12 Commits

Author SHA1 Message Date
DRC
a5689cd45b Test: Replace big_tree8.bmp and big_building16.ppm
These images were only used with tjbenchtest and tjexampletest, but I
was concerned about introducing additional licensing provisions into the
libjpeg-turbo source tree.  Thus, this commit replaces them with images
that I own and can thus make available under the libjpeg-turbo licenses
with no additional provisions.
2024-09-03 15:47:37 -04:00
DRC
d51830473a tjexampletest.in: Fix code formatting issue
(introduced by 837e471a90)
2023-11-15 11:06:23 -05:00
DRC
837e471a90 tjexample.c: Fix error when decompressing
(regression introduced by 300a344d65)

300a344d65 fixed the recompression code
path but also broke the pure decompression code path, because the fix
caused the TurboJPEG decompression instance to be destroyed before
tj3SaveImage() could use it.  Furthermore, the fix in
300a344d65 prevented pixel density
information from being transferred from the input image to the output
image when recompressing.  This commit does the following:

- Modify tjexample.c so that a single TurboJPEG instance is initialized
  for lossless transformation and shared by all code paths.  In addition
  to fixing both of the aforementioned issues, this makes the code more
  readable.

- Extend tjexampletest to test the recompression code path, thus
  ensuring that the issues fixed by this commit and
  300a344d65 are not reintroduced.

- Modify tjexample.c to remove redundant fclose(), tj3Destroy(), and
  tj3Free() calls.
2023-11-14 12:08:02 -05:00
DRC
fc01f4673b TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)

- Prefix all function names with "tj3" and remove version suffixes from
  function names.  (Future API overhauls will increment the prefix to
  "tj4", etc., thus retaining backward API/ABI compatibility without
  versioning each individual function.)

- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
  TJ*FLAG_LOSSLESS, which were never released) with stateful integer
  parameters, the value of which persists between function calls.
  * Use parameters for the JPEG quality and subsampling as well, in
    order to eliminate the awkwardness of specifying function arguments
    that weren't relevant for lossless compression.
  * tj3DecompressHeader() now stores all relevant information about the
    JPEG image, including the width, height, subsampling type, entropy
    coding type, etc. in parameters rather than returning that
    information in its arguments.
  * TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
    (TJ*PARAM_SCANLIMIT) that allows the number of scans to be
    specified.

- Use the const keyword for all pointer arguments to unmodified
  buffers, as well as for both dimensions of 2D pointers.  Addresses
  #395.

- Use size_t rather than unsigned long to represent buffer sizes, since
  unsigned long is a 32-bit type on Windows.  Addresses #24.

- Return 0 from all buffer size functions if an error occurs, rather
  than awkwardly trying to return -1 in an unsigned data type.

- Implement 12-bit and 16-bit data precision using dedicated
  compression, decompression, and image I/O functions/methods.
  * Suffix the names of all data-precision-specific functions with 8,
    12, or 16.
  * Because the YUV functions are intended to be used for video, they
    are currently only implemented with 8-bit data precision, but they
    can be expanded to 12-bit data precision in the future, if
    necessary.
  * Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
    precision, using a new -precision option.
  * Add appropriate regression tests for all of the above to the 'test'
    target.
  * Extend tjbenchtest to test 12-bit and 16-bit data precision, and
    add separate 'tjtest12' and 'tjtest16' targets.
  * BufferedImage I/O in the Java API is currently limited to 8-bit
    data precision, since the BufferedImage class does not
    straightforwardly support higher data precisions.
  * Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
    to grayscale or CMYK pixels, as it already does for 8-bit files.

- Properly accommodate lossless JPEG using dedicated parameters
  (TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
  rather than using a flag and awkwardly repurposing the JPEG quality.
  Update TJBench to properly reflect whether a JPEG image is lossless.

- Re-organize the TJBench usage screen.

- Update the Java docs using Java 11, to improve the formatting and
  eliminate HTML frames.

- Use the accurate integer DCT algorithm by default for both
  compression and decompression, since the "fast" algorithm is a legacy
  feature, it does not pass the ISO compliance tests, and it is not
  actually faster on modern x86 CPUs.
  * Remove the -accuratedct option from TJBench and TJExample.

- Re-implement the 'tjtest' target using a CMake script that enables
  the appropriate tests, depending on the data precision and whether or
  not the Java API is part of the build.

- Consolidate the C and Java versions of tjbenchtest into one script.

- Consolidate the C and Java versions of tjexampletest into one script.

- Combine all initialization functions into a single function
  (tj3Init()) that accepts an integer parameter specifying the
  subsystems to initialize.

- Enable decompression scaling explicitly, using a new function/method
  (tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
  than implicitly using awkward "desired width"/"desired height"
  parameters.

- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
  a scaling factor of 1/1.

- Implement partial image decompression, using a new function/method
  (tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
  TJBench option (-crop).  Extend tjbenchtest to test the new feature.
  Addresses #1.

