
There was no previous GAS implementation.
2020-11-10 19:09:09 -06:00
Jonathan Wright
4f2216b435 Neon: Intrinsics implementation of RGB->YCbCr
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression.  The
intrinsics implementation can be forced on or off using a new
NEON_INTRINSICS CMake variable.
2020-11-10 19:09:05 -06:00
DRC
7c1a1789d2 Merge branch 'master' into dev 2020-11-05 16:04:55 -06:00
DRC
6e632af9f6 Demote "fast" [I]DCT algorithms to legacy status
- Refer to the "slow" [I]DCT algorithms as "accurate" instead, since
  they are not slow under libjpeg-turbo.
- Adjust documentation claims to reflect the fact that the "slow" and
  "fast" algorithms produce about the same performance on AVX2-equipped
  CPUs (because of the dual-lane nature of AVX2, it was not possible to
  accelerate the "fast" algorithm beyond what was achievable with SSE2.)
  Also adjust the claims to reflect the fact that the "fast" algorithm
  tends to be ~5-15% faster than the "slow" algorithm on
  non-AVX2-equipped CPUs, regardless of the use of the libjpeg-turbo
  SIMD extensions.
- Indicate the legacy status of the "fast" and float algorithms in the
  documentation and cjpeg/djpeg usage info.
- Remove obsolete paragraph in the djpeg man page that suggested that
  the float algorithm could be faster than the "fast" algorithm on some
  CPUs.
2020-11-05 15:59:31 -06:00
DRC
cd342acf7f Merge branch 'master' into dev 2020-10-27 16:45:23 -05:00
DRC
d27b935a88 Consistify formatting to simplify checkstyle
The checkstyle script was hastily developed prior to libjpeg-turbo 2.0
beta1, so it has a lot of exceptions and is thus prone to false
negatives.  This commit eliminates some of those exceptions.
2020-10-27 15:45:09 -05:00
DRC
59352195b2 Merge branch 'master' into dev 2020-10-19 21:17:46 -05:00
DRC
1ed312eab6 "ARM"="Arm", "NEON"="Neon"
Refer to:
https://www.arm.com/company/policies/trademarks/arm-trademark-list/arm-trademark
https://www.arm.com/company/policies/trademarks/arm-trademark-list/neon-trademark

NOTE: These changes are only applied to change log entries for 2.0.x and
later, since the change log is a historical record and Arm's new
trademark policy did not go into effect until late 2017.
2020-10-15 17:47:31 -05:00
DRC
ae08115d4d Merge branch 'master' into dev 2020-10-15 10:25:46 -05:00
DRC
b5a1472781 Build: Fix permissions 2020-10-15 10:22:51 -05:00
DRC
6ab61fa1d1 Merge branch 'master' into dev 2020-09-13 17:02:27 -05:00
DRC
6ee5d5f568 ARMv8 NEON: Support Windows builds w/AArch64 MinGW
Based on:
c5ef665928

Closes #438
2020-07-28 18:24:41 -05:00
DRC
00d48d7e8c Merge branch 'master' into dev 2020-02-17 18:14:10 -06:00
DRC
035262a18d MIPS DSPr2: Work around various 'make test' errors
Referring to #408, this commit #ifdefs DSPr2 SIMD functions that only
work on little endian processors, and it completely excludes
jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2().  The
latter two functions fail with the TJBench tiling regression tests, most
likely because the implementation of the functions predates those tests.
2020-02-17 18:13:31 -06:00
DRC
ed7cab47d9 MIPS DSPr2: Fix compiler warning with -mdspr2
If -mdspr2 is passed to the compiler, __mips_dsp will be defined, and
__mips_dsp_rev will be >= 2, so parse_proc_cpuinfo() will not be used.
2020-02-17 16:35:00 -06:00
DRC
42d679b9fc MIPS SIMD: Always honor JSIMD_FORCE* env vars
Previously, these environment variables were not honored unless a 74K
CPU was detected, but this detection doesn't work properly with QEMU's
user mode emulation.  With all other CPU types, libjpeg-turbo honors
JSIMD_FORCE* regardless of CPU detection.
2020-02-17 15:19:32 -06:00
DRC
b34c85ea4a Merge branch 'master' into dev 2019-12-31 01:20:12 -06:00
DRC
166e34213e simd/arm64/jsimd_neon.S: Fix checkstyle issue 2019-12-31 01:10:30 -06:00
DRC
c4675d62e8 Merge branch 'master' into dev 2019-12-31 00:58:42 -06:00
DRC
b542e4c8e9 ARMv8 SIMD: Support execute-only memory (XOM)
Move constants out of the .text section in simd/arm64/jsimd_neon.S and
into a .rodata section.  This ensures that the ARMv8 NEON SIMD
extensions are compatible with memory layouts that are marked
execute-only (and thus unreadable.)

