Merge branch 'master' into dev

This commit is contained in:
DRC
2020-11-05 16:04:55 -06:00
28 changed files with 263 additions and 218 deletions

51
cjpeg.1
View File

@@ -1,4 +1,4 @@
.TH CJPEG 1 "18 December 2019"
.TH CJPEG 1 "4 November 2020"
.SH NAME
cjpeg \- compress an image file to a JPEG file
.SH SYNOPSIS
@@ -160,31 +160,40 @@ arithmetic coded JPEG is not yet widely implemented, so many decoders will be
unable to view an arithmetic coded JPEG file at all.
.TP
.B \-dct int
Use integer DCT method (default).
Use accurate integer DCT method (default).
.TP
.B \-dct fast
Use fast integer DCT (less accurate).
In libjpeg-turbo, the fast method is generally about 5-15% faster than the int
method when using the x86/x86-64 SIMD extensions (results may vary with other
SIMD implementations, or when using libjpeg-turbo without SIMD extensions.)
Use less accurate integer DCT method [legacy feature].
When the Independent JPEG Group's software was first released in 1991, the
compression time for a 1-megapixel JPEG image on a mainstream PC was measured
in minutes. Thus, the \fBfast\fR integer DCT algorithm provided noticeable
performance benefits. On modern CPUs running libjpeg-turbo, however, the
compression time for a 1-megapixel JPEG image is measured in milliseconds, and
thus the performance benefits of the \fBfast\fR algorithm are much less
noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, the
\fBfast\fR and \fBint\fR methods have similar performance. On other types of
CPUs, the \fBfast\fR method is generally about 5-15% faster than the \fBint\fR
method.
For quality levels of 90 and below, there should be little or no perceptible
difference between the two algorithms. For quality levels above 90, however,
the difference between the fast and the int methods becomes more pronounced.
With quality=97, for instance, the fast method incurs generally about a 1-3 dB
loss (in PSNR) relative to the int method, but this can be larger for some
images. Do not use the fast method with quality levels above 97. The
algorithm often degenerates at quality=98 and above and can actually produce a
more lossy image than if lower quality levels had been used. Also, in
libjpeg-turbo, the fast method is not fully accelerated for quality levels
above 97, so it will be slower than the int method.
quality difference between the two algorithms. For quality levels above 90,
however, the difference between the \fBfast\fR and \fBint\fR methods becomes
more pronounced. With quality=97, for instance, the \fBfast\fR method incurs
generally about a 1-3 dB loss in PSNR relative to the \fBint\fR method, but
this can be larger for some images. Do not use the \fBfast\fR method with
quality levels above 97. The algorithm often degenerates at quality=98 and
above and can actually produce a more lossy image than if lower quality levels
had been used. Also, in libjpeg-turbo, the \fBfast\fR method is not fully
accelerated for quality levels above 97, so it will be slower than the
\fBint\fR method.
.TP
.B \-dct float
Use floating-point DCT method.
The float method is mainly a legacy feature. It does not produce significantly
more accurate results than the int method, and it is much slower. The float
method may also give different results on different machines due to varying
roundoff behavior, whereas the integer methods should give the same results on
all machines.
Use floating-point DCT method [legacy feature].
The \fBfloat\fR method does not produce significantly more accurate results
than the \fBint\fR method, and it is much slower. The \fBfloat\fR method may
also give different results on different machines due to varying roundoff
behavior, whereas the integer methods should give the same results on all
machines.
.TP
.BI \-icc " file"
Embed ICC color management profile contained in the specified file.