Port the more accurate (and slightly faster) floating point IDCT implementation from jpeg-8a and later. New research revealed that the SSE/SSE2 floating point IDCT implementation was actually more accurate than the jpeg-6b implementation, not less, which is why its mathematical results have always differed from those of the jpeg-6b implementation. This patch brings the accuracy of the C code in line with that of the SSE/SSE2 code.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1288 632fc199-4ca6-4c93-a231-07263d6284db
This commit is contained in:
@@ -300,7 +300,7 @@ set(MD5_JPEG_3x2_FLOAT_PROG 343e3f8caf8af5986ebaf0bdc13b5c71)
|
|||||||
set(MD5_PPM_3x2_FLOAT 1a75f36e5904d6fc3a85a43da9ad89bb)
|
set(MD5_PPM_3x2_FLOAT 1a75f36e5904d6fc3a85a43da9ad89bb)
|
||||||
else()
|
else()
|
||||||
set(MD5_JPEG_3x2_FLOAT_PROG 9bca803d2042bd1eb03819e2bf92b3e5)
|
set(MD5_JPEG_3x2_FLOAT_PROG 9bca803d2042bd1eb03819e2bf92b3e5)
|
||||||
set(MD5_PPM_3x2_FLOAT ef6a420e369440edd6b918a0cf54ba3f)
|
set(MD5_PPM_3x2_FLOAT f6bfab038438ed8f5522fbd33595dcdc)
|
||||||
endif()
|
endif()
|
||||||
set(MD5_JPEG_420_ISLOW_ARI e986fb0a637a8d833d96e8a6d6d84ea1)
|
set(MD5_JPEG_420_ISLOW_ARI e986fb0a637a8d833d96e8a6d6d84ea1)
|
||||||
set(MD5_JPEG_444_ISLOW_PROGARI 0a8f1c8f66e113c3cf635df0a475a617)
|
set(MD5_JPEG_444_ISLOW_PROGARI 0a8f1c8f66e113c3cf635df0a475a617)
|
||||||
|
|||||||
@@ -54,6 +54,14 @@ if compiler optimization was enabled when libjpeg-turbo was built. This caused
|
|||||||
the regression tests to fail when doing a release build under Visual C++ 2010
|
the regression tests to fail when doing a release build under Visual C++ 2010
|
||||||
and later.
|
and later.
|
||||||
|
|
||||||
|
[7] Improved the accuracy and performance of the non-SIMD implementation of the
|
||||||
|
floating point inverse DCT (using code borrowed from libjpeg v8a and later.)
|
||||||
|
The accuracy of this implementation now matches the accuracy of the SSE/SSE2
|
||||||
|
implementation. Note, however, that the floating point DCT/IDCT algorithms are
|
||||||
|
mainly a legacy feature. They generally do not produce significantly better
|
||||||
|
accuracy than the slow integer DCT/IDCT algorithms, and they are quite a bit
|
||||||
|
slower.