Based on:
88f3ca7664

Closes #318
2019-12-20 14:24:10 -06:00
DRC
81b8c0eed5 Loongson MMI: Merge with MIPS64/add auto-detection
Modern Loongson processors are MIPS64-compatible, and MMI instructions
are now supported in the mainline of GCC.  Thus, this commit adds
compile-time and run-time auto-detection of MMI instructions and moves
the MMI SIMD extensions for libjpeg-turbo from simd/loongson/ to
simd/mips64/.  That will allow MMI and MSA instructions to co-exist
in the same build once #377 has been integrated.

Based on:
82953ddd61

Closes #383
2019-12-17 14:35:49 -06:00
mayeut
e821464f79 ARM64 NEON SIMD impl. of prog. Huffman encoding
This commit adds ARM64 NEON optimizations for the
encode_mcu_AC_first() and encode_mcu_AC_refine() functions used in
progressive Huffman encoding.

Compression speedups for the typical set of five libjpeg-turbo test
images (https://libjpeg-turbo.org/About/Performance):
Cortex-A53: 23.8-39.2% (avg. 32.2%)
Cortex-A72: 26.8-41.1% (avg. 33.5%)
Apple A7:  29.7-45.9% (avg. 39.6%)

Closes #229
2019-12-10 00:21:57 -06:00
DRC
9c6f79e919 Fix formatting issues detected by checkstyle 2019-11-14 12:16:38 -06:00
DRC
f60b6dd36f Remove vestigial jpeg_nbits_table.inc
Not needed since 087c29e07f
2019-11-12 17:42:39 -06:00
DRC
713c451f58 Enable SSE2 progressive Huffman encoder for x32
Referring to #289, I'm not sure where I arrived at the conclusion that
the SSE2 progressive Huffman encoder doesn't provide any speedup for
x32.  Upon re-testing, I discovered it to be about 50% faster than the
C encoder.

This commit also re-purposes one of the CI tests (specifically, the
jpeg-7 API/ABI test) so that it tests x32 as well.
2019-11-08 16:03:38 -06:00
DRC
cbf0fcc8b7 i386 SSE2 Huffman: Fix pointer arithmetic issue
Splitting the pointer arithmetic in GET_SYM() into a separate add and
sub instruction was an attempt to work around an error ("invalid operand
type") that occurred when assembling the file with NASM.  However, this
created a link error on macOS ("ld: illegal text-relocation to
'_jconst_huff_encode_one_block' in
simd/CMakeFiles/simd.dir/i386/jchuff-sse2.asm.o from
'_jsimd_huff_encode_one_block_sse2' in
simd/CMakeFiles/simd.dir/i386/jchuff-sse2.asm.o for architecture i386")
and also changed the alignment of the code in ways that might have
affected the previous benchmark results (which took a great deal of time
to obtain.)  Ultimately, the path of least resistance is just to
require NASM 2.13 or later.
2019-11-05 15:56:28 -06:00
DRC
bbedb4b564 Merge branch 'master' into dev 2019-11-05 15:43:21 -06:00
DRC
cf54623b08 Mac: Support hiding SIMD fct symbols w/ NASM 2.14+
(NASM 2.14+ now supports the private_extern section directive, which was
previously only available with YASM.)
2019-11-05 15:41:59 -06:00
DRC
087c29e07f Optimize Huffman encoding
This commit improves the C and SSE2 Huffman encoding implementations in
the following ways:

- Avoid using xmm8-xmm15 in the x86-64 SSE2 implementation.  There is no
  actual need to use those registers, and avoiding them produces a
  cleaner WIN64 function entry/exit-- as well as shorter code, since REX
  prefixes can be avoided (this is helpful on certain CPUs, such as
  Intel Atom, for which instruction fetch and decoding can be a
  bottleneck.)
- Optimize register usage so that fewer REX prefixes and
  register-register moves are needed.
- Use the bit counter to store the number of free bits in the bit buffer
  rather than the number of bits in the bit buffer.  This changes the
  method for inserting a code into the bit buffer to:

  (put_buffer |= code << (free_bits -= code_size));

  As a result:
  * Only one bit counter needs to stay in a register (we just keep it in
    cl.)
  * The bit buffer contents are already properly aligned to be written
    out (after a byte swap.)
  * Adjusting the free bits counter and checking if the bit buffer is
    full can be combined into a single operation.
  * We can wait to flush the bit buffer until the buffer is actually
    full and not just in danger of becoming full.  Thus, eight bytes can
    be flushed at a time.