- Allow the JPEG colorspace to be specified explicitly when
  compressing, using a new parameter (TJ*PARAM_COLORSPACE).  This
  allows JPEG images with the RGB and CMYK colorspaces to be created.

- Remove the error/difference image feature from TJBench.  Identical
  images to the ones that TJBench created can be generated using
  ImageMagick with
  'magick composite <original_image> <output_image> -compose difference <diff_image>'

- Handle JPEG images with unknown subsampling types.  TJ*PARAM_SUBSAMP
  is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
  be decompressed fully into packed-pixel images or losslessly
  transformed (with the exception of lossless cropping.)  They cannot
  be partially decompressed or decompressed into planar YUV images.
  Note also that TJBench, due to its lack of support for imperfect
  transforms, requires that the subsampling type be known when
  rotating, flipping, or transversely transposing an image.  Addresses
  #436

- The Java version of TJBench now has identical functionality to the C
  version.  This was accomplished by (somewhat hackishly) calling the
  TurboJPEG C image I/O functions through JNI and copying the pixels
  between the C heap and the Java heap.

- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
  a TJBench option (-restart) to allow the restart marker interval to
  be specified when compressing.  Eliminate the undocumented TJ_RESTART
  environment variable.

- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
  (TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
  optimized baseline Huffman coding to be specified when compressing.
  Eliminate the undocumented TJ_OPTIMIZE environment variable.

- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
  TJ*DENSITYUNITS) to allow the pixel density to be specified when
  compressing or saving a Windows BMP image and to be queried when
  decompressing or loading a Windows BMP image.  Addresses #77.

- Refactor the fuzz targets to use the new API.
  * Extend decompression coverage to 12-bit and 16-bit data precision.
  * Replace the awkward cjpeg12 and cjpeg16 targets with proper
    TurboJPEG-based compress12, compress12-lossless, and
    compress16-lossless targets

- Fix innocuous UBSan warnings uncovered by the new fuzzers.

- Implement previous versions of the TurboJPEG API by wrapping the new
  functions (tested by running the 2.1.x versions of TJBench, via
  tjbenchtest, and TJUnitTest against the new implementation.)
  * Remove all JNI functions for deprecated Java methods and implement
    the deprecated methods using pure Java wrappers.  It should be
    understood that backward API compatibility in Java applies only to
    the Java classes and that one cannot mix and match a JAR file from
    one version of libjpeg-turbo with a JNI library from another
    version.

- tj3Destroy() now silently accepts a NULL handle.

- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
  and free() do.

- The image I/O functions now accept a TurboJPEG instance handle, which
  is used to transmit/receive parameters and to receive error
  information.

Closes #517
2023-01-25 19:09:34 -06:00
DRC
8c40ac8ae6 Add TurboJPEG C example and clean up Java example
Also rename example.c --> example.txt and add a disclaimer to that file
so people will stop trying to compile it.
2017-11-17 22:49:11 -06:00
DRC
cd8a12586a Build: Fix 'tjtest' target on Windows
tjbenchtest and its Java derivatives are useful for rooting out hidden
problems with the more esoteric TJBench and TurboJPEG features.  For
instance, on Windows, running tjbenchtest uncovered
5fce2e9421.

This commit also causes tjbenchtest and tjbenchtest.java to append -yuv
and -alloc to their log file names, depending on the arguments passed,
and it causes the build system to clean up those log files when the
'testclean' target is built.
2017-11-17 19:11:07 -06:00
DRC
4893e5d8b8 Merge branch 'master' into dev 2017-11-17 19:00:53 -06:00
DRC
78e97e38cb Uniquify tjbenchtest log file names based on args
+ clean up log files when 'make testclean' is invoked
+ fix 'tjbenchtest -yuv -alloc'
+ fix tjexampletest so that it creates images under /tmp
+ clean up tjexampletest
2017-11-17 18:39:53 -06:00
DRC
952191da79 Build: Fix issues when building as a Git submodule
- Replace CMAKE_SOURCE_DIR with CMAKE_CURRENT_SOURCE_DIR
- Replace CMAKE_BINARY_DIR with CMAKE_CURRENT_BINARY_DIR
- Don't use "libjpeg-turbo" in any of the package system filenames
  (because CMAKE_PROJECT_NAME will not be the same if building LJT as
  a submodule.)

Closes #122
2016-12-03 15:21:27 -06:00
DRC
6abd39160c Unified CMake-based build system
See #56 for discussion.

Fixes #21, Fixes #29, Fixes #37, Closes #56, Fixes #58, Closes #73
Obviates #82

See also:
https://sourceforge.net/p/libjpeg-turbo/feature-requests/5/
https://sourceforge.net/p/libjpeg-turbo/patches/5/
2016-11-22 13:06:30 -06:00
DRC
73d74c132b Add flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@851 632fc199-4ca6-4c93-a231-07263d6284db
2012-06-29 23:46:38 +00:00
DRC
cb6157be7a Add more extensive TurboJPEG regression tests
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@771 632fc199-4ca6-4c93-a231-07263d6284db
2012-01-31 11:38:13 +00:00