The Independent JPEG Group's JPEG software v6

This commit is contained in:
Thomas G. Lane
1995-08-02 00:00:00 +00:00
committed by DRC
parent a8b67c4fbb
commit bc79e0680a
88 changed files with 9850 additions and 3723 deletions

60
cjpeg.1
View File

@@ -1,4 +1,4 @@
.TH CJPEG 1 "12 December 1994"
.TH CJPEG 1 "15 June 1995"
.SH NAME
cjpeg \- compress an image file to a JPEG file
.SH SYNOPSIS
@@ -59,6 +59,9 @@ runs somewhat slower and needs much more memory. Image quality and speed of
decompression are unaffected by
.BR \-optimize .
.TP
.B \-progressive
Create progressive JPEG file (see below).
.TP
.B \-targa
Input file is Targa format. Targa files that contain an "identification"
field will not be automatically recognized by
@@ -84,7 +87,7 @@ often about right. If you see defects at
image. (The optimal setting will vary from one image to another.)
.PP
.B \-quality
100 will generate a quantization table of all 1's, eliminating loss in the
100 will generate a quantization table of all 1's, minimizing loss in the
quantization step (but there is still information loss in subsampling, as well
as roundoff error). This setting is mainly of interest for experimental
purposes. Quality values above about 95 are
@@ -101,10 +104,23 @@ values below about 25 generate 2-byte quantization tables, which are
considered optional in the JPEG standard.
.B cjpeg
emits a warning message when you give such a quality value, because some
commercial JPEG programs may be unable to decode the resulting file. Use
other JPEG programs may be unable to decode the resulting file. Use
.B \-baseline
if you need to ensure compatibility at low quality values.)
.PP
The
.B \-progressive
switch creates a "progressive JPEG" file. In this type of JPEG file, the data
is stored in multiple scans of increasing quality. If the file is being
transmitted over a slow communications link, the decoder can use the first
scan to display a low-quality image very quickly, and can then improve the
display with each subsequent scan. The final image is exactly equivalent to a
standard JPEG file of the same quality setting, and the total file size is
about the same --- often a little smaller.
.B Caution:
progressive JPEG is not yet widely implemented, so many decoders will be
unable to view a progressive JPEG file at all.
.PP
Switches for advanced users:
.TP
.B \-dct int
@@ -171,42 +187,25 @@ blur the image, however.
.PP
Switches for wizards:
.TP
.B \-arithmetic
Use arithmetic coding rather than Huffman coding. (Not currently
supported for legal reasons.)
.TP
.B \-baseline
Force a baseline JPEG file to be generated. This clamps quantization values
to 8 bits even at low quality settings.
.TP
.B \-nointerleave
Generate noninterleaved JPEG file (not yet supported).
.TP
.BI \-qtables " file"
Use the quantization tables given in the specified file. The file should
contain one to four tables (64 values each) as plain text. Comments preceded
by '#' may be included in the file. The tables are implicitly numbered
0,1,etc. If
.BI \-quality " N"
is also specified, the values in the file are scaled according to
.BR cjpeg 's
quality scaling curve.
Use the quantization tables given in the specified text file.
.TP
.BI \-qslots " N[,...]"
Select which quantization table to use for each color component. By default,
table 0 is used for luminance and table 1 for chrominance components.
Select which quantization table to use for each color component.
.TP
.BI \-sample " HxV[,...]"
Set JPEG sampling factors. If you specify fewer H/V pairs than there are
components, the remaining components are set to 1x1 sampling. The default
setting is equivalent to \fB\-sample 2x2\fR.
Set JPEG sampling factors for each color component.
.TP
.BI \-scans " file"
Use the scan script given in the specified text file.
.PP
The "wizard" switches are intended for experimentation with JPEG. If you
don't know what you are doing, \fBdon't use them\fR. You can easily produce
files with worse image quality and/or poorer compression than you'll get from
the default settings. Furthermore, these switches should not be used when
making files intended for general use, because not all JPEG implementations
will support unusual JPEG parameter settings.
don't know what you are doing, \fBdon't use them\fR. These switches are
documented further in the file wizard.doc.
.SH EXAMPLES
.LP
This example compresses the PPM file foo.ppm with a quality factor of
@@ -243,7 +242,9 @@ option to
is worth using when you are making a "final" version for posting or archiving.
It's also a win when you are using low quality settings to make very small
JPEG files; the percentage improvement is often a lot more than it is on
larger files.
larger files. (At present,
.B \-optimize
mode is always selected when generating progressive JPEG files.)
.SH ENVIRONMENT
.TP
.B JPEGMEM
@@ -257,6 +258,7 @@ itself is overridden by an explicit
.BR \-maxmemory .
.SH SEE ALSO
.BR djpeg (1),
.BR jpegtran (1),
.BR rdjpgcom (1),
.BR wrjpgcom (1)
.br