|
||||||
|
|
||||||
|
|
||||||
1.3.1
|
1.3.1
|
||||||
=====
|
=====
|
||||||
|
|||||||
@@ -175,15 +175,13 @@ MD5_JPEG_GRAY_ISLOW = 72b51f894b8f4a10b3ee3066770aa38d
|
|||||||
MD5_PPM_GRAY_ISLOW = 8d3596c56eace32f205deccc229aa5ed
|
MD5_PPM_GRAY_ISLOW = 8d3596c56eace32f205deccc229aa5ed
|
||||||
MD5_PPM_GRAY_RGB_ISLOW = 116424ac07b79e5e801f00508eab48ec
|
MD5_PPM_GRAY_RGB_ISLOW = 116424ac07b79e5e801f00508eab48ec
|
||||||
MD5_JPEG_420S_IFAST_OPT = 388708217ac46273ca33086b22827ed8
|
MD5_JPEG_420S_IFAST_OPT = 388708217ac46273ca33086b22827ed8
|
||||||
# The SSE/SSE2 DCT/IDCT implementation has always produced a slight round-off
|
# See README-turbo.txt for more details on why this next bit is necessary.
|
||||||
# error relative to the C code, so in this case, we just test for regression
|
|
||||||
# rather than verifying that the output matches libjpeg.
|
|
||||||
if WITH_SSE_FLOAT_DCT
|
if WITH_SSE_FLOAT_DCT
|
||||||
MD5_JPEG_3x2_FLOAT_PROG = 343e3f8caf8af5986ebaf0bdc13b5c71
|
MD5_JPEG_3x2_FLOAT_PROG = 343e3f8caf8af5986ebaf0bdc13b5c71
|
||||||
MD5_PPM_3x2_FLOAT = 1a75f36e5904d6fc3a85a43da9ad89bb
|
MD5_PPM_3x2_FLOAT = 1a75f36e5904d6fc3a85a43da9ad89bb
|
||||||
else
|
else
|
||||||
MD5_JPEG_3x2_FLOAT_PROG = 9bca803d2042bd1eb03819e2bf92b3e5
|
MD5_JPEG_3x2_FLOAT_PROG = 9bca803d2042bd1eb03819e2bf92b3e5
|
||||||
MD5_PPM_3x2_FLOAT = ef6a420e369440edd6b918a0cf54ba3f
|
MD5_PPM_3x2_FLOAT = f6bfab038438ed8f5522fbd33595dcdc
|
||||||
endif
|
endif
|
||||||
MD5_JPEG_420_ISLOW_ARI = e986fb0a637a8d833d96e8a6d6d84ea1
|
MD5_JPEG_420_ISLOW_ARI = e986fb0a637a8d833d96e8a6d6d84ea1
|
||||||
MD5_JPEG_444_ISLOW_PROGARI = 0a8f1c8f66e113c3cf635df0a475a617
|
MD5_JPEG_444_ISLOW_PROGARI = 0a8f1c8f66e113c3cf635df0a475a617
|
||||||
|
|||||||
@@ -301,10 +301,19 @@ following reasons:
|
|||||||
slightly more accurate than the implementation in libjpeg v6b, but not by
|
slightly more accurate than the implementation in libjpeg v6b, but not by
|
||||||
any amount perceptible to human vision (generally in the range of 0.01 to
|
any amount perceptible to human vision (generally in the range of 0.01 to
|
||||||
0.08 dB gain in PNSR.)
|
0.08 dB gain in PNSR.)
|
||||||
|
-- When not using the SIMD extensions, libjpeg-turbo uses the more accurate
|
||||||
|
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
|
||||||
|
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
|
||||||
|
however, that this algorithm basically brings the accuracy of the floating
|
||||||
|
point IDCT in line with the accuracy of the slow integer IDCT. The floating
|
||||||
|
point DCT/IDCT algorithms are mainly a legacy feature, and they do not
|
||||||
|
produce significantly more accuracy than the slow integer algorithms (to put
|
||||||
|
numbers on this, the typical difference in PNSR between the two algorithms
|
||||||
|
is less than 0.10 dB, whereas changing the quality level by 1 in the upper
|
||||||
|
range of the quality scale is typically more like a 1.0 dB difference.)
|
||||||
-- When not using the SIMD extensions, then the accuracy of the floating point
|
-- When not using the SIMD extensions, then the accuracy of the floating point
|
||||||
DCT/IDCT can depend on the compiler and compiler settings.
|
DCT/IDCT can depend on the compiler and compiler settings.
|
||||||
|
|
||||||
|
|
||||||
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood, it is
|
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood, it is
|
||||||
still using the same algorithms as libjpeg v6b, so there are several specific
|
still using the same algorithms as libjpeg v6b, so there are several specific
|
||||||
cases in which libjpeg-turbo cannot be expected to produce the same output as
|
cases in which libjpeg-turbo cannot be expected to produce the same output as
|
||||||
@@ -320,10 +329,6 @@ libjpeg v8:
|
|||||||
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
|
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
|
||||||
reason.
|
reason.
|
||||||
|
|
||||||
-- When using the floating point IDCT, for the reasons stated above and also
|
|
||||||
because the floating point IDCT algorithm was modified in libjpeg v8a to
|
|
||||||
improve accuracy.
|
|
||||||
|
|
||||||
-- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
|
-- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
|
||||||
"non-smooth") chrominance upsampling, because libjpeg v8 does not support
|
"non-smooth") chrominance upsampling, because libjpeg v8 does not support
|
||||||
merged upsampling with scaling factors > 1.
|
merged upsampling with scaling factors > 1.
|
||||||
|
|||||||
77
jidctflt.c
77
jidctflt.c
@@ -1,8 +1,11 @@
|
|||||||
/*
|
/*
|
||||||
* jidctflt.c
|
* jidctflt.c
|
||||||
*
|
*
|
||||||
|
* This file was part of the Independent JPEG Group's software:
|
||||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||||
* This file is part of the Independent JPEG Group's software.
|
* Modified 2010 by Guido Vollbeding.
|
||||||
|
* libjpeg-turbo Modifications:
|
||||||
|
* Copyright (C) 2014, D. R. Commander.
|
||||||
* For conditions of distribution and use, see the accompanying README file.
|
* For conditions of distribution and use, see the accompanying README file.
