Regression introduced by 16bd984557 and
5b177b3cab
The pre-computed absolute values used in encode_mcu_AC_first() and
encode_mcu_AC_refine() were stored in a JCOEF (signed short) array.
When attempting to losslessly transform a specially-crafted malformed
12-bit JPEG image with a coefficient value of -32768 into a progressive
12-bit JPEG image, the progressive Huffman encoder attempted to store
the absolute value of -32768 in the JCOEF array, thus overflowing the
16-bit signed data type. Therefore, at this point in the code:
8c5e78ce29/jcphuff.c (L889)
the absolute value was read as -32768, which caused the test at
8c5e78ce29/jcphuff.c (L896)
to fail, falling through to
8c5e78ce29/jcphuff.c (L908)
with an overly large value of r (46) that, when shifted left four
places, incremented, and passed to emit_symbol(), exceeded the maximum
index (255) for the derived code tables. Fortunately, the buffer
overrun was fully contained within phuff_entropy_encoder, so the issue
did not generate a segfault or other user-visible errant behavior, but
it did cause a UBSan failure that was detected by OSS-Fuzz.
This commit introduces an unsigned JCOEF (UJCOEF) data type and uses it
to store the absolute values of DCT coefficients computed by the
AC_first_prepare() and AC_refine_prepare() methods.
Note that the changes to the Arm Neon progressive Huffman encoder
extensions cause signed 16-bit instructions to be replaced with
equivalent unsigned 16-bit instructions, so the changes should be
performance-neutral.
Based on:
bbf61c0382Closes#628
The Gordian knot that 7fec5074f9 attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API. If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application. (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)
Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation. Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.
In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:
- The colormap and sample_range_limit fields in jpeg_decompress_struct
- The alloc_sarray() and access_virt_sarray() methods in
jpeg_memory_mgr
- jpeg_write_scanlines() and jpeg_write_raw_data()
- jpeg_read_scanlines() and jpeg_read_raw_data()
- jpeg_skip_scanlines() and jpeg_crop_scanline()
(This is subtle, but both of those functions use JSAMPLE-dependent
opaque structures behind the scenes.)
It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples. Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:
- Compile only the precision-dependent libjpeg modules (the
coefficient buffer controllers, the colorspace converters, the
DCT/IDCT managers, the main buffer controllers, the preprocessing
and postprocessing controller, the downsampler and upsamplers, the
quantizers, the integer DCT methods, and the IDCT methods) for
multiple data precisions.
- Introduce 12-bit-specific methods into the various internal
structures defined in jpegint.h.
- Create precision-independent data type, macro, method, field, and
function names that are prefixed by an underscore, and use an
internal header to convert those into precision-dependent data
type, macro, method, field, and function names, based on the value
of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
modules.
- Expose precision-dependent jinit*() functions for each of the
precision-dependent libjpeg modules.
- Abstract the precision-dependent libjpeg modules by calling the
appropriate precision-dependent jinit*() function, based on the
value of cinfo->data_precision, from top-level libjpeg API
functions.
This commit adds C and SSE2 optimizations for the encode_mcu_AC_first()
function used in progressive Huffman encoding.
The image used for testing can be retrieved from this page:
https://blog.cloudflare.com/doubling-the-speed-of-jpegtran
All timings done on `Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz`
clang version is `Apple LLVM version 9.0.0 (clang-900.0.39.2)`
gcc-5 version is `gcc-5 (Homebrew GCC 5.5.0) 5.5.0`
gcc-7 version is `gcc-7 (Homebrew GCC 7.2.0) 7.2.0`
Here are the results in comparison to libjpeg-turbo@293263c using
`time ./jpegtran -outfile /dev/null -progressive -optimise -copy none print_poster_0025.jpg`
C
clang x86_64: +19%
gcc-5 x86_64: +80%
gcc-7 x86_64: +57%
clang i386: +5%
gcc-5 i386: +59%
gcc-7 i386: +51%
SSE2
clang x86_64: +79%
gcc-5 x86_64: +158%
gcc-7 x86_64: +122%
clang i386: +71%
gcc-5 i386: +134%
gcc-7 i386: +135%
Discussion in libjpeg-turbo/libjpeg-turbo#46
This commit adds C and SSE2 optimizations for the encode_mcu_AC_refine()
function used in progressive Huffman encoding.
The image used for testing can be retrieved from this page:
https://blog.cloudflare.com/doubling-the-speed-of-jpegtran
All timings done on `Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz`
clang version is `Apple LLVM version 9.0.0 (clang-900.0.39.2)`
gcc-5 version is `gcc-5 (Homebrew GCC 5.5.0) 5.5.0`
gcc-7 version is `gcc-7 (Homebrew GCC 7.2.0) 7.2.0`
Here are the results in comparison to libjpeg-turbo@3c54642 using
`time ./jpegtran -outfile /dev/null -progressive -optimise -copy none print_poster_0025.jpg`
C
clang x86_64: +7%
gcc-5 x86_64: +30%
gcc-7 x86_64: +33%
clang i386: +0%
gcc-5 i386: +24%
gcc-7 i386: +23%
SSE2
clang x86_64: +42%
gcc-5 x86_64: +53%
gcc-7 x86_64: +64%
clang i386: +35%
gcc-5 i386: +46%
gcc-7 i386: +49%
Discussion in libjpeg-turbo/libjpeg-turbo#46
With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
The IJG convention is to format copyright notices as:
Copyright (C) YYYY, Owner.
