libjpeg-turbo has never supported non-ANSI C compilers. Per the spec,
ANSI C compilers must have locale.h, stddef.h, stdlib.h, memset(),
memcpy(), unsigned char, and unsigned short. They must also handle
undefined structures.
(regression introduced by aa7459050d)
cjpeg sets cinfo.in_color_space to JCS_RGB as an "arbitrary guess."
Since tjLoadImage() never uses JCS_RGB, the PGM reader should treat
JCS_RGB the same as JCS_UNKNOWN.
Fixes#566
After the completion of the start_input() method, it's too late to check
the image size, because the image readers may have already tried to
allocate memory for the image. If the width and height are excessively
large, then attempting to allocate memory for the image could slow
performance or lead to out-of-memory errors prior to the fuzz target
checking the image size.
NOTE: Specifically, the aforementioned OOM errors and slow units were
observed with the compression fuzz targets when using MSan.
- rdbmp.c: Because of 8fb37b8171,
bfOffBits, biClrUsed, and headerSize were made into unsigned ints.
Thus, if bPad would eventually be negative due to a malformed header,
UBSan complained about unsigned math being used in the intermediate
computations. It was unnecessary to make those variables unsigned,
since they are only meant to hold small values, so this commit makes
them signed again. The UBSan error was innocuous, because it is
effectively (if not officially) the case that
(int)((unsigned int)a - (unsigned int)b) == (int)a - (int)b.
- rdbmp.c: If (biWidth * source->bits_per_pixel / 8) would overflow an
unsigned int, then UBSan complained at the point at which row_width
was set in start_input_bmp(), even though the overflow would have been
detected later in the function. This commit adds overflow checks
prior to setting row_width.
- rdppm.c: read_pbm_integer() now bounds-checks the intermediate
value computations in order to catch integer overflow caused by a
malformed text PPM. It's possible, though extremely unlikely, that
the intermediate value computations could have wrapped around to a
value smaller than maxval, but the worst case is that this would have
generated a bogus pixel in the uncompressed image rather than throwing
an error.
A fuzzing test case that was effectively a 1-pixel PGM file with a
maximum value of 1 and an actual value of 8 caused an uninitialized
member of the rescale[] array to be accessed in get_gray_rgb_row() or
get_gray_cmyk_row(). Since, for performance reasons, those functions do
not perform bounds checking on the PPM values, we need to ensure that
unused members of the rescale[] array are initialized.
- The PPM reader now throws an error rather than segfaulting (due to a
buffer overrun) if an application attempts to load a 16-bit PPM file
into a grayscale uncompressed image buffer. No known applications
allowed that (not even the test applications in libjpeg-turbo),
because that mode of operation was never expected to work and did not
work under any circumstances. (In fact, it was necessary to modify
TJBench in order to reproduce the issue outside of a fuzzing
environment.) This was purely a matter of making the library bow out
gracefully rather than crash if an application tries to do something
really stupid.
- The PPM reader now throws an error rather than generating incorrect
pixels if an application attempts to load a 16-bit PGM file into an
RGB uncompressed image buffer.
- The PPM reader now correctly loads 16-bit PPM files into extended
RGB uncompressed image buffers. (Previously it generated incorrect
pixels unless the input colorspace was JCS_RGB or JCS_EXT_RGB.)
The only way that users could have potentially encountered these issues
was through the tjLoadImage() function. cjpeg and TJBench were
unaffected.
The checkstyle script was hastily developed prior to libjpeg-turbo 2.0
beta1, so it has a lot of exceptions and is thus prone to false
negatives. This commit eliminates some of those exceptions.
This extends the fix in 1e81b0c3ea to
include binary PPM files with maximum values < 255, thus preventing a
malformed binary PPM input file with those specifications from
triggering an overrun of the rescale array and potentially crashing
cjpeg, TJBench, or any program that uses the tjLoadImage() function.
Fixes#433
libjpeg-turbo has never really supported such compilers, since (AFAIK)
they are non-existent on any modern computing platform and thus
impossible for us to test. (Also, the TurboJPEG API would break without
unsigned chars.)
Furthermore, the unified CMake-based build system introduced in 2.0
always defines HAVE_UNSIGNED_CHAR, so retaining other code paths is
pointless. Eliminating support for compilers without unsigned char
eliminates the need for the GETJSAMPLE() macro, which improves the
readability of many parts of the code as well as improving the
performance of writing Targa and Windows BMP files.