- Speed is quite sensitive to the alignment of branch target labels, so
  insert some padding and remove branches from the flush code.
  (Flushing this way isn't actually faster when compared to using
  branches, but the branchless code doesn't need extra alignment and is
  thus smaller.)
- Speculatively write out the bit buffer as a single 8-byte write,
  falling back to a byte-by-byte write only if there are any 0xFF bytes
  in the bit buffer that need to be encoded as 0xFF 0x00.
- Use MMX registers for the 32-bit implementation (so the bit buffer can
  be 64 bits wide.)
- Slightly reduce overall function code size.
- Eliminate or combine a few SSE instructions.
- Make some minor improvements to instruction scheduling.
- Adjust flush_bits() in jchuff.c to handle cases in which the bit
  buffer has less than 7 free bits (apparently that couldn't happen
  before.)

Based on:
947a09defa
262ebb6b81
6e9a091221

See change log for performance claims.

Closes #292
2019-11-04 19:04:05 -06:00
DRC
d92ae5df0c Merge branch 'master' into dev 2019-11-04 18:50:45 -06:00
DRC
6902cdb177 Build: Don't require ASM_NASM if !REQUIRE_SIMD
The build system is supposed to fall back to a non-SIMD build if
WITH_SIMD==1 but REQUIRE_SIMD==0.

Based on:
972df912d0

Closes #384
2019-10-29 12:08:40 -05:00
DRC
95f4d6ef8b Merge branch 'master' into dev 2019-10-24 02:13:23 -05:00
DRC
3a32d199df x86 SIMD: Consistify capitalization of NASM types
byte, word, dword, qword, oword, and yword are all assembler keywords,
so it makes sense to use lowercase for these so as not to mistake them
for macros or constants.
2019-10-17 20:02:20 -05:00
DRC
9a51a87af3 x86 SIMD: Remove obsolete [TAB8] comments
With apologies to Richard Hendricks, our assembly code no longer uses
tabs.
2019-10-17 14:11:35 -05:00
DRC
8ef53b102f Merge branch 'master' into dev 2019-08-14 22:08:59 -05:00
DRC
a81a8c137b SSE2 SIMD: Fix prog Huffman enc. error if Sl%16==0
(regression introduced by 5b177b3cab)

The SSE2 implementation of progressive Huffman encoding performed
extraneous iterations when the scan length was a multiple of 16.

Based on:
bb7f1ef983

Fixes #335
Closes #367
2019-08-14 22:01:30 -05:00
DRC
7fbfe29c65 Merge branch 'master' into dev 2019-07-18 15:18:27 -05:00
DRC
f37b7c1f96 Build: Fix build/install with Xcode IDE
Closes #355
2019-07-02 11:28:26 -05:00
DRC
f36d531553 Merge branch 'master' into dev 2019-04-23 14:54:23 -05:00
Chris Blume
aa9db61677 x86 SIMD: Check for CPUID leaf 07H before using
According to Intel's manual [1], "If a value entered for CPUID.EAX is
higher than the maximum input value for basic or extended function for
that processor then the data for the highest basic information leaf is
returned."

Right now, libjpeg-turbo doesn't first check that leaf 07H is supported
before attempting to use it, so the ostensible AVX2 bit (Bit 05) of the
CPUID result might actually be Bit 05 from a lower leaf.  That bit might
be set, even if the CPU doesn't support AVX2.

This commit modifies the x86 and x86-64 SIMD feature detection code so
that it first checks whether CPUID leaf 07H is supported before
attempting to use it to check for AVX2 instruction support.

DRC:
This commit should fix
https://bugzilla.mozilla.org/show_bug.cgi?id=1520760
However, I have not personally been able to reproduce that issue,
despite using a Nehalem (pre-AVX2) CPU on which the maximum CPUID leaf
has been limited via a BIOS setting.

Closes #348

[1]
"Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2 (2A, 2B, 2C & 2D): Instruction Set Reference, A-Z", https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf, page 3-192.
2019-04-16 17:07:28 -05:00
DRC
afbe48c290 MMI: Support 32-bit Loongson architectures 2019-02-27 13:36:48 -06:00