We use a standard set of strict compiler warnings with Clang and GCC to
continuously test and maintain C89 conformance in the libjpeg API code.
However, SIMD extensions need not comply with that. The Neon code
specifically uses some C99isms, so disable
-Wdeclaration-after-statement, -Wc99-extensions, and -Wpedantic in the
scope of that code. Also modify the Neon feature tests so that they
will succeed if any of the aforementioned compiler warnings are enabled.
Regression introduced by 16bd984557 and
5b177b3cab
The pre-computed absolute values used in encode_mcu_AC_first() and
encode_mcu_AC_refine() were stored in a JCOEF (signed short) array.
When attempting to losslessly transform a specially-crafted malformed
12-bit JPEG image with a coefficient value of -32768 into a progressive
12-bit JPEG image, the progressive Huffman encoder attempted to store
the absolute value of -32768 in the JCOEF array, thus overflowing the
16-bit signed data type. Therefore, at this point in the code:
8c5e78ce29/jcphuff.c (L889)
the absolute value was read as -32768, which caused the test at
8c5e78ce29/jcphuff.c (L896)
to fail, falling through to
8c5e78ce29/jcphuff.c (L908)
with an overly large value of r (46) that, when shifted left four
places, incremented, and passed to emit_symbol(), exceeded the maximum
index (255) for the derived code tables. Fortunately, the buffer
overrun was fully contained within phuff_entropy_encoder, so the issue
did not generate a segfault or other user-visible errant behavior, but
it did cause a UBSan failure that was detected by OSS-Fuzz.
This commit introduces an unsigned JCOEF (UJCOEF) data type and uses it
to store the absolute values of DCT coefficients computed by the
AC_first_prepare() and AC_refine_prepare() methods.
Note that the changes to the Arm Neon progressive Huffman encoder
extensions cause signed 16-bit instructions to be replaced with
equivalent unsigned 16-bit instructions, so the changes should be
performance-neutral.
Based on:
bbf61c0382Closes#628
... on platforms that support TLS, which should include all
currently-supported platforms
(https://libjpeg-turbo.org/Documentation/OfficialBinaries)
Addresses a concern raised in #87
Although it is still my opinion that the data race in init_simd() was
innocuous, we can now fix it for free thanks to
ae87a95861, so why not?
The loop in jsimd_quantize_neon() is only executed twice and should be
unrolled for AArch64 targets. GCC does that by default, but Clang 11
and later versions available at the time of this writing do not. This
patch adds an unroll pragma when targetting AArch64 with Clang. We do
not use the unroll pragma for AArch32 targets, because it causes the
Clang-generated assembly code to exhaust the available Neon registers
(32 x 64-bit) and spill to the stack. (DRC: Referring to the discussion
in #570, this is likely due to compiler confusion that results in poor
register allocation. It is possible to eliminate the spillage and
reduce the instruction count by loading the data on a just-in-time
basis, thus explicitly interleaving compute and I/O, but the performance
implications of that are currently unknown.)
The effects of unrolling the quantization loop are:
1) elimination of the loop control flow overhead and
2) enabling the use of LDP/STP instructions that work from a single
base pointer, instead of using double the number of LDR/STR
instructions, each requiring an address calculation.
Closes#570
- Suppress a UBSan warning regarding storing a 64-bit value to a
non-64-bit-aligned address. That behavior is technically undefined
per the C spec but is supported in the context of the AArch64
architecture and compilers.
- Explicitly promote block_diff[i] to unsigned int prior to left
shifting it, in order to avoid a UBSan warning. This warning also
described behavior that is technically undefined per the C spec but is
supported in the context of the AArch64 architecture and compilers.
Changing the type cast order eliminated the warning without changing
the generated assembly code.
Closes#582
- Make better use of 128-bit vector registers, thus reducing the number
of Neon instructions required to construct the AC coefficient bitmap.
- Refactor the Neon computations of 'nbits' and 'diff' to use shorter
and higher-throughput instruction sequences.