|
||||||
*
|
*
|
||||||
* This file contains a floating-point implementation of the
|
* This file contains a floating-point implementation of the
|
||||||
@@ -76,10 +79,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
FLOAT_MULT_TYPE * quantptr;
|
FLOAT_MULT_TYPE * quantptr;
|
||||||
FAST_FLOAT * wsptr;
|
FAST_FLOAT * wsptr;
|
||||||
JSAMPROW outptr;
|
JSAMPROW outptr;
|
||||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||||||
int ctr;
|
int ctr;
|
||||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||||
SHIFT_TEMPS
|
#define _0_125 ((FLOAT_MULT_TYPE)0.125)
|
||||||
|
|
||||||
/* Pass 1: process columns from input, store into work array. */
|
/* Pass 1: process columns from input, store into work array. */
|
||||||
|
|
||||||
@@ -101,7 +104,8 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||||
inptr[DCTSIZE*7] == 0) {
|
inptr[DCTSIZE*7] == 0) {
|
||||||
/* AC terms all zero */
|
/* AC terms all zero */
|
||||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
|
||||||
|
quantptr[DCTSIZE*0] * _0_125);
|
||||||
|
|
||||||
wsptr[DCTSIZE*0] = dcval;
|
wsptr[DCTSIZE*0] = dcval;
|
||||||
wsptr[DCTSIZE*1] = dcval;
|
wsptr[DCTSIZE*1] = dcval;
|
||||||
@@ -120,10 +124,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
|
|
||||||
/* Even part */
|
/* Even part */
|
||||||
|
|
||||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
|
||||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
|
||||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
|
||||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
|
||||||
|
|
||||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||||
tmp11 = tmp0 - tmp2;
|
tmp11 = tmp0 - tmp2;
|
||||||
@@ -138,10 +142,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
|
|
||||||
/* Odd part */
|
/* Odd part */
|
||||||
|
|
||||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
|
||||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
|
||||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
|
||||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
|
||||||
|
|
||||||
z13 = tmp6 + tmp5; /* phase 6 */
|
z13 = tmp6 + tmp5; /* phase 6 */
|
||||||
z10 = tmp6 - tmp5;
|
z10 = tmp6 - tmp5;
|
||||||
@@ -152,12 +156,12 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||||
|
|
||||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
||||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
||||||
|
|
||||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||||
tmp5 = tmp11 - tmp6;
|
tmp5 = tmp11 - tmp6;
|
||||||
tmp4 = tmp10 + tmp5;
|
tmp4 = tmp10 - tmp5;
|
||||||
|
|
||||||
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||||
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||||
@@ -165,8 +169,8 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||||
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||||
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||||
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
wsptr[DCTSIZE*3] = tmp3 + tmp4;
|
||||||
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
wsptr[DCTSIZE*4] = tmp3 - tmp4;
|
||||||
|
|
||||||
inptr++; /* advance pointers to next column */
|
inptr++; /* advance pointers to next column */
|
||||||
quantptr++;
|
quantptr++;
|
||||||
@@ -174,7 +178,6 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* Pass 2: process rows from work array, store into output array. */
|
/* Pass 2: process rows from work array, store into output array. */
|
||||||
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
|
||||||
|
|
||||||
wsptr = workspace;
|
wsptr = workspace;
|
||||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||||
@@ -187,8 +190,10 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
|
|
||||||
/* Even part */
|
/* Even part */
|
||||||
|
|
||||||
tmp10 = wsptr[0] + wsptr[4];
|
/* Apply signed->unsigned and prepare float->int conversion */
|
||||||
tmp11 = wsptr[0] - wsptr[4];
|
z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
|
||||||
|
tmp10 = z5 + wsptr[4];
|
||||||
|
tmp11 = z5 - wsptr[4];
|
||||||
|
|
||||||
tmp13 = wsptr[2] + wsptr[6];
|
tmp13 = wsptr[2] + wsptr[6];
|
||||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
||||||
@@ -209,31 +214,23 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|||||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
||||||
|
|
||||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
||||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
||||||
|
|
||||||
tmp6 = tmp12 - tmp7;
|
tmp6 = tmp12 - tmp7;
|
||||||
tmp5 = tmp11 - tmp6;
|
tmp5 = tmp11 - tmp6;
|
||||||
tmp4 = tmp10 + tmp5;
|
tmp4 = tmp10 - tmp5;
|
||||||
|
|
||||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
/* Final output stage: float->int conversion and range-limit */
|
||||||
|
|
||||||
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
|
||||||
& RANGE_MASK];
|
outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
|
||||||
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
|
||||||
& RANGE_MASK];
|
outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
|
||||||
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
|
||||||
& RANGE_MASK];
|
outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
|
||||||
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
|
||||||
& RANGE_MASK];
|
outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
|
||||||
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
|
||||||
& RANGE_MASK];
|
|
||||||
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
|
||||||
& RANGE_MASK];
|
|
||||||
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
|
||||||
& RANGE_MASK];
|
|
||||||
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
|
||||||
& RANGE_MASK];
|
|
||||||
|
|
||||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user