Fixes#317
... in which one or more of the color indices is out of range for the
number of palette entries.
Fix partly borrowed from jpeg-9c. This commit also adopts Guido's
JERR_PPM_OUTOFRANGE enum value in lieu of our project-specific
JERR_PPM_TOOLARGE enum value.
Fixes#258
With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
Loading RGB image files into a grayscale buffer isn't a particularly
useful feature, given that libjpeg-turbo can perform this conversion
much more optimally (with SIMD acceleration on some platforms) during
the compression process. Also, the RGB2GRAY() macro was not producing
deterministic cross-platform results because of variations in the
round-off behavior of various floating point implementations, so
`tjunittest -bmp` was failing in i386 builds.
The main justification for this is to provide new libjpeg-turbo users
with a quick & easy way of developing a complete JPEG
compression/decompression program without requiring them to build
libjpeg-turbo from source (which was necessary in order to use the
project-private bmp API) or to use external libraries. These new
functions build upon significant enhancements to rdbmp.c, wrbmp.c,
rdppm.c, and wrppm.c which allow those engines to convert directly
between the native pixel format of the file and a pixel format
("colorspace" in libjpeg parlance) specified by the calling program.
rdbmp.c and wrbmp.c have also been modified such that the calling
program can choose to read or write image rows in the native (bottom-up)
order of the file format, thus eliminating the need to use an inversion
array. tjLoadImage() and tjSaveImage() leverage these new underlying
features in order to significantly improve upon the performance of the
old bmp API.
Because these new functions cannot work without the libjpeg-turbo
colorspace extensions, the libjpeg-compatible code in turbojpeg.c has
been removed. That code was only there to serve as an example of how
to use the TurboJPEG API on top of libjpeg, but more specific, buildable
examples now exist in the https://github.com/libjpeg-turbo/ijg
repository.
Fixes:
rdppm.c:257:14: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
if (temp > maxval)
~~~~ ^ ~~~~~~
rdppm.c:284:14: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
if (temp > maxval)
~~~~ ^ ~~~~~~
rdppm.c:289:14: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
if (temp > maxval)
~~~~ ^ ~~~~~~
rdppm.c:294:14: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
if (temp > maxval)
This extends the fix in 6709e4a0cf to
include binary PPM/PGM files, thus preventing a malformed binary
PPM/PGM input file from triggering an overrun of the rescale array and
potentially crashing cjpeg.
Note that this issue affected only cjpeg and not the underlying
libjpeg-turbo libraries, and thus it did not represent a security
threat.
Thanks to @hughdavenport for the discovery.
The convention used by libjpeg:
type * variable;
is not very common anymore, because it looks too much like
multiplication. Some (particularly C++ programmers) prefer to tuck the
pointer symbol against the type:
type* variable;
to emphasize that a pointer to a type is effectively a new type.
However, this can also be confusing, since defining multiple variables
on the same line would not work properly:
type* variable1, variable2; /* Only variable1 is actually a
pointer. */
This commit reformats the entirety of the libjpeg-turbo code base so
that it uses the same code formatting convention for pointers that the
TurboJPEG API code uses:
type *variable1, *variable2;
This seems to be the most common convention among C programmers, and
it is the convention used by other codec libraries, such as libpng and
libtiff.
These days, INT32 is a commonly-defined datatype in system headers. We
cannot eliminate the definition of that datatype from jmorecfg.h, since
the INT32 typedef has technically been part of the libjpeg API since
version 5 (1994.) However, using INT32 internally is risky, because the
inclusion of a particular header (Xmd.h, for instance) could change the
definition of INT32 from long to int on 64-bit platforms and thus change
the internal behavior of libjpeg-turbo in unexpected ways (for instance,
failing to correctly set __INT32_IS_ACTUALLY_LONG to match the INT32
typedef-- perhaps as a result of including the wrong version of
jpeglib.h-- could cause libjpeg-turbo to produce incorrect results.)
The library has always been built in environments in which INT32 is
effectively long (on Windows, long is always 32-bit, so effectively it's
the same as int), so it makes sense to turn INT32 into an explicitly
long datatype. This ensures that libjpeg-turbo will always behave
consistently, regardless of the headers included at compile time.
Addresses a concern expressed in #26.
The IJG README file has been renamed to README.ijg, in order to avoid
confusion (many people were assuming that that was our project's README
file and weren't reading README-turbo.txt) and to lay the groundwork for
markdown versions of the libjpeg-turbo README and build instructions.