DRC's notes:
This commit partially integrates #570. Arm reported a 1-4% speedup on
Cortex-A55 and Neoverse-N1 cores when using recent compilers but little
or no speedup with Clang 10. I observed no speedup with Clang 10 on my
Cortex-A53 and Cortex-A72 cores. Thus, referring to #582, the primary
purpose of this commit is to fix UBSan warnings regarding the shift
operations previously located at Line 253:
d640a45730/simd/arm/aarch64/jchuff-neon.c (L253)
The primary purpose of this is to encourage adoption of libjpeg-turbo in
downstream Windows projects that forbid the use of "deprecated"
functions. libjpeg-turbo's usage of those functions was not actually
unsafe, because:
- libjpeg-turbo always checks the return value of fopen() and ensures
that a NULL filename can never be passed to it.
- libjpeg-turbo always checks the return value of getenv() and never
passes a NULL argument to it.
- The sprintf() calls in format_message() (jerror.c) could never
overflow the destination string buffer or leave it unterminated as
long as the buffer was at least JMSG_LENGTH_MAX bytes in length, as
instructed. (Regardless, this commit replaces those calls with
snprintf() calls.)
- libjpeg-turbo never uses sscanf() to read strings or multi-byte
character arrays.
- Because of b7d6e84d6a, wrjpgcom
explicitly checks the bounds of the source and destination strings
before calling strcat() and strcpy().
- libjpeg-turbo always ensures that the destination string is
terminated when using strncpy().
(548490fe5e made this explicit.)
Regarding thread safety:
Technically speaking, getenv() is not thread-safe, because the returned
pointer may be invalidated if another thread sets the same environment
variable between the time that the first thread calls getenv() and the
time that that thread uses the return value. In practice, however, this
could only occur with libjpeg-turbo if:
(1) A multithreaded calling application used the deprecated and
undocumented TJFLAG_FORCEMMX/TJFLAG_FORCESSE/TJFLAG_FORCESSE2 flags in
the TurboJPEG API or set one of the corresponding environment variables
(which are only intended for testing purposes.) Since the TurboJPEG API
library only ever passed string constants to putenv(), the only inherent
risk (i.e. the only risk introduced by the library and not the calling
application) was that the SIMD extensions may have read an incorrect
value from one of the aforementioned environment variables.
or
(2) A multithreaded calling application modified the value of the
JPEGMEM environment variable in one thread while another thread was
reading the value of that environment variable (in the body of
jpeg_create_compress() or jpeg_create_decompress().) Given that the
libjpeg API provides a thread-safe way for applications to modify the
default memory limit without using the JPEGMEM environment variable,
direct modification of that environment variable by calling applications
is not supported.
Microsoft's implementation of getenv_s() does not claim to be
thread-safe either, so this commit uses getenv_s() solely to mollify
Visual Studio. New inline functions and macros (GETENV_S() and
PUTENV_S) wrap getenv_s()/_putenv_s() when building for Visual Studio
and getenv()/setenv() otherwise, but GETENV_S()/PUTENV_S() provide no
advantages over getenv()/setenv() other than parameter validation. They
are implemented solely for convenience.
Technically speaking, strerror() is not thread-safe, because the
returned pointer may be invalidated if another thread changes the locale
and/or calls strerror() between the time that the first thread calls
strerror() and the time that that thread uses the return value. In
practice, however, this could only occur with libjpeg-turbo if a
multithreaded calling application encountered a file I/O error in
tjLoadImage() or tjSaveImage(). Since both of those functions
immediately copy the string returned from strerror() into a thread-local
buffer, the risk is minimal, and the worst case would involve an
incorrect error string being reported to the calling application.
Regardless, this commit uses strerror_s() in the TurboJPEG API library
when building for Visual Studio. Note that strerror_r() could have been
used on Un*x systems, but it would have been necessary to handle both
the POSIX and GNU implementations of that function and perform
widespread compatibility testing. Such is left as an exercise for
another day.
Fixes#568
'buffer' is both passed into the inline assembly code and modified by
it. See https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html, 6.47.2.3.
With GCC 4, this commit does not change the generated assembly code at
all.
With GCC 8, this commit fixes an assembly error:
/tmp/{foo}.s: Assembler messages:
/tmp/{foo}.s:775: Error: registers may not be the same --
`str r9,[r9],#4'
I'm not sure why that error went unnoticed, since I definitely
benchmarked the previous commit with GCC 8. Anyhow, this commit changes
the generated assembly code slightly but does not alter performance.
With Clang 10, this commit changes the generated assembly code slightly
but does not alter performance.
Refer to #529
Referring to the C standard
(http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf,
J.2 Undefined behavior), the behavior of the compiler is undefined if
"conversion between two pointer types produces a result that is
incorrectly aligned." Thus, the behavior of this code
*((uint32_t *)buffer) = BUILTIN_BSWAP32(put_buffer);
in the AArch32 version of the FLUSH() macro is undefined unless 'buffer'
is 32-bit-aligned. Referring to
https://bugs.llvm.org/show_bug.cgi?id=50785, certain versions of Clang,
when generating Thumb (T32) instructions, miscompile that code into an
assembly instruction (stm) that requires the destination to be
32-bit-aligned. Since such alignment cannot be guaranteed within the
Huffman encoder, this reportedly led to crashes (SIGBUS: illegal
alignment) with AArch32/Thumb builds of libjpeg-turbo running on Android
devices, although thus far I have been unable to reproduce those crashes
with a plain Linux/Arm system.
The miscompilation is visible with the Compiler Explorer:
https://godbolt.org/z/rv1ccx1Pb
However, it goes away when removing the return statement from the
function. Thus, it seems that Clang's behavior in this regard is
somewhat variable, which may explain why the crashes are only
reproducible on certain platforms.
The suggested workaround is to use memcpy(), but whereas Clang and
recent GCC releases are smart enough to compile a 4-byte memcpy() call
into a str instruction, GCC < 6 is not. Referring to
https://godbolt.org/z/ae7Wje3P6, the only way to consistently produce
the desired str instruction across all supported compilers is to use
inline assembly. Visual C++ presumably does not miscompile the code in
question, since no issues have been reported with it, but since the code
relies on undefined compiler behavior, prudence dictates that
e4ec23d7ae should be reverted for Visual
C++, which this commit does. The performance impact of
e4ec23d7ae for Visual C++/Arm builds is
unknown (I have no ability to test such builds), but regardless, this
commit reverts the Visual C++/Arm performance to that of libjpeg-turbo
2.1 beta1.
Closes#529
Define compiler-independent byte-swap macros and use them instead of
executing 'rev' via inline assembly code with GCC-compatible compilers
or a slow shift-store sequence with Visual C++.
* This produces identical assembly code with:
- 64-bit GCC 8.4.0 (Linux)
- 64-bit GCC 9.3.0 (Linux)
- 64-bit Clang 10.0.0 (Linux)
- 64-bit Clang 10.0.0 (MinGW)
- 64-bit Clang 12.0.0 (Xcode 12.2, macOS)
- 64-bit Clang 12.0.0 (Xcode 12.2, iOS)
* This produces different assembly code with:
- 64-bit GCC 4.9.1 (Linux)
- 32-bit GCC 4.8.2 (Linux)
- 32-bit GCC 8.4.0 (Linux)
- 32-bit GCC 9.3.0 (Linux)
Since the intrinsics implementation of Huffman encoding is not used
by default with these compilers, this is not a concern.
- 32-bit Clang 10.0.0 (Linux)
Verified performance neutrality
Closes#507
The GNU builtin function __builtin_clzl() accepts an unsigned long
argument, which is 8 bytes wide on LP64 systems (most Un*x systems,
including Mac) but 4 bytes wide on LLP64 systems (Windows.) This caused
the Neon intrinsics implementation of Huffman encoding to produce
mathematically incorrect results when compiled using Visual Studio with
Clang.
This commit changes all invocations of __builtin_clzl() in the Neon SIMD
extensions to __builtin_clzll(), which accepts an unsigned long long
argument that is guaranteed to be 8 bytes wide on all systems.
Fixes#480Closes#490
- Use the _M_ARM and _M_ARM64 macros provided by Visual Studio for
compile-time detection of Arm builds, since __arm__ and __aarch64__
are only present in GNU-compatible compilers.