We try to maintain this convention for any code that is part of the
libjpeg API library (with the exception of preserving the copyright
notices from Cendio's code verbatim, since those predate
libjpeg-turbo.)
Note that the phrase "All Rights Reserved" is no longer necessary, since
all Buenos Aires Convention signatories signed onto the Berne Convention
in 2000. However, our convention is to retain this phrase for any files
that have a self-contained copyright header but to leave it off of any
files that refer to another file for conditions of distribution and use.
For instance, all of the non-SIMD files in the libjpeg API library refer
to README.ijg, and the copyright message in that file contains "All
Rights Reserved", so it is unnecessary to add it to the individual
files.
The TurboJPEG code retains my preferred formatting convention for
copyright notices, which is based on that of VirtualGL (where the
TurboJPEG API originated.)
The convention used by libjpeg:
type * variable;
is not very common anymore, because it looks too much like
multiplication. Some (particularly C++ programmers) prefer to tuck the
pointer symbol against the type:
type* variable;
to emphasize that a pointer to a type is effectively a new type.
However, this can also be confusing, since defining multiple variables
on the same line would not work properly:
type* variable1, variable2; /* Only variable1 is actually a
pointer. */
This commit reformats the entirety of the libjpeg-turbo code base so
that it uses the same code formatting convention for pointers that the
TurboJPEG API code uses:
type *variable1, *variable2;
This seems to be the most common convention among C programmers, and
it is the convention used by other codec libraries, such as libpng and
libtiff.
Full-color compression speedups relative to libjpeg-turbo 1.4.2:
2.8 GHz Intel Xeon W3530, Linux, 64-bit: 2.2-18% (avg. 9.5%)
2.8 GHz Intel Xeon W3530, Linux, 32-bit: 10-25% (avg. 17%)
2.3 GHz AMD A10-4600M APU, Linux, 64-bit: 4.9-17% (avg. 11%)
2.3 GHz AMD A10-4600M APU, Linux, 32-bit: 8.8-19% (avg. 15%)
3.0 GHz Intel Core i7, OS X, 64-bit: 3.5-16% (avg. 10%)
3.0 GHz Intel Core i7, OS X, 32-bit: 4.8-14% (avg. 11%)
2.6 GHz AMD Athlon 64 X2 5050e:
Performance-neutral (give or take a few percent)
Full-color compression speedups relative to IPP:
2.8 GHz Intel Xeon W3530, Linux, 64-bit: 4.8-34% (avg. 19%)
2.8 GHz Intel Xeon W3530, Linux, 32-bit: -19%-7.0% (avg. -7.0%)
Refer to #42 for discussion. Numerous other approaches were attempted,
but this one proved to be the most performant across all platforms.
This commit also fixes#3 (works around, really-- the clang-compiled version
of jchuff.c still performs 20% worse than its GCC-compiled counterpart, but
that code is now bypassed by the new SSE2 Huffman algorithm.)
Based on:
2cb4d4133036c94e050d
-----
aee36252be.patch
From aee36252be20054afce371a92406fc66ba6627b5 Mon Sep 17 00:00:00 2001
From: Siarhei Siamashka <siarhei.siamashka@gmail.com>
Date: Wed, 13 Aug 2014 03:50:22 +0300
Subject: [PATCH] ARM: Faster NEON yuv->rgb conversion for Krait and Cortex-A15
The older code was developed and tested only on ARM Cortex-A8 and ARM Cortex-A9.
Tuning it for newer ARM processors can introduce some speed-up (up to 20%).
The performance of the inner loop (conversion of 8 pixels) improves from
~27 cycles down to ~22 cycles on Qualcomm Krait 300, and from ~20 cycles
down to ~18 cycles on ARM Cortex-A15.
The performance remains exactly the same on ARM Cortex-A7 (~58 cycles),
ARM Cortex-A8 (~25 cycles) and ARM Cortex-A9 (~30 cycles) processors.
Also use larger indentation in the source code for separating two independent
instruction streams.
-----
a5efdbf22c.patch
From a5efdbf22ce9c1acd4b14a353cec863c2c57557e Mon Sep 17 00:00:00 2001
From: Siarhei Siamashka <siarhei.siamashka@gmail.com>
Date: Wed, 13 Aug 2014 07:23:09 +0300
Subject: [PATCH] ARM: NEON optimized yuv->rgb565 conversion
The performance of the inner loop (conversion of 8 pixels):
* ARM Cortex-A7: ~55 cycles
* ARM Cortex-A8: ~28 cycles
* ARM Cortex-A9: ~32 cycles
* ARM Cortex-A15: ~20 cycles
* Qualcomm Krait: ~24 cycles
Based on the Linaro rgb565 patch from
https://sourceforge.net/p/libjpeg-turbo/patches/24/
but implements better instructions scheduling.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1385 632fc199-4ca6-4c93-a231-07263d6284db
Designed to impose minimal changes on the "normal" code.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@14 632fc199-4ca6-4c93-a231-07263d6284db