- Neon/intrinsics: Use the _CountLeadingZeros() and
_CountLeadingZeros64() intrinsics provided by Visual Studio, since
__builtin_clz() and __builtin_clzl() are only present in
GNU-compatible compilers.
- Neon/intrinsics: Since Visual Studio does not support static vector
initialization, replace static initialization of Neon vectors with the
appropriate intrinsics. Compared to the static initialization
approach, this produces identical assembly code with both GCC and
Clang.
- Neon/intrinsics: Since Visual Studio does not support inline assembly
code, provide alternative code paths for Visual Studio whenever inline
assembly is used.
- Build: Set FLOATTEST appropriately for AArch64 Visual Studio builds
(Visual Studio does not emit fused multiply-add [FMA] instructions by
default for such builds.)
- Neon/intrinsics: Move temporary buffer allocation outside of nested
loops. Since Visual Studio configures Arm builds with a relatively
small amount of stack memory, attempting to allocate those buffers
within the inner loops caused a stack overflow.
Closes#461Closes#475
This allows the Neon intrinsics code to be built successfully (albeit
likely with reduced run-time performance) with Xcode 5.0-6.2
(iOS/AArch64) and Android NDK < r19 (AArch32). Note that Xcode 5.0-6.2
will not build the Armv8 GAS code without gas-preprocessor.pl, and no
version of Xcode will build the Armv7 GAS code without
gas-preprocessor.pl, so we always use the full Neon intrinsics
implementation by default with macOS and iOS builds.
Auto-detecting the completeness of the compiler's set of Neon intrinsics
also allows us to more intelligently set the default value of
NEON_INTRINSICS, based on the values of HAVE_VLD1*. This is a
reasonable, albeit imperfect, proxy for whether a compiler has a full
and optimal set of Neon intrinsics. Specific notes:
- 64-bit RGB-to-YCbCr color conversion
does not use any of the intrinsics in question, regresses with GCC
- 64-bit accurate integer forward DCT
uses vld1_s16_x3(), regresses with GCC
- 64-bit Huffman encoding
uses vld1q_u8_x4(), regresses with GCC
- 64-bit YCbCr-to-RGB color conversion
does not use any of the intrinsics in question, regresses with GCC
- 64-bit accurate integer inverse DCT
uses vld1_s16_x3(), regresses with GCC
- 64-bit 4x4 inverse DCT
uses vld1_s16_x3(). I did not test this algorithm in isolation, so
it may in fact regress with GCC, but the regression may be hidden by
the speedup from the new SIMD-accelerated upsampling algorithms.
- 32-bit RGB-to-YCbCr color conversion:
uses vld1_u16_x2(), regresses with GCC
- 32-bit accurate integer forward DCT
uses vld1_s16_x3(), regression irrelevant because there was no
previous implementation
- 32-bit accurate integer inverse DCT
uses vld1_s16_x3(), regresses with GCC
- 32-bit fast integer inverse DCT
does not use any of the intrinsics in question, regresses with GCC
- 32-bit 4x4 inverse DCT
uses vld1_s16_x3(). I did not test this algorithm in isolation, so
it may in fact regress with GCC, but the regression may be hidden by
the speedup from the new SIMD-accelerated upsampling algorithms.
Presumably when GCC includes a full and optimal set of Neon intrinsics,
the HAVE_VLD1* tests will pass, and the full Neon intrinsics
implementation will be enabled automatically.
There was no previous GAS implementation.
NOTE: This doesn't produce much of a speedup when using -O3, because -O3
already enables Neon autovectorization, which works well for the scalar
C implementation of plain upsampling. However, the Neon SIMD
implementation will benefit other optimization levels.
There was no previous GAS implementation.
This commit also reverts 40557b2301 and
7723d7f7d0.
7723d7f7d0 was only necessary because
there was no Neon implementation of merged upsampling/color conversion,
and 40557b2301 was only necessary because
of 7723d7f7d0.
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression. The
intrinsics implementation can be forced on or off using the new
NEON_INTRINSICS CMake variable.
The previous AArch32 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch64 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch32 GAS implementation of h2v1 fancy upsampling has
been removed, since the intrinsics implementation provides the same or
better performance. There was no previous GAS implementation of h2v2
fancy upsampling, and there was no previous AArch64 GAS implementation
of h2v1 fancy upsampling.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. There was no previous AArch32 GAS implementation.
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression. The
intrinsics implementation can be forced on or off using a new
NEON_INTRINSICS CMake variable.
The checkstyle script was hastily developed prior to libjpeg-turbo 2.0
beta1, so it has a lot of exceptions and is thus prone to false
negatives. This commit eliminates some of those exceptions.
When simd/arm/jsimd.c is compiled with __ARM_NEON__ defined (which will
be the case if -mfpu=neon is passed to the compiler), the
parse_proc_cpuinfo() and check_feature() functions and the bufsize
variable are unused and thus need to be #ifdef'ed out in order to avoid
compiler warnings. Note that the bufsize variable was already #ifdef'ed
out on Linux but not on Android due to lack of parentheses (&& takes
precedence over ||.)
Closes#331
This commit adds C and SSE2 optimizations for the encode_mcu_AC_first()
function used in progressive Huffman encoding.
The image used for testing can be retrieved from this page:
https://blog.cloudflare.com/doubling-the-speed-of-jpegtran
All timings done on `Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz`
clang version is `Apple LLVM version 9.0.0 (clang-900.0.39.2)`
gcc-5 version is `gcc-5 (Homebrew GCC 5.5.0) 5.5.0`
gcc-7 version is `gcc-7 (Homebrew GCC 7.2.0) 7.2.0`
Here are the results in comparison to libjpeg-turbo@293263c using
`time ./jpegtran -outfile /dev/null -progressive -optimise -copy none print_poster_0025.jpg`
C
clang x86_64: +19%
gcc-5 x86_64: +80%
gcc-7 x86_64: +57%
clang i386: +5%
gcc-5 i386: +59%
gcc-7 i386: +51%
SSE2
clang x86_64: +79%
gcc-5 x86_64: +158%
gcc-7 x86_64: +122%
clang i386: +71%
gcc-5 i386: +134%
gcc-7 i386: +135%
Discussion in libjpeg-turbo/libjpeg-turbo#46
This commit adds C and SSE2 optimizations for the encode_mcu_AC_refine()
function used in progressive Huffman encoding.
The image used for testing can be retrieved from this page:
https://blog.cloudflare.com/doubling-the-speed-of-jpegtran
All timings done on `Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz`
clang version is `Apple LLVM version 9.0.0 (clang-900.0.39.2)`
gcc-5 version is `gcc-5 (Homebrew GCC 5.5.0) 5.5.0`
gcc-7 version is `gcc-7 (Homebrew GCC 7.2.0) 7.2.0`
Here are the results in comparison to libjpeg-turbo@3c54642 using
`time ./jpegtran -outfile /dev/null -progressive -optimise -copy none print_poster_0025.jpg`
C
clang x86_64: +7%
gcc-5 x86_64: +30%
gcc-7 x86_64: +33%
clang i386: +0%
gcc-5 i386: +24%
gcc-7 i386: +23%
SSE2
clang x86_64: +42%
gcc-5 x86_64: +53%
gcc-7 x86_64: +64%
clang i386: +35%
gcc-5 i386: +46%
gcc-7 i386: +49%
Discussion in libjpeg-turbo/libjpeg-turbo#46
Within the libjpeg API code, it seems to be more the convention than not
to separate the macro name and value by two or more spaces, which
improves general readability. Making this consistent across all of
libjpeg-turbo is less about my individual preferences and more about
making it easy to automatically detect variations from our chosen
formatting convention. I intend to release the script I'm using to
validate this stuff, once it matures and stabilizes a bit.
With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
+ "JSIMD_ARM_NEON" = "JSIMD_NEON"
+ "JSIMD_MIPS_DSPR2" = "JSIMD_DSPR2"
+ "*_mips_dspr2" = "*_dspr2"
It's obvious that "NEON" refers to Arm and "DSPr2" refers to MIPS, and
this naming convention is consistent with the other SIMD